七年级下册数学期末卷二答案
- 格式:docx
- 大小:131.64 KB
- 文档页数:12
人教版数学七年级第二学期期末考试试卷及答案一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×1083.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.54.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是20005.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a46.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.010.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣611.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=1012.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.2513.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x215.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.816.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=.18.计算:199×201=.19.已知10x=2,10y=5,则10x+y=.20.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为.三.解答题(共8小题)21.(1);(2);22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为人;(2)被调查的学生人数为人,A组人数为人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=2﹣1 ⑦×=2﹣1(2)写出你猜想的第n个等式(用含n的式子表示);(3)请你验证猜想的正确性.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为.参考答案与试题解析一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.要了解一批节能灯的使用寿命适合抽样调查,原调查方式不合适;B.为保证“神舟9号”的成功发射,对其零部件进行检查采用全面调查,原调查方式不合适;C.对乘坐某班次客车的乘客进行安检,采用普查的方式,原调查方式不合适;D.调查本班同学的视力,采用普查的方式,原调查方式合适;故选:D.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23 000 000=2.3×107.故选:B.3.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.5【分析】直接利用二元一次方程的解法得出答案.【解答】解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.5.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x2•x3=x5,原题计算正确,不合题意;B、(x3)2=x6,原题计算正确,不合题意;C、a+2a=3a,原题计算正确,不合题意;D、a8÷a2=a6,原题计算错误,符合题意.故选:D.6.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b【分析】由大正方形面积=两个小正方形面积+2个长方形面积,可得(a+b)2=a2+2ab+b2【解答】解:∵大正方形面积=两个小正方形面积+2个长方形面积∴(a+b)2=a2+2ab+b2故选:A.7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个【分析】将x看做已知数求出y,找出正整数解即可.【解答】解:∵x+2y=11,∴y=,则:当x=1时,y=5;当x=3时,y=4;当x=5时,y=3;当x=7时,y=2;当x=9时,y=1;故选:C.9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.0【分析】直接利用负整数指数幂的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:∵﹣12=﹣1,(x﹣3.14)0=1,2﹣1=,0,∴最小的数是:﹣12.故选:A.10.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣6【分析】直接利用乘法公式结合整式的混合运算法则分别计算得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故原题计算错误;B、(﹣x﹣y)2=x2+2xy+y2,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(a﹣2)(a+3)=a2+a﹣6,故原题计算错误;故选:B.11.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=10【分析】先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加即可得出答案.【解答】解:∵(x+5)(2x﹣3)=2x2﹣3x+10x﹣15=2x2+7x﹣15,又∵(x+5)(2x﹣3)=2x2+mx﹣15,∴m=7;故选:A.12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x2【分析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.15.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.8【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.16.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4【分析】表示出长方形的面积,利用多项式乘以多项式法则计算,即可确定出需要C类卡片的张数.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3.故选:C.二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,移项得:﹣y=1﹣2x,解得:y=2x﹣1.故答案为:2x﹣1.18.计算:199×201=39999.【分析】先变形为原式=(200﹣1)×(200+1),然后利用平方差公式计算.【解答】解:原式=(200﹣1)×(200+1)=2002﹣12=40000﹣1=39999.故答案为39999.19.已知10x=2,10y=5,则10x+y=10.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1020.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为5.【分析】设小矩形的长为x,宽为y,根据矩形的对边相等已经大矩形的长为5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5×4﹣5xy)中即可求出结论.【解答】解:设小矩形的长为x,宽为y,依题意,得:,解得:,∴5×4﹣5xy=5×4﹣5×3×1=5.故答案为:5.三.解答题(共8小题)21.(1);(2);【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2(2y﹣3)+3y=8,解得:y=2,把y=2代入①得:x=1,则方程组的解为;(2),①×2+②得:5x=15,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为.22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);【分析】(1)根据同底数幂的乘法和同底数幂的除法求出即可;(2)先算乘方,再合并即可;(3)根据单项式乘以单项式法则求出即可.【解答】解:(1)a5•a3÷a2=a5+3﹣2=a6;(2)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(3)(﹣2a2b)•(abc)=﹣a3b2c.23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、积的乘方运算法则分别计算得出答案.【解答】解:(1)5x(2x+1)﹣(x+3)(5x﹣1)=10x2+5x﹣(5x2+14x﹣3)=10x2+5x﹣5x2﹣14x+3=5x2﹣9x+3;(2)(π﹣2020)0+()﹣2﹣2101×()100=1+9﹣(2×)100×2=1+9﹣2=8.24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.【分析】(1)根据完全平方公式可知:(a+2)2=a2+2a+1,可作判断;(2)先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;故答案为:②;(2)(a+2)2+3(a+1)(a﹣1)=a2+2a+1+3(a2﹣1)=a2+2a+1+3a2﹣3=4a2+2a﹣2,当x=﹣1时,原式=4×1+2×(﹣1)﹣2=4﹣2﹣2=0.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为4人;(2)被调查的学生人数为50人,A组人数为3人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出E组的人数;(2)用(1)求出的样本容量乘以A组人数所占的百分比,求出A组的人数,用总人数乘以C组人数所占的百分比得出C组的人数,从而补全统计图;(3)用360°乘以“B”所占的百分比即可;(4)用总人数乘以发言次数不少于12次的人数所占的百分比即可.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴E组人数为:50×8%=4(人);故答案为:4;(2)被调查的学生人数为50,A组人数为:50×6%=3(人),C组的人数是50×30%=15(人),补全频数分布直方图如下:故答案为:50,3;(3)“B”所对应的圆心角的度数是:360°×20%=72°;(4)F 组所占的百分比是×100%=10%,则全年级在这天里发言次数不少于12次的人数有:1500×(10%+8%)=270(人).26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=72﹣1 ⑦7×9=82﹣1(2)写出你猜想的第n个等式(用含n的式子表示)n(n+2)=(n+1)2+1;(3)请你验证猜想的正确性.【分析】(1)由规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,进行解答;(2)把规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,用n的等式表示出来;(3)运用整数的混合运算顺序和运算法则对等式左右两边进行计算便可.【解答】解:(1)由题中前面6个算式可知,两个相差2的两个整数的积等于两个数的平均数的平方与1的差,所以,⑥6×8=72﹣1,⑦7×9=82﹣1,故答案为:7;7;9;8;(2)由规律可知:n(n+2)=(n+1)2﹣1,故答案为:n(n+2)=(n+1)2﹣1;(3)∵左边=n(n+2)=n2+2n,右边=n2+2n+1﹣1=n2+2n,∴左边=右边,∴n(n+2)=(n+1)2﹣1.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①a2﹣b2图②(a+b)(a﹣b);(2)比较两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为12;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为264﹣1.【分析】(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2,而图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,可表示出面积为(a+b)(a﹣b).(2)由由图①与图②的面积相等,可以得到乘法公式;①利用公式将4m2﹣n2写成(2m﹣n)(2m+n)进而求出答案,②连续两次利用平方差公式进行计算即可,将原式转化为(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),再连续使用平方差公式,得出最后的结果.【解答】解:(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2;图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,其面积为(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图①与图②的面积相等,可以得到乘法公式,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;①4m2﹣n2=(2m﹣n)(2m+n)=3×4=12,故答案为:12;②(x﹣3)(x+3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(2+1)(22+1)(24+1)(28+1)…(232+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),=(22﹣1)(22+1)(24+1)(28+1)…(232+1),=(24﹣1)(24+1)(28+1)…(232+1),=(28﹣1)(28+1)…(232+1),=264﹣1.。
北师大版七年级数学第二学期期末试卷及答案一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a63.(3分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.4.(3分)已知:a﹣b=2,ab=﹣1,则a2+b2=()A.0B.2C.4D.65.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.6.(3分)下列语句正确的有()个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A.0B.1C.2D.37.(3分)如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为()A.B.C.D.8.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对9.(3分)端午节期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠”.在此活动中,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品件数x(件)之间的关系式是()A.y=48x B.y=48x+20C.y=48x﹣80D.y=48x+4010.(3分)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4二、填空题(本大题共8小题,每小题题3分,共24分)11.(3分)若一个角的余角是其补角的,则这个角的度数为.12.(3分)光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为米.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为.14.(3分)把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率.15.(3分)某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成个,这些细菌再继续分裂t分后共分裂成个.16.(3分)(2+1)(22+1)(24+1)…(232+1)的个位数字是.17.(3分)已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有对,互余的角有对.18.(3分)已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交边AB于点D,交边AC于点E,BF垂直平分CE,交AC于点F,则∠A=度.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).20.(6分)已知:如图,在△ABC中,BD⊥AC于D,点E在边BC上,EF⊥AC于F,点M、G在边AB上,∠AMD=∠AGF,BD与GF交于点H,∠BHG=∠FEC=54°.(1)求∠GFC的度数.(2)判断DM与BC的位置关系,并说明理由.21.(6分)先化简,再求值:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b),其中a4=9﹣2,2b=42.四、解答题(本大题共2小题,22题6分,23题8分共14分)22.(6分)已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.23.(8分)已知:如图,点B、E、C、F四点在一条直线上,且AB∥DE,AB=DE,BE=CF.(1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.五、解答题(本大题共2小题,24题6分,25题8分,共14分)24.(6分)某城市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图形回答:(1)当每户每月的用水量不足5吨时,每吨水费多少元?当每户每月的用水量超过5吨时,超过的部分每吨交水费多少元?(2)若某户居民某月交了水费19.5元,则该户居民用了多少吨水?25.(8分)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,∠BMN=∠ACB,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.3.(3分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.【分析】让黄球的个数除以球的总个数即为所求的概率.【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.故选:C.4.(3分)已知:a﹣b=2,ab=﹣1,则a2+b2=()A.0B.2C.4D.6【分析】原式利用完全平方公式变形,把已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,ab=﹣1,∴原式=(a﹣b)2+2ab=4﹣2=2.故选:B.5.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向左对折,向上对折,从直角三角形的一直角边的正中间剪去一个正方形,展开后实际是从正方形的一条对角线上剪去两个小长方形,得到结论.故选B.6.(3分)下列语句正确的有()个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A.0B.1C.2D.3【分析】根据平行公理及推论、概率公式以及概率的意义分别对每一项进行分析,即可得出答案.【解答】解:(1)线段是轴对称图形,对称轴是这条线段的垂直平分线和这条线段所在直线,故本选项错误;(2)确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,故本选项错误;(3)两直线平行,同位角相等,故本选项错误;(4)经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;故选:A.7.(3分)如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为()A.B.C.D.【分析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x间的函数是增函数,根据球的特征进行判断分析即可.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R 时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.8.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OC,然后判断出△AOE和△COE全等,再根据等腰三角形三线合一的性质可得AD⊥BC,从而得到△ABC关于直线AD轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.9.(3分)端午节期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠”.在此活动中,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品件数x(件)之间的关系式是()A.y=48x B.y=48x+20C.y=48x﹣80D.y=48x+40【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【解答】解:∵凡在该商店一次性购物超过100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与办公用品件数x(件)的函数关系式是:y=(60x﹣100)×0.8+100=48x+20(x>2),故选:B.10.(3分)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4【分析】根据SAS证明△AEF≌△ABC,由全等三角形的性质和外角性质可依次判断即可求解.【解答】解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EF A,∴∠EAB=∠F AC,∠AFC=∠C,∴∠EF A=∠AFC,即F A平分∠EFC.又∵∠AFB=∠C+∠F AC=∠AFE+∠BFE,∴∠BFE=∠F AC.故①②③④正确.故选:D.二、填空题(本大题共8小题,每小题题3分,共24分)11.(3分)若一个角的余角是其补角的,则这个角的度数为45°.【分析】设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,再根据题意列出方程,求出x的值即可.【解答】解:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=45°.故答案为:45°.12.(3分)光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为 1.5×1011米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3×108×5×102=1.5×1011.故答案为:1.5×1011.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为75°或15°.【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【解答】解:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°,∴∠ABC=∠C=75°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠ABC=∠C=∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75°或15°.14.(3分)把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率.【分析】先求出将长度为6的铁丝截成3段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.【解答】解:因为将长度为6的铁丝截成3段,每段长度均为整数厘米,共有3种情况,分别是1,1,4;1,2,3;2,2,2;其中能构成三角形的是:2,2,2一种情况,所以能构成三角形的概率是.故答案为:.15.(3分)某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成64个,这些细菌再继续分裂t分后共分裂成22t+6个.【分析】把3分、t分转化为含30秒的次数,根据乘方的意义得结论.【解答】解:因为3分=6个30秒,所以1个细菌经过3分钟分裂成26个,即64个.t分=2t个30秒,再继续分裂t分钟,即一个细菌分裂了(2t+6)次,此时共分裂22t+6个.故答案为:64,22t+6.16.(3分)(2+1)(22+1)(24+1)…(232+1)的个位数字是5.【分析】先根据平方差公式进行计算,求出264的末位数字是6,再求出答案即可.【解答】解:(2+1)(22+1)(24+1)…(232+1)=(2﹣1)(2+1)(22+1)(24+1)…(232+1)=(22﹣1)(22+1)(24+1)…(232+1)=(24﹣1)(24+1)…(232+1)=…=264﹣1,∵21=2,22=4,23=8,24=16,25=32,26=64,…∴264的末位数字是6,∴264﹣1的末位数字是5,故答案为:5.17.(3分)已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有5对,互余的角有3对.【分析】可以在Rt△ABC和Rt△BDC、Rt△ADC分别找出与相等和互余的角.【解答】解:图形中相等的角有∠A=∠BCD,∠B=∠ACD,∠A=∠BCD,∠ACB=∠BDC,∠ACB=∠CDA,∠BDC=∠CDA,一共5对,互余的角有∠A和∠B,∠A和∠ACD,∠B和∠BCD,一共3对.故答案为:5;3.18.(3分)已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交边AB于点D,交边AC于点E,BF垂直平分CE,交AC于点F,则∠A=36度.【分析】连结BE,根据线段垂直平分线的性质,三角形外角的性质,等腰三角形的性质可得5∠A=180°,即可得出答案.【解答】解:连结BE,∵DE垂直平分AB,∴∠ABE=∠A,∵BF垂直平分AC,∴∠BEF=∠C,∵∠BEC=∠ABE+∠A,∴∠C=2∠A,∵AB=AC,∴∠C=∠ABC=2∠A,∴5∠A=180°,解得∠A=36°.故答案为:36.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).【分析】(1)先算乘方,再算除法,最后合并同类项即可;(2)先变形,再根据平方差公式进行计算,最后求出即可.【解答】解:(1)原式=a4+a8﹣a6÷a2=a4+a8﹣a4=a8;(2)原式=20192﹣(2019+1)×(2019﹣1)=20192﹣20192+1=1.20.(6分)已知:如图,在△ABC中,BD⊥AC于D,点E在边BC上,EF⊥AC于F,点M、G在边AB上,∠AMD=∠AGF,BD与GF交于点H,∠BHG=∠FEC=54°.(1)求∠GFC的度数.(2)判断DM与BC的位置关系,并说明理由.【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的判定解答即可.【解答】解:(1)∵BD⊥AC于D,EF⊥AC于F,∴∠BDF=∠EFC=90°,∴BD∥EF,∴∠HBE=∠FEC,∵∠BHG=∠FEC=54°,∴∠BHG=∠HBE=54°,∴GF∥BC,∴∠GFE=∠FEC=54°,∴∠GFC=∠HFE+∠EFC=54°+90°=144°;(2)DM∥BC,理由如下:∵∠AMD=∠AGF,∴DM∥GF,∵GF∥BC,∴DM∥BC.21.(6分)先化简,再求值:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b),其中a4=9﹣2,2b=42.【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,求出a、b的值,最后再代入求出即可.【解答】解:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b)=a2﹣4ab+4b2﹣2a2﹣ab+2ab+b2+a2﹣b2=4b2﹣3ab,∵a4=9﹣2,2b=42,∴a4=(3﹣1)4,2b=24,∴a=±,b=4,当a=,b=4时,原式=4×42﹣3××4=60;当a=﹣,b=4时,原式=64+4=68.四、解答题(本大题共2小题,22题6分,23题8分共14分)22.(6分)已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.【分析】(1)利用网格特点,分别画出A、B、C关于直线的对称点A1、B1、C1即可;(2)由于P A=P A1,则|PB﹣P A|=|PB﹣P A1|,而|PB﹣P A1|≤A1B,当点P、A1、B共线时取等号,从而得到|PB ﹣P A|的最大值.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,点P为所作,|PB﹣P A|的最大值为3.23.(8分)已知:如图,点B、E、C、F四点在一条直线上,且AB∥DE,AB=DE,BE=CF.(1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.【分析】(1)直接利用全等三角形的判定方法得出答案;(2)由全等三角形的性质可得出结论.【解答】(1)证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)AC=DF,AC∥DF.理由如下:∵△ABC≌△DEF,∴AC=DF,∠ACB=∠DFE,∴AC∥DF.五、解答题(本大题共2小题,24题6分,25题8分,共14分)24.(6分)某城市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图形回答:(1)当每户每月的用水量不足5吨时,每吨水费多少元?当每户每月的用水量超过5吨时,超过的部分每吨交水费多少元?(2)若某户居民某月交了水费19.5元,则该户居民用了多少吨水?【分析】(1)根据图象给出的数据即可求出答案.(2)设该户居民用了x吨水,根据题意列出方程即可求出答案.【解答】解:(1)当用水量不足5吨时,每吨水费为:=元/吨,当用水量超过5吨时,每吨水费为:=元/吨.(2)设该户居民用了x吨水,由题意可知:5×+(x﹣5)=19.5,解得:x=7,答:该户居民用了7吨水.25.(8分)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,∠BMN=∠ACB,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.【分析】(1)由“SAS”可证△ABD≌△FCD,可得AB=CF,由“ASA”可证△ACE≌△BCE,可得AE=BE,可得结论;(2)如图,过点M作MH∥AC,交AB于H,交BD于P,由“SAS”可证BPH≌△MPG,可得GM=BH,由“ASA”可证△BMN≌△HMN,可得BN=NH,可得结论.【解答】解:(1)∵BD⊥AC,CE⊥AB,∴∠ADB=∠BDC=∠AEC=90°,∴∠A+∠ABD=90°,∠A+∠ACE=90°,∴∠ABD=∠ACE,在△ABD和△FCD中,,∴△ABD≌△FCD(SAS),∴AB=CF,∵CE平分∠ACB,∴∠ACE=∠BCE,在△ACE和△BCE中,,∴△ACE≌△BCE(ASA),∴AE=BE,∴BE=AB=CF;(2)BN=MG,理由如下:如图,过点M作MH∥AC,交AB于H,交BD于P,∵BD=CD,BD⊥CD,∴∠DBC=∠DCB=45°,∵MH∥AC,∴∠PMB=∠DCB=∠PBM=45°,∠BPM=∠BDC=90°,∴BP=PM,∵∠BHP+∠HBP=90°,∠BHP+∠HMN=90°,∴∠HBP=∠HMN,在△BHP和△MGP中,,∴△BPH≌△MPG(ASA),∴GM=BH,∵∠BMN=∠ACB=22.5°,∴∠BMN=∠HMN=22.5°,在△BMN和△HMN中,,∴△BMN≌△HMN(ASA)∴BN=NH,∴BN=BH=MG.。
江苏省七年级下学期数学期末试题卷本试卷由填空题、选择题和解答题三大题组成,共29小题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上.1.下列运算正确的是A.a·a2=a2 B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a52.某红外线遥控器发出的红外线波长为0.00 000 094m,用科学记数法表示这个数是A.9.4×10-7m B.9.4×107m C.9.4×10-8m D.9.4×108m3.一个正多边形的每个外角都等于36°,那么它是A.正六边形 B.正八边形 C.正十边形 D.正十二边形4.不等式组221xx≤⎧⎨+>⎩的最小整数解为A.-1 B.0 C.1 D.25.如图,直线l、n分别截∠A的两边,且l∥n.根据图中标示的角,判断下列各角的度数关系,正确的是A.∠2+∠5 >180°B.∠2+∠3< 180°C.∠1+∠6> 180°D.∠3+∠4<180°6.数a、b、c在数轴上对应的点如图所示,则下列式子中正确的是A.a-c>b-c B.a+c<b+cC.ac>bc D.a cb b <7.下列命题中是真命题的是A.质数都是奇数B.如果a=b,那么a=bC.如果a>b,那么(a+b)(a-b)>0 D.若x<y,则x-202X<y-202X8.关于x,y的方程组225y x mx m+=⎧⎨+=⎩的解满足x+y=6,则m的值为A.-1 B.2 C.1 D.49.(3x+2)(-x4+3x5)+(3x+2)(-2x4+x5)+(x+1)(3x4-4x5)与下列哪一个式子相同A.(3x4-4x5) (2x+1) B.-(3x4-4x5)(2x+3)C.(3x4-4x5) (2x+3) D.-(3x4-4x5)(2x+1)10.小新原有50元,表格中记录了他今天所支出各项费用,其中饼干支出的金额被涂黑,若每包饼干的售价为3元,则小明可能剩下的金额数是A.7元B.8元C.9元D.10元二、填空题本大题共8小题.每小题3分,共24分把答案直接填在答题卡相对应的位置上.11.命题“内错角相等”是▲命题(填“真”、“假”).12.(▲)(2a-3b)=12a2b-18ab2.13.已知2x=3y+7,则32x y-=▲.14.如果(x+3)(x+a)=x2-2x-15,则a=▲.15.如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是▲.16.已知关于x的方程x-(2x-a)=2的解是负数,则a的取值范围是▲.17.计算:498×502-5002=▲.18.已知不等式组1xx n<⎧⎨>⎩有解,则n的取值范围是▲.三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分9分,每小题3分)将下列各式分解因式:(1)4m2-36mn+81n2;(2)x2-3x-10;(3)18a2-50.20.(本题满分8分,每小题4分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]·x2y;(2)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=12.21.(本题满分8分,每小题4分)解下列方程组:(1)524235x yx y-=⎧⎨-=-⎩(2)42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,每小题4分)解不等式(组)(1)334642x x--<-,并把解在数轴上表示出来; (2)()32412123x xxx⎧-->-⎪⎨+>-⎪⎩.23.(本题满分5分)如图,EF//AD,∠1=∠2,∠BAC=70°.填空:解:∵EF//AD(已知),∴∠2=▲(▲),∵∠1=∠2( ▲),∴∠1=∠3( ▲),∴AB∥▲( ▲).∴∠BAC+▲=180°( ▲).∵∠BAC=70°( ▲),∴∠AGD=▲°.24.(本题满分5分)某厂家为支援灾区人民,捐赠帐篷16800顶,该厂家备有2辆大货车、8辆小货车运送,每次每辆大货车所运帐篷数比小货车所运帐篷数的2倍少30顶,已知大、小货车每天均运送一次,2天恰好运完,求大、小货车每辆每次各运送帐篷多少顶?25.(本题满分5分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕.(1)试判断B'E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.26.(本题满分6分)已知关于x、y的方程组316215x aybx y-=⎧⎨+=⎩的解是76xy=⎧⎨=⎩(1)求(a+10b)2-(a-10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.27.(本题满分7分)如图,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD =∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?28.(本题满分7分)甲、乙两商场以同样价格出售同样的商品,并且又推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.(1)若小明妈妈准备用120元去商场购物,你建议小明妈妈去▲商场花费少(直接写“甲”或“乙”);(2)根据两家商场的优惠活动方案,问顾客到哪家商场购物花费少?请说明理由.29.(本题满分8分)如图,在△ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以72cm/s的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF+S△ACE<S△ABC.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
苏科版七年级数学下册期末测试卷(2)一、选择题1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°2.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°3.如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°4.已知1微米=10﹣6米,则25微米用科学记数法表示为()A.2.5×10﹣5米 B.2.5×10﹣7米 C.2.5×10﹣6米 D.2.5×10﹣8米5.石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜,是目前发现的厚度最薄、强度最大、导电导热性能最强的一种新型纳米材料,其厚度仅为0.334纳米.数据0.334纳米用科学记数法可以表示为()A.0.334×10﹣9米B.3.34×10﹣9米C.3.34×10﹣10米D.3.34×10﹣8米6.正常人红细胞直径平均为0.000 0072米,数字0.000 0072米用科学记数法表示为()A.7.2×107B.0.72×10﹣6C.7.2×10﹣6D.72×10﹣77.若a2﹣2a﹣2=0,则(a﹣1)2=()A.1 B.2 C.3 D.48.下列运算正确的是()A.x4+x4=2x8B.x3•x=x4C.(x﹣y)2=x2﹣y2D.(x2)3=x59.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b210.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.11.已知是方程mx+3y=5的解,则m的值是()A.1 B.﹣1 C.﹣2 D.212.方程3x+2y=17的正整数解有()A.1组 B.2组 C.3组 D.4组13.将不等式x﹣1>0的解集表示在数轴上,下列表示正确的是()A.B.C.D.14.不等式1﹣2x>1的解集为()A.x>0 B.x<0 C.x>1 D.x<115.若a是不等式2x﹣1>5的解,b不是不等式2x﹣1>5的解,则下列结论正确的是()A.a>b B.a≥b C.a<b D.a≤b二、填空题16.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为.17.计算:20170+(﹣)﹣1=.18.计算:(x+1)2=.19.对于二元一次方程3(x﹣1)﹣2(y+2)=﹣1,用含x的代数式表示y的结果为.20.命题:面积相等的两个三角形是全等三角形是假命题(填“真”或“假”)三、解答题21.已知:CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,求∠BOF的度数.22.计算:(1)﹣32+(﹣)﹣2+;(2)(3x2y﹣2)2÷(x﹣2y)3.23.计算:6ab(2a2b﹣ab2).24.某地为了鼓励居民节约用水,决定实行两极收费制,即每月用水量不超过15吨(含15吨)时,每吨按政府补贴优惠价收费;每月超过15吨时,超过部分每吨按市场调节价收费.小明家1月份用水23吨,交水费35元,2月份用水19吨,交水费25元.(1)求每吨水的政府补贴优惠价市场调节价分别是多少?(2)小明家3月份用水24吨,他家应交水费多少元?25.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节约用水的目的,规定:每户居民每月用水不超过15m3时,按基本价格收费;超过15m3时,不超过的部分仍按基本价格收费,超过的部分要加价收费,该市某户居民今年4、5月份的用水量和水费如表所示:(1)求该市居民用水的两种收费价格;(2)若该居民6月份交水费80元,那么该居民这个月水量为m3.26.如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)①求每辆A型车和B型车满载时各装水果多少吨?②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?27.用反证法证明“一个三角形中不可能有两个角是钝角”已知:△ABC求证:∠A、∠B、∠C中不能有两个角是钝角证明:假设.答案1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】选择题【难度】易【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.2.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【考点】K7:三角形内角和定理.【专题】选择题【难度】易【分析】根据三角形内角和定理计算即可.【解答】解:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.3.如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【考点】K7:三角形内角和定理.【专题】选择题【难度】易【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.4.已知1微米=10﹣6米,则25微米用科学记数法表示为()A.2.5×10﹣5米 B.2.5×10﹣7米 C.2.5×10﹣6米 D.2.5×10﹣8米【考点】1J:科学记数法—表示较小的数.【专题】选择题【难度】易【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1微米=0.000001米=1×10﹣6米∴25微米=25×1×10﹣6米=2.5×10﹣5米故选A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜,是目前发现的厚度最薄、强度最大、导电导热性能最强的一种新型纳米材料,其厚度仅为0.334纳米.数据0.334纳米用科学记数法可以表示为()A.0.334×10﹣9米B.3.34×10﹣9米C.3.34×10﹣10米D.3.34×10﹣8米【考点】1J:科学记数法—表示较小的数.【专题】选择题【难度】易【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.334纳米=0.334×10﹣9m=3.34×10﹣10m.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.正常人红细胞直径平均为0.000 0072米,数字0.000 0072米用科学记数法表示为()A.7.2×107B.0.72×10﹣6C.7.2×10﹣6D.72×10﹣7【考点】1J:科学记数法—表示较小的数.【专题】选择题【难度】易【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0072=7.2×10﹣6,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.若a2﹣2a﹣2=0,则(a﹣1)2=()A.1 B.2 C.3 D.4【考点】4C:完全平方公式.【专题】选择题【难度】易【分析】求出a2﹣2a=2,根据完全平方公式展开,代入后即可求出答案.【解答】解:∵a2﹣2a﹣2=0,∴a2﹣2a=2,∴(a﹣1)2=a2﹣2a+1=2+1=3,故选C.【点评】本题考查了完全平方公式,能熟记完全平方公式的特点是解此题的关键.8.下列运算正确的是()A.x4+x4=2x8B.x3•x=x4C.(x﹣y)2=x2﹣y2D.(x2)3=x5【考点】4C:完全平方公式;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】选择题【难度】易【分析】根据合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,差的平方等于平方和减积的二倍,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B正确;C、差的平方等于平方和减积的二倍,故C错误;D、幂的乘方底数不变指数相乘,故D错误;故选:B.【点评】本题考查了完全平方公式,熟记法则并根据法则计算是解题关键.9.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b2【考点】4C:完全平方公式;35:合并同类项;49:单项式乘单项式.【专题】选择题【难度】易【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【解答】解:A、﹣2x2﹣3x2=﹣5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选:A.【点评】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.10.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】92:二元一次方程的解.【专题】选择题【难度】易【分析】将各项中x与y的值代入方程检验即可得到结果.【解答】解:将x=1,y=0代入方程得:左边=1﹣0=1,右边=1,即左边=右边,则是方程x﹣2y=1的解.故选D.【点评】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.已知是方程mx+3y=5的解,则m的值是()A.1 B.﹣1 C.﹣2 D.2【考点】92:二元一次方程的解.【专题】选择题【难度】易【分析】根据方程的解满足方程,可得关于m的方程,根据解方程,可得答案.【解答】解:由题意,得﹣2m+3=5,解得m=﹣1,故选:B.【点评】本题考查了二元一次方程的解,利用方程的解满足方程得出关于m的方程是解题关键.12.方程3x+2y=17的正整数解有()A.1组 B.2组 C.3组 D.4组【考点】92:二元一次方程的解.【专题】选择题【难度】易【分析】把方程化为用一个未知数表示成另一个未知数的形式,再根据x、y均为正整数求解即可.【解答】解:方程2x+3y=17可化为x=,∵x、y均为正整数,∴17﹣2y>0且为3的倍数,当y=1时,x=5,当y=4时,x=3,当y=7时,x=1,∴方程3x+2y=17的正整数解为,,,故选:C.【点评】本题主要考查方程的特殊解,用一个未知数表示成另一个未知数是解题的关键.13.将不等式x﹣1>0的解集表示在数轴上,下列表示正确的是()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【专题】选择题【难度】易【分析】先解不等式得到x>1,然后利用数轴表示不等式的方法对各选项进行判断.【解答】解:x﹣1>0,所以x>1,用数轴表示为:.故选A.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.14.不等式1﹣2x>1的解集为()A.x>0 B.x<0 C.x>1 D.x<1【考点】C6:解一元一次不等式.【专题】选择题【难度】易【分析】移项、合并同类项、系数化为1即可得.【解答】解:∵﹣2x>1﹣1,∴﹣2x>0,∴x<0,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.若a是不等式2x﹣1>5的解,b不是不等式2x﹣1>5的解,则下列结论正确的是()A.a>b B.a≥b C.a<b D.a≤b【考点】C6:解一元一次不等式.【专题】选择题【难度】易【分析】首先解不等式2x﹣1>5求得不等式的解集,则a和b的范围即可确定,从而比较a和b的大小.【解答】解:解2x﹣1>5得x>3,.a是不等式2x﹣1>5的解则a>3,b不是不等式2x﹣1>5的解,则b≤3.故a>b.故选A.【点评】本题考查了一元一次不等式的解法,确定a和b的范围是关键.16.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为.【考点】JA:平行线的性质;J3:垂线.【专题】填空题【难度】中【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【解答】解:过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点评】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.17.计算:20170+(﹣)﹣1=.【考点】6F:负整数指数幂;6E:零指数幂.【专题】填空题【难度】中【分析】根据零次幂、负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=1﹣3=﹣2,故答案为:﹣2.【点评】本题考查了负整数指数幂,利用零次幂等于1、负整数指数幂与正整数指数幂互为倒数是解题关键.18.计算:(x+1)2=.【考点】4C:完全平方公式.【专题】填空题【难度】中【分析】完全平方公式是(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2,根据根式求出即可.【解答】解:(x+1)2=x2+2x+1,故答案为:x2+2x+1.【点评】本题考查了对完全平方公式公式的应用,注意:完全平方公式是(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2.19.对于二元一次方程3(x﹣1)﹣2(y+2)=﹣1,用含x的代数式表示y的结果为.【考点】93:解二元一次方程.【专题】填空题【难度】中【分析】要用含x的代数式表示y,就先化简二元一次方程3(x﹣1)﹣2(y+2)=﹣1,得到:3x﹣3﹣2y﹣4=﹣1,再移项,合并同类项得到:y=.所以用含x的代数式表示y的结果为:y=.【解答】解:化简得:3x﹣3﹣2y﹣4=﹣1移项得:﹣2y=6﹣3x系数化1得:y=.故填:y=.【点评】要掌握移项和合并同类项的方法.解题关键是先把方程化简,再通过移项和合并同类项把方程变形为是用含x的代数式表示y.20.命题:面积相等的两个三角形是全等三角形是假命题(填“真”或“假”)【考点】O1:命题与定理.【专题】填空题【难度】中【分析】根据全等三角形的判定进行判断.【解答】解:面积相等的两个不一定三角形全等,是假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.21.已知:CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,求∠BOF的度数.【考点】JA:平行线的性质;J3:垂线.【专题】解答题【难度】难【分析】根据两直线平行,同旁内角互补求出∠AOD,再根据角平分线的定义求出∠1,然后根据垂直的定义求出∠2,再根据平角的定义列式计算即可得解.【解答】解:如图,∵CD∥AB,∴∠AOD=180°﹣∠D=180°﹣50°=130°,∵OE平分∠AOD,∴∠1=∠AOD=×130°=65°,∵OF⊥OE,∴∠2=90°﹣∠1=90°﹣65°=25°,∴∠BOF=180°﹣∠AOD﹣∠2=180°﹣130°﹣25°=25°.【点评】本题考查了平行线的性质,角平分线的定义,以及垂直的定义,是基础题,熟记性质与概念并准确识图是解题的关键.22.计算:(1)﹣32+(﹣)﹣2+;(2)(3x2y﹣2)2÷(x﹣2y)3.【考点】47:幂的乘方与积的乘方;6F:负整数指数幂.【专题】解答题【难度】难【分析】(1)先求出每一部分的值,再求出即可;(2)先算乘方,再算除法即可.【解答】解:(1)原式=﹣9+9+8=8;(2)原式=9x4y﹣4÷x﹣6y3=9x10y﹣7=.【点评】本题考查了幂的乘方和积的乘方、负整数指数幂、零指数幂、负整数指数幂等知识点,能灵活运用知识点进行计算是解此题的关键.23.计算:6ab(2a2b﹣ab2).【考点】4A:单项式乘多项式.【专题】解答题【难度】难【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:原式=12a3b2﹣2a2b3.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.24.某地为了鼓励居民节约用水,决定实行两极收费制,即每月用水量不超过15吨(含15吨)时,每吨按政府补贴优惠价收费;每月超过15吨时,超过部分每吨按市场调节价收费.小明家1月份用水23吨,交水费35元,2月份用水19吨,交水费25元.(1)求每吨水的政府补贴优惠价市场调节价分别是多少?(2)小明家3月份用水24吨,他家应交水费多少元?【考点】9A:二元一次方程组的应用.【专题】解答题【难度】难【分析】(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元,题中有两个等量关系:①用水23吨,交水费35元;②2月份用水19吨,交水费25元.据此列出方程组,求解此方程组即可;(2)小明家3月份交水费=15x+(24﹣14)y,将(1)中所求值代入计算即可.【解答】(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元.根据题意可得:,解得:;答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)当x=1,y=2.5时,15×1+(24﹣15)×2.5=37.5,答:小明家3月份应交水费37.5元.【点评】本题考查二元一次方程组的应用.正确理解收费标准是解决本题的关键.25.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节约用水的目的,规定:每户居民每月用水不超过15m3时,按基本价格收费;超过15m3时,不超过的部分仍按基本价格收费,超过的部分要加价收费,该市某户居民今年4、5月份的用水量和水费如表所示:(1)求该市居民用水的两种收费价格;(2)若该居民6月份交水费80元,那么该居民这个月水量为m3.【考点】9A:二元一次方程组的应用.【专题】解答题【难度】难【分析】(1)分两种情况:当x<6时;当x>6时;求得用户用水为x立方米时的水费;(2)先判断这个月一定超过15立方米,再根据等量关系:15立方米的水费+超过15立方米的水费=80元,列出方程求解即可【解答】解:(1)设基本水费价格为:x元/m3,超过的部分水费价格为:y元/m3,,解得:,答:基本水费价格为:3元/m3,超过的部分水费价格为:5元/m3;(2)∵3×15=45<80(元),∴这个月一定超过15立方米,则15×2+5(a﹣15)=80,解得:x=22.答:这个月该用户用水22立方米.故答案为:22.【点评】此题主要考查了二元一次方程组的应用,根据图表中数据得出用户用水为x米3(x>15)时的水费是解题关键.26.如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)①求每辆A型车和B型车满载时各装水果多少吨?②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【专题】解答题【难度】难【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金300元/次,分别求出租车费用即可.【解答】(1)解:设A型车1辆运x吨,B型车1辆运y吨,由题意得解之得,所以1辆A型车满载为3吨,1辆B型车满载为4吨.(2)设租用A型车a辆,B型车b辆.则有:3a+4b=31吨a=,因a,b只能取整数,,,,共三种方案.(3)9×200+1×300=21005×200+4×300=22001×200+300×7=2300所以最省钱方案为A型车1辆,B型车7辆,租车费用2100元.【点评】本题主要考查了二元一次方程组和二元一次方程的实际应用,此题型是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.27.用反证法证明“一个三角形中不可能有两个角是钝角”已知:△ABC求证:∠A、∠B、∠C中不能有两个角是钝角证明:假设.【考点】O3:反证法.【专题】解答题【难度】难【分析】根据反证法的证明方法假设出命题,进而证明即可.【解答】证明:假设∠A、∠B、∠C中有两个角是钝角,不妨设∠A、∠B为钝角,∴∠A+∠B>180°,这与三角形内角和定理相矛盾,故假设不成立原命题正确.【点评】此题主要考查了反证法,需熟练掌握反证法的一般步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.。
华师大版数学2023年七年级下册第二学期期末复习检测卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的有( )(第1题)A .4个B .3个C .2个D .1个2.若x =1是方程ax +2x =1的解,则a 的值是( )A .-1B .1C .2D .-123.下列等式变形不一定正确的是( )A .若x =y ,则x -5=y -5B .若x =y ,则ax =ayC .若x =y ,则3-2x =3-2yD .若x =y ,则=xc yc4.若关于x 的方程x +k =2x -1的解是负数,则k 的取值范围是( )A .k >-1B .k <-1C .k ≥-1D .k ≤-15.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a -3|+(b -7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7 B .7<c <10 C .3<c <7D .4<c <106.如图,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A .20 cm 2B .15 cm 2C .10 cm 2D .25 cm2(第6题) (第7题) (第8题)7.如图,将△ABC 绕点A 逆时针旋转90°能与△ADE 重合,点D 在线段BC 的延长线上,若∠BAC =20°,则∠AED 的大小为( )A .135°B .125°C .120°D .115°8.如图,桐桐从A 点出发,前进3 m 到点B 处后向右转20°,再前进3 m 到点C 处后又向右转20°,…,这样一直走下去,她第一次回到出发点A 时,一共走了( )A .100 mB .90 mC .54 mD .60m9.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是( )A .20分B .22分C .23分D .25分(第9题) (第10题)10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°二、填空题(每题3分,共15分)11.若一个正多边形的每个外角都等于45°,则用这种多边形能铺满地面吗?答:________.(填“能”或“不能”)12.如图,在△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连结EF ,则∠1、∠2、∠3的大小关系是________.(第12题) (第15题)13.若代数式3x +2与代数式x -10的值互为相反数,则x =________.14.二元一次方程组的解x ,y 的值相等,则k =________.{3x +2y =10,kx +(k +2)y =6)15.如图,l 1∥l 2,五边形ABCDE 是正五边形,那么∠1-∠2的度数为________.三、解答题(共75分)316.(8分)解方程(组):(1)-+=1; (2)2x -12x -24{34 x +y =12,4x -2y =10.)17.(9分)解不等式组:然后把它的解集在数轴上表示出来,{2x +3≥x +11,3x -105<4,)并求出x 的整数解.18.(8分)在图①,图②的网格纸中,△ABC 与△DEF 的三个顶点都在格点上.(1)在图①中,以点A 为对称中心画一个与△ABC 成中心对称的图形;(2)在图②中,将△DEF 绕点D 顺时针方向旋转90°,画出旋转后的图形.(第18题)19.(9分)如图,一条直线分别交△ABC的边及延长线于点D、E、F,∠A=20°,∠CED=100°,∠D=35°,求∠B的度数.(第19题)20.(9分)如图,∠1、∠2、∠3、∠4是四边形ABCD的四个外角.用两种方法说明∠1+∠2+∠3+∠4=360°.(第20题)21.(10分)如图,将△ABC沿射线AB的方向移动2 cm到△DEF的位置.5(1)找出图中所有平行的直线;(2)找出图中与AD 相等的线段,并写出其长度;(3)若∠ABC =65°,求∠BCF的度数.(第21题)22.(11分)如图,在△ABC 中,∠C =40°.将△ABC 绕点A 按逆时针方向旋转得到△ADE ,连结BD .当DE ∥AC 时,求∠ABD 的度数.(提示:在一个三角形中,若两条边相等,则它们所对的角也相等)(第22题)23.(11分)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?请说明理由.7答案一、1.C 2.A 3.D 4.B 5.B 6.A 7.D 8.C 9.C 10.A 点拨:设A ′D 与AC 交于点O .∵∠A =40°,∴∠A ′=∠A =40°.∵∠1=∠DOA +∠A ,∠1=112°,∴∠DOA =∠1-∠A =112°-40°=72°.∵∠DOA =∠2+∠A ′,∴∠2=∠DOA -∠A ′=72°-40°=32°.二、11.不能 12.∠1>∠2>∠3 13.2 14.1215.72° 点拨:如图,延长AB 交l 2于点M.(第15题)∵五边形ABCDE ∴正五边形ABCDE 的每个外角相等.∴∠MBC ==72°.360°5∵l 1∥l 2,∴∠2=∠BMD .∵∠1=∠BMD +∠MBC ,∴∠1-∠2=∠1-∠BMD =∠MBC =72°.三、16.解:(1)-+=1,2x -12x -24去分母,得-2(2x -1)+(x -2)=4,去括号,得-4x +2+x -2=4,移项,得-4x +x =4+2-2,合并同类项,得-3x =4,系数化为1,得x =-.43(2){34x +y =12,①4x -2y =10.②)①×2+②,得x =11,解得x =2.112把x =2代入②,得8-2y =10,解得y =-1,故方程组的解为{x =2,y =-1.)17.解:解2x +3≥x +11,得x ≥8;解<4,得x <10,3x -105∴不等式组的解集是8≤x <10.在数轴上表示为:(第17题)∴x 的整数解是8、9.18.解:(1)如图①,△AB ′C ′即为所求;(第18题)(2)如图②,△DE ′F ′即为所求.19.解:∵∠CED =100°,∠D =35°,∴∠BCD =180°-∠CED -∠D =180°-100°-35°=45°.∵∠BCD 是△ABC 的外角,∴∠B =∠BCD -∠A =45°-20°=25°.920.解:方法1:∵∠1+∠BAD =180°,∠2+∠ABC =180°,∠3+∠BCD =180°,∠4+∠CDA =180°,∴∠1+∠BAD +∠2+∠ABC +∠3+∠BCD +∠4+∠CDA =180°×4=720°.∵∠BAD +∠ABC +∠BCD +∠CDA =360°,∴∠1+∠2+∠3+∠4=360°.方法2:如图,连结BD,(第20题)∵∠1=∠ABD +∠ADB ,∠3=∠CBD +∠CDB ,∴∠1+∠2+∠3+∠4=∠ABD +∠ADB +∠2+∠CBD +∠CDB +∠4=180°×2=360°.21.解:(1)AE ∥CF ,AC ∥DF ,BC ∥EF .(2)AD =CF =BE =2 cm.(3)∵AE ∥CF ,∠ABC =65°,∴∠BCF =∠ABC =65°.22.解:∵将△ABC 绕点A 按逆时针方向旋转得到△ADE ,∴∠BAD =∠EAC ,△ADE ≌△ABC ,∴∠C =∠E =40°,AB =AD .∵DE ∥AC ,∴∠E =∠EAC .∴∠BAD =∠C =40°.∵AB =AD ,∴∠ABD =∠ADB ,∴∠ABD =(180°-∠BAD )=70°.1223.解:(1)设一把扫帚的售价是x 元,一把拖把的售价是y 元.由题意,可得解得{x +3y =26,3x +2y =29,){x =5,y =7.)答:一把扫帚的售价是5元,一把拖把的售价是7元.(2)设扫帚买了m 把,共花费W 元,则拖把买了(50-m )把.由题意得,W =5m +7(50-m )=-2m +350.∵扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,∴2(50-m )≤m ≤3(50-m ),解得≤m ≤.1003752∵m 为正整数,∴m 可以取34,35,36,37,∴共有四种方案:方案一:扫帚34把,拖把16把,共花费:-2×34+350=282(元).方案二:扫帚35把,拖把15把,共花费:-2×35+350=280(元).方案三:扫帚36把,拖把14把,共花费:-2×36+350=278(元).方案四:扫帚37把,拖把13把,共花费:-2×37+350=276(元).∵282>280>278>276,∴方案四最省钱.11。
数学七年级下册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.下列各组图形可以通过平移互相得到的是( ) A .B .C .D .3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5--4.下列说法中,错误的个数为( ).①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交. A .1个B .2个C .3个D .4个5.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10° 6.下列计算正确的是( )A 2(3)3-=-B 366=±C 393=D .382-7.如图,AB ∥CD ,将一块三角板(∠E =30°)按如图所示方式摆放,若∠EFH =25°,求∠HGD 的度数( )A .25°B .30°C .55°D .60°8.如图,()11,0A ,()21,1A ,()31,1A -,()41,1A --,()52,1A -…按此规律,点2022A 的坐标为( )A .()505,505B .()506,505-C .()506,506D .()506,506-二、填空题9.425⨯=______.10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图,△ABC 中∠BAC =60°,将△ACD 沿AD 折叠,使得点C 落在AB 上的点C ′处,连接C ′D 与C ′C ,∠ACB 的角平分线交AD 于点E ;如果BC ′=DC ′;那么下列结论:①∠1=∠2;②AD 垂直平分C ′C ;③∠B =3∠BCC ′;④DC ∥EC ;其中正确的是:________;(只填写序号)12.如图,∠ABC 与∠DEF 的边BC 与DE 相交于点G ,且BA //DE ,BC //EF ,如果∠B =54°,那么∠E =__________.13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.计算(每小题4分)(1323(3)29()--(2)2335(3)20203|2|8(1)---. (44﹣2 | + ( -1 )201718.已知a +b =5,ab =2,求下列各式的值. (1)a 2+b 2; (2)(a ﹣b )2. 19.填空并完成以下过程:已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2. 请你说明:∠E =∠F .解:∵∠BAP +∠APD=180°,(_______)∴AB∥_______,(___________)∴∠BAP=________,(__________)又∵∠1=∠2,(已知)∠3=________-∠1,∠4=_______-∠2,∴∠3=________,(等式的性质)∴AE∥PF,(____________)∴∠E=∠F.(___________)20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′,(1)画出△A′B′C′,写出A′、B′、C′的坐标;(2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标.21.23|49|7a b aa-+-+=0,求实数a、b b的整数部分和小数部分.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.二十三、解答题23.直线AB∥CD,点P为平面内一点,连接AP,CP.(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;(3)如图③,点P在直线CD下方,当∠BAK=23∠BAP,∠DCK=23∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.24.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)①如图1,∠DPC=度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①CPDBPN∠∠为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC 上一点O 作OG ⊥AC ,分别交A B 、A D 、AE 于点G 、H 、F . ①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题 1.B 解析:B 【分析】根据同位角的定义即可求出答案. 【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角. 故选:B . 【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.解析:C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键. 3.C 【分析】根据各象限内点的坐标特征判断即可. 【详解】由图可知,小手盖住的点在第四象限, ∴点的横坐标为正数,纵坐标为负数, ∴(2,-3)符合.其余都不符合 故选:C . 【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键.4.D 【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案. 【详解】①在同一平面内,两条不相交的直线叫做平行线,故本小题错误, ②过直线外一点有且只有一条直线与已知直线平行,故本小题错误, ③在同一平面内不平行的两条直线一定相交;故本小题错误,④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误. 综上所述:错误的个数为4个. 故选D . 【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键. 5.C 【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数. 【详解】解:90F ∠=︒,45D ∠=︒, 45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒, 30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,453015CAE BAE BAC ∴∠=∠-∠=︒-︒=︒,故选:C . 【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质. 6.D 【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可. 【详解】解:A 3,故本选项不合题意;B 6=,故本选项不合题意;C 3≠,故本选项不合题意;D 、2=,故本选项符合题意; 故选:D . 【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键. 7.C 【分析】先根据三角形外角可求∠EHB =∠EFH +∠E =55°,根据平行线性质可得∠HGD =∠EHB =55°即可. 【详解】解:∵∠EHB 为△EFH 的外角,∠EFH =25°,∠E =30°, ∴∠EHB =∠EFH +∠E =25°+30°=55°, ∵AB ∥CD ,∴∠HGD =∠EHB =55°. 故选C . 【点睛】本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.8.C 【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C 【分析】经观察分析所有点,除A 1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A 2022在第一象限;第一象限的点A 2(1,1),A 6(2,2),A 10(3,3)…观察易得到点的坐标=24n +. 【详解】 解:由题可知第一象限的点:A 2,A 6,A 10…角标除以4余数为2; 第二象限的点:A 3,A 7,A 11…角标除以4余数为3; 第三象限的点:A 4,A 8,A 12…角标除以4余数为0; 第四象限的点:A 5,A 9,A 13…角标除以4余数为1; 由上规律可知:2022÷4=505…2 ∴点A 2022在第一象限.观察图形,可知:点A 2的坐标为(1,1),点A 6的坐标为(2,2),点A 10的坐标为(3,3),…,∴第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)∴点A 4n-2的坐标为(24n +,24n +)(n 为正整数), ∴点A 2022的坐标为(506,506). 故选C . 【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)求解.二、填空题 9.10 【分析】先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:;故答案为:10. 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.解析:10 【分析】先计算乘法,然后计算算术平方根,即可得到答案. 【详解】10=; 故答案为:10. 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.10.0; 【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可. 【详解】解:根据对称的性质,得, 解得. 故答案为:0. 【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD 沿AD 折叠,使得点C 落在AB 上的点C′处,∴∠1=∠2,A=AC ,DC解析:①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD 沿AD 折叠,使得点C 落在AB 上的点C ′处,∴∠1=∠2,A C '=AC ,DC =D C ',∴AD 垂直平分C ′C ;∴①,②都正确;∵B C '=D C ', DC =D C ',∴B C '=D C '= DC ,∴∠3=∠B ,∠4=∠5,∴∠3=∠4+∠5=2∠5即∠B =2∠BC C ';∴③错误;根据折叠的性质,得∠ACD =∠A C 'D =∠B +∠3=2∠3,∵∠ACB 的角平分线交AD 于点E ,∴2(∠6+∠5)=2∠B ,653,∴∠+∠=∠∴3,DCE ∴∠=∠∴D C '∥EC∴④正确;故答案为:①②④.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.12.126°【分析】根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.【详解】BA//DE ,BC//EF ,,∠B=54°,,故答案为:126°.【点睛】本题考查解析:126°【分析】根据两直线平行同位角相等得到CGE B ∠=∠,DGC E ∠=∠,结合邻补角的和180°解题即可.【详解】BA //DE ,BC //EF ,CGE B ∴∠=∠,DGC E ∠=∠∠B =54°,54CGE B ∴∠=∠=︒180CGE DGC ∠+∠=︒18054126DGC ∴∠=︒-︒=︒126E ∴∠=︒,故答案为:126°.【点睛】本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键. 13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1,∵(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值. 15.(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为,点P 到y 轴的距离表示为,根据题意得到=,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等∴=∴解析:(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(23)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2(2)原式=(3)原式=2+(-2)+1=1(4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解】解:∵∠BAP +∠APD =180°(已知),∴AB ∥CD .(同旁内角互补两直线平行),∴∠BAP =∠APC .(两直线平行内错角相等),又∵∠1=∠2,(已知),∠3=∠BAP -∠1,∠4=∠APC -∠2,∴∠3=∠4(等式的性质),∴AE∥PF.(内错角相等两直线平行),∴∠E=∠F.(两直线平行内错角相等).【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,解析:44【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,b=21,∵16<21<25,∴44.【点睛】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.24.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和解析:(1)①90;②t为3s或6s或9s或18s或21s或24s或27s;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.【详解】解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,∴∠DPC =180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD ∥PC 时,∵PC ∥BD ,∠DBP =90°,∴∠CPN =∠DBP =90°,∵∠CPA =60°,∴∠APN =30°,∵转速为10°/秒,∴旋转时间为3秒;如图1﹣2,当PC ∥BD 时,∵//,PC BD ∠PBD =90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,AC DP时,如图1﹣6,当////AC DP,∴∠=∠=︒,90DPA PACDPN DPA∠+∠=︒-︒+︒=︒,1803090240∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.当//综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t 秒,则∠BPM =2t ,∴∠BPN =180°﹣2t ,∠DPM =30°﹣2t ,∠APN =3t .∴∠CPD =180°﹣∠DPM ﹣∠CPA ﹣∠APN =90°﹣t ,21802,BPN CPD t ∴∠=∠=︒- ∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.当PD 在MN 下方时,如图,①正确,理由如下:设运动时间为t 秒,则∠BPM =2t ,∴∠BPN =180°﹣2t ,∠DPM =230,t -︒ ∠APN =3t .∴∠CPD =360CPA APN DPB BPN ︒-∠-∠-∠-∠()360603301802t t =︒-︒--︒-︒-=90t ︒-21802,BPN CPD t ∴∠=∠=︒-∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒;180180(206)2262264014∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒F AGF GAF CDF CAE CDF CAE.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
可编辑修改精选全文完整版沪科版七年级下册数学期末试题试卷含答案上海科技版七年级下册数学期末考试试卷一、选择题(每小题4分,共40分)1.实数中,无理数的个数是()。
A。
1 B。
2 C。
3 D。
42.估计√2+1的值在()之间。
A。
2到3之间 B。
3到4之间 C。
4到5之间 D。
5到6之间3.若a<b,则下列各式中,错误的是()。
A。
a-3<b-3 B。
-a<-b C。
-2a>-2b D。
a<b4.计算(-3a^2)^2的结果是()。
A。
3a^4 B。
-3a^4 C。
9a^4 D。
-9a^45.下列多项式在实数范围内不能因式分解的是()。
A。
x^3+2x B。
a^2+b^2 C。
D。
m^2-4n^26.不等式4-x≤2(3-x)的正整数解有()个。
A。
1个 B。
2个 C。
3个 D。
无数个7.若a^2=9,则a的值为()。
A。
-5 B。
-11 C。
-3或3 D。
±3或±58.把分式中的x和y都扩大3倍,分式的值()。
A。
不变 B。
扩大3倍 C。
缩小3倍 D。
扩大9倍9.多项式12ab^3c+8a^3b的各项公因式是()。
A。
4ab^2 B。
4abc C。
2ab^2 D。
4ab10.若(x^2+px+q)(x-2)展开后不含x的一次项,则p 与q的关系是()。
A。
p=2q B。
q=2p C。
p+2q=0 D。
q+2p=0二、填空题(每小题5分,共20分)11.分解因式:4a^2-25b^2=()。
12.分式的值为1/3,那么x的值为()。
13.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()°。
14.若关于x的分式方程(x+1)/(x-2)+1=1有增根,则m=()。
三、解答题(每小题8分,共16分)15.解不等式组:(略)16.解分式方程:(略)四、计算题(每小题8分,共16分)17.先化简,再求值:(a+1)^2-(a+3)(a-3),其中a=-3.(略)18.如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.1)在网格中画出三角形A1B1C1.2)三角形A1B1C1的面积为()。
2016-2017学年第二学期七年级期末数学模拟试卷二本次考试范围:苏科版七下全部内容,八年级数学上册《全等三角形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。
一、选择题(每小题3分,共30分)1.下列运算中,正确的是 ( ) A .a 2+a 2=2a 4 B .a 2•a 3=a 6 C .(-3x )2÷3x =3x D .(-ab 2)2=-a 2b 42.现有4根小木棒的长度分别为2cm ,3cm ,4cm 和5cm .用其中3根搭三角形,可以搭出不同三角形的个数是 ( ) A .1个 B .2个 C .3个 D .4个 3.如下图,下列判断正确的是 ( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2.则AB ∥CDC .若∠A =∠3,则 AD ∥BC D .若∠A +∠ADC =180°,则AD ∥BC4.如果a > b ,那么下列不等式的变形中,正确的是 ( ) A .a -1<b -1 B .2a <2b C .a -b <0 D .-a +2<-b +2 5.若5x 3m-2n-2y n -m +11=0是二元一次方程,则 ( )A .m =3,n =4B .m =2,n =1C .m =-1,n =2D .m =1,n =26.已知方程组⎩⎨⎧3x +5y = k +8,3x +y =-2k .的解满足x + y = 2 ,则k 的值为 ( )A .-4B .4C .-2D .27.若不等式组⎩⎨⎧3x +a <0,2x + 7>4x -1.的解集为x <4,则a 的取值范围为 ( )A .a <-12B .a ≤-12C .a >-12D .a ≥-12 8.四个同学对问题“若方程组 111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组 111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 ( ) A⎩⎨⎧==84y x ; B ⎩⎨⎧==129y x ; C ⎩⎨⎧==2015y x ; D ⎩⎨⎧==105y x9. 如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90° 10. 如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使得CC '∥AB ,则旋转角的度数为( ) A .35° ; B .40° ; C .50° ; D .65° 二、填空题(每空3分,共24分) 11.计算:3x 3·(-2x 2y ) = . 12.分解因式:4m 2-n 2 = .第3题图第9题图ABCB ′C ′第10题图13.已知一粒米的质量是0.000021千克,0.000021用科学记数法表示为 __ .14.若⎩⎨⎧x = 2,y = 1.是方程组⎩⎨⎧2ax +y = 5,x + 2y = b .的解,则ab = .15.二元一次方程3x +2y =15共有_______组正整数解....16.关于x 的不等式(a +1)x>(a +1)的解集为x <1,则a 的范围为 .17.如图,已知Rt △ABC 中∠A =90°,AB =3,AC =4.将其沿边AB 向右平移2个单位得到△FGE ,则四边形ACEG 的面积为 .18.某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线A B 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. (1)如图1,若已经向右摆放了3根小棒,且恰好有∠A 4A 3A =90°,则θ= . (2)如图2,若只能..摆放5根小棒,则θ的范围是 . 三、解答题(共11题,计76分)19.(本题满分6分)计算:(1)(-m )2·(m 2)2÷m 3; (2)(x -3)2-(x +2)(x -2).20.(本题满分6分)分解因式:(1)x 3-4xy 2; (2) 2m 2-12m +18.21.(本题满分6分)(1)解不等式621123x x ++-<; (2)解不等式组()523215122x x x x⎧-<-⎪⎨-<-⎪⎩22.(本题满分6分)已知长方形的长为a ,宽为b ,周长为16,两边的平方和为14.①求此长方形的面积; ②求ab 3+2a 2b 2+a 3b 的值.23.(本题满分6分)在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13. (1)求a 、b 的值;θA 4A 3A 2AA 1BCθA 6A 5A 4A 3A 2AA 1BC图1图2A B CEF G第16题图第18题图(2)当-1<x <2,求y 的取值范围.24. (本题满分6分)如图2,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E , BD 是△ABC 的角平分线.求∠DEB 的度数.25. (本题满分6分)已知,如图,AC 和BD 相交于点O ,OA=OC ,OB=OD ,求证:AB ∥CD .26.(本题8分) 某公司准备把240吨白砂糖运往A 、B 两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量 运往A 地的费用 运往B 地的费用 大车 15吨/辆 630元/辆 750元/辆 小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A 地,其中大车有m 辆,其余货车前往B 地,且运往A 地的白砂糖不少于115吨.①求m 的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.27.(8分)(1)如图①,在凹四边形ABCD 中,∠BDC =135°,∠B =∠C =30°,则∠A = °;(2)如图②,在凹四边形ABCD 中,∠ABD 与∠ACD 的角平分线交于点E ,∠A =60°,∠BDC =140°,则∠E = °;(3)如图③,∠ABD ,∠BAC 的平分线交于点E ,∠C =40°,∠BDC =150°,求∠AEB 的度数;(4)如图④,∠BAC ,∠DBC 的角平分线交于点E ,则∠B ,∠C 与∠E 之间有怎样的数量关系 。
七年级第二学期期末数学试卷一、选择题1.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.2.下列各式运算正确的是()A.a2+a2=2a4 B.a2•a3=a5C.(﹣3x)3÷(﹣3x)=﹣9x2 D.(﹣ab2)2=﹣a2b43.下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军4.计算(x+3)(x﹣3)的结果为()A.x2+6x+9 B.x2﹣6x+9 C.x2+9 D.x2﹣9 5.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为()A.30°B.45°C.60°D.75°6.下列各组数据,能构成三角形的是()A.1cm,2cm,3cm B.2cm,2cm,5cmC.3cm,4cm,5cm D.7cm,5cm,1cm7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2=S3 D.S2<S1<S3 8.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E ②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上). 11.化简(a+b)(a﹣b)=.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为.(不要求写出自变量x的取值范围)13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(16分)(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).16.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90°,EC⊥AF.求证:AB∥CD.(每一行都要写依据)19.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF 的延长线于D.求证:AD=AE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡.上)21.若x2+2mx+9是完全平方式,则m=.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC =2,则CD=.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数度,再沿BF折叠成图c.则图中的∠CFE的度数是度.五、解答题(共3个小题,共30分)26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG =EF,CB=CD,请问(1)中的结论是否仍成立?请证明.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC =90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.参考答案一、单选题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.2.下列各式运算正确的是()A.a2+a2=2a4 B.a2•a3=a5C.(﹣3x)3÷(﹣3x)=﹣9x2 D.(﹣ab2)2=﹣a2b4【分析】分别根据合并同类项法则,同底数幂的乘法法则,单项式除以单项式的运算法则以及积的乘方运算法则逐一判断即可.解:A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项符合题意;C.(﹣3x)3÷(﹣3x)=9x2,故本选项不合题意;D.(﹣ab2)2=a2b4,故本选项不合题意.故选:B.3.下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军【分析】根据事件发生的可能性大小判断即可.解:A、抛出的篮球会下落,是必然事件;B、打开电视,正在播《新闻联播》,是随机事件;C、任意买一张电影票,座位号是3的倍数,是随机事件;D、校篮球队将夺得区冠军,是随机事件;故选:A.4.计算(x+3)(x﹣3)的结果为()A.x2+6x+9 B.x2﹣6x+9 C.x2+9 D.x2﹣9【分析】根据平方差公式即可得出结果.解:(x+3)(x﹣3)=x2﹣32=x2﹣9.故选:D.5.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为()A.30°B.45°C.60°D.75°【分析】根据平行线的性质和直角的定义解答即可.解:如图,作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠2=∠AEF=30°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°﹣30°=60°,故选:C.6.下列各组数据,能构成三角形的是()A.1cm,2cm,3cm B.2cm,2cm,5cmC.3cm,4cm,5cm D.7cm,5cm,1cm【分析】看哪个选项中两条较小的边的和不大于最大的边即可.解:A、1+2=3,不能构成三角形;B、2+2<5,不能构成三角形;C、3+4>5,能构成三角形;D、1+5<7,不能构成三角形.故选:C.7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2=S3 D.S2<S1<S3【分析】根据同高三角形面积的比等于对应底边的比可得结论.解:∵BD=DE=EC,∴S△ABD=S△ADE=S△AEC,即S1=S2=S3,故选:C.8.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E ②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC.解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,∵,∴△EOC≌△DOC(SSS).故选:A.9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.【分析】根据匀速直线运动的路程、时间图象是一条过原点的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条直线,修车后为了赶时间,加大速度后再做匀速直线运动,其速度比原来变大,斜线的倾角变大,即可得出答案.解:小明骑自行车上学,开始以正常速度匀速行驶,正常匀速行驶的路程、时间图象是一条过原点O的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条平行于横坐标的水平线,修车后为了赶时间,他比修车前加快了速度继续匀速行驶,此时的路程、时间图象仍是一条斜线,只是斜线的倾角变大.因此选项A、B、D都不符合要求.故选:C.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【分析】题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上). 11.化简(a+b)(a﹣b)=a2﹣b2 .【分析】根据平方差公式直接将(a+b)(a﹣b)展开即可.解:(a+b)(a﹣b)=a2﹣b2.故答案为a2﹣b2.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为y=﹣2x2+20x .(不要求写出自变量x的取值范围)【分析】根据AB的长为x米可以得出BC的长为(20﹣2x)米,然后根据矩形的面积公式即可求出函数关系式.解:∵AB的边长为x米,而菜园ABCD是矩形菜园,∴BC=20﹣2x,∵菜园的面积=AB×BC=x•(20﹣2x),∴y=﹣2x2+20x.故填空答案:y=﹣2x2+20x.13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为12cm .【分析】根据折叠的性质得到AD=BD,根据三角形的周长公式计算,得到答案.解:由折叠的性质可知,AD=BD,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=12(cm),故答案为:12cm.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为.【分析】用阴影部分的面积除以正方形的总面积即可得.解:由图形知,S①=S②,∴阴影部分的面积为正方形面积的一半,∴蚂蚁停在阴影部分的概率为,故答案为:.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(16分)(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).【分析】(1)根据实数的运算法则即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据整式的运算法则即可求出答案.(4)根据整式的运算法则即可求出答案.解:(1)原式=1+﹣1=.(2)原式=a2﹣1﹣(a2﹣4a+4)=a2﹣1﹣a2+4a﹣4=4a﹣5.(3)原式=﹣4x+2y.(4)原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷(2x2)=﹣8x7y3+4x7y3=﹣4x7y3.16.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.【分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=x2+6xy+9y2﹣2x2﹣4xy+x2﹣9y2=2xy,当x=﹣1,y=2时,原式=2×(﹣1)×2=﹣4.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.【分析】(1)直接利用对称点的性质进而得出答案;(2)直接利用轴对称设计求最短路线的方法得出P点位置.解:(1)如图所示:A′点即为所求;(2)如图所示:点P即为所求.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90°,EC⊥AF.求证:AB∥CD.(每一行都要写依据)【分析】直接利用互余的性质以及三角形内角和定理、平行线的判定方法进而分析得出答案.【解答】证明:∵EC⊥AF(已知),∴∠CHF=90°(垂直的定义),∴∠1+∠C=90°(三角形内角和定理),∵∠2+∠C=90°(已知),∴∠1=∠2(同角的余角相等),又∵∠1=∠D(已知),∴∠2=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).19.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)【分析】由AD∥CB,利用“两直线平行,内错角相等”可得出∠ADB=∠CBD,由等角的补角相等可得出∠ADE=∠CBF,结合DE=BF,∠E=∠F可证出△ADE ≌△CBF(ASA),再利用全等三角形的性质可证出AE=CF.【解答】证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF 的延长线于D.求证:AD=AE.【分析】根据SAS证明△AFC与△AGB全等,进而利用全等三角形的性质得出∠AFC=∠AGC,进而利用AAS证明△ADF与△AEG全等解答即可.【解答】证明:在△AFC与△AGB中,∴△AFC≌△AGB(SAS),∴∠AFC=∠AGC,∴∠AFD=∠AGE,∵AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.∴∠ADF=∠AEG=90°,在△ADF与△AEG中,∴△ADF≌△AEG(AAS),∴AD=AE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡.上)21.若x2+2mx+9是完全平方式,则m=±3 .【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.解:∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2=x2±6x+9,∴2m=±6,m=±3.故答案为:±3.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=60°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解.解:∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣A,∴在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+A=120°,∴∠A=60°,故答案为:60°.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC =2,则CD= 2 .【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2BC,再根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.解:∵AC⊥BC,∴∠ACB=90°,∵∠A=30°,∴AB=2BC=2×2=4,∵D为斜边AB的中点,∴CD=AB=×4=2.故答案为:2.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为12 .【分析】原式利用多项式乘多项式法则计算,合并后根据积中不含x的二次项和一次项,确定出a与b的值,即可求出a+b的值.解:原式=x3+ax2+bx﹣3x2﹣3ax﹣3b=x3+(a﹣3)x2+(b﹣3a)x﹣3b,由积中不含x的二次项和一次项,得到a﹣3=0,b﹣3a=0,解得:a=3,b=9,则a+b=3+9=12.故答案为:12.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数150 度,再沿BF折叠成图c.则图中的∠CFE的度数是135 度.【分析】根据长方形纸条的对边平行,利用平行线的性质和翻折不变性求出∠2=∠EFG,继而求出图b中∠GFC的度数,再减掉∠GFE即可得图c中∠CFE 的度数.解:如图,延长AE到H,由于纸条是长方形,∴EH∥GF,∴∠1=∠EFG,根据翻折不变性得∠1=∠2=15°,∴∠2=∠EFG,∠AEG=180°﹣2×15°=150°,又∵∠DEF=15°,∴∠2=∠EFG=15°,∠FGD=15°+15°=30°.在梯形FCDG中,∠GFC=180°﹣30°=150°,根据翻折不变性,∠CFE=∠GFC﹣∠GFE=150°﹣15°=135°.故答案为:150;135.五、解答题(共3个小题,共30分)26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.【分析】(1)根据全等三角形的判定和性质证明即可;(2)根据全等三角形的性质和判定证明即可;(3)根据全等三角形的性质和等边三角形的判定证明即可.【解答】证明:(1)∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE;(2)∵ADC≌△BEC,∴∠ACP=∠BCQ,AC=BC,∠CAP=∠CBQ,∴△APC≌△BQC(ASA);(3)∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG =EF,CB=CD,请问(1)中的结论是否仍成立?请证明.【分析】(1)连接FD,根据等腰三角形的性质和平角的定义得出∠EFB+∠CDB =90°,根据直角三角形两锐角互余得出∠BFD+∠BDF=90°,进一步得出∠EFD+∠CDF=180°,即可证得EF∥CD;(2)连接FD,延长CB到H,根据平移的性质,等腰三角形的性质,直角三角形两锐角互余的性质证得∠EFD+∠CDF=180°,即可证得EF∥CD.【解答】(1)证明:如图1,连接FD,∵EB=EF,CB=CD,∴∠EBF=∠EFB,∠CBD=∠CDB,∵∠FBD=90°,∴∠EBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD;(2)成立,证明:如图2,连接FD,延长CB到H,∵EG∥BC,∴∠EGF=∠HBF,∵∠FBD=90°,∴∠HBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EGF+∠CBD=90°,∵EG=EF,CB=CD,∴∠EGF=∠EFB,∠CBD=∠CDB,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC =90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是EF=BE+DF (直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.【分析】(1)延长FD到点G.使DG=BE.连结AG,由“SAS”可证△ABE ≌△ADG,可得AE=AG,∠BAE=∠DAG,再由“SAS”可证△AEF≌△AGF,可得EF=FG,即可解题;(2)延长EB到G,使BG=DF,连接AG,即可证明△ABG≌△ADF,可得AF=AG,再证明△AEF≌△AEG,可得EF=EG,即可解题;(3)延长EA到H,使AH=CF,连接BH,由“SAS”可证△ABH≌△CBF,可得BH=BF,∠ABH=∠CBF,由“SAS”可证△EBH≌△EBF,可得EF=EH,可得EF=EH=AE+CF,即可求解.【解答】证明:(1)延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠FAD=∠DAG+∠FAD=50°,∴∠EAF=∠FAG=50°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF,故答案为:EF=BE+DF;(2)结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如图,延长EA到H,使AH=CF,连接BH,天天向上独家原创∵四边形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.31 / 31。
七年级(下)期末数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共30.0分) 1. 下列各式中,不是不等式的是( )A. 2x ≠1B. 3x 2−2x +1C. −3<0D. 3x −2≥1 2. 下列图案是万州区几个大学的校徽,其中是轴对称图形的是( )A. B. C. D.3. 若关于x 的方程ax -4=a -2的解是x =3,则a 的值是( )A. −2B. 2C. −1D. 14. 方程x m +2-y n -1=9是关于x 、y 的二元一次方程,则m 、n 的值分别为( )A. −1、2B. 1、1C. −1、1D. −3、2 5. 三边长是三个连续正整数,且周长不超过20的三角形共有( )A. 3个B. 4个C. 5个D. 6个 6. 已知二元一次方程组,如果应加减法消去n ,则下列方法可行的是( )A. ①×2+②×3B. ①×3+②×2C. ①×2−②×3D. ①×3−②×2 7. 如图是用长度相等的火柴棒按一定规律构成的图形,依次规律第10个图形中火柴棒的根数是( )A. 45B. 55C. 66D. 788. 一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天. A. 10 B. 20 C. 30 D. 25 9. 下列说法中,正确的是( )A. 所有等边三角形是全等三角形B. 全等三角形是指形状相同的三角形C. 全等三角形的对应边相等,对应角相等D. 平移不改变图形的形状和大小,而旋转则改变图形的形状和大小 10. 若关于x的不等式组{x +x6≤1x −2>3(x −2)的解集为x <2,且关于x 的一元一次方程mx -4=2(x +1)有正整数解,则满足条件的所有整数m 的值之和是( )A. 7B. 5C. 4D. 3 二、填空题(本大题共6小题,共18.0分)11. 已知方程x -3y +2=0,用含y 的代数式表示x ,则x =______.12. 如图,将△ABC 沿BC 方向平移2个单位得到△DEF ,若△ABC 的周长等于18,则四边形ABFD 的周长等于______.13.绝对值大于2且不大于5的整数有______.14.已知规定一种新运算:x※y=xy+1;x★y=x+y-1,例如:2※3=2×3+1=7;2★3=2+3-1=4.若a※(4★5)的值为17,且a※x=a★6,则x的值为______.15.如图,已知△AOB是正三角形,OC⊥OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是______.16.某班参加一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分,其中题a满分20分,题b、题c满分均为25分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,在这个班的平均成绩是______分.三、计算题(本大题共2小题,共15.0分)3x−5x=2x的解满足x<0且y<0,求m的范围.17.若关于x,y的方程组{3x+5x=x−1818.某校“阳光足球俱乐部”计划购进一批甲、乙两种型号的足球,乙型足球每个进价比甲型足球每个进价多10元,若购进甲型足球3个和乙型足球5个,共需要资金370元.(1)求甲、乙两种型号的足球进价各是多少元?(2)该商店计划购进这两种型号的足球共50个,而可用于购买这两种型号的足球资金不少于2250元,但又不超过2270元.该商店有几种进货方案?(3)已知商店出售一个甲种足球可获利6元,出售一个乙种足球可获利10元,试问在(2)的条件下,商店采用哪种方案可获利最多?四、解答题(本大题共6小题,共37.0分)19.如图,在正方形网格上有一个△ABC,请画出△ABC关于直线MN的对称图形△DEF(不写画法).20. 解不等式2x −13-5x +12≥1,并把它的解集在数轴上表示出来.21. 如图,AC ⊥BC ,BD 平分∠ABE ,CD ∥AB 交BD 于D ,∠1=23°,求∠2的度数.22. 一快递员的摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km ,就早到12分钟,若每小时行驶50km ,就要迟到6分钟,求快递员所要骑行的路程.23.阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法,解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③,把方程①代入③得:2×3+y=5,x=4.y=-1,把y=-1代入①得x=4,所以,方程组的解为{x=−1请你解决以下问题:2x−3x=5.(1)模仿小军的“整体代换”法解方程组{6x−11x=93x2−2xx+12x2=47,求x2+4y2-xy的值.(2)已知x,y满足方程组{2x2+xx+8x2=3624.如图,PQ∥MN,A、B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a-5|+(b-1)2=0.(友情提醒:钟表指针走动的方向为顺时针方向)(1)a=______,b=______;(2)若射线AM、射线BQ同时旋转,问至少旋转多少秒时,射线AM、射线BQ互相垂直.(3)若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动多少秒时,射线AM、射线BQ互相平行?答案和解析1.【答案】B【解析】解:A、2x≠1是不等式,故A不符合题意;B、3x2-2x+1是代数式,不是不等式,故B符合题意;C、-3<0是不等式,故C不符合题意;D、3x-2≥1是不等式,故D不符合题意;故选:B.主要依据不等式的定义-----用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.2.【答案】A【解析】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.结合轴对称图形的概念进行求解即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】D【解析】解:将x=3代入方程,得3a-4=a-2,解得a=1,故选:D.根据方程的解满足方程,可得关于a的方程,根据解方程,可得答案.本题考查了医院一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键.4.【答案】A【解析】解:∵方程x m+2-y n-1=9是关于x,y的二元一次方程,∴m+2=1,n-1=1,解得:m=-1,n=2.故选A.直接利用二元一次方程的定义分析得出答案.此题主要考查了二元一次方程的定义,正确把握未知数的次数是解题关键.5.【答案】B【解析】解:根据三角形的两边之和大于第三边以及三角形的周长不超过20,则其中的任何一边不能超过7;再根据两边之差小于第三边,则这样的三角形共有2,3,4;3,4,5;4,5,6;5,6,7四个.故选:B.首先根据三角形的两边之和大于第三边以及三角形的周长,得到三角形的三边都不能大于7;再结合三角形的两边之差小于第三边分析出所有符合条件的三角形个数.此题考查了三角形的三边关系,注意三角形的三条边长为三个连续正整数的限定.6.【答案】B【解析】解:已知二元一次方程组,如果用加减法消去n,则方法可行的是①×3+②×2.故选:B.利用加减消元法消去n即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.【答案】C【解析】解:分析可得:第1个图形中,有3根火柴.第2个图形中,有3+3=6根火柴.第3个图形中,有3+3+4=10根火柴.…;第10个图形中,共用火柴的根数是3+3+4+5+6+7+8+9+10+11=66根.故选:C.由已知图形可以发现:第1个图形中,有3根火柴.第2个图形中,有3+3=6根火柴.第3个图形中,有3+3+4=10根火柴,以此类推可得:第10个图形中,所需火柴的根数是3+3+4+5+6+7+8+9+10+11=66根.本题考查了规律型中的图形变化问题,要求学生首先分析题意,找到规律,并进行推导得出答案.8.【答案】D【解析】解:设乙中途离开了x天,根据题意得:×40+×(40-x)=1,解得:x=25,则乙中途离开了25天.故选:D.设乙中途离开了x天,根据题意列出方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,弄清题意是解本题的关键.9.【答案】C【解析】解:A、所有等边三角形的边长不一定相等,故不一定是全等三角形,故A错误;B、全等三角形是指形状、大小相同的三角形,故B错误;C、全等三角形的对应边相等,对应角相等,故C正确;D、平移和旋转都不改变图形的形状和大小,故D错误.故选:C.依据全等三角形的性质和判定定理以及平移、旋转的性质进行判断即可.本题主要考查的是平移和旋转的性质以及全等三角形的性质和判定,熟练掌握相关知识是解题的关键.10.【答案】A【解析】解:解不等式≤1,得:x≤6-m,解不等式x-2>3(x-2),得:x<2,∵不等式组的解集为x<2,则6-m≥2,即m≤4,解方程mx-4=2(x+1),得:x=,∵方程有正整数解,∴m-2=1或m-2=2或m-2=3或m-2=6,解得:m=3或4或5或8,又m≤4,∴m=3或4,则满足条件的所有整数m的值之和是7,故选:A.根据已知不等式组的解集确定出m的范围,再分式方程有正整数解确定出满足题意m的所有值,并求出之和即可.此题考查了一元一次方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【答案】3y-2【解析】解:∵x-3y+2=0,∴x=3y-2,故答案为:3y-2.方程中将y看做已知数求出x.此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.12.【答案】22【解析】解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=18,∴AB+BC+AC=18,∴四边形ABFD的周长=18+2+2=22.故答案为:22,根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.13.【答案】-5,5,-4,4,-3,3【解析】解:根据题意,满足条件的数有:-5,5,-4,4,-3,3,故答案为:-5,5,-4,4,-3,3.根据绝对值的性质求出满足条件的数即可.本题主要考查了绝对值的性质,找出满足条件的所有数据是解题的关键.14.【答案】3【解析】解:∵4★5=4+5-1=8,∴a※(4★5)=a※8=8a+1=17,解得:a=2,∵a ※x=a ★6, ∴2x+1=2+6-1, 解得:x=3, 故答案为:3.先计算出4★5=8,根据a ※(4★5)=17求得a 的值,代入a ※x=a ★6列出关于x 的方程,解之可得.本题主要考查有理数混合运算,解题的关键是熟练掌握有理数混合运算的顺序和运算法则及新定义的运用. 15.【答案】150° 【解析】解:∵△AOB 是正三角形,OC ⊥OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD ,∴∠AOB=60°,∠BOC=90°,∴旋转的角度是:∠AOB+∠BOC=60°+90°=150°. 故答案为:150°.根据等边三角形的性质以及垂直定义得出∠AOB=60°,∠BOC=90°,进而得出答案. 此题主要考查了旋转的性质以及等边三角形的性质,得出∠AOB ,∠BOC 的度数是解题关键.16.【答案】42 【解析】解:设答对a 题的有x 人,答对b 题的有y 人,答对c 题的有z 人, 根据题意得:,解得:.全班总得分为17×20+(12+8)×25=840(分), 全班总人数为17+12+8-1×15-2×1=20(人), 全班的平均成绩为840÷20=42(分). 故答案为:42.设答对a 题的有x 人,答对b 题的有y 人,答对c 题的有z 人,根据“答对题a 的人数与答对题b 的人数之和为29,答对题a 的人数与答对题c 的人数之和为25,答对题b 的人数与答对题c 的人数之和为20”,即可得出关于x 、y 、z 的三元一次方程组,解之即可得出x 、y 、z 的值,由x 、y 、z 的值结合a 、b 、c 三题的分值可求出全班总得分,由x 、y 、z 的值结合答对两题及答对三题的人数可求出全班总人数,再利用平均分=总分÷人数,即可求出结论.本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.17.【答案】解:{3x −5x =2x ①3x +5x =x −18②,①+②,得:6x =3m -18,解得:x =x −62, ②-①,得:10y =-m -18, 解得:y =−x −1810,∵x <0且y <0,∴{x −62<0−x −1810<0,解得:-18<m <6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m 的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.18.【答案】解:(1)设甲型足球进价是x 元,乙型足球进价是y 元得:{3x +5x =370x =x +10,解得:{x =50x =40.每只甲型足球进价是40元,每只乙型足球进价是50元.(2)设购进甲型足球为a 只,则购进乙型足球为(50-a )只, 得:{8x +12(50−x )≥50040x +50(50−x )≤2270解得:23≤a ≤25,因为a 是正整数,所以a =23,24,25. 该经销商有3种进货方案:①方案一:购进23只甲型足球,27只乙型足球; ②方案二:购进24只甲型足球,26只乙型足球; ③方案三:购进25只甲型足球,25只乙型足球. (3)方案一商家可获利408元; 方案二商家可获利402元; 方案三商家可获利400元. ∴方案一获利最多. 【解析】(1)设甲型足球进价是x 元,乙型足球进价是y 元,根据乙型足球每个进价比甲型足球每个进价多10元,若购进甲型足球3个和乙型足球5个,共需要资金370元即可列方程组求解;(2)设购进甲型足球为a 只,则购进乙型足球为(50-a )只,根据用于购买这两种型号的足球的资金不少于2250元但又不超过2270元即可列不等式组求得a 的范围,然后根据a 是正整数从而求得a 的值;(3)根据(2)中的方案,求得获利,即可进行比较.本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.19.【答案】解:如图所示,△DEF 即为所求.【解析】先利用网格确定△ABC 关于直线MN 对称的点,再顺次连接各点即可得到△ABC 关于直线MN 的对称图形.本题主要考查了利用轴对称变换进行作图,画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始的.20.【答案】解:去分母得:2(2x -1)-3(5x +1)≥6, 4x -2-15x -3≥6, -11x ≥11, x ≤-1,在数轴上表示不等式的解集为:.【解析】去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.21.【答案】解:∵BD 平分∠ABE ,∠1=23°, ∴∠ABC =2∠1=46°, ∵CD ∥AB ,∴∠DCE =∠ABC =46°, ∵∠ACB =90°,∴∠2=90°-46°=44°. 【解析】先根据BD 平分∠ABE ,∠1=23°,可得∠ABC=2∠1=46°,再根据CD ∥AB ,即可得到∠DCE=∠ABC=46°,进而依据∠ACB=90°,得出∠2=90°-46°=44°. 本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 22.【答案】解:设路程为xkm ,以每小时60km 的速度到达目的地所需的时间为x60;以每小时50km 的速度到达目的地所需的时间为x50. 根据题意得:x 60+1260=x 50-660, 解得:x =90.答:快递员需要骑行90km . 【解析】设路程为xkm,根据时间=路程÷速度、“若每小时行驶60km,就早到12分钟;若每小时行驶50km,就要迟到6分钟”,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)根据时间=路程÷速度表示出两种速度下将快递送到某地所需时间;(2)根据两种速度下所需时间之间的关系,列出关于x的一元一次方程.23.【答案】解:(1)由②得:3(2x-3y)-2y=9③,把①代入③得:15-2y=9,解得:y=3,把y=3代入①得:2x-9=5,解得:x=7,x=7;所以原方程组的解为{x=3(2)由①得:3(x2+4y2)-2xy=47,x2+4y2=47+2xx③,3+xy=36,把③代入②得:2×47+2xx3解得:xy=2,①-②得:x2-3xy+4y2=11,∴x2+4y2=11+3×2=17,∴x2+4y2-xy=17-2=15.【解析】(1)由②得出3(2x-3y)-2y=9③,把①代入③得出15-2y=9,求出y,把y=3代入①求出x即可;(2)由①求出x2+4y2=③,把③代入②求出xy=2,①-②得出x2-3xy+4y2=11,即可求出答案.本题考查了解高次方程组、解二元一次方程组和二元一次方程组的解等知识点,能够整体代入是解此题的关键.24.【答案】5 1【解析】解:(1)|a-5|+(b-1)2=0,∴a-5=0,b-1=0,∴a=5,b=1,故答案为:5,1;(2)设至少旋转t秒时,射线AM、射线BQ互相垂直.如图,设旋转后的射线AM、射线BQ交于点O,则BO⊥AO,∴∠ABO+∠BAO=90°,∵PQ∥MN,∴∠ABQ+∠BAM=180°,∴∠OBQ+∠OAM=90°,又∵∠OBQ=t°,∠OAM=5t°,∴t°+5t°=90°,∴t=15(s);(3)设射线AM再转动t秒时,射线AM、射线BQ互相平行.如图,射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18×5=90°,分两种情况:①当9<t<18时,∠QBQ'=t°,∠M'AM“=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM“=5t-45°,当∠ABQ'=∠BAM“时,BQ'∥AM“,此时,45°-t°=5t-45°,解得t=15;②当18<t<27时,∠QBQ'=t°,∠NAM“=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM“=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM“时,BQ'∥AM“,此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM、射线BQ互相平行.(1)依据|a-5|+(b-1)2=0,即可得到a,b的值;(2)依据∠ABO+∠BAO=90°,∠ABQ+∠BAM=180°,即可得到射线AM、射线BQ第一次互相垂直的时间;(3)分两种情况讨论,依据∠ABQ'=∠BAM“时,BQ'∥AM“,列出方程即可得到射线AM、射线BQ互相平行时的时间.本题主要考查了平行线的性质,非负数的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:若两个非负数的和为0,则这两个非负数均等于0.。
平顶山市2022~2023学年第二学期期末调研试题卷七年级数学一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的.)1.下列四个数中,小于0的数是( ) A .()01-B .21-C .1-D .11-2.下列四幅图案是两届奥运会的参选徽标,其中文字上方的图案是轴对称图形的是( )A .B .C .D .3.下列事件是不可能事件的是( ) A .将油滴入水中,油会浮在水面上 B .打开电视机,它正在播放动画片 C .任意买一张电影票,座位号是2的倍数D .早上的太阳从西方升起4.皮米是较小的长度单位,已知1皮米0.001=纳米,1纳米910-=米,则1皮米等于( ) A .1310-米B .1210-米C .1110-米D .1010-米5.已知某三角形的两边长分别为2和4,且第三边为偶数,则该三角形周长为( ) A .10B .11C .12D .136.如图,一棵树生长在30°的山坡AE 上,树干BC 垂直于水平线AD ,则ABC ∠的度数为( )A .120°B .125°C .130°D .135°7.如图,AD 是ABC △的中线,以点D 为圆心,AD 的长为半径画弧,交AD 的延长线于点E .连接BE ,下列结论不一定成立的是( )A .ADC EDB ≌△△ B .AD BD = C .C DBE ∠=∠ D .AC BE8.下列运算正确的是( )A .()()22a b a b b a ---=-B .()222242a b a ab b +=++ C .2221122a b a ab b ⎛⎫-=-+ ⎪⎝⎭D .()()22a b a b a b -+-=-9.在日常生活中,数学知识有着广泛的应用.观察下列四幅图片,解释不正确的是( )A .图①用三根木条钉成三角形框架,它的大小和形状固定不变,这是利用了三角形的稳定性B .图②用四根木条钉成四边形框架,它的形状是可以改变的,这说明四边形具有不稳定性C .图③固定木条a 旋转木条b ,当12∠=∠时有ab ,这是因为“同位角相等,两直线平行”D .图④是体育课上老师测量学生跳远成绩,这是利用了“两点之间,线段最短”的道理10.如图是一辆汽车从甲地到乙地,其速度()km /h v 随时间t (分)的变化而变化的情况.下列说法:①汽车从甲地到乙地共用时20分钟;②汽车匀速行驶的路程和共8km ;③汽车行驶过程中前10分钟与前12分钟的平均速度相同;④汽车在第8~12分钟可能进加油站加油.其中正确的是( )A .①②B .②③C .②④D .③④二、填空题(本大题共5个小题,每小题3分,共15分)11.写出一个m 的值,使式子()011m +=有意义,m =________.12.低碳生活就是让我们从身边的小事做起,珍惜资源,降低能耗.已知家用自来水二氧化碳的排放量()kg =自来水使用吨数()t 0.91⨯,若聪聪家某个月的用水量为6t ,则这个月聪聪家自来水二氧化碳的排放量为________kg .13.一个零件的形状如图所示,按规定A ∠应等于90°,B ∠与D ∠的度数分别是20°和30°,牛叔叔量得142BCD ∠=︒.请你帮助牛叔叔判断该零件________.(填“合格”或“不合格”)14.如图,在ABC △中,90ACB ∠=︒.以点A 为圆心,任意长为半径画弧,分别交AB ,AC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在ABC △的内部相交于点P ,作射线AP 交边BC于点D ,若43CD =,ABD △的面积为103,则线段AB 的长为________.15.如图,已知线段5AB =,点E 是线段AB 上一动点,分别以AE ,EB 为边在线段AB 的同侧作正方形AEFG 和EBCD ,当两正方形的周长差为6时,线段EF 的长为________.三、解答题:(本大题共8个小逐,满分75分)16.(每小题5分,共10分)计算: (1)()22485x x x x ⋅+÷- (2)()()222x y x y x⎡⎤+--÷⎣⎦17.(9分)先化简,再求值:()()()222224xy xy x y xy ⎡⎤-+-+÷-⎣⎦,其中18x =,4y =-.18.(9分)如图,已知直线AB ,CD 分别与直线EF ,MN 相交,12∠=∠,3135∠=︒,求4∠的度数.19.(9分)(1)图1是小正方形的边长均为1的方格纸,请你涂出一个图形(所有顶点都在格点上),使其满足如下条件:①图形的面积为7;②图形是轴对称图形.(2)如图2,一条笔直的公路MN同一侧有两个村庄A和B,现准备在公路MN上修一个公共汽车站点P,使站点P到两个村庄A和B的距离相等.请你用尺规作图找出点P的位置,不写作法,保留作图痕迹.20.(9分)市工商部门对某批次产品的质量进行了抽样检查,结果如下表所示:解答下列问题:(1)表格中,a=________,b=________;(2)根据上表,在下图中画出产品合格率变化的折线统计图;(3)根据图表可得,从这批产品中,任意抽取一个,它是合格品的概率约为________;(4)如果重新抽取1000个该产品进行质量检查,对比上表记录下数据,两表的结果会一样吗?产品的合格率变化有什么共同的规律?21.(9分)如图,是一个“因变量随着自变量变化而变化"的示意图,下面表格中,是通过运算得到的几组x与y的对应值.根据图表信息解答下列问题:(1)直接写出:k=________,b=________,m=________;(2)当输入x的值为1-时,求输出y的值;(3)当输出y的值为12时,求输入x的值.22.(10分)如图,90∠=∠=︒,AB DC=,AC与BD相交于点E.BAC CDB(1)图中有对全等的三角形,请你选择一对全等三角形,并说明理由;(2)连接AD,判断AD与BC的位置关系,并说明理由.23.(10分)如图1,ABC △是等边三角形,AD ,CE 是ABC △的角平分线,AD 与CE 相交于点O .点P 在线段DC 上,点Q 在边AC 上,且BP CQ =.连接OP ,OQ . (1)聪聪研究发现OA OC =.理由如下:因为AD 是ABC △的角平分线,且AB AC =,根据等腰三角形的性质①,可得AD BC ⊥,且BD DC =,即AD 垂直平分BC ,同理,CE 垂直平分AB ,所以点O 是ABC △三边中垂线的交点,根据线段垂直平分线的性质②,可得OA OC =.填空:上述证明过程中,①、②两处的理由分别为________和________.(填选项前的字母) a .“三线合一” b .线段垂直平分线上的点到这条线段两个端点的距离相等 c .等腰三角形两个底角相等(2)判断OQ 和OP 的数量关系,并说明理由;(3)如图2,若点P 是射线DC 上任意一点,点Q 在射线CA 上,其它条件不变,当OPC △为等腰三角形时,直接写出COQ ∠的度数.七年级数学答案一、选择题二、填空题:三、解答题:16.(10分)解: (1)原式665x x =+66x =(2)原式()(2222222x y xy x y xy x ⎡⎤=++-+-÷⎢⎦⎣42xy x =÷2y =.17.(9分)解:原式()()2222424x y x y xy =--+÷-()22x y xy =-÷-xy =.当18x =,4y =-时,原式()11482=⨯-=-. 18.(9分) 解:12∠=∠AB CD ∴53135∴∠=∠=︒ 54180∠+∠=︒4180518013545︒︒︒∴∠=-∠=-=︒19.(9分)(1)画图规范,满足题意即可, 如图1所示,即为所求;(2)作图规范,准确即可,如图2. 如图,点P 即为所求.20.(9分)解:(1)94.0%,187; (2)如下图;(3)0.935;(4)结果很可能会不一样,但随着抽取产品数量的增加,它们的合格率都会稳定在0.935左右. 21.(9分)解:(1)9k =,6b =,6m =; (2)当11x =-<时,有()2164y =⨯-+=;(3)当12y =,1x <时,若2612x +=,解得31x =>,不符合题意,舍去; 当12y =时,1x >时,若912x =,解得413x =>,符合题意. 故当输出的y 值为12时,输入的x 值为43. 22.(10分)解:(1)2 ①选择ABE DCE ≌△△, 理由如下:在ABE △和DCE △中,()90A D AEB DEC AB DC ⎧∠=∠=⎪︒∠=∠⎨⎪=⎩对顶角相等,()AAS ABE DCE ∴≌△△.②选择ABC DCB ≌△△,理由如下:在ABE △和DCE △中,()90A D AEB DEC AB DC ⎧∠=∠=︒⎪∠=∠⎨⎪=⎩对顶角相等,()AAS ABE DCE ∴≌△△. BE CE ∴=EBC ∴△为等腰三角形EBC ECB ∴∠=∠在ABC △和DCB △中,ECB EBCA D AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC DCB ∴≌△△.(2)AD BC ;理由如下:①由(1)可知,ABE DCE ≌△,所以AE DE =,BE CE =, 即180122AED ︒-∠∠=∠=,180342BEC︒-∠∠=∠=,又因为AED BEC ∠=∠,所以13∠=∠, 即ADBC .23.(10分)解:(1)a ,b ; (2)ABC △是等边三角形, 18060 3BAC ACB B ︒∴∠=∠=∠==︒,BC AC =, AD ,CE 是ABC △的平分线,1302OAQ BAC ∴∠=∠=︒,1302OCP ACB ∠=∠=︒,即OAQ OCP ∠=∠. 又BP CQ =,BC BP AC CQ ∴-=-,即CP AQ =. 由(1)得OA OC =在OAQ△与OCP△中,OA OCOAQ OCPAQ CP=⎧⎪∠=∠⎨⎪=⎩,OAQ OCP∴≌△△,即OQ OP=.(3)90°或135°.。
第二学期期末达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四个汉字中,可以看作是轴对称图形的是()2.某种芯片每个探针单元的面积为0.000 001 68 cm2,则0.000 001 68用科学记数法可表示为()A.1.68×10-5B.1.68×10-6C.0.168×10-7D.0.168×10-5 3.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,将这些数据绘制成频率分布表,其中64.5~66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.下面的说法中,不正确的是()A.两直线平行,同位角相等B.若∠α=∠β,则∠α和∠β是一对对顶角C.若∠α与∠β互为补角,则∠α+∠β=180°D.如果一个角的补角是130°,那么这个角的余角等于40°6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9 cm,则△DEB的周长是()A.6 cm B.7 cm C.8 cm D.9 cm(第6题)(第7题)7.如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DFC.∠ACD=∠BFE D.BF=CD8.如图,在Rt△ABC中,∠ACB=90°,点M为BA延长线上一点,∠ABC的平分线BE和∠CAM的平分线AD相交于点P,分别交AC和BC的延长线于E,D两点.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF,并延长交DH于点G,则下列结论:①∠APB=45°;②PF=P A;③BD-AH=AB,其中正确的是()A.①B.①②C.①②③D.②③(第8题)(第9题)(第13题)二、填空题(共5小题,每小题3分,计15分)9.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2 cm的正方形区域内,图中黑色部分的总面积为2 cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_________________________.10.规定a*b=2a×2b,如2*3=22×23=25=32.若2*(x+1)=16,则x的值为________.11.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x-2,2y+1,若这两个三角形全等,则x+y的值是__________.12.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部3 分按每立方米3.8元收费,该市每户居民6月份用水x 立方米(x >10),应交水费y 元,则y 与x 的关系式为________________.13.如图,在△ABC 中,AB =AC ,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若BC =12,S △ABC =84,则线段PB +PD 的最小值为____________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)计算:(π-3)0+⎝ ⎛⎭⎪⎫-12-2+⎝ ⎛⎭⎪⎫142 023×(-4)2 024.15.(5分)化简:[(a +2b )(a -2b )-(a -2b )2]÷(-2b ).16.(5分)先化简,再求值:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y ,其中x =1,y =-2.17.(5分)已知:如图,DG ⊥BC ,AC ⊥BC ,∠1=∠2.试说明EF ∥CD . 小明给出了如下不完整的解题过程,请你帮助小明完成.(第17题)解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB =∠ACB =90°( ), ∴DG ∥AC ( ), ∴∠2=________( ), ∵∠1=∠2(已知),∴∠1=________(等量代换),∴EF ∥CD ( ). 18.(5分)尺规作图(不写作法,请保留作图痕迹).已知:如图,△ABC ,求作:在BC 边上求作点D ,使得S △ABD =S △ACD .(第18题)19.(5分)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(第19题)(1)试说明△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.20.(5分)一个不透明的袋子中装有9个红球和2个白球,这些球除颜色外都相同,从中任意摸出一个球.(1)“摸到红球”是________事件,“摸到黑球”是________事件;(填“不可能”或“必然”或“随机”)(2)如果要使摸到红球的概率为35,需要往袋子里再放入多少个白球?21.(6分)在高铁站广场前有一块长为(2a+b)m,宽为(a+b)m的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b m的人行通道.(第21题)(1)请用代数式表示广场面积并化简;(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.522.(7分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(第22题)(1)试说明:ED∥AB;(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(7分)如图,点P关于OA,OB轴对称的对称点分别为C,D,连接CD,交OA于M,交OB于N.(第23题)(1)若CD的长为18 cm,求△PMN的周长;(2)若∠CPD=131°,∠C=21°,∠D=28°,求∠MPN.24.(8分)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是________米;小明在书店停留了________分;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(第24题)(3)小明出发后多长时间离家的距离为900米?725.(8分)如图,AB=AC=16 cm,BC=10 cm,点D为AB的中点,点P在边BC上以每秒2 cm的速度由点B向点C运动,同时,点M在边CA上由点C 向点A匀速运动.(1)若点M的运动速度与点P的运动速度相同,经过1 s后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?(第25题)26.(10分)【问题发现】(1)如图①,在△ABC与△CDE中,∠B=∠E=∠ACD =90°,AC=CD,B,C,E三点在同一直线上,AB=3,ED=4,则BE=________;【问题提出】(2)如图②,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积;【问题解决】(3)如图③,在四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD的面积为12且CD的长为6,求△BCD的面积.(第26题)9答案一、1.A 2.B 3.B 4.A 5.B6.D 点拨:因为AD 平分∠CAB ,∠C =90°,DE ⊥AB ,所以∠CAD =∠BAD ,∠C =∠AED =90°.在△CAD 和△EAD 中,⎩⎨⎧∠C =∠DEA ,∠CAD =∠EAD ,AD =AD ,所以△CAD ≌△EAD ,所以AC =AE ,CD =DE . 因为AC =BC ,所以BC =AE .所以△DEB 的周长为DB +DE +BE =DB +CD +BE =CB +BE =AE +BE =AB =9 cm. 故选D. 7.D8.C 点拨:由题意可设∠MAP =∠P AC =x ,∠ABP =∠PBD =y ,则有⎩⎨⎧x =y +∠APB ,2x =2y +∠ACB , 可得∠APB =12∠ACB =45°,故①正确; 因为PF ⊥AD ,所以∠APF =90°, 所以∠APB =∠FPB =45°.在△PBA 和△PBF 中,⎩⎨⎧∠APB =∠FPB ,PB =PB ,∠ABP =∠FBP ,所以△PBA ≌△PBF ,所以P A =PF ,BA =BF ,故②正确;因为∠DPF =∠HCF =90°,∠DFP =∠HFC , 所以∠PDF =∠PHA .在△DPF 和△HP A 中,⎩⎨⎧∠DPF =∠HP A =90°,∠PDF =∠PHA ,PF =P A ,所以△DPF ≌△HP A ,所以DF =AH .11所以BD -AH =BD -DF =BF ,又因为BF =AB ,所以BD -AH =AB ,故③正确.所以其中正确的是①②③.故选C.二、9.0.5 10.1 11.152或712.y =3.8x -1613.14 点拨:连接AD ,AP .因为AB =AC ,D 是BC 边的中点,所以AD ⊥BC ,又因为BC =12,S △ABC =84,所以12×12×AD =84, 所以AD =14.因为EF 垂直平分AB ,所以P A =PB ,所以PB +PD =P A +PD ,所以当点A ,P ,D 在同一直线上时,PB +PD =P A +PD =AD ,即AD 的长度=PB +PD 的最小值,所以PB +PD 的最小值为14.三、14.解:原式=1+4+⎝ ⎛⎭⎪⎫-14×42 023×(-4) =1+4+(-1)×(-4)=1+4+4=9.15.解:原式=(a 2-4b 2-a 2+4ab -4b 2)÷(-2b )=(4ab -8b 2)÷(-2b )=-2a +4b .16.解:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y =(9x 2-12xy +4y 2-9x 2-2xy +9xy +2y 2)÷⎝ ⎛⎭⎪⎫-12y =(-5xy +6y 2)÷⎝ ⎛⎭⎪⎫-12y =10x -12y .当x =1,y =-2时,原式=10×1-12×(-2)=34.17.垂直的性质;同位角相等,两直线平行;∠ACD ;两直线平行,内错角相等;∠ACD ;同位角相等,两直线平行18.解:如图,点D 即为所求.(第18题)19.解:(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC .因为CB ⊥AB ,CD ⊥AD ,所以∠B =∠D =90°.在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌△ADC .(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB ·BC =12×4×3=6,所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.20.解:(1)随机;不可能(2)设需要往袋子里再放入x 个白球,根据题意,得35×(9+2+x )=9,解得x =4, 则需要往袋子里再放入4个白球.21.解:(1)广场面积为(a +b )(2a +b )=(2a 2+3ab +b 2)(m 2).(2)两个长方形喷泉(图中阴影部分)的面积为(a +b -2b )(2a +b -3b )=(a -b )(2a -2b )=(2a 2-4ab +2b 2)(m 2).22.解:(1)因为OC ⊥OD ,所以∠COD =90°,因为∠1+∠COD +∠BOD =180°,所以∠1+∠BOD =90°,因为∠D与∠1互余,所以∠1+∠D=90°,所以∠D=∠BOD,所以ED∥AB.(2)因为OF平分∠COD,∠COD=90°,所以∠FOD=45°,因为∠OFD=70°,所以∠D=180°-∠OFD-∠FOD=65°,因为∠1+∠D=90°,所以∠1=25°.23.解:(1)由题意知PM=CM,ND=NP.所以PN+PM+MN=CM+MN+ND=CD=18 cm,所以△PMN的周长为18 cm.(2)因为PM=CM,PN=ND,所以∠C=∠CPM=21°,∠D=∠DPN=28°,所以∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.24.解:(1)1 500;4(2)由图象可知:12~14分时,平均速度=1 500-60014-12=450(米/分),因为450>300,所以小明买到书后继续骑车到学校的这段时间的骑车速度不在安全限度内.(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间:①在0~6分时,平均速度为1 2006=200(米/分),设距家900米的时间为t1,则t1=900÷200=4.5(分);②在6~8分内,平均速度为1 200-6008-6=300(米/分),设距家900米的时间为t2,则1 200-300(t2-6)=900,解得t2=7;13③在12~14分内,平均速度为450米/分,设距家900米的时间为t 3,则600+450(t 3-12)=900,解得t 3=1223.综上,小明出发后4.5分或7分或1223分离家的距离为900米.25.解:(1)△BPD 与△CMP 全等.理由如下:经过1 s 后,BP =2 cm ,CM =2 cm ,BD =12AB =8 cm ,CP =10-2=8(cm),所以BP =CM ,BD =CP .因为AB =AC ,所以∠B =∠C ,在△BDP 和△CPM 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CM ,所以△BDP ≌△CPM .(2)由题意知△BPD 与△CMP 全等,因为CM ≠PB ,所以CM =BD =8 cm ,PC =PB =5 cm ,所以点M 的运动速度为8÷52=165(cm/s).26.解:(1)7(2)过点D 作DE ⊥BC 交BC 的延长线于E ,如图①.因为DE ⊥BC ,CD ⊥AC ,所以∠E =∠ACD =90°,所以∠ACB =90°-∠DCE =∠CDE .在△ABC 和△CED 中,⎩⎨⎧∠ABC =∠E =90°,∠ACB =∠CDE ,AC =CD ,所以△ABC ≌△CED ,所以BC =ED =4,15所以S △BCD =12BC ·DE =8.(第26题) (3)过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 交DC 的延长线于点F ,如图②.因为△ACD 的面积为12且CD 的长为6,所以12×6×AE =12,所以AE =4.因为∠ADC =45°,AE ⊥CD ,所以△ADE 是等腰直角三角形,所以DE =AE =4,所以CE =CD -DE =2,因为∠ABC =∠CAB =45°,所以∠ACB =90°,AC =BC ,所以∠ACE =90°-∠BCF =∠CBF .在△ACE 和△CBF 中,⎩⎨⎧∠AEC =∠F =90°,∠ACE =∠CBF ,AC =BC ,所以△ACE ≌△CBF ,所以BF =CE =2,所以S △BCD =12CD ·BF =6.。
七年级数学下册期末考试真题卷一.选择题(共10小题,满分30分,每小题3分)1.计算的结果是()A.﹣9B.C.D.92.下列微信表情图标属于轴对称图形的是()A.B.C.D.3.北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,未来在亚太地区定位精度将优于5米,测速精度优于0.1米/秒,授时精度优于10纳秒,10纳秒为0.00000001秒,0.00000001用科学记数法表示为()A.0.1×10﹣7B.1×10﹣8C.1×10﹣7D.0.1×10﹣8 4.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定5.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.106.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.7.下列说法正确的是()A.一个角的补角一定大于这个角B.延长射线ABC.过点A作AB∥CD∥EFD.对顶角相等从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为,那么盒子内白色乒乓球的行通道,(1)请用代数式表示喷泉的面积并化简;(2)喷泉建成后,需给人行通道铺上地砖方便旅客通行,若每块地砖的面积是平方米,则刚好铺满不留缝隙,求需要这样的地砖多少块.22.(7分)小明沿一段笔直的人行道行走,边走边欣赏风景,在由C处走向D处的过程中,通过隔离带PM的缝隙P,刚好浏览完对面人行道宣传墙AB上的一条标语,具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等,AC,BD相交于点P,PD⊥CD,垂足为D.小明根据自己步行的路程CD长为16m,测出标语AB的长度也为16m,请说明理由.23.(8分)掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率.(1)点数为2.(2)点数为奇数.(3)点数大于1且小于6.24.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.25.(12分)如图,四边形ABCD中,AB∥CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.B.4.C.5.B.6.B.7.D.8.B.9.A.10.C.二.填空题(共4小题,满分12分,每小题3分)11.4.12.116.13.4.14.5.三.解答题(共11小题,满分78分)15.解:(1)原式=(a2+2ab+b2)+(a2﹣b2)﹣2ab =a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)原式=a2﹣2ab﹣b2﹣(a2﹣2ab+b2)=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.16.解:如图,△ABC为所作.17.解:∵点C在AE的垂直平分线上,∴CA=CE,∵AD⊥BE,BD=DC,∴AB=AC,∵△ABC的周长为18,∴AB+BC+AC=18,∴2AC+2DC=18,∴AC+DC=9,∴DE=DC+CE=AC+CD=9(cm).18.解:(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.19.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.20.(1)证明:∵∠D与∠1互余,∴∠D+∠1=90°,∵OC⊥OD,∴∠COD=90°,∴∠D+∠1+∠COD=180°,∴∠D+∠AOD=180°,∴ED∥AB;(2)解:∵ED∥AB,∴∠AOF=∠OFD=70°,∵OF平分∠COD,∴∠COF=∠COD=45°,∴∠1=∠AOF﹣∠COF=25°.21.解:(1)由图可得,喷泉面积为:(3a+b﹣2b)(a+3b﹣2b)=(3a﹣b)(a+b)=3a2+2ab﹣b2;(2)[(3a+b)(a+3b)﹣(3a2+2ab﹣b2)]÷=(3a2+10ab+3b2﹣3a2﹣2ab+b2)×=(8ab+4b2)×=80a+40b,答:需要这样的地砖(80a+40b)块.22.解:CD=AB=16米,理由如下:∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵相邻两平行线间的距离相等,∴PD=PB,在△ABP与△CDP中,,∴△ABP≌△CDP(ASA),∴CD=AB=16米.23.解:(1)P(点数为2)=;(2)点数为奇数的有3种可能,即点数为1,3,5,则P(点数为奇数)==.(3)点数大于1且小于6的有3种可能,即点数为2,3,4,5,则P(点数大于2且小于6)==.24.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.25.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∴∠ACD=60°,∵AB∥CD,∴∠BAC=∠ACD=60°;(2)证明:在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC+∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
数学学习质量检测卷(二)(期末)一.选择题(每题3分,满分27分)1.的平方根是()A.2 B.﹣2 C.D.±22.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)3.下列调查中,最适合全面调查(普查)的是()A.调查某型号炮弹的射程B.调查我市中学生观看电影《少年的你》的情况C.调查某一天离开重庆市的人口数量D.调查某班学生对南开校史知识的了解程度4.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.5.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.若是关于x、y的方程组的解,则a+b的值为()A.3 B.﹣3 C.2 D.﹣27.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.488.已知a>b,则下列四个不等式中,不正确的是()A.a﹣3>b﹣3 B.﹣a+2>﹣b+2 C.a>b D.1+4a>1+4b9.已知关于x、y的方程组,满足x≥y,则下列结论:①a≥﹣2;②a=﹣时,x=y;③当a=﹣1时,关于x、y的方程组的解也是方程x+y=2的解,④若y≤1,则a≤﹣1.其中正确的有()A.1个B.2个C.3个D.4个10.在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.二.填空题(满分18分,每小题3分)11.写出“全等三角形的面积相等”的逆命题.12.已知方程2x+3y﹣1=0,用含x的代数式表示y,则.13.已知角a的余角比它的补角的还少10°,则a=.14.如图,A(4,0),B(0,3),点C为AB中点,以点B为圆心,BC长为半径作圆弧,交线段OB于点D.则点D的坐标为.15.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数,●=.16.某楼梯的截面如图,其中ER=5米,RQ=10米,若在楼梯上铺设地毯,至少需要米.三.解答题17.(10分)(1)解方程组(2)解方程4x2﹣25=0(3)解不等式组,并把解集在数轴上表示出来18.(6分)计算:﹣+()2+|1﹣|.19.(8分)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?20.(8分)感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.阅读下面的解答过程,井填上适当的理由.解:过点E作直线EF∥CD∴∠2=∠D()∵AB∥CD(已知),EF∥CD,∴AB∥EF()∴∠B=∠1()∵∠1+∠2=∠BED,∴∠B+∠D=∠BED()应用与拓展:如图②,直线AB∥CD.若∠B=22°,∠G=35°,∠D=25°,则∠E+∠F=度.方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=80°,则∠D=度.21.(10分)我们居住的地球上有七大洲,各大洲面积之和约为15000万平方千米.根据图形提供的信息,解决下面的问题.(1)设计适当的表格表示数据资料.(2)画扇形统计图表示各大洲所占面积的百分比.(3)用文字语言描述数据资料信息.22.(8分)如图,把△ABC向上平移3个单位,再向右平移3个单位得到△A'B'C′.(1)在图中画出△A'B′C′;(2)请写出点A′,B',C'的坐标;(3)求出△ABC的面积.23.(10分)某农户今年1月初以20000元/亩的价格承包了10亩地用来种植某农作物,已知若按传统种植,每月每亩能产出3000千克,每亩的种植费用为2500元;若按科学种植,每月每亩产量可增加40%,但种植费用会增加2000元/亩,且前期需要再投入25万元,花费4个月的时间进行生长环境的改善,改善期间无法种植.已知每千克农作物市场售价为3元,每月底一次性全部出售,假设前x个月销售总额为y(万元).(1)当x=8时,分别求出两种种植方法下的销售总额y(万元);(2)问:若该农户选择科学种植,几个月后能够收回成本?(3)在(2)的条件下,假如从2020年1月初算起,那么至少要到何时,该农户获得的总利润能够超过传统种植同样时间内所获得的总利润?24.(12分)阅读材料,善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5∴y=﹣1把y=﹣1代入①得x=4∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x、y满足方程组①求x2+4y2的值;②求的值.参考答案一.选择题1. C.2. D.3. D.4. B.5. B.6. A.7. D.8. B.9. C.10. A.二.填空题11.面积相等的三角形全等.12. y=﹣x+.13.60°.14..15. 8.16. 15.三.解答题17.解:(1),由①得:3x﹣2y=8③,②+③得,6x=18,∴x=3,②﹣③得,4y=2,∴y=.故原方程组的解为:;(2)4x2﹣25=0,整理得x2=,解得:x=±;(2),由①得,x≤3,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤3.在数轴上表示为:18.解:原式=﹣2﹣+5+﹣1=2.19.解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.20.解:感知与填空:过点E作直线EF∥CD,∴∠2=∠D(两直线平行,内错角相等),∵AB∥CD(已知),EF∥CD,∴AB∥EF(两直线都和第三条直线平行,那么这两条直线也互相平行),∴∠B=∠1(两直线平行,内错角相等),∵∠1+∠2=∠BED,∴∠B+∠D=∠BED(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G作GN∥AB,则GN∥CD,如图②所示:由感知与填空得:∠E=∠B+∠EGN,∠F=∠D+∠FGN,∴∠E+∠F=∠B+∠EGN+∠D+∠FGN=∠B+∠D+∠EGF=22°+25°+35°=82°,故答案为:82.方法与实践:设AB交EF于M,如图③所示:∠AME=∠FMB=180°﹣∠F﹣∠B=180°﹣80°﹣60°=40°,由感知与填空得:∠E=∠D+∠AME,∴∠D=∠E﹣∠AME=60°﹣40°=20°,故答案为:20.21.解:(1)用表格表示数据资料如下:(2)所画的扇形统计图如图所示:(3)亚洲的面积最大,大洋洲的面积最小,亚洲面积约为大洋洲面积5倍.22.解:(1)如图所示,△A'B′C′即为所求.(2)A′(2,2),B'(7,5),C'(4,6);(3)△ABC的面积为4×5﹣×5×3﹣×2×4﹣×1×3=20﹣7.5﹣4﹣1.5=7.23.解:(1)若按传统种植,当x=8时,y=10×3000×3×8÷10000=72万元;若按科学种植,当x=8时,y=10×3000×(1+40%)×3×(8﹣4)÷10000=50.4万元;(2)设n个月后可收回成本.(n﹣4)﹣2×10﹣25≥0,解得,∴10个月后收回成本;(3)设m个月后该农户获得的总利润能够超过传统种植同样时间内所获得的总利润,根据题意得,,整理得,1.6m>57.4,解得:,∴m=36,∴至少36个月后,该农户获得的总利润能够超过传统种植同样时间内所获得的总利润.24.解:(1)由②得:3x+6x﹣4y=19,即3x+2(3x﹣2y)=19③,把①代入③得:3x+10=19,即x=3,知识像烛光,能照亮一个人,也能照亮无数的人。
北师大版数学七年级下学期期末测试卷时间:120分钟总分:120分一.选择题1.将0.00006用科学记数法表示为6×10n,则n的值是()A. ﹣4B. ﹣5C. ﹣6D. 52.下列是随机事件的是( )A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B. 平行于同一条直线的两条直线平行C. 掷一枚图钉,落地后图钉针尖朝上D. 掷一枚质地均匀的骰子,掷出的点数是73.下列图形中,不是轴对称图形的是()A. B. C. D. 4. 下列运算正确的是()A. 23326()()2x x x+=B. 233212()()2x x x⋅=C. 426(2)2x x x⋅=D. 325(2)()8x x x-=-5.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A. BE=CFB. AB=DFC. ∠ACB=∠DEFD. AC=DE6.下列乘法运算中,能用平方差公式的是()A. (b +a )(a +b )B. (﹣x +y )(x +y )C. (1﹣x )(x ﹣1)D. (m +n )(﹣m ﹣n )7.在等腰三角形ABC 中,如果两边长分别为6cm ,10cm ,则这个等腰三角形的周长为( )A. 22cmB. 26cmC. 22cm 或26cmD. 24cm8.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS9.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( )A. 15°B. 30°C. 45°D. 60°10.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A. 1B. 2C. 3D. 4二. 填空题11.计算:4a 2b ÷2ab =_____.12.已知,x +y =﹣5,xy =6,则(x ﹣y )2=_____;x ﹣y =_____.13.已知2m =4,2n =16,则m +n =_____.14.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.15.如图,AB ∥CD ,∠BAC 与∠ACD 的平分线交于点P ,过P 作PE ⊥AB 于E ,交CD 于F ,EF =10,则点P 到AC 的距离为_____.16.一个水库的水位在最近5h 内持续上涨.下表记录了这5h 内6个时间点的水位高度,其中x 表示时间,y 表示水位高度.x/h0 1 2 3 4 5 y/m33.3 3.6 3.94.2 4.5 根据表格中水位的变化规律,则y 与x 的函数表达式为_____.17.计算:(a +b )(a ﹣2b )﹣a (a ﹣b )+(3b )218.如图,在△ABC 中,已知∠CDB =110°,∠ABD =30°.(1)请用直尺和圆规在图中直接作出∠A 的平分线AE 交BD 于E ;(不写作法,保留作图痕迹) (2)在(1)的条件下,求出∠AED 的度数.19.用10个除颜色外均相同的球设计一个摸球游戏:(1)使摸到红球概率为15; (2)使摸到红球和白球的概率都是25. 20.先化简,再求值:[(2x ﹣y )2﹣(2x +y )(2x ﹣y )]÷y ,其中x =1,y =2. 21.已知:如图,A 、F 、C 、D 四点在一直线上,AF =CD ,AB ∥DE ,且AB =DE .求证:(1)△ABC≌△DEF;(2)BC∥EF.22.观察下列等式:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…利用你的发现的规律解决下列问题(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)=(直接填空);(2)(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2…+ab n﹣2+b n﹣1)=(直接填空);(3)利用(2)中得出的结论求62019+62018+…+62+6+1的值.23.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按相同路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S和时间t的关系.象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个早到达B城?早多长时间?(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少?(4)请你根据图象上的数据,求出乙出发后多长时间追上甲?24.已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠F AC 的度数;(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.答案与解析一.选择题1.将0.00006用科学记数法表示为6×10n,则n 的值是()A. ﹣4 B. ﹣5 C. ﹣6 D. 5 【答案】B【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00006=6×10﹣5=6×10n.∴n=﹣5.故选B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列是随机事件的是( )A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B. 平行于同一条直线的两条直线平行C. 掷一枚图钉,落地后图钉针尖朝上D. 掷一枚质地均匀的骰子,掷出的点数是7【答案】C【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B. 平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C. 掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D. 掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列图形中,不是轴对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形.故选A .【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.4. 下列运算正确的是( )A. 23326()()2x x x +=B. 233212()()2x x x ⋅=C. 426(2)2x x x ⋅=D. 325(2)()8x x x -=-【答案】A【解析】试题分析:A .2332666()()2x x x x x +=+=,故A 正确;B .23326612()()x x x x x ⋅=⋅=,故B 错误;C .42426(2)44x x x x x ⋅=⋅=,故C 错误;D .32325(2)()88x x x x x -=⋅=,故D 错误;故选A .考点:1.单项式乘单项式;2.幂的乘方与积的乘方.5.如图,已知点B 、E 、C 、F 在一条直线上,∠A =∠D ,∠B =∠DFE ,添加以下条件,不能判定△ABC ≌△DFE 的是( )A. BE=CFB. AB=DFC. ∠ACB=∠DEFD. AC=DE【答案】C【解析】【分析】根据全等三角形的判定方法对各选项进行判断.【详解】∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选C.【点睛】本题考查了全等三角形的判定:灵活运用全等三角形的5种判定方法.若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.下列乘法运算中,能用平方差公式的是()A. (b+a)(a+b)B. (﹣x+y)(x+y)C. (1﹣x)(x﹣1)D. (m+n)(﹣m﹣n)【答案】B【解析】【分析】根据平方差公式(a+b)(a-b)=a2-b2判断即可.【详解】A、不能用平方差公式,故本选项错误;B、能用平方差公式,(﹣x+y)(x+y)=(y+x)(y﹣x)=y2﹣x2,故本选项正确;C、不能用平方差公式,故本选项错误;D、不能用平方差公式,故本选项错误;故选B.【点睛】本题考查了平方差公式的应用,注意:平方差公式:(a+b)(a-b)=a2-b2.7.在等腰三角形ABC中,如果两边长分别为6cm,10cm,则这个等腰三角形的周长为()A. 22cmB. 26cmC. 22cm 或26cmD. 24cm【答案】C【解析】【分析】 根据等腰三角形的性质,分两种情况:①当腰长为6cm 时,②当腰长为10cm 时,解答出即可.【详解】根据题意,①当腰长为6cm 时,周长=6+6+10=22(cm);②当腰长为10cm 时,周长=10+10+6=26(cm),即周长为22cm 或26cm ,故选C.【点睛】本题考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【解析】【分析】 我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.【详解】解:作图的步骤:①以O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D ;②任意作一点O ',作射线O A '',以O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以C '为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选:B .【点睛】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.9.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( )A. 15°B. 30°C. 45°D. 60° 【答案】D【解析】因为△ABC 是等边三角形,所以∠ABD=∠BCE=60°,AB=BC. 因为BD =CE ,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE ,所以∠2=60°.故选D . 10.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.二. 填空题11.计算:4a2b÷2ab=_____.【答案】2a【解析】【分析】利用整式除法的运算法则,即可得出结论.【详解】4a2b÷2ab=(4÷2)a2﹣1b1﹣1=2a.故答案为2a .【点睛】本题考查了整式的除法,解题的关键是牢记整式除法的法则. 12.已知,x +y =﹣5,xy =6,则(x ﹣y )2=_____;x ﹣y =_____. 【答案】 (1). 1; (2). ±1. 【解析】 【分析】先根据完全平方公式进行变形,再代入求出即可,最后开平方计算即可. 【详解】∵x+y =5,xy =6,∴(x ﹣y )2=(x+y )2﹣4xy =52﹣4×6=1, ∴x ﹣y =±1, 故答案为1,±1. 【点睛】本题考查了完全平方公式和平方根的定义的运用,能灵活运用公式进行变形是解此题的关键. 13.已知2m =4,2n =16,则m +n =_____. 【答案】6 【解析】 【分析】根据2m =4,2n =16,求出2m+n 的值是多少,即可求出m+n 的值是多少. 【详解】∵2m =4,2n =16, ∴2m+n =4×16=64, ∴m+n =6. 故答案为6.【点睛】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加. 14.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.【答案】70 【解析】 【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.15.如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为_____.【答案】5【解析】【分析】作PH⊥AC于H,根据角平分线的性质得到PE=PH,PF=PH,根据题意计算即可.【详解】作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=12EF=5,即点P到AC的距离为5,故答案为5.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 16.一个水库的水位在最近5h 内持续上涨.下表记录了这5h 内6个时间点的水位高度,其中x 表示时间,y 表示水位高度.根据表格中水位的变化规律,则y 与x 的函数表达式为_____. 【答案】y=0.3x+3 【解析】 【分析】根据记录表由待定系数法就可以求出y 与x 的函数表达式. 【详解】设y 与x 的函数表达式为y =kx +b , 把x =0,y =3和x =1,y =3.3代入得,33.3b k b =⎧⎨+=⎩ , 解得:0.33k b =⎧⎨=⎩. 故y 与x 的函数表达式为y =0.3x +3. 故答案为y =0.3x +3.【点睛】本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:(1)先设出函数解析式的一般形式,如求一次函数的解析式时,先设y =kx +b (k ≠0);(2)将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式. 17.计算:(a +b )(a ﹣2b )﹣a (a ﹣b )+(3b )2 【答案】7b 2 【解析】 【分析】直接利用多项式的乘法运算法则以及积的乘方运算法则分别计算得出答案. 【详解】原式=a 2﹣ab ﹣2b 2﹣a 2+ab+9b 2 =7b 2.【点睛】此题主要考查了整式的乘法运算及整式的加减运算,正确掌握相关运算法则是解题关键.18.如图,在△ABC中,已知∠CDB=110°,∠ABD=30°.(1)请用直尺和圆规在图中直接作出∠A的平分线AE交BD于E;(不写作法,保留作图痕迹)(2)在(1)的条件下,求出∠AED的度数.【答案】(1)见解析;(2)70°【解析】【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AB、AC两点,再分别以两点为圆心,大于两点之间的距离的一半长为半径画弧,两弧交于一点M,然后作射线AM交BD于E;(2)利用三角形内角与外角的关系可得∠BAC的度数,再根据角平分线的定义计算出∠EAD的度数,再次利用外角的性质可得答案.【详解】解:(1)如图所示:(2)∵∠CDB=110°,∠ABD=30°.∴∠CAB=110°﹣30°=80°,∵AE平分∠CAB,∴∠DAE=40°,∴∠DEA=110°﹣40°=70°.【点睛】此题主要考查了基本作图,以及角的计算,关键是掌握角平分线的作法,以及三角形的外角等于与它不相邻的两个内角的和.19.用10个除颜色外均相同的球设计一个摸球游戏:(1)使摸到红球的概率为15;(2)使摸到红球和白球的概率都是25.【答案】(1)2个红球,8个黄球;(2)4个红球,4个白球,2个其他颜色球. 【解析】【分析】(1)利用概率公式,要使摸到红球的概率为15,则红球有2个,然后设计摸球游戏;(2)利用概率公式,要使摸到红球和白球的概率都是25.则红球有4个,白球有4个,然后设计摸球游戏.【详解】(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了概率公式.20.先化简,再求值:[(2x﹣y)2﹣(2x+y)(2x﹣y)]÷y,其中x=1,y=2.【答案】﹣4x+2y,当x=1,y=2时,原式=0.【解析】【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】[(2x﹣y)2﹣(2x+y)(2x﹣y)]÷y=[4x2﹣4xy+y2﹣4x2+y2]÷y=[﹣4xy+2y2]÷y=﹣4x+2y,当x=1,y=2时,原式=﹣4+4=0.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.21.已知:如图,A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.【答案】(1)见解析;(2)见解析.【解析】(1)要证明△ABC ≌△DEF ,可以通过已知利用SAS 来进行判定,(2)由(1)可以得到对应角相等,然后利用内错角相等即可证明两直线平行. 【详解】证明:(1)∵AF =CD , ∴AF+FC =CD+FC 即AC =DF . ∵AB ∥DE , ∴∠A =∠D . ∵AB =DE ,∴在△ABC 和△DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩. ∴△ABC ≌△DEF (SAS ). (2)∵△ABC ≌△DEF (已证), ∴∠ACB =∠DFE . ∴EF ∥BC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 22.观察下列等式: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4… 利用你的发现的规律解决下列问题(1)(a ﹣b )(a 4+a 3b +a 2b 2+ab 3+b 4)= (直接填空);(2)(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2…+ab n ﹣2+b n ﹣1)= (直接填空); (3)利用(2)中得出的结论求62019+62018+…+62+6+1的值. 【答案】(1)a 5﹣b 5;(2)a n﹣b n;(3)62019+62018+…+62+6+1=2020615-.【解析】(1)(2)直接根据规律解答即可;(3)利用(2)的结论,把所求式子写成(6-1)(62019+62018+…+62+6)×15即可解答. 【详解】(1)(a ﹣b )(a 4+a 3b+a 2b 2+ab 3+b 4)=a 5﹣b 5 故答案为a 5﹣b 5;(2)(a ﹣b )(a n ﹣1+a n ﹣2b+a n ﹣3b 2…+ab n ﹣2+b n ﹣1)=a n ﹣b n 故答案为a n ﹣b n ; (3)62019+62018+…+62+6+1=(6﹣1)(62019+62018+…+62+6)×15=2020615.【点睛】此题主要考查了整式的混合运算,要熟练掌握,注意根据所给的算式总结出规律,并能利用总结出的规律解决实际问题.23.如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按相同路线从A 地出发驶往B 地,如图所示,图中的折线PQR 和线段MN 分别表示甲、乙所行驶的路程S 和时间t 的关系.象回答下列问题: (1)甲和乙哪一个出发的更早?早出发多长时间? (2)甲和乙哪一个早到达B 城?早多长时间?(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少? (4)请你根据图象上的数据,求出乙出发后多长时间追上甲?【答案】(1)甲更早,早出发1 h;(2)乙更早,早到2 h;(3)甲的平均速度12.5km/h, 乙的平均速度是50km/h;(4) 乙出发0.5 h 就追上甲 【解析】分析:(1)(2)读图可知;(3)从图中得:甲和乙所走的路程都是50千米,甲一共用了4小时,乙一共用了1小时,根据速度=路程时间,代入计算得出; (4)从图中得:甲在走完全程时,前1小时速度为20千米/小时,从第2小时开始,速度为502052--=10千米/小时,因此设乙出发x 小时就追上甲,则从图中看,是在甲速度为10千米/小时时与乙相遇,所以甲的路程为20+10x ,乙的路程为50x ,列方程解出即可. 详解:(1)甲下午1时出发,乙下午2时出发,所以甲更早,早出发1小时; (2)甲5时到达,乙3时到达,所以乙更早,早到2小时; (3)乙的速度=5032-=50(千米/时),甲的平均速度=5051-=12.5(千米/时); (4)设乙出发x 小时就追上甲,根据题意得:50x =20+10x ,x =0.5. 答:乙出发0.5小时就追上甲.点睛:本题是函数的图象,根据图象信息解决实际问题,存在两个变量:路程和时间;通过此类题目的练习,可以培养学生分析问题和运用所学知识解决问题的能力,同时还能使学生体会到函数知识的实用性.24.已知,如图AD 为△ABC 的中线,分别以AB 和AC 为一边在△ABC 的外部作等腰三角形ABE 和等腰三角形ACF ,且AE =AB ,AF =AC ,连接EF ,∠EAF +∠BAC =180° (1)如图1,若∠ABE =63°,∠BAC =45°,求∠F AC 的度数;(2)如图1请探究线段EF 和线段AD 有何数量关系?并证明你的结论;(3)如图2,设EF 交AB 于点G ,交AC 于点R ,延长FC ,EB 交于点M ,若点G 为线段EF 的中点,且∠BAE =70°,请探究∠ACB 和∠CAF 的数量关系,并证明你的结论.【答案】(1)36°;(2)EF =2AD,见解析;(3)1ACB CAF 552︒∠-∠=,见解析. 【解析】 分析】(1)由等腰三角形的性质得出∠AEB=∠ABE=63°,由三角形内角和定理得出∠EAB=54°,推出∠EAB+2∠BAC+∠FAC=180°,即可得出结果;(2)延长AD至H,使DH=AD,连接BH,由中线的性质得出BD=CD,由SAS证得△BDH≌△CDA得出HB=AC=AF,∠BHD=∠CAD,得出AC∥BH,由平行线的性质得出∠ABH+∠BAC=180°,证得∠EAF=∠ABH,由SAS证得△ABH≌△EAF,即可得出结论;(3)由(2)得,AD=12EF,又点G为EF中点,得出EG=AD,由(2)△ABH≌△EAF得出∠AEG=∠BAD,由SAS证得△EAG≌△ABD得出∠EAG=∠ABC=70°,由已知得出∠EAB+2∠BAC+∠CAF=180°,推出∠BAC=55°-12∠CAF,由三角形内角和定理得出∠BAC=180°-∠ABC-∠ACB=110°-∠ACB,即可得出结果.【详解】(1)∵AE=AB,∴∠AEB=∠ABE=63°,∴∠EAB=54°,∵∠BAC=45°,∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠FAC=180°,∴54°+2×45°+∠FAC=180°,∴∠FAC=36°;(2)EF=2AD;理由如下:延长AD至H,使DH=AD,连接BH,如图1所示:∵AD为△ABC的中线,∴BD=CD,在△BDH和△CDA中,BD CDBDH CDA DH AD=⎧⎪∠=∠⎨⎪=⎩,∴△BDH≌△CDA(SAS),∴HB=AC=AF,∠BHD=∠CAD,∴AC∥BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,AE ABEAF ABH AF BH=⎧⎪∠=∠⎨⎪=⎩,∴△ABH≌△EAF(SAS),∴EF=AH=2AD;(3)1ACB CAF552︒∠-∠=;理由如下:由(2)得,AD=12EF,又点G为EF中点,∴EG=AD,由(2)△ABH≌△EAF,∴∠AEG=∠BAD,在△EAG和△ABD中,AE ABABG BAD EG AD=⎧⎪∠=∠⎨⎪=⎩,∴△EAG≌△ABD(SAS),∴∠EAG=∠ABC=70°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠CAF=180°,即:70°+2∠BAC+∠CAF=180°,∴∠BAC+12∠CAF=55°,∴∠BAC=55°﹣12∠CAF,∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣∠ACB=110°﹣∠ACB,∴55°﹣12∠CAF=110°﹣∠ACB,∴∠ACB﹣12∠CAF=55°.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形内角和定理、等腰三角形的性质、平行线的判定与性质等知识,熟练掌握三角形内角和定理,证明三角形全等是解题的关键.。
七年级下册数学期末复习2一.选择题(共10小题)1.(2017•金平区模拟)如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE【解答】解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、BC、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误;D、∠C=∠ABE不能判断出EB∥AC,故本选项错误;故选:A.2.(2017•东方模拟)如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是()A.18°B.126°C.18°或126°D.以上都不对【解答】解:∵∠α与∠β的两边分别平行,∴∠α与∠β相等或互补,设∠α=x°,∵∠α与∠β的3倍少36°,∴若∠α与∠β相等,则x=3x﹣36,解得:x=18,若∠α与∠β互补,则x=3(180﹣x)﹣36,解得:x=126,∴∠α的度数是18°或126°.故选C.3.(2017•济宁模拟)如果﹣b是a的立方根,那么下列结论正确的是()A.﹣b也是﹣a的立方根B.b是a的立方根C.b是﹣a的立方根D.±b都是a的立方根【解答】解:如果﹣b是a的立方根,即=﹣b,那么=b,即b是﹣a的立方根,故选C4.(2017•澧县三模)的算术平方根是()A.2 B.﹣2 C.D.±【解答】解:∵=4,4的算术平方很是2,∴的算术平方根是2,故选A.5.(2017•呼和浩特一模)在平面直角坐标系中,点P(﹣,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵﹣>0,∴点P(﹣,2)在第一象限.故选A.6.(2017•滨海新区一模)如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB 平移至A1B1,则a,b的值分别为()A.1,3 B.1,2 C.2,1 D.1,1【解答】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,b),B1(a,2),∴线段AB向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,故选:D.7.(2017•海曙区模拟)在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+15【解答】解:方程﹣=5,整理得:y==x﹣15,故选C8.(2017•峄城区模拟)方程组的解为,则方程组的解为()A.B.C.D.【解答】解:∵方程组的解为,∴,即,又∵方程组,∴,解得,故选:C.9.(2017•杜尔伯特县一模)当x<a<0时,x2与ax的大小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax【解答】解:∵x<a<0,∴两边都乘以x得:x2>ax,故选A.10.(2016•黄冈模拟)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是()A.80% B.70% C.92% D.86%【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故选C.二.填空题(共10小题)11.(2017•武汉模拟)如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=80°.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=50°,∵沿EF折叠D到D′,∴∠FEG=∠DEF=50°,∴∠AEG=180°﹣50°﹣50°=80°,故答案为:80°.12.(2017•丽水模拟)设n为整数,且n<<n+1,则n=4.【解答】解:∵16<20<25,∴4<<5,∴n=4.故答案为:4.13.(2017春•老河口市期中)如果某一个数的一个平方根是﹣3,那么这个数是9.【解答】解:一个数的一个平方根是﹣3,∴这个数是:(﹣3)2=9,故答案为:9.14.(2017•姜堰区一模)已知实数x,y满足方程组,则(x+y)x﹣3y=.【解答】解:,①+②得:4(x+y)=20,即x+y=5,②﹣①得:2(x﹣3y)=﹣4,即x﹣3y=﹣2,则原式=,故答案为:15.(2017•宜春模拟)若关于x,y的二元一次方程组的解满足x+y>2,则k的取值范围是k<﹣1.【解答】解:将方程组中两方程相加可得:3x+3y=﹣3k+3,则x+y=﹣k+1,∵x+y>2,∴﹣k+1>2,解得:k<﹣1,故答案为:k<﹣1.16.(2017•仁寿县模拟)如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是9≤m<12.【解答】解:解不等式3x﹣m≤0得到:x≤,∵正整数解为1,2,3,∴3≤<4,解得9≤m<12.故答案为:9≤m<12.三.解答题(共10小题)17.(2017春•江西期中)如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC,OE平分∠BOC.(1)图中∠BOD的邻补角为∠AOD,∠AOE的邻补角为∠BOE;(2)如果∠COD=25°,那么∠BOE=65°,如果∠COD=60°,那么∠BOE=30°;(3)试猜想∠COD与∠BOE具有怎样的数量关系,并说明理由.【解答】解:(1)如图所示:∠BOD的邻补角为:∠AOD,∠AOE的邻补角为:∠BOE;故答案为:∠AOD,∠BOE;(2)∵∠COD=25°,∴∠AOC=2×25°=50°,∴∠BOC=130°,∴∠BOE=×130°=65°,∵∠COD=60°,∴∠AOC=120°,∴∠BOC=60°,∴∠BOE=∠BOC=30°,故答案为:65°,30°;(3)由题意可得:∠COD+∠BOE=∠AOC+∠BOC=(∠AOC+∠BOC)=90°.18.(2017春•桐乡市期中)如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=25°,求∠BFC的度数.【解答】解:(1)∵∠ABD和∠BDC的平分线交于E,∴∠ABD=2∠1,∠BDC=2∠2,∵∠1+∠2=90°,∴∠ABD+∠BDC=180°,∴AB∥CD;(2)∵DE平分∠BDC,∴∠EDF=∠2=25°,∵∠1+∠2=90°,∴∠FED=90°,∴∠3=180°﹣90°﹣25°=65°.∴∠BFC=180°﹣∠3=115°.19.(2017春•蓟县期中)小丽想在一块面积为36m2正方形纸片上,沿着边的方向裁出一块面积为30m2的长方形纸片,并且使它的长宽的比为2:1.问:小丽能否用这块正方形纸片裁出符合要求的长方形纸片,为什么?【解答】解:不能,设长方形纸片的长为2xcm,宽为xcm,则:2x•x=30,2x2=30,x2=15,x=,则长方形纸片的长为2cm,因为2>6,而正形纸片的边长为cm=6cm,所以不能裁剪出符合要求的长方形.20.(2017春•乐亭县期中)已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)点M到x轴的距离为1时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?【解答】解:(1)∵点M(m﹣1,2m+3),点M到x轴的距离为1,∴|2m+3|=1,解得,m=﹣1或m=﹣2,当m=﹣1时,点M的坐标为(﹣2,1),当m=﹣2时,点M的坐标为(﹣3,﹣1);(2)∵点M(m﹣1,2m+3),点N(5,﹣1)且MN∥x轴,∴2m+3=﹣1,解得,m=﹣2,故点M的坐标为(﹣3,﹣1).21.(2017•游仙区模拟)某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正门和一个侧门时,4分钟内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5分钟内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.【解答】解:(1)设一个正门平均每分钟通过x名学生,一个侧门平均每分钟通过y名学生,由题意,得,解得:.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意,得共有学生:45×10×4=1800,1800学生通过的时间为:1800÷(120+80)×0.8×2=分钟.∵5<,∴该教学楼建造的这4个门不符合安全规定.22.(2017春•高平市期中)阅读理解:善于思考的小淇在解方程组时,发现方程①和方程②之间存在一定的关系,他的解法如下:解:将方程②变形为2x﹣3y﹣2y=5③,把方程①代入方程③,得3﹣2y=5,解得y=﹣1.把y=﹣1代入方程①,得x=0.所以原方程组的解为小淇的这种解法叫“整体换元”法,请用“整体换元”法完成下列问题:(1)解方程组:i.把方程①代入方程②,则方程②变为4x+3﹣2x=5;ii.原方程组的解为.(2)解方程组:.【解答】解:(1)解方程组:i.把方程①代入方程②,则方程②变为4x+3﹣2x=5;ii.原方程组的解为;故答案为:4x+3﹣2x=5;;(2),由①得2y=3x﹣5③,把③代入②,得7x﹣2(3x﹣5)=14,解得x=4,将x=4代入①,得12﹣2y=5,解得y=,原方程组的解为.23.(2017•安徽模拟)某校“棋乐无穷”社团前两次购买的两种材质的象棋采购如下表(近期两种材质象棋的售价一直不变);(1)若该社团计划再采购这两种材质的象棋各5盒,则需要多少元?(2)若该社团准备购买这两种材质的象棋共50盒,且要求塑料象棋的数量不多于玻璃象棋数量的3倍,请设计出最省钱的购买方案,并说明理由.【解答】解:(1)设一盒塑料象棋的售价是x元,一盒玻璃象棋的售价是y元,依题意得,,解得,(5+7)×5=60(元),所以采购这两种材质的象棋各5盒需要60元;(2)设购进玻璃象棋m盒,总费用为w元,依题意得w=5×(50﹣m)+7m=2m+250.所以当m取最小值时w有最小值,因为50﹣m≤3m,解得m≥12.5,而m为正整数,所以当m=13时,w最小=2×13+250=276,此时50﹣13=37.所以最省钱的购买方案是购进塑料象棋37盒,玻璃象棋13盒.24.(2017•南岗区二模)为了倡导绿色出行,某市政府今年投资112万元,建成40个公共自行车站点,共计配置720辆公共自行车,今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)分别求出每个站点的造价和公共自行车的单价;(2)若到2020年该市政府将再建造m个新站点和配置(2600﹣m)台公共自行车,并且自行车数量(2600﹣m)不超过新站点数量m的12倍,求市政府至少要投入多少万元的资金?(注:从今年起至2020年,每个站点的造价和公共自行车的单价每年都保持不变)【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:,解得:答:每个站点造价为1万元,自行车单价为0.1万元;(2)∵自行车数量(2600﹣m)不超过新站点数量m的12倍,∴2600﹣m≤12m,解得:m≥200,∵要使市政府的资金最少,则m取最小的正整数200,∴市政府至少要投入的资金=(2600﹣200)×0.1+200×1=440(万元).25.(2017•游仙区模拟)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=30,n=20,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是90°;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.。