福建省2018年中考数学试题(A)及答案(扫描版)
- 格式:doc
- 大小:1.12 MB
- 文档页数:7
、福建省2018年初中学业毕业和高中阶段学校招生考试(B卷)数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数3-,2-,0,π中,最小的数是( )A.3-B.2-C.0D.π2.某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥3.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2B.1,2,4C.2,3,4D.2,3,54.一个n边形的内角和为360︒,则n等于( )A.3B.4C.5D.65.如图,等边三角形ABC中,AD BC∠=︒,⊥,垂足为D,点E在线段AD上,45EBC第1页则ACE∠等于( )A.15︒B.30︒C.45︒D.60︒6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.已知43m=+,则以下对m的估算正确的( )A.23m<<B.34m<<C.45m<<D.56m<<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩9.如图,AB是Oe的直径,BC与Oe相切于点B,AC交Oe于点D.若50ACB∠=︒,则BOD∠等于( )A.40︒B.50︒C.60︒D.80︒第2页第 3 页10.已知关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,满分24分.请把答案填在题中的横线上)11.计算:021⎛⎫-= ⎪ ⎪⎝⎭.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 .13.如图,Rt ABC △中,90ACB ∠=︒,6AB =,D 是AB 的中点,则CD = .14.不等式组313,20,x x x ++⎧⎨-⎩>>的解集为 .15.把两个同样大小的含45︒角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若2AB =,则CD = .16.如图,直线y x m =+与双曲线3y x=相交于A ,B 两点,BC x ∥轴,AC y ∥轴,则ABC △面积的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:1, 410. x yx y+=⎧⎨+=⎩18.(本小题满分8分)如图,□ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE OF=.19.(本小题满分8分)先化简,再求值:22111m mm m+-⎛⎫-÷⎪⎝⎭,其中31m=+.20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的ABC△及线段A B'',A A A∠'∠'=∠(),以线段A B''为一边,在第4页第 5 页给出的图形上用尺规作出A B C '''△,使得A B C ABC '''∽△△,不写作法,保留作图痕迹;(2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(本小题满分8分)如图,在Rt ABC △中,90C ∠=︒,10AB =,8AC =.线段AD 由线段AB 绕点A 按逆时针方向旋转90︒得到,EFG △由ABC △沿CB 方向平移得到,且直线EF 过点D . (1)求BDF ∠的大小; (2)求CG 的长.22.(本小题满分10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.如图是2018年4月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从2018年4月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以2018年4月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(本小题满分10分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知20a ,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米,如图1.求所利用旧墙AD的长;第6页第 7 页(2)已知050α<<,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.24.(本小题满分12分)如图,D 是ABC △外接圆上的动点,且B ,D 位于AC 的两侧.DE AB ⊥,垂足为E ,DE 的延长线交此圆于点F .BG AD ⊥,垂足为G ,BG 交DE 于点H .DC ,FB 的延长线交于点P ,且PC PB =. (1)求证:BG CD ∥;(2)设ABC △外接圆的圆心为O ,若3AB DH =,80OHD ∠=︒,求BDE ∠的大小. 已知四边形ABCD 是O e 的内接四边形,AC 是O e 的直径,DE AB ⊥,垂足为E .第 8 页25.(本小题满分14分)已知抛物线2y ax bx c =++过点(02)A ,,且抛物线上任意不同两点11M x y (,),22N x y (,)都满足:当12x x <<0时,12120x x y y >(-)(-);当120x x <<时,12120x x y y <(-)(-).以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且B 在C 的左侧,ABC △有一个内角为60︒. (1)求抛物线的解析式;(2)若MN与直线y =-平行,且M ,N 位于直线BC 的两侧,12y y >,解决以下问题:①求证:BC 平分MBN ∠;②求MBC △外心的纵坐标的取值范围.福建省2018年初中学业毕业和高中阶段学校招生考试(B 卷)数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】分析:直接利用绝对值的性质化简,进而比较大小得出答案.解:在实数3-,2-,0,π中,33-=,则320π-<<<-,故最小的数是:2-.故选:B .2.【答案】C第 9 页【解析】分析:根据常见几何体的三视图逐一判断即可得.解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意.故选:C . 3.【答案】C【解析】分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.解:A 、112+=,不满足三边关系,故错误;B 、124+<,不满足三边关系,故错误;C 、234+>,满足三边关系,故正确;D 、235+=,不满足三边关系,故错误.故选:C . 4.【答案】B【解析】分析:n 边形的内角和是2180n o g (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .解:根据n 边形的内角和公式,得:2180360n =g (-),解得4n =.故选:B .5.【答案】A【解析】分析:先判断出AD 是BC 的垂直平分线,进而求出45ECB ∠=︒,即可得出结论.解:Q 等边三角形ABC 中,AD BC ⊥,∴BD CD =,即:AD 是BC 的垂直平分线,Q 点E 在AD 上, ∴BE CE =, ∴EBC ECB ∠=∠, Q 45EBC ∠=︒, ∴45ECB ∠=︒,Q ABC △是等边三角形, ∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒.故选:A . 6.【答案】D【解析】分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.【答案】B【解析】分析:直接化简二次根式,得出的取值范围,进而得出答案.解:Q 2m==12<,∴34m<<.故选:B.8.【答案】A【解析】分析:设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.解:设索长为x 尺,竿子长为y尺,根据题意得:5,15.2x yx y=+⎧⎪⎨=-⎪⎩故选:A.9.【答案】D【解析】分析:根据切线的性质得到90ABC∠=︒,根据直角三角形的性质求出A∠,根据圆周角定理计算即可.解:Q BC是Oe的切线,∴90ABC∠=︒,∴9040A ACB∠=︒-∠=︒,由圆周角定理得,280BOD A∠=∠=︒,故选:D.10.【答案】D【解析】分析:根据方程有两个相等的实数根可得出1b a=+或(1)b a=-+,当1b a=+时,1-是方程20x bx a++=的根;当(1)b a=-+时,1是方程20x bx a++=的根.再结合1(1)a a+≠-+,可得出1和1-不都是关于x的方程20x bx a++=的根.解:Q 关于x的一元二次方程21210a x bx a++++=()()有两个相等的实数根,∴2210,(2)4(1)0,ab a+≠⎧⎨∆=-+=⎩∴1b a=+或(1)b a=-+.当1b a=+时,有10a b+=-,此时1-是方程20x bx a++=的根;第10当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.Q 10a +≠, ∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根.故选:D .第Ⅱ卷二、填空题 11.【答案】0【解析】分析:根据零指数幂:01(0)a a =≠进行计算即可.解:原式110==-,故答案为:0. 12.【答案】120【解析】分析:根据众数的定义:一组数据中出现次数最多的数据即为众数.解:Q这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120. 13.【答案】3【解析】分析:根据直角三角形斜边上的中线等于斜边的一半解答.解:Q90ACB ∠=︒,D 为AB 的中点,∴116322CD AB ==⨯=. 故答案为:3. 14.【答案】2x >【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.解:313,2,x x x +>+⎧⎨->⎩①0②Q 解不等式①得:1x >,解不等式②得:2x >, ∴不等式组的解集为2x >,15.1【解析】分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论.解:如图,过点A 作AF BC ⊥于F , 在Rt ABC △中,45B ∠=︒,∴22BC AB ==,21BF AF AB ===, Q 两个同样大小的含45︒角的三角尺,∴2AD BC ==,在Rt ADF △中,根据勾股定理得,223DF AD AF =-=∴13231CD BF DF BC =+=+-=--,故答案为:31-.16.【答案】6【解析】分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫⎪⎝⎭,,则3C a b ⎛⎫ ⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x=相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫ ⎪⎝⎭,.将y x m =+代入3y x =,得3x m x+=, 整理,得230x mx +=-, 则a b m +=-,3ab =-,222))((412a b a b ab m =-∴+=+-.1•2ABC S AC BC =Q △222133=()213()••()21()21(12)2162a b a b b a a b ab a b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6.故答案为6. 三、解答题 17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =, 解得:3x =,把3x =代入①得:2y =-, 则方程组的解为3,2.x y =⎧⎨=-⎩【解析】方程组利用加减消元法求出解即可. 18.【答案】证明:Q 四边形ABCD 是平行四边形,∴OA OC =,AD BC ∥, ∴OAE OCF ∠=∠,在OAE △和OCF △中,OAE OCFOA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOE COF △≌△(ASA), ∴OE OF =.【解析】由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF △≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷⎪⎝⎭()()211m m mm m m-=+-g()()111m mm m m+=+-g11m=-当31m=+时,原式33113===+-.【解析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.20.【答案】(1)解:如图所示,A B C'''△即为所求;(2)已知,如图,ABC A B C'''△∽△,kAB BC ABCA B C A C=='''''=',D是AB的中点,D'是A B''的中点,求证:DCkDC''=.证明:Q D是AB的中点D'是A B''的中点,∴12AD AB=,12A D A B''='',∴1212A BABABA D A BAD''''=='',Q ABC A B C'''△∽△,∴A ACBAB AC='''','A A∠=∠,QA AADAD CC''''=,'A A∠=∠,∴A C D ACD'''△∽△,∴k CD D C A C CA ''''==. 【解析】(1)作=A B C ABC '''∠∠,即可得到A B C '''△;(2)依据D 是AB 的中点, D '是A B ''的中点,即可得到A A BD AD A B ='''',根据ABC A B C '''△∽△,即可得到A A CB AB AC ='''','A A ∠=∠,进而得出A C D ACD '''△∽△,可得k CD D C A C CA ''''==. 21.【答案】解:(1)Q 线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到,∴90DAB ∠=︒,10AD AB ==, ∴45ABD ∠=︒,Q EFG △是ABC △沿CB 方向平移得到, ∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥,∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒, Q 90DAB ∠=︒, ∴90ADE ∠=︒, Q 90ACB ∠=︒, ∴ADE ACB ∠=∠,∴ADE ACB △∽△, ∴AD AEAC AB=, Q 8AB =,10AB AD ==, ∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质即可得出结论;(2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论.22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015; (2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元, 乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦1159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘. 【解析】(1)根据概率公式计算可得; (2)分别根据平均数的定义及其意义解答可得. 23.【答案】解:(1)设AD x =米,则1002xAB -=米. 根据题意,得()1004502x x =-.解得110x =,290x =.Q 20a =,且x a ≤, ∴90x =舍去.∴利用旧墙AD 的长为10米.(2)设AD x =米,矩形ABCD 的面积为S 平方米.①如果按图一方案围成矩形菜园,依题意得()()2100150125022x x S x ==--+-,0x a <<, Q 050a <<,∴50x a <<时,S 随x 的增大而增大.当x a =时,21503S a a =-最大.②如按图2方案围成矩形菜园,依题意,得22(1002)[(25)](25)244x a x a a S x +-==---++,502aa x ≤<+.当25504a a <+<时,即10003a <<时, 则254a x =+时,2210000200(25)416a a S a ++=+=最大.当254a a +≤,即100503a ≤<时,S 随x 的增大而减小. ∴x a =时,2(1002)15022a S a a a a +-==-最大.综合①②,当10003a <<时, 222100002001(3100)(50)016216a a a a a ++---=>,即22100002001(50)162a a a a ++>-,此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米;当100503a ≤<,两种方案围成的矩形菜园面积最大值相等. ∴当时,围成长和宽均为(25)4a +米的矩形菜园面积最大,最大面积为21000020016a a ++平方米;当100503a ≤<时,围成长为a 米,宽为(50)2a-米的矩形菜园面积最大,最大面积为21(50)2a a -平方米.【解析】(1)按题意设出AD ,表示AB 构成方程;(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论S 与菜园边长之间的数量关系.24.【答案】解:(1)如图1,Q PC PB =,PCB PBC ∠=∠∴,Q 四边形ABCD 内接于圆,180BAD BCD ∴∠+∠=︒, 180BCD PCB ∠+∠=︒Q , BAD PCB ∠=∠∴,BAD BFD ∠=∠Q ,BFD PCB PBC ∠=∠=∠∴,BC DF ∴∥, DE AB ⊥Q ,90DEB =∴∠︒, 90ABC =∴∠︒, AC ∴是O e 的直径,90ADC =∴∠︒, BG AD ⊥Q , 90AGB =∴∠︒, ADC AGB ∠=∠∴,BG CD ∴∥;(2)由(1)得:BC DF ∥,BG CD ∥,∴四边形BCDH 是平行四边形,BC DH ∴=,在Rt ABC △中,3AB DH =Q ,∴3tan 3AB DHACB BC ∠===,∴60ACB ∠=︒,30BAC ∠=︒,∴60ADB ∠=︒,12BC AC =, ∴12DH AC =. ① 当点O 在DE 的左侧时,如图2,作直径DM ,连接AM 、OH ,则90DAM ∠=︒,90AMD ADM ∠∴∠+=︒.DE AB ⊥Q ,90BED =∴∠︒, 90BDE ABD ∠∴∠+=︒.AMD ABD ∠=∠Q , ADM BDE ∠=∠∴,Q 12DH AC =, DH OD ∴=,80DOH OHD ∠∴∠==︒, 20ODH =∴∠︒. 60AOB ∠=︒Q , 40ADM BDE ∠∴∠+=︒, 20BDE ADM ∠∴∠==︒.② 当点O 在DE 的右侧时,如图3,作直径DN ,连接BN ,由①得:20ADE BDN ∠=∠=︒,20ODH ∠=︒,40BDE BDN ODH ∠∴∠=∠+=︒,综上所述,BDE ∠的度数为20︒或40︒.【解析】(1)根据等边对等角得:PCB PBC ∠=∠,由四点共圆的性质得:180BAD BCD ∠+∠=︒,从而得:BFD PCB PBC ∠=∠=∠,根据平行线的判定得:BC DF ∥,可得90ABC ∠=︒,AC 是O e 的直径,从而得:90ADC AGB ∠=∠=︒,根据同位角相等可得结论;(2)先证明四边形BCDH 是平行四边形,得BC DH =,根据特殊的三角函数值得:60ACB ∠=︒,30BAC ∠=︒,所以12DH AC =,分两种情况:①当点O 在DE 的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:AMD ABD ∠=∠,则ADM BDE ∠=∠,并由DH OD =,可得结论;②当点O 在DE 的右侧时,如图3,同理作辅助线,同理有20ADE BDN ∠=∠=︒,20ODH ∠=︒,得结论.25.【答案】解:(1)Q 抛物线过点(0,2)A ,2c ∴=,当120x x <<时,120x x -<,由1212()()0x x y y -->,得到120y y -<,∴当0x <时,y 随x 的增大而增大,同理当0x >时,y 随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即0b =,徐老师第 21Q 以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,如图1所示, ∴ABC △为等腰三角形,Q ABC △中有一个角为60︒,∴ABC △为等边三角形,且2OC OA ==,设线段BC 与y 轴的交点为点D ,则有BD CD =,且30OBD ∠=︒, ∴•cos303BD OB =︒=,•sin301OD OB =︒=,Q B 在C 的左侧,∴B 的坐标为(3,1)--,Q B 点在抛物线上,且2c =,0b =,321a ∴+=﹣,解得:1a =﹣,则抛物线解析式为22y x =-+;(2)①由(1)知,点211(,2)M x x -+,222(,2)N x x -+,Q MN 与直线23y x =-平行,∴设直线MN 的解析式为23y x m =-+,则有211223x x m -+=-+,即211232m x x =-++,∴直线MN 解析式为21123232y x x x =--++,把21123232y x x x =--++代入22y x =-+,解得:1x x =或123x x =-, ∴2123x x =-,即222111(23)24310y x x x =--+=-+-,作ME BC ⊥,NF BC ⊥,垂足为E ,F ,如图2所示,第 22 Q M ,N 位于直线BC 的两侧,且12y y >,则2212y y <-<≤,12x x <, ∴211(1)3ME y x =--=-+,11(BE x x =-=,221119NF y x =--=-+,21(BF x x =-=,在Rt BEM △中,21tan ME x BE MBE ===∠, 在Rt BFN △中,221tan NF x BF NBF =====∠. tan tan MBE NBF ∠=∠Q ,MBE NBF ∠=∠∴,则BC 平分MBN ∠;② Q y 轴为BC 的垂直平分线,∴设MBC △的外心为0(0,)P y ,则PB PM =,即22PB PM =,根据勾股定理得:22201013(1)()y x y y ++=+-,Q 2122x y =-,∴220010124(2)()y y y y y ++=-+-,即01112y y =-, 由①得:1121y -<≤-, ∴0302y -<≤, 则MBC △的外心的纵坐标的取值范围是0302y -<≤.【解析】(1)由A 的坐标确定出c 的值,根据已知不等式判断出120y y -<,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可;(2)①设出点211(,2)M x x -+,222(,2)N x x -+,由MN 与已知直线平行,得到k 值相同,表示出直线MN 解析式,进而表示出ME ,BE ,NF ,BF ,求出tan MBE ∠与tan NBF ∠的值相等,进而得到BC 为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y 轴为BC 的垂直平分线,设P 为外心,利用勾股定理化简22PB PM =,确定出MBC △外心的纵坐标的取值范围即可.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯沪科版九年级数学上册解直角三角形的应用中考题汇编(含答案)一、选择题1. (2018·宜昌)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100 m,∠PCA=35°,则P,A两点的距离为()A. 100 sin 35° mB. 100 sin 55° mC. 100 tan 35° mD. 100 tan 55° m第1题第2题2. (2018·金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD 的长度之比为()A. tan αtan β B.sin βsin α C.sin αsin β D.cos βcos α3. (2018·益阳)如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300 m到达点B,则小刚上升的高度为()A. 300 sin α mB. 300 cos α mC. 300 tan α mD. 300 tan αm第3题第4题4. (2018·长春)如图,某地修建高速公路,要从A地向B地修一条隧道(点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地出发,垂直上升800 m到达C处,在C处观察B地的俯角为α,则A,B两地之间的距离为()A. 800 sin α mB. 800 tan α mC. 800sin αm D.800tan αm5. (2018·淄博)一辆小车沿着如图所示的斜坡向上行了100米,其铅直高度上升了15米. 在用科学计算器求坡角α的度数时,具体按键顺序是()第5题A. 2ndF sin0.15)=B. sin0.15)2ndF=C. 2ndF cos0.15)=D. tan0.15)2ndF=6. (2018·苏州)如图,某海监船以20海里/时的速度在某海域执行巡航任务.当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A. 40海里B. 60海里C. 203海里D. 403海里第6题 第8题7. (2018·绵阳)一艘在南北航线上的测量船,于点A 处测得海岛B 在点A 的南偏东30°方向,继续向南航行30海里到达点C 时,测得海岛B 在点C 的北偏东15°方向,则海岛B 离此航线的最近距离是(结果精确到0.01海里,参考数据:3≈1.732,2≈1.414)( )A. 4.64海里B. 5.49海里C. 6.12海里D. 6.21海里8. (2018·重庆)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部点E 处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7 m ,升旗台坡面CD 的坡度i =1∶0.75,坡长CD =2 m .若旗杆底部到坡面CD 的水平距离BC =1 m ,则旗杆AB 的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6) ( )A. 12.6 mB. 13.1 mC. 14.7 mD. 16.3 m9. (2018·重庆)如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20 m 到达点C ,再经过一段坡度为i =1∶0.75、坡长为10 m 的斜坡CD 到达点D ,然后沿水平方向向右行走40 m 到达点E (点A ,B ,C ,D ,E 在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45)( )A. 21.7 mB. 22.4 mC. 27.4 mD. 28.8 m第9题 第10题10. (2018·威海)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( ) A. 当小球抛出高度达到7.5 m 时,小球距点O 水平距离为3 mB. 小球距点O 水平距离超过4 m 呈下降趋势C. 小球落地点距点O 的水平距离为7 mD. 斜坡的坡度为1∶2二、 填空题11. (2018·广州)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C 的值为________.第11题 第12题12. (2018·枣庄)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12 m ,则大厅两层之间的高度BC 为________m .(结果精确到0.1 m ,参考数据:sin 31°≈0.515,cos 31°≈0.857,tan31°≈0.60)13. (2018·阜新)如图,在点B 处测得塔顶A 的仰角为30°,点B 到塔底C 的水平距离BC 是30 m ,那么塔AC 的高度为________m .(结果保留根号)第13题 第14题14. (2018·大连)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 6 m 的位置,在D处测得旗杆顶端A的仰角为53°.若测角仪的高度是1.5 m,则旗杆AB的高度约为________m.(结果精确到0.1 m,参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33)15. (2018·广西)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB是120 m,则乙楼的高CD是________m.(结果保留根号)第15题第16题16. (2018·荆州)如图,荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7 m,某校学生测得古塔的整体高度约为40 m.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a m后到达B处,在B处测得塔顶的仰角为45°,那么a的值约为________.(结果精确到0.1,参考数据:3≈1.73)17. (2018·黄石)如图,无人机在空中C处测得地面A,B两点的俯角分别为60°,45°.如果无人机距地面高度CD为100 3 m,点A,D,B在同一水平直线上,那么A,B两点间的距离是________m.(结果保留根号)第17题第18题18. (2018·葫芦岛)如图,某景区的两个景点A,B处于同一水平地面上,一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内.当无人机飞行至C处时,测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100 m,则两景点A,B间的距离为________m.(结果保留根号)19. (2018·咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110 m,那么该建筑物的高度BC约为________m.(结果保留整数,3≈1.73)第19题第20题20. (2018·宁夏)如图,一艘货轮以18 2 km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30 min后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是________km.21. (2018·济宁)如图,在笔直的海岸线l上有相距2 km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是________km.(结果保留根号)第21题第22题第23题22. (2018·天门)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C 恰好位于渔船B的正北方向18(1+3)n mile处,则海岛A,C之间的距离为________n mile.(结果保留根号)23. (2018·潍坊)如图,一艘渔船以60海里/时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/时的速度继续航行________小时即可到达.(结果保留根号)三、解答题24. (2018·遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5 m.(计算结果精确到0.1 m,参考数据:sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1) 当吊臂底部A与货物的水平距离AC为5 m时,吊臂AB的长为________m;(2) 如果该吊车吊臂的最大长度AD为20 m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)第24题25.(2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A,B和点C,D,先用卷尺量得AB=160 m,CD=40 m,再用测角仪测得∠CAB =30°,∠DBA=60°,求该段运河的河宽(即CH的长).第25题26. (2018·长沙)为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线A-C-B行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80 km,∠A=45°,∠B=30°.(结果精确到0.1 km,参考数据:2≈1.41,3≈1.73)(1) 开通隧道前,汽车从A地到B地大约要走多少千米?(2) 开通隧道后,汽车从A地到B地大约可以少走多少千米?第26题27.(2018·常德)如图①是一商场的推拉门,已知门的宽度AD=2 m,且两扇门的大小相同(即AB=CD).将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图②,求此时B与C之间的距离.(结果精确到0.1 m,参考数据:sin 37°≈0.6,cos 37°≈0.8,2≈1.4)28. (2018·徐州)如图,1号楼在2号楼的南侧,两楼高度均为90 m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42 m.(参考数据:sin 32.3°≈0.53,cos 32.3°≈0.85,tan 32.3°≈0.63,sin 55.7°≈0.83,cos 55.7°≈0.56,tan 55.7°≈1.47)(1) 求楼间距AB;(2) 若2号楼共30层,层高均为3 m,则点C位于第几层?第28题29. (2018·泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90 m,且乙建筑物的高度是甲建筑物高度的6倍,从点E(点A,E,B在同一水平线上)测得点D的仰角为30°,测得点C的仰角为60°,求这两座建筑物顶端C,D间的距离.第29题30. (2018·郴州)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控无人机指令测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC =30 m,求无人机飞行的高度AD.(精确到0.01 m.参考数据:2≈1.414,3≈1.732)第30题31.(2018·宜宾)某游乐场一转角滑梯如图所示,滑梯立柱AB,CD均垂直于地面,点E在线段BD上,在点C测得点A的仰角为30°,点E的俯角也为30°,测得点B,E间距离为10 m,立柱AB高30 m.求立柱CD的高.(结果保留根号)第31题32. (2018·宿迁)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进10 m到达点B处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.求:(1) ∠BPQ的度数;(2) 树PQ的高度.(结果精确到0.1 m,3≈1.73)第32题33. (2018·镇江)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24 m,小明在点E(点B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8 m到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6 m,求教学楼AB的高度.(精确到0.1 m,参考数据:2≈1.41,3≈1.73)第33题34. (2018·黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60 m,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一条直线上.求:(1) 斜坡下的点C处到大楼的距离;(2) 斜坡CD的长度第34题35. (2018·大庆)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)第35题36. (2018·桂林)如图,在某海域,一艘指挥船在C处收到渔船在B处发出的求救信号.经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60 n mile;经指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30 n mile/h,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:2≈1.41,3≈1.73,6≈2.45,结果精确到0.1 h)第36题37. (2018·淮安)如图,某数学兴趣小组为了计算湖中小岛上凉亭P到岸边公路l的距离,在公路l上的点A 处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)第37题38. (2018·青岛)如图是某区域平面示意图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°,乙勘测员在B 处测得点O 位于南偏西73.7°,测得AC =840 m ,BC =500 m .请求出点O 到BC 的距离.(参考数据:sin 73.7°≈2425,cos 73.7°≈725,tan 73.7°≈247)第38题39. (2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 地表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13 km ,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B ,C 两地的距离.(结果保留根号,参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)第39题40. (2018·泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L ∶(H -H 1),其中L 为楼间水平距离,H 为南侧楼房高度,H 1为北侧楼房底层窗台至地面高度.如图②,山坡EF 朝北,EF 长为15 m ,坡度为i =1∶0.75,山坡顶部平地EM 上有一高为22.5 m 的楼房AB ,底部A 到E 处的距离为4 m.(1) 求山坡EF 的水平宽度FH ;(2) 欲在AB 楼正北侧山脚的平地FN 上建一楼房CD ,已知该楼底层窗台P 处至地面C 处的高度为0.9 m ,要使该楼的日照间距系数不低于1.25,底部C 距F 处至少多远?第40题41. (2018·遂宁)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角为45°,然后沿着坡度为1∶3的坡面AD走了200 m达到D处,此时在D处测得山顶B的仰角为60°,求山BC的高度.第41题42. (2018·连云港)如图①,水坝的横截面是梯形ABCD(DC∥AB),∠ABC=37°,坝顶DC=3 m,背水坡AD的坡度i为1∶0.5,坝底AB=14 m.(1) 求坝高;(2) 如图②,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34)第42题参考答案一、1.C 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.A 10.A二、11.1212.6.2 13.103 14.9.5 15.403 16.24.1 17.100(1+3) 18.100(1+3) 19.300 20.18 21.3 22.182 23.18+635三、24. (1) 11.4 点拨:∵在Rt △ABC 中,∠BAC =64°,AC =5m ,∴AB =AC cos64°≈50.44≈11.4(m). (2) 如图,过点D 作DH ⊥地面于点H ,交水平线AC 于点E ,则EH =1.5m ,DE ⊥AE .∵在Rt △ADE 中,AD =20m ,∠DAE =64°,∴DE =AD ·sin64°≈20×0.90=18.0(m).∴DH =DE +EH =18.0+1.5=19.5(m).答:如果该吊车吊臂的最大长度AD 为20m ,那么从地面上吊起货物的最大高度是19.5m第24题 第25题25.如图,过点D 作DE ⊥AB 于点E ,则易得四边形CHED 为矩形.∴HE =CD =40m .设CH =DE =x m .∵在Rt △BDE 中,∠DBA =60°,∴BE =DE tan60°=33x m .∵在Rt △ACH 中,∠BAC =30°,∴AH =CH tan30°=3x m .又∵AH +HE +EB =AB =160m ,∴3x +40+33x =160,解得x =30 3.∴CH =303m .答:该段运河的河宽为303m 26. (1) 如图,过点C 作CD ⊥AB ,垂足为D.∵在Rt △BDC 中,sin B =CD BC,BC =80km ,∴CD =BC ·sin30°=80×12=40(km).∵在Rt △ADC 中,sin A =CD AC ,∴AC =CD sin45°=40÷22=402(km).此时AC +BC =402+80≈40×1.41+80=136.4(km).答:开通隧道前,汽车从A 地到B 地大约要走136.4km(2) ∵在Rt △BDC 中,cos B =BD BC ,BC =80km ,∴BD =BC ·cos30°=80×32=403(km).∵在Rt △ADC 中,tan A =CD AD ,CD =40km ,∴AD =CD tan45°=401=40(km).∴AB =AD +BD =40+403≈40+40×1.73=109.2(km).∴AC +BC -AB =136.4-109.2=27.2(km).答:汽车从A 地到B 地大约可以少走27.2km第26题第27题 27.如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得CM =BE ,连接BC ,EM.∵在题图①中,AB =CD ,AB +CD =AD =2m ,∴AB =CD =1m .在Rt △ABE 中,∵AB =1m ,∠A =37°,∴BE =AB ·sin A ≈0.6m ,AE =AB ·cos A ≈0.8m .在Rt △CDF 中,∵CD =1m ,∠D =45°,∴CF =CD ·sin D ≈0.7m ,DF =CD ·cos D ≈0.7m .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CM .又∵BE =CM ,∴四边形BEMC 为平行四边形.∴BC =EM .在Rt △MEF 中,∵EF =AD -AE -DF =0.5m ,FM =CF +CM =CF +BE =1.3m ,∴EM =EF 2+FM 2≈1.4m .答:B 与C 之间的距离约为1.4m28. (1) 如图,过点C 作CE ⊥PB ,垂足为E ,过点D 作DF ⊥PB ,垂足为F ,则∠CEP =∠PFD =90°,CE =DF =AB ,CD =EF =42m .设AB =x m .∵在Rt △PCE 中,tan32.3°=PE x,∴PE =x ·tan32.3°m .∵在Rt △PDF 中,tan55.7°=PF x,∴PF =x ·tan55.7°m .由PF -PE =EF ,得x ·tan55.7°-x ·tan32.3°=42,解得x ≈50.答:楼间距AB 为50m (2) 由(1),得PE =50×tan32.3°≈31.5(m),∴CA =EB =90-31.5=58.5(m).由于2号楼层高均为3m ,且3×19<58.5<3×20,∴点C 位于第20层第28题29.由题意,得∠DAB =∠ABC =90°,BC =6AD ,AE +BE =AB =90m .设AD =x m ,则BC =6x m .∵在Rt △ADE 中,tan30°=AD AE ,sin30°=AD DE ,∴AE =3x m ,DE =2x m .∵在Rt △BCE 中,tan60°=BC BE,sin60°=BC CE,∴BE =23x m ,CE =43x m .由AE +BE =90m ,得3x +23x =90,解得x =103,∴DE =203m ,CE =120m .∵∠DEA +∠DEC +∠CEB =180°,∠DEA =30°,∠CEB =60°,∴∠DEC =90°.∴CD =DE 2+CE 2=(203)2+1202=15600=2039(m).答:这两座建筑物顶端C ,D 间的距离为2039m 30.∵∠EAB =60°,∠EAC =30°,∴∠CAD =60°,∠BAD =30°.∴在Rt △ADC 中,CD =AD ·tan ∠CAD =3AD ;在Rt △ADB 中,BD =AD ·tan ∠BAD =33AD .∵BC =CD -BD =30m ,∴3AD -33AD =30m ,解得AD =153≈25.98(m).答:无人机飞行的高度AD 为25.98m31.如图,过点C 作CH ⊥AB 于点H ,易得四边形HBDC 为矩形.∴BH =CD ,BD =CH ,BD ∥CH.∴∠HCE =∠CED.由题意,得∠ACH =30°,∠HCE =30°,∴∠CED =30°.设CD =x m ,则AH =AB -BH =AB -CD=(30-x )m.∵在Rt △AHC 中,tan ∠ACH =AH HC ,∴HC =30-x tan30°=3(30-x )m.∴BD =3(30-x )m.∵在Rt △CDE 中,tan ∠CED =CD DE ,∴DE =x tan30°=3x m .∵BE =BD -DE =10m ,∴3(30-x )-3x =10,解得x =15-53 3.答:立柱CD 的高为(15-533)m 第31题 第33题32. (1) 由题意,得PC ⊥AC ,∠PBC =60°,∴在Rt △PCB 中,∠BPQ =90°-60°=30° (2) 由题意,得∠P AC =45°,∠QBC =30°,AB =10m .设CQ =x m .在Rt △QCB 中,BQ =CQ sin30°=2x m ,BC =CQ tan30°=3x m .∵∠PBQ =∠PBC -∠QBC =30°,∠BPQ =30°,∴∠PBQ =∠BPQ .∴PQ =BQ =2x m .∴PC =PQ +CQ =3x m .在Rt △PCA 中,AC =PC tan45°=PC =3x m .由AC -BC =AB ,得3x -3x =10,解得x =(5+533)m ,∴PQ =2x =10+1033≈15.8(m).答:树PQ 的高度约为15.8m 33.如图,延长HF 交CD 于点N ,延长FH 交AB 于点M.由题意,得MB =HG =FE =ND =1.6m ,HF =GE=8m ,MF =BE ,HN =GD ,MN =BD =24m .设AM =x m ,则CN =x m .在Rt △AMF 中,MF =AM tan45°=x m ,在Rt △CNH 中,HN =CN tan30°=3x m .由HF =MF +HN -MN ,得8=x +3x -24,解得x =163-16,∴AB =AM +BM =163-16+1.6≈13.3(m).答:教学楼AB 的高度为13.3m34. (1) ∵在Rt △ABC 中,∠BAC =90°,∠BCA =60°,AB =60m ,∴AC =AB tan60°=603=203(m).答:斜坡下的点C 处到大楼的距离是203m (2) 如图,过点D 作DF ⊥AB 于点F ,易得四边形AEDF 为矩形.∴DF=AE ,DE =AF .设CD =2x m.∵在Rt △CED 中,∠DCE =30°,∴DE =12CD =x m ,CE =CD ·cos30°=3x m .∴BF =AB -AF =AB -DE =(60-x )m.∵在Rt △BFD 中,∠FDB =45°,∴DF =BF tan45°=(60-x )m.由DF =AE ,得60-x =203+3x ,解得x =403-60,∴CD =(803-120)m.答:斜坡CD 的长度为(803-120)m第34题第35题 35.由题意,得PA =80海里.如图,过点P 作PC ⊥AB 于点C ,则∠APC =90°-60°=30°,∠BPC =90°-45°=45°.∵在Rt △ACP 中,cos ∠APC =PC P A,∴PC =P A ·cos ∠APC =80×cos30°=403(海里).∵在Rt △PCB 中,cos ∠BPC =PC PB ,∴PB =PC cos ∠BPC =403cos45°=406≈98(海里).答:此时轮船所在的B 处与灯塔P 的距离是98海里36.由题意,得点A 在点B 的正西方,∴如图,延长AB 交南北轴于点D ,则AB ⊥CD.∵∠BCD =45°,∴∠CBD=45°=∠BCD .∴BD =CD .在Rt △BDC 中,由sin ∠BCD =BD BC,BC =60nmile ,得BD =60×sin45°=302(nmile),CD =BD =302nmile.在Rt △ADC 中,由tan ∠ACD =AD CD,得AD =302×tan60°=306(nmile).∴AB =AD -BD =(306-302)nmile.∵海监船A 的航行速度为30nmile/h ,∴渔船在B 处需要等待的时间为AB 30=6-2≈2.45-1.41≈1.0(h).答:渔船在B 处需要等待1.0h 才能得到海监船A 的救援 第36题第38题 37.过点P 作PD ⊥l ,垂足为D.设BD =x 米,则AD =(x +200)米.由题意,得∠PAB =90°-60°=30°,∠PBD=90°-45°=45°.在Rt △ADP 中,tan30°=PD AD ,∴PD =AD ·tan30°=33(x +200)米.在Rt △PDB 中,tan45°=PD BD ,∴PD =BD ·tan45°=x 米.∴33(200+x )=x ,解得x =2003-1≈273.∴PD =273米.答:凉亭P 到公路l 的距离为273米38.如图,过点O 分别作OM ⊥BC 于点M ,ON ⊥AC 于点N ,易得四边形ONCM 为矩形.∴ON =MC ,OM =NC.设OM =xm ,则NC =x m ,AN =(840-x )m.在Rt △ANO 中,∵∠OAN =45°,∴易得ON =AN =(840-x )m.∴MC =ON =(840-x )m.在Rt △BOM 中,BM =OM tan ∠OBM ≈x 247=724x (m),由BM +MC =BC =500m ,得724x +840-x =500,解得x =480.答:点O 到BC 的距离为480m 39.如图,过点B 作BD ⊥AC 于点D ,则∠BAD =60°,∠DBC =90°-37°=53°.设AD =x km.在Rt △ADB中,BD =AD ·tan60°=3x km ,在Rt △BDC 中,CD =BD ·tan53°≈3x ·43=433x (km).由AC =AD +CD ,可得x +433x =13,解得x =43-3,此时BD =3x =(12-33)km.∴在Rt △BDC 中,BC =BD cos53°≈(12-33)×53=(20-53)km.答:B ,C 两地的距离为(20-53)km 第39题第41题40. (1) ∵在Rt △EFH 中,∠H =90°,∴tan ∠EFH =i =1∶0.75=43=EH FH.∴设EH =4x (x >0)m.则FH =3x m ,EF =EH 2+FH 2=5x m .∵EF =15m ,∴5x =15,解得x =3.∴FH =9m .答:山坡EF 的水平宽度FH 为9m (2) 由(1),得EH =12m .设CF =y m .∵L =CF +FH +EA =y +9+4=(y +13)m ,H =AB +EH =22.5+12=34.5(m),H 1=0.9m ,∴日照间距系数=L ∶(H -H 1)=y +1334.5-0.9=y +1333.6.∵该楼的日照间距系数不低于1.25,∴y +1333.6≥1.25,∴y ≥29,即CF ≥29m .答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少29m 远41.根据题意,得AC ⊥BC ,DE ⊥BC ,∠BAC =45°,AD =200m ,∠BDE =60°.如图,过点D 作DF ⊥AC ,垂足为F .∵i AD =1∶3,∴在Rt △ADF 中DF ∶AF =1∶3,即tan ∠DAF =33.∴∠DAF =30°.∴∠BAD =∠BAC -∠DAF =45°-30°=15°.∵在Rt △AFD 中,AD =200m ,∴DF =12AD =100m .∵AC ⊥BC ,DE ⊥BC ,DF ⊥AC ,∴∠DEC =∠BCA =∠DFC =90°,∴四边形DECF 是矩形.∴EC =DF =100m .∵在Rt △DEB 中,∠DBE =90°-∠BDE =30°,在Rt △ACB 中,∠ABC =90°-∠BAC =45°,∴∠ABD =∠ABC -∠DBE=45°-30°=15°.∴∠ABD =∠BAD .∴AD =BD =200m .∵在Rt △BDE 中,sin ∠BDE =BE BD,∴BE =BD ·sin60°=200×32=1003(m).∴BC =BE +EC =(100+1003)m.答:山BC 的高度为(100+1003)m 42. (1) 如图①,分别过点D ,C 作DM ⊥AB ,CN ⊥AB ,垂足分别为M ,N.∵背水坡AD 的坡度i 为1∶0.5,∴在Rt △ADM 中,tan ∠DAB =DM AM=2.∴设AM =x (x >0)m ,则DM =2x m .根据题意,易得四边形DMNC 是矩形,∴DC =MN =3m ,DM =CN =2x m .∵在Rt △BNC 中,tan ∠ABC =CN BN ,即tan37°=2x BN ≈34,∴BN ≈2x ·43=83x m .由x +3+83x =14,得x =3,∴DM =6m .答:坝高为6m (2) 如图②,过点F 作FH ⊥AB ,垂足为H ,DM ⊥AB ,垂足为M .由(1),得FH =DM =6m ,FD =HM .设FD =y m ,则AE =2y m .∵AM =3m ,∴EH =3+2y -y =(3+y )m ,BH =14+2y -(3+y )=(11+y )m.由EF ⊥BF ,FH ⊥AB ,得∠EHF =∠FHB =90°,∴∠E +∠EFH =∠EFH +∠HFB =90°.∴∠E =∠HFB .∴△EFH ∽△FBH .∴FH BH =EH FH,即FH 2=BH ·EH .∴62=(11+y )(3+y ),即y 2+14y -3=0.解得y 1=-7+213,y 2=-7-213(不合题意,舍去).∴DF =(213-7)m.答:DF 的长为(213-7)m第42题 一天,毕达哥拉斯应邀到朋友家做客。
2018年数学全国中考真题圆的基本性质(试题二)解析版一、选择题1. (2018广西省柳州市,8,3分)如图,A ,B ,C ,D 是⊙O 上的四个点,⊙A =60°,⊙B =24°,则⊙C 的度数为( )第8题图 A .84° B.60°C .36°D .24°【答案】D【解析】∵AD 所对的圆周角是∠B 和∠C ,∴∠C =∠B =24°.【知识点】圆周角定理2. (2018广西贵港,9,3分)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是 A .24° B .28° C .33° D .48°【答案】A【解析】∵∠A =66°,∴∠BOC =2∠A =132°,又OC =OB ,∴∠OCB =12(180°-∠BOC )=24°,故选A .3. (2018贵州铜仁,5,4)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( ) A.55° B.110° C.120° D.125°【答案】D ,【解析】设点E 是优弧AB 上的一点,连接EA 、EB ,根据同弧所对的圆周角是圆心角的一半可得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【解答过程】设点E 是优弧AB 上的一点,连接EA 、EB ,如图, ∵∠AOB=110°,∴∠AEB=12∠AOB=55°,∴∠ACB=180°-∠E=125°.4. (2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC=40°,则∠D 的度数为 A .100° B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .5. (2018内蒙古通辽,7,3分)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对圆周角的度数是 A .30° B .60° C .30°或150° D .60°或120° 【答案】D【解析】如答图,连接OA 、OB ,∵OC ⊥AB ,∴OC =5,OA =OB =10,又OC =12OA ,∴cos ∠AOC =12,∴∠AOC =60°∴∠AOB =120°,∴弦AB 所对的圆周角的度数是60°或120°. 故选D .6.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8 C. D.【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD , ∴AE DC ,∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质7. (2018湖北黄石,8,3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( )第8题图A .23πB .43πC .2πD .83π FE【答案】D 【解析】连接OD ,则∠AOD =2∠B =60°,∴∠BOD =120°.∴l BD =120180π×4=83π.8. (2018湖南邵阳,6,3分)如图(二)所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°图(二)【答案】B ,【解析】根据“圆内接四边形的对角互补”可得∠BCD +∠A =180°,因为∠BCD =120°所以∠A =60°.又根据“在同圆中,同弧所对的圆心角等于圆周角的2倍”,所以∠BOD =2∠A =120°.故选B .9.(2018四川眉山,6,3分)如图所示,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C ,连结BC ,若∠P =36°,则∠B 等于( )A .27°B .32°C .36°D .54°【答案】A ,【解析】由P A 是⊙O 的切线,可得⊙OAP =90°,∴∠AOP =54°,根据同弧所对的圆周角等于圆心角的一半,可得∠B =27°10. (2018辽宁锦州,7,3分)如图:在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF 、CF ,若∠EDC=135°,CF=22,则AE 2+BE 2的值为A 、8B 、12C 、16D 、20D【答案】C,【解析】:如图,∠EDC=1350,∠ACB=90°,得△ACB是等腰直角三角形,ECF是等腰直角三角形,得△AEC与△BFC是全等三角形,AE=BF,△EBF是直角三角形,AE2+BE2=FE2=2FC2.二、填空题100,则弧AB所对的圆周角是°.1.(2018广东省,11,3)同圆中,已知弧AB所对的圆心角是【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系2. (2018海南省,18,4分)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C , D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.【答案】(2,6)【思路分析】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,由题意可知OB 及圆的半径长,OB =CD ,由垂径定理可求得MN 的长,CN =EM ,从而求出OE 的长,进而得到点C 的坐标.【解题过程】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,点A 的坐标是(20,0),所以CM =OM =10,点B 的坐标是(16,0),所以CD =OB =16,由垂径定理可知,821==CD CN ,在Rt⊙CMN 中,CM =10,CN =8,由勾股定理可知MN =6,所以CE =MN =6,OE =OM ﹣EM =10﹣8=2,所以点C 的坐标为(2,6).【知识点】垂径定理,勾股定理,平行四边形的性质3. (2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理4.(2018黑龙江绥化,16,3分)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是.(结果用含π的式子表示)【答案】4π-.【解析】解:连接OA,OB,OC,过O点作OD⊥BC于点D.∵△ABC为等边三角形,∴∠OBD=30°.∵⊙O的半径为2,∴OB=2,∴OD=1,∴∴S△ABC=3S△OBC=3×12BC·OD=D∴S阴影=4π-故答案为:4π-【知识点】含30°角的直角三角形的性质,垂径定理,三角形面积计算,圆的面积计算5.(2018黑龙江绥化,20,3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm【答案】10或70.【解析】解:作半径OD⊥AB于C,连接OB,由垂径定理得:BC=12AB=30,在Rt△OBC中,当水位上升到圆心以下时水面宽80 cm则OC′,水面上升的高度为:40-30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【知识点】垂径定理,勾股定理6.7.(2018浙江嘉兴,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:xCE =OE8. (2018贵州省毕节市,19,3分)如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E , ∠ACE 的度数为______.【答案】30°.【解题过程】∵AB 是⊙O 的直径,C 、D 为半圆的三等分点,∴∠A =∠BOD =13×180°=60°,又∵CE ⊥AB ,∴∠ACE =90°-60°=30°.【知识点】圆的性质;直角三角形的性质9.(2018吉林省,13, 2分)如图,A ,B ,C ,D 是⊙O 上的四个点,=⌒BC ,,若∠AOB=58°,则∠BDC=___ 度.BO【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系10.(2018江苏扬州,15,3)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .2【答案】2【思路分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的2倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解题过程】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为2.【知识点】三角形的外接圆和外心,圆内接四边形对边互补,圆周角的性质11.(2018青海,9,2分)如图5,A、B、C是⊙O上的三点,若∠AOC=110°,则∠ABC= . 【答案】125°.【解析】如图所示:优弧AC上任取一点D,连接AD、CD,∵∠AOC=110°,∴∠ADC=∠AOC=×110°=55°,∵四边形ABCD内接与⊙O,∴∠ABC=180°﹣∠ADC=180°﹣55°=125°.【知识点】圆内接四边形的性质,圆周角的性质12. (2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.13. (2018内蒙古通辽,17,3分)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象与半径为5的⊙O 相交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 .【答案】52【解析】设M (a ,b ),则N (b ,a ),依题意,得:a 2+b 2=52……①(第9题答图)(第9题图)a 2-ab -12(a -b )2=3.5……②①、②联立解得a =572,b =432所以M 、N 的坐标分别为(572,432),(432,572) 作M 关于x 轴的对称点M ′,则M ′的坐标为(572,-432), 则M ′N 的距离即为PM +PN 的最小值.由于M ′N 2=(572-432)2+(-432-572)2=50, 所以M ′N =52,故应填:52.14. (2018山东莱芜,16,3分)如图,正方形ABCD 的边长为2a ,E 为BC 边的中点,⌒AE 、⌒DE 的圆心分别在边AB 、CD 上,这两段圆弧在正方形内交于点F ,则E 、F 间的距离为_______.【答案】32a【思路分析】先用勾股定理求出⌒DFE 的所在圆的半径,再由垂径定理求出EF 的长.【解题过程】解:如图,设⌒DFE 的圆心为G ,作GH ⊥EF 于H ,连接EG .设⌒DFE 所在圆的半径为x ,在Rt △CEG 中,EG 2=CG 2+CE 2,则x 2=(2a -x )2+a 2,解得x =54a ;由垂径定理,得EF =2EH =2⎝ ⎛⎭⎪⎫54a 2-a 2=32a .故答案为32a .【知识点】正方形的性质;勾股定理;垂径定理;15. (2018湖北随州12,3分)如图,点A ,B ,C 在⊙O 上,∠A =40度,∠C =20度,则∠B =______度.EEA D【答案】60.【解析】如图,连接OA ,根据“同圆的半径相等”可得OA =OC =OB ,所以∠C =∠OAC ,∠OAB =∠B ,故∠B =∠OAB =∠OAC +∠BAC =∠C +∠BAC =20°+40°=60°.16.(2018湖北随州16,3分)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出下列判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC ·BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A 、B 、C 、D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是______________.(写出所有正确判断的序号)【答案】①③④.【解析】根据“到线段两个端点的距离相等的点在这条线段的垂直平分线上”可知,A ,C 两点都在线段BD 的垂直平分线上,又“两点确定一条直线”,所以AC 垂直平分BD ,故①正确; 如图1,取AC ,BD 的交点为点O ,则由①知OB ⊥AC ,OD ⊥AC ,所以S 四边形ABCD =S △ABC +S △ADC =12AC ·OB +12AC ·OD =12AC ·(OB +OD )= 12AC ·BD ,故②错误; 如图2,取AB ,BC ,CD ,AD 四边的中点分别为P ,Q ,M ,N ,则由三角形的中位线定理得PQ ∥AC ∥MN ,PQ =MN =12AC ,PN ∥BD ∥QM ,PN =QM =12BD ,于是知四边形PQMN 及阴影四边形都是平行四边形.又由①知AC ⊥BC ,所以可证∠AOB =∠QPN =90°,故四边形PQMN 为矩形.若AC =BD ,则有PQ =PN ,四边O ABCCBAO ABDC形PQMN 是正方形,所以顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形,故③正确;当A 、B 、C 、D 四点在同一个圆上时,四边形ABCD 是这个圆的内接四边形,则∠ABC +∠ADC =180°.根据“SSS ”可证△ABC ≌△ADC ,所以∠ABC =∠ADC =90°,则AC 是这个圆的直径.由①知BO =OD =12BD =4,在Rt △AOB 中,根据勾股定理,求得AO=3.然后,证明△AOB ∽△ABC ,得到AB 2=AO ·AC ,所以AC =253,该圆的半径为256,故④正确; 如图1,过点F 作FG ⊥AB 于点G ,过点E 作EH ⊥AB 于点H ,由折叠知,AE =2AO =6,BE =BA =5.由于BF ⊥CD ,AE ⊥BD ,可证得△BOE ∽△BFD ,所以BO BF =BE BD ,即4BF =58,BF =325.因为S △ABE =12AB ·EH=12AE ·BO ,所以EH =645⨯=245.又可证△BEH ∽△BFG ,所以EH FG =BE BF ,即245FG =5325,FG =768125,故⑤错误.17. (2018云南曲靖,10,3分)如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_________【答案】n °【解析】圆内接四边形的对角互补,所以∠BCD =180°-∠A ,而三点BCD 在一条直线上,则∠DCE =180°-∠BCD ,所以∠DCE =∠A =n °.18. (2018年浙江省义乌市,13,5)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少B 走了_________步(假设1步为0.5米,结果保留整数).(参考数据:图1GFEH OABDC 图21.732,π取3.142)【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=12(180°﹣∠AOB)=12(180°﹣120°)=30°,在Rt△AOC中,OC=12OA=10,,∴69(步);而AB的长=12020180π⨯≈84(步),AB的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【知识点】垂径定理;勾股定理19.(2018浙江舟山,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.BC【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:x ,∴CE =OE.三、解答题1. (2018年江苏省南京市,26,8分)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.【思路分析】(1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ; (2)首先证明CG 是直径,求出CG 即可解决问题;【解题过程】(1)证明:在正方形ABCD 中,90ADC ∠=. ∴90CDF ADF ∠+∠=. ∵AF DE ⊥. ∴90AFD ∠=.∴90DAF ADF ∠+∠=. ∴DAF CDF ∠=∠.∵四边形GFCD 是⊙O 的内接四边形, ∴180FCD DGF ∠+∠=. 又180FGA DGF ∠+∠=,O∴FGA FCD ∠=∠. ∴AFG DFC ∽△△. (2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠, ∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AFDA DF=. ∵AFG DFC ∽△△, ∴AG AFDC DF =. ∴AG EADC DA=. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=, ∴CG 是⊙O 的直径. ∴⊙O 的半径为52.【知识点】相似三角形的判定和性质 正方形的性质 圆周角定理及推论2. (2018江苏徐州,28,10分) 如图,将等腰直角三角形ABC 对折,折痕为CD .展平后,再将点B 折叠再边AC 上,(不与A 、C 重合)折痕为EF ,点B 在AC 上的对应点为M ,设C D 与EM 交于点P ,连接PF .已知BC =4.(1)若点M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置.①△PFM 的形状是否发生变化?请说明理由; ②求△PFM 的周长的取值范围.第28题图【解答过程】 解:(1)根据题意,设BF =FM =x ,则CF =4-x ,∵M 为AC 中点,AC =BC =4,∴ CM =12AC =2,∵∠ACB =90°,∴CF 2+CM 2=FM 2,∴(4-x )2+22=x 2,解得x =52,∴CF =4-52=32; (2)①△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形,理由如下:∵等腰直角三角形ABC 中,CD ⊥AB ,∴AD =DB ,CD =12AB =DB ,∴∠B =∠DCB =45°,由折叠可得∠PMF =∠B =45°,∴∠PMF =∠DCB ,∴P 、M 、F 、C 四点共圆,∴∠FPM +∠FCM =180°,∴∠FPM =180°-∠FCM =90°,∠PFM =90°-∠PMF =45°=∠PMF ,∴△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形; ②当M 与C 重合时,F 为BC 中点,CF =12BC =2,PM =PF =cos 45CF=︒此时△PFM 的周长为2+当M 与A 重合时,F 于C 重合,E 与D 重合,FM =AC =4,PM =PF =ACcos45°=,此时△PFM 的周长为4+B 不与A 、C 重合,所以△PFM 的周长的取值范围是大于2+且小于4+.3. (2018辽宁葫芦岛,25,12分)在△ABC 中,AB =BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC =90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由; (3)若|CF -AE |=2,EF =POF 为等腰三角形时,请直接写出线段OP 的长.【思路分析】(1)连接OB ,则OB ⊥AC ,进而得A 、E 、O 、B 四点共圆,B 、F 、O 、C 四点共圆.由同弧所对的圆周角相等得∠OEB =∠OAB ,∠OFC =∠OBC .又因为∠OFE =90°-∠OFC ,∠ACB =90°-∠OBC ,所以∠OFE =∠OCB ,又因为∠OAB =∠OCB ,所以∠OE B =∠OFE ,所以OE =OF ;(2)类比(1)可得OE =OF ;由∠ABC =90°,AB =BC ,可得∠OAB =∠OCB =∠OEB =∠OFE =45°,所以OE ⊥OF .(3)取EF的中点为M,则EM=FMAM并延长交CF于D,连接OM.由△AME≌△DMF,|CF-AE|=2,得OM=1.进而得OF=2.由sin∠OFM=12,得∠OFM=30°.因为点P在EF上,所以OP<OE=OF;因为AE⊥EF,∠APE、∠OPF均为锐角,故PF≠PO.当PF=OF=2时,PM=2理得OP=【解答过程】(1)OE=OF;(2)OE=OF,OE⊥OF.理由:连接OB,则OB⊥AC.∵∠AEB=∠AOB=90°,∴进而得A、E、O、B四点共圆,∴∠OEB=∠OAB.∵∠BFC=∠BOC=90°,∴B、F、O、C四点共圆.∴∠OFC=∠OBC.又∵∠OFE=90°-∠OFC,∠ACB=90°-∠OBC,∴∠OFE=∠OCB,又∵∠ABC=90°,AB=BC,∴∠OAB=∠OCB=45°.∴∠OE B=∠OFE=45°.∴OE=OF,OE⊥OF.(3)OP=223.4.(2018上海,25,14分)已知圆O的直径AB=2,弦AC与弦BD,交于点E,且OD⊥AC,垂足为点F.(1)图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为BD的中点,求∠ABD的余切值(3)联结BC、CD、DA,如果BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边,求△ACD的面积.【思路分析】(1)连结CB.可以证明弧AD、弧DC、弧CB相等,从而得到∠ABC=60°.在△ABC中求出AC长.(2)运用中位线及全等转化求出CB长,再把直角三角形OBE中的两个直角边求出,即可∠ABD的余切值.(3)根据“BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边”求出n值,从而求出∠AOD=45°,可得各线段长,再求△ACD的面积.【解答过程】(1)连结CB.∵AC=BD,∴弧AC=弧BD,∵OD⊥AC,∴弧AD=弧DC=12弧AC,∴弧AD=弧DC=弧CB,∴∠ABC=60°在Rt△ABC中, ∠ABC=60°,AB=2,∴AC=3(2)∵OD⊥AC,∴∠AFO=90°,AF=FC∵AO=OB,∴FO∥CB,FO=12 CB∵E为BD的中点,∴DE=EB∵FO∥CB,∴△DEF≌△BEC,∴DF=CB=2FO∴FO=13,CB=23在Rt △ABC 中,AB =2,CB =23,∴AC ,∴EC ∴EB ,∵E 为BD 的中点,OD =OB ,∴∠OEB =90°,∴EO cot ∠ABD =EB EO . (3)∵BC 是圆O 的内接正n 边形的一边,∴∠COB =360n° ∵CD 是的内接正(n +4)边形的一边,∴∠COD =3604n +° ∵弧AD =弧DC ,∴∠AOD =3604n +° ∵∠COB +∠COD +∠AOD =180°,∴360n +3604n ++3604n +=180,解得n =4 ∴∠AOD =∠COD =3604n +°=45°∵OD =OA =OC =1,∴AC ,OF ,DF =1,∴S △ACD =12×AC ×DF =2-12.5. (2018黑龙江哈尔滨,26,10)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE ,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3【思路分析】(1)问利用同弧和等弧所对圆周角等与三角形外角性质易证的结论.(2)过H 作HM ⊥KD ,易证得HM =BP ,加上直角条件,可导出第三个全等条件,得到△BEP ≌△HKM ,所以BE =HK .(3)连接BD 后根据条件3HF =2DF 可得到tan ∠ABH =tan ∠ADE =ABAH =32,过点H 作HS ⊥BD 后再设边计算就能求出tan ∠BDE =tan ∠DBF =BSHS =51,在ER 上截取ET =DK ,连接BT 易证得△BET ≌△HKD ,这时21BP ·ER 21-HM ·DK =21BP (ER -DK )=21BP (ER -ET )=47,易求得BP =1,PR =5,BR =22RP BP +=2251+=26【解答过程】(1)证明:∵四边形ABCD 是正方形∴∠A =∠ABC =90°∵∠F =∠A =90°∴∠F =∠ABC∵DA 平分∠EDF ∴∠ADE =∠ADF ∵∠ABE =∠ADE ∴∠ABE =∠ADF又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ∴∠CBE =∠DHG(2)证明:过H 作HM ⊥KD 垂足为点M ∵∠F =90°∴HF ⊥FD 又∵DA 平分∠EDF ∴HM =FH∵FH =BP ∴HM =BP ∵KH ∥BN ∴∠DKH =∠DLN ∵∠ELP =∠DLN ∴∠DKH =∠ELP∵∠BED =∠A =90°∴∠BEP +∠LEP =90°∵EP ⊥BN ∴∠BPE =∠EPL =90°∴∠LEP +∠ELP =90°∴∠BEP =∠ELP =∠DKH ∵HM ⊥KD ∴∠KMH =∠BPE =90°∴△BEP ≌△HKM ∴BE =HK(3)解:连接BD ∵3HF =2DF ,BP =FH ∴设HF =2a ,DF =3a ∴BP =FH =2a由(2)得HM =BP ,∠HMD =90°∵∠F =∠A =90°∴tan ∠HDM =tan ∠FDH ∴DM HM =DF FH =32 ∴DM =3a ∴四边形ABCD 是正方形∴AB =AD ∴∠ABD =∠ADB =45°∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ∴∠DBF =∠BDE ∵∠BED =∠F ,BD =BD ∴△BED ≌△DFB ∴BE =FD =3a 过点H 作HS ⊥BD 垂足为点S ∵tan ∠ABH =tan ∠ADE =ABAH =32 ∴设AB =32m ,AH =22m ∴BD =2AB =6m DH =AD -AH =2m sin ∠ADB =DHHS =22 ∴HS =m ∴ DS =22HS DH -=m ∴BS =BD -DS =5m ∴tan ∠BDE =tan ∠DBF =BS HS =51 ∵∠BDE =∠BRE ∵tan ∠BRE =PR BP =51∵BP =FH =2a ∴RP =10a 在ER 上截取ET =DK ,连接BT 由(2)得∠BEP =∠HKD ∴△BET ≌△HKD ∴∠BTE =∠KDH ∴tan ∠BTE =tan ∠KDH ∴PT BP =32 ∴PT =3a ∴TR =RP -PT =7a ∵S △BER -S △KDH =47∴21BP ·ER 21-HM ·DK =47 ∴21BP (ER -DK )=21BP (ER -ET )=47∴21×2a ×7a =47 ∴a 2=41,a 1=21,a 2=21-(舍去)∴BP =1,PR =5 ∴BR =22RP BP +=2251+=26。
2018年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A.B.3 C.﹣3 D.±2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C .D .8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A .B .C.34 D.10二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=.10.(3分)不等式组1<x﹣2≤2的所有整数解的和为.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分.甲乙丙教师成绩笔试80分82分78分面试76分74分78分12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=.(结果保留根号)14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.2018年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)1.(3分)3的相反数是()A.B.3 C.﹣3 D.±【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:3的相反数是﹣3,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.球【考点】U3:由三视图判断几何体.【分析】综合该物体的三种视图,分析得出该立体图形是圆柱体.【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C、长方体的三视图都是矩形,错误;D、球的三视图都是圆形,错误;故选:A.【点评】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0【考点】AB:根与系数的关系.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选:D.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】L5:平行四边形的性质.【分析】想办法证明∠E=90°即可判断.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.【点评】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.【考点】Q2:平移的性质.【分析】由S△ABC =9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:如图,∵S△ABC =9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE =S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.10【考点】M8:点与圆的位置关系;LB:矩形的性质.【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选:D.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)9.(3分)分解因式:2a3b﹣4a2b2+2ab3=2ab(a﹣b)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2ab,再对余下的多项式利用完全平方公式继续分解.【解答】解:2a3b﹣4a2b2+2ab3,=2ab(a2﹣2ab+b2),=2ab(a﹣b)2.【点评】本题考查提公因式法,公式法分解因式,难点在于提取公因式后要继续进行二次分解因式.10.(3分)不等式组1<x﹣2≤2的所有整数解的和为15.【考点】CC:一元一次不等式组的整数解.【分析】先解不等式组得到6<x≤8,再找出此范围内的整数,然后求这些整数的和即可.【解答】解:由题意可得,解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分78.8分.甲乙丙教师成绩笔试80分82分78分面试76分74分78分【考点】W2:加权平均数.【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分,故答案为:78.8分.【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为(,).【考点】F8:一次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;【解答】解:由题意A(﹣,),∵A、B关于y轴对称,∴B(,),故答案为(,).【点评】本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= 2.(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,=6×××1=2.∴S=6S△ABO故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为6【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.【解答】解:∵点P(m,n)在直线y=﹣x+2上,∴n+m=2,∵点P(m,n)在双曲线y=﹣上,∴mn=﹣1,∴m2+n2=(n+m)2﹣2mn=4+2=6.故答案为:6.【点评】此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征,正确得出m,n之间关系是解题关键.15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则=.【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】由AB是直径,推出∠ADG=∠GCB=90°,因为∠AGD=∠CGB,推出cos ∠CGB=cos∠AGD,可得=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,想办法求出DG、AG即可解决问题;【解答】解:连接AD,BC.∵AB是半圆的直径,∴∠ADB=90°,又DE⊥AB,∴∠ADE=∠ABD,∵D是的中点,∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴FA=FD;∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,∴∠EDB=∠CGB,又∠DGF=∠CGB,∴∠EDB=∠DGF,∴FA=FG,∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,在Rt△ADE中,AD==4k,∵AB是直径,∴∠ADG=∠GCB=90°,∵∠AGD=∠CGB,∴cos∠CGB=cos∠AGD,∴=,在Rt△ADG中,DG==2k,∴==,故答案为:.【点评】本题考查的是圆的有关性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)利用特殊角的三角函数值、零指数幂和负整数指数的意义计算;(2)先把括号内通分,再把除法运算化为乘以运算,然后把x2﹣1分解因式后约分即可.【解答】解:(1)原式=+1﹣+4=5;(2)原式=•=x+1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【考点】KD:全等三角形的判定与性质.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.【点评】考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)该班共有学生人;(2)请将条形统计图补充完整;(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.【解答】解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.【考点】B7:分式方程的应用.【分析】设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E 间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作CH⊥AB于H,得到BD=CH,设CD=x米,根据正切的定义分别用x 表示出HC、ED,根据正切的定义列出方程,解方程即可.【解答】解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30﹣x)米,在Rt△AHC中,HC==(30﹣x),则BD=CH=(30﹣x),∴ED=(30﹣x)﹣10,在Rt△CDE中,=tan∠CED,即=,解得,x=15﹣,答:立柱CD的高为(15﹣)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的概念、仰角俯角的定义是解题的关键.22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OPA﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.【分析】(1)说明OC是△BDA的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE是圆O的切线.(2)利用直径上的圆周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,从而得到PC=PE=5.然后求出sin∠PEF的值.【解答】解:(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠PEF==.【点评】本题考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x﹣2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.【解答】解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x﹣2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=,∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1.(2)联立直线AB与抛物线解析式成方程组,得:,解得:,,∴点A的坐标为(1,),点B的坐标为(4,1).作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).∵点B(4,1),直线l为y=﹣1,∴点B′的坐标为(4,﹣3).设直线AB′的解析式为y=kx+b(k≠0),将A(1,)、B′(4,﹣3)代入y=kx+b,得:,解得:,∴直线AB′的解析式为y=﹣x+,当y=﹣1时,有﹣x+=﹣1,解得:x=,∴点P的坐标为(,﹣1).(3)∵点M到直线l的距离与点M到点F的距离总是相等,∴(m﹣x0)2+(n﹣y0)2=(n+1)2,∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.∵M(m,n)为抛物线上一动点,∴n=m2﹣m+1,∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1,整理得:(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0.∵m为任意值,∴,∴,∴定点F的坐标为(2,1).【点评】本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.。
2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。
2018年数学全国中考真题尺规作图(试题二)解析版一、选择题1.(2018浙江嘉兴,8,3)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()【答案】C 【解析】根据尺规作图以及菱形的判定方法.二、填空题△中,用直尺和圆规作AB、AC的垂直平分线,分1.(2018年江苏省南京市,14,2分).如图,在ABCBC=,则DE=cm.别交AB、AC于点D、E,连接DE.若10cm【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线2.(2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1.则点C坐标为(-1,0)【知识点】尺规作图,实数与数轴的一一对应关系3.(2018山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数4. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】93【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB =6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.5. (2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆PP【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018广东省,题号,分值) 如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA 的度数,再利用垂直平分线性质求得∠ABF 的度数,进而求得∠DBF 的度数.【解题过程】(1)如图直线MN 为所求(2)解:∵四边形ABCD 是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,CA∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点.【解题过程】(1)作∠A 的平分线AD ,交BC 于P ;(2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图19题答案图2FE C DA BMN C A B第20题图3. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求. 2分 如图②所示,△ABC 或△ABC 1均可.4. (湖北省咸宁市,18,7)已知:AOB ∠.求作:,'''B O A ∠使'''AO B AOB ∠=∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 '''AO B AOB ∠=∠. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.(第18题图) 图①图② BAO N M第18题答图 P A 图① ON MB C C 1 C图②B A【思路分析】由画一条射线''A O ,以点'O为圆心OC 长为半径画弧,交于点''A O 于点'C 可得OC =O′C′,由以点'C 为圆心,D C ,长为半径画弧,与第 2 步中所画的弧交于点'D 可得OD =O′D′,CD =C′D′,从而'''.COD C O D ∆≅∆【解题过程】证明:由作图步骤可知,在COD ∆和'''D O C ∆中,''''''OC O C OD O D CD C D ⎧=⎪=⎨⎪=⎩,'''().COD C O D SSS ∴∆≅∆COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''.【知识点】三角形全等;尺规作图5. (2018广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作:△ABC ,使∠A =∠α,∠C =90°,AB =a .【思路分析】先作∠A 等于已知角∠α,再在角的一边上截取线段AB =a ,再过B 点作角的另一边的垂线,垂足为C ,则△ABC 即为所求.【解答过程】所作图形如下a A6.(2018江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD ∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。
2018年福建省中考数学试题及答案(A卷)6C.60" 1).8(⼫10. U 紂关⼋的尤⼆次//?(<>令I ),+ 2肛? (? >1 )⼆0 伽个相專的实数根■下列⽹斯正绳的⾜A 1 ?⾜不⾜关九的⽅程⼋H 的恨B.0 ⼀定不是关l x 的y/Wr>加+ "0的根C I fil-1祁是X F X 的⽅桎? ? bx …0的IHI )I 和⼀I 不都是关丁?■的⽅粹,? In ? ”“的根数学(A)试题⼀?选择越:本題共W ⼩超?毎⼩理4分■共40分?在每⼩题给岀的四个选项中?只有⼀项是符合题⽬要求的. I.在实8U-3|.?2.O E 中?嚴⼩的数绘 B. -2 I). 7T 2.篥⼏何体的:觇图如国所⽰?则诙⼏何体⼼ A. MttC.⽒⽅体3.⼘?列制I 数中?能作为⼀个三fflJB 三边边长的定俯视图 C.2.3.44.⼘施边形的内⾓和为360。
?則n ⽢T 1).6 5?如亂等边V ⾓形AM :中.讥处?垂⾜为〃?点E 住线段M)h. £AW ;=45°.W ⼄等⼲B. 30。
C.45° 1).60° 6.段押曲枚质地旳匀的散i ?骰『的六个⾎I ?分别刘仆1到6的点数?则⼘列爭卄为融机⼬件的⾜ A.两枚骰⼦向1?-?⽽的点数之和⼤于I b. ⽹枚骰尹向I ⾯的点数之和等r Ic. 两枚in ⼦向I : ?⾯的点数之和⼤F 12l>. (W 枚骰尹向上仙的点数之和零于12 7.已知刚⽫卄3?则以下对m 的估◎⽌确的是 \. 2 < w < 3 II. 3 < m < 4 C. 4 < ni < 5 I). 5 < m < 6&找Fl 古?代数学著作(增删( .、记载?绳索址¥⼴问题:-条竿⼦⽷索?索⽐V rK 托?折回索⼦却城竿?却⽐竿⼦知⼀托⼴兀⼤怠从现有根节和■条滝尿川涌斎上朮¥?縄索⽐竿尺5尺⾎陳将绳索村半折后⾋去械竿?就⽐竿俎5尺.尺?竿长)尺?则符的⽅程纽址第II 卷⼆填空题:本题共6⼩题,毎⼩题J分?共24分.⼭计妹:俘⼘2 ___________ ?12. M X种您品所律的知it備分别为J20J34?120?119?126」20?118.124?则这细数据的众数为______ ?13. 如图⾎△椒:中?⼄ACB=90°NB=6.D是4〃的中点■則..a ?的解集为_ ?—2 >015?把两个屈样⼈⼩的仟45⾓的油尺按如图所⽰的⽅式放冷?其中⼀个淌尺的税⾓顶点⽿刃?个的rtft 151点重介TA/1JDJ 7个悦⾓顶点H.C.Dfy同 F 缄h 若-1?=J2 t wiJ ro=16. a(ll¥l?f 诙」—/n 与d 曲线⼚丄Hl 交^A.IiM.IM://x UllJCZS 轴?则△仙:⾯枳的最⼩值为三岸答趣:本题共9⼩臥共恥分?離答应写出⽂宇说明、证明过稈或演算步骤. 门?(肚⼩也满分"分)IK.(本⼩题橋分8分)如图.⼝磁〃的席⾓线AC^UD相交F点O上P过点O IL与AD/C分别郴交TZU J.求叫Mi”:19?(⾐⼩题膺分8分)化化简?⼭求仏(如巴"⼘〃“疗,?\ m / m20. (4-⼩题摘分8分)求证?郴似三也形对炖边上的中线之⽐写FHI似⽐.耍求:J银掩绘出的△磁及线段?IJT.⼄"{ Z..V-⼄」)?以钱我为⼀边?⾂给出的国形上⽤尺规作出ZUWC.使ffAATTCSAMC?不骂柞法,保0作2农已有的国旬上內出⼀组对■应⼬线■并据此坊出已知、求证杓任明过牌.21. (1-⼩題满分X分)如图■在IUZM3C中.Z.C=90°Jfl= IO,4C=&线段W由线段\B烧点A按逆时针⽅向⿅转90。
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。
2018年福建省中考数学试卷(B卷)一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4.00分)(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π2.(4.00分)(2018•福建)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.(4.00分)(2018•福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)(2018•福建)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(4.00分)(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°6.(4.00分)(2018•福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(4.00分)(2018•福建)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4.00分)(2018•福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(4.00分)(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°10.(4.00分)(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、填空题:本题共6小题,每小题4分,共24分)11.(4.00分)(2018•福建)计算:()0﹣1=.12.(4.00分)(2018•福建)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=.14.(4.00分)(2018•福建)不等式组的解集为.15.(4.00分)(2018•福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=.16.(4.00分)(2018•福建)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x 轴,AC∥y轴,则△ABC面积的最小值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8.00分)(2018•福建)解方程组:.18.(8.00分)(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.19.(8.00分)(2018•福建)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(12.00分)(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.25.(14.00分)(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.2018年福建省中考数学试卷(B卷)参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4.00分)(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.(4.00分)(2018•福建)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图.3.(4.00分)(2018•福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.【点评】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.(4.00分)(2018•福建)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.5.(4.00分)(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.6.(4.00分)(2018•福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【点评】此题主要考查了随机事件,关键是掌握随机事件定义.7.(4.00分)(2018•福建)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.(4.00分)(2018•福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.(4.00分)(2018•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.10.(4.00分)(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.二、填空题:本题共6小题,每小题4分,共24分)11.(4.00分)(2018•福建)计算:()0﹣1=0.【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.【点评】此题主要考查了零指数幂,关键是掌握a0=1(a≠0).12.(4.00分)(2018•福建)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120.【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.【点评】本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据.13.(4.00分)(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=3.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.(4.00分)(2018•福建)不等式组的解集为x>2.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(4.00分)(2018•福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=﹣1.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.16.(4.00分)(2018•福建)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x 轴,AC∥y轴,则△ABC面积的最小值为6.【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S△ABC=AC•BC=m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8.00分)(2018•福建)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8.00分)(2018•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.19.(8.00分)(2018•福建)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(8.00分)(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.【点评】本题考查了相似三角形的性质与判定,主要利用了相似三角形的性质,相似三角形对应边成比例的性质,以及两三角形相似的判定方法,要注意文字叙述性命题的证明格式.21.(8.00分)(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB是解本题的关键.22.(10.00分)(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.【点评】本题主要考查概率公式,解题的关键是掌握概率=所求情况数与总情况数之比及平均数的定义及其意义.23.(10.00分)(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【解答】解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大=50a﹣当x=a时,S最大②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.【点评】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.24.(12.00分)(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.【分析】(1)根据等边对等角得:∠PCB=∠PBC,由四点共圆的性质得:∠BAD+∠BCD=180°,从而得:∠BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直径,从而得:∠ADC=∠AGB=90°,根据同位角相等可得结论;(2)先证明四边形BCDH是平行四边形,得BC=DH,根据特殊的三角函数值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分两种情况:①当点O在DE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠AMD=∠ABD,则∠ADM=∠BDE,并由DH=OD,可得结论;②当点O在DE的右侧时,如图3,同理作辅助线,同理有∠ADE=∠BDN=20°,∠ODH=20°,得结论.【解答】(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.【点评】本题考查圆的有关性质,等腰三角形的判定和性质,平行线的性质和判定,平行四边形的性质和判定,解直角三角形等知识,考查了运算能力、推理能力,并考查了分类思想.25.(14.00分)(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.【分析】(1)由A的坐标确定出c的值,根据已知不等式判断出y1﹣y2<0,可得出抛物线的增减性,确定出抛物线对称轴为y轴,且开口向下,求出b的值,如图1所示,可得三角形ABC为等边三角形,确定出B的坐标,代入抛物线解析式即可;(2)①设出点M(x1,﹣x12+2),N(x2,﹣x22+2),由MN与已知直线平行,得到k值相同,表示出直线MN解析式,进而表示出ME,BE,NF,BF,求出tan∠MBE与tan∠NBF的值相等,进而得到BC为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y轴为BC的垂直平分线,设P为外心,利用勾股定理化简PB2=PM2,确定出△MBC外心的纵坐标的取值范围即可.【解答】解:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•c os30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,在Rt△BEM中,tan∠MBE===﹣x1,在Rt△BFN中,tan∠NBF=====﹣x1,∵tan∠MBE=tan∠NBF,∴∠MBE=∠NBF,则BC平分∠MBN;②∵y轴为BC的垂直平分线,∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,∵x12=2﹣y2,∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,由①得:﹣1<y1≤2,∴﹣<y0≤0,则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,二次函数的图象与性质,锐角三角函数定义,勾股定理,熟练掌握各自的性质是解本题的关键.。
数据的整理与分析一、选择题1.一组数据2,1,2,5,3,2的众数是()A. 1B. 2C. 3D. 5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。
3.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()。
.5【答案】B【解析】:∵一组数据3、4、5、x、6、7的平均数是5,∴3+4+5+x+6+7=6×5,∴x=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A. 了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查 B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。
2018年福建省南平市中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)(2014•南平)﹣4的相反数( ) A.4B.﹣4C.D.﹣分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选:A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.3.(4分)(2014•南平)一个袋中只装有3个红球,从中随机摸出一个是红球( ) A.可能性为B.属于不可能事件C.属于随机事件D.属于必然事件考点:随机事件;可能性的大小.分析:根据要求判断事件的类型,再根据必然事件、不可能事件、随机事件的概念选择即可.解答:解:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选:D.点评:本题主要考查必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(4分)(2014•南平)下列计算正确的是( ) A.(2a2)4=8a6B.a3+a=a4C.a2÷a=a D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识求解即可求得答案.解答:解:A、(2a2)4=16a8,故A选项错误;B、a3+a,不是同类项不能计算,故B选项错误;C、a2÷a=a,故C选项正确;D、(a﹣b)2=a2+b2﹣2ab,故D选项错误.故选:C.点评:本题主要考查了合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识,解题的关键是熟记法则及公式.5.(4分)(2014•南平)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是( ) A.45°B.60°C.90°D.180°考点:平行线的性质.分析:利用平行线的性质和对顶角的性质进行解答.解答:解:如图,∵a∥b,∴∠1=∠3,∠2=∠4.又∵∠3=∠5,∠4=∠6,∠5+∠6=90°,∴∠1+∠2=90°.故选:C.点评:本题考查了平行线的性质.正确观察图形,熟练掌握平行线的性质和对顶角相等.6.(4分)(2014•南平)下列说法正确的是( ) A.了解某班同学的身高情况适合用全面调查 B.数据2、3、4、2、3的众数是2 C.数据4、5、5、6、0的平均数是5 D.甲、乙两组数据的平均数相同,方差分别是S=3.2,S=2.9,则甲组数据更稳定考点:方差;全面调查与抽样调查;算术平均数;众数.分析:根据调查方式,可判断A;根据众数的意义可判断B;根据平均数的意义,可判断C;根据方差的性质,可判断D.解答:解:A、了解某班同学的身高情况适合全面调查,故A正确;B、数据2、3、4、2、3的众数是2,3,故B错误;C、数据4、5、5、6、0的平均数是4,故C错误;D、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D错误.故选:A.点评:本题考查了方差,方差越小数据越稳定是解题关键.7.(4分)(2014•南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( ) A.1,2,1B.1,2,2C.1,2,3D.1,2,4考点:三角形三边关系.分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.解答:解:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确;故选:B.点评:此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.8.(4分)(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( ) A.y=10x+30B.y=40x C.y=10+30x D.y=20x考点:函数关系式.分析:根据师生的总费用,可得函数关系式.解答:解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,故选:A.点评:本题考查了函数关系式,师生的总费用的等量关系是解题关键.9.(4分)(2014•南平)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=( ) A.1:2B.2:3C.1:3D.1:4考点:相似三角形的判定与性质;三角形中位线定理.分析:在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.解答:解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=.故选D.点评:此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.10.(4分)(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是( ) A.B.C.D.1考点:规律型:数字的变化类;算术平方根.分析:根据观察数列,可得,每三个数一循环,根据有序数对的表示方法,可得有序数对表示的数,根据是数的运算,可得答案.数解答:解;每三个数一循环,1、,(8,2)在数列中是第(1+7)×7÷2+2=30个,30÷3=10,(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是,(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,2029105÷3=676368…1,(2014,2014)表示的数正好是第676369轮的一个数,即(2014,2014)表示的数是1,1=,故选:B.点评:本题考查了数字的变化类,利用了数字的变化规律.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(2014•南平)请你写出一个无理数 π .考点:无理数.专题:开放型.分析:①开方开不尽的数,②无限不循环小数,③含有π的数,由此可写出答案.解答:解:由题意可得,π是无理数.故答案可为:π.点评:此题考查了无理数的定义,关键是掌握无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,难度一般.12.(3分)(2014•南平)已知点P在线段AB的垂直平分线上,PA=6,则PB= 6 .考点:线段垂直平分线的性质.分析:直接根据线段垂直平分线的性质进行解答即可.解答:解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.点评:本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.13.(3分)(2014•南平)五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是 80 .考点:中位数.分析:将这组数据从小到大的顺序排列后,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.解答:解:将这组数据从小到大排列,中间的数为80,所以中位数是80.故答案为:80.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.(3分)(2014•南平)点P(5,﹣3)关于原点的对称点的坐标为 (﹣5,3) .考点:关于原点对称的点的坐标.专题:几何图形问题.分析:两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.解答:解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故答案为(﹣5,3).点评:主要考查两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.15.(3分)(2014•南平)同时掷两枚硬币,两枚硬币全部正面朝上的概率为 .考点:概率公式.分析:列举出所有情况,看所求的情况占总情况的多少即可.解答:解:可能出现的情况有:正正,正反,反正,反反,所以全部正面朝上的概率为.点评:此题考查了列举法求概率,解题的关键是找到所有的情况.16.(3分)(2014•南平)分解因式:a3﹣2a2+a= a(a﹣1)2 .考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解答:解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.(3分)(2014•南平)将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′= 65 °.考点:角的计算;翻折变换(折叠问题).分析:根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.解答:解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65,故答案为:65.点评:本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 18.(3分)(2014•南平)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;④△BCD的外接圆的圆心是线段O1O2的中点.以上结论正确的是 ①③ .(写出所有正确结论的序号)考点:圆的综合题.分析:①连接AO1,AO2,BO1,BO2根据菱形的判定定理即可得出结论;②根据垂径定理即可得出结论;③连接O1O2,AB,BD,根据三角形中位线定理即可得出结论;④先判断出△BCD是等边三角形,再根据等边三角形外心的性质即可得出结论.解答:解:①如图1所示,连接AO1,AO2,B O1,BO2,∵圆⊙O1与⊙O2是等圆,∴AO1=AO2=BO1=BO2,∴四边形AO1BO2为菱形,故此小题正确;②∵AD是⊙O2的弦,∴O2在线段AD的垂直平分线上,∴点D的横坐标不是点O2的横坐标的两倍,故此小题错误;③连接O1O2,AB,BD,∵y轴是⊙O2的切线,∴O1O2⊥y轴,∵AD∥1O2.∵四边形AO1BO2为菱形,∴AB⊥O1O2,O1E=O2E,∴∠BAD=90°,∴BD过点O2,∴O2E是△ABD的中位线,∴AD=O1O2=BD,∴∠ADB=60°;④∵由③知,2AD=BD,∴CD=BD=BC,∴△BCD的外心是各边线段垂直平分线的交点,∵O1O2的中点是△BCD中位线的中点,∴△BCD的外接圆的圆心不是线段O1O2的中点,故此小题错误.故答案为:①③.点评:本题考查的是圆的综合题,涉及到切线的性质、菱形的判定定理及直角三角形的性质,难度适中.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)2.(4分)(2014•南平)如图,几何体的主视图是( ) A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有4个正方形,第二层从左起第二个有一个正方形.故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.19.(14分)(2014•南平)(1)计算:﹣(π﹣3)0+()﹣1+|﹣1|.(2)化简:(﹣)•.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用立方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2﹣1+2+﹣1=2+;(2)原式=•=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2014•南平)解不等式组:.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据不等式的解集找出不等式组的解集即可.解答:解:由①得:x<2,由②得:2﹣(x+1)≥0,2﹣x﹣1≥0,1﹣x≥0,x≤1,即不等式组的解集为x≤1.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据找不等式组解集的规律找出不等式组的解集.21.(8分)(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.考点:相似三角形的判定与性质.专题:证明题.分析:利用两个角对应相等的两个三角形相似,证得△ABD∽△ACB,进一步得出,整理得出答案即可.解答:证明:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD•AC.点评:此题考查相似三角形的判定与性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.④平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.⑤相似三角形的对应边成比例,对应角相等.22.(10分)(2014•南平)在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)随机抽查了 50 名学生;(2)补全图中的条形图;(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用一般的人数除以它所占的百分比即可得抽查的学生总数;(2)用抽查的学生总数减去不喜欢、一般、很喜欢的学生人数,得到较喜欢的人数,再补全图中的条形图即可;(3)用全校的学生数乘以学生喜欢(含“较喜欢”和“很喜欢”)足球运动所占的百分比即可.解答:解:(1)10÷20%=50(名),故答案为:50;(2)50﹣5﹣10﹣15=20(名),补全统计图如下:(3)500×(1﹣10%﹣20%)=350(名).答:全校约有350名学生喜欢足球运动.点评:本题主要考查了条形统计图,用样本估计总体及扇形统计图,解题的关键是把条形统计图和扇形统计图中的数据正确的结合起来求解.23.(10分)(2014•南平)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线.(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)考点:切线的判定;解直角三角形.分析:(1)连接OC,根据等腰三角形的性质求出OC⊥AB,根据切线的判定得出即可;(2)解直角三角形求出OC,即可求出答案.解答:(1)证明:连接OC,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.(2)解:∵由(1)得OC⊥AB,∴∠ACO=90°,∴OC=AC▪tan34°=6×tan34°≈4.047,∴⊙O的周长=2π▪OC=2×3.142×4.047≈25.43.点评:本题考查了等腰三角形的性质,切线的判定,解直角三角形的性质,主要考查学生的计算和推理能力,题目比较好,难度适中.24.(10分)(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.考点:反比例函数与一次函数的交点问题.分析:(1)把点A、B的坐标代入反比例函数解析式,求得m、a的值;然后把点A、B的坐标分别代入一次函数解析式来求k、b的值;(2)利用一次函数图象上点的坐标特征求得点C的坐标;然后由S△ACD=S梯形AEOC﹣S△COD﹣S△DEA进行解答.解答:解:(1)∵点A(4,1)在反比例函数上,∴∴k=4×1=4,∴.把B(a,2)代入,得2=,∴a=2,∴B(2,2).∵把A(4,1),B(2,2)代入y=kx+b∴解得,∴一次函数的解析式为;(2)∵点C在直线AB上,∴当x=0时,y=3,∴C(0,3)过A作AE⊥x轴于E.∴S△ACD=S梯形AEOC﹣S△COD﹣S△DEA==5.点评:本题考查了反比例函数与一次函数的交点问题.解题时,注意“数形结合”数学思想的应用.25.(12分)(2014•南平)如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据待定系数法即可求得;(2)把C(m,m﹣1)代入求得点C的坐标,从而求得AH=4,CH=2,BH=1,AB=5,然后根据,∠AHC=∠BHC=90°得出△AHC∽△CHB,根据相似三角形的对应角相等求得∠ACH=∠CBH,因为∠CBH+∠BCH=90°所以∠ACH+∠BCH=90°从而求得∠ACB=90°,先根据有两组对边平行的四边形是平行四边形求得四边形DECF是平行四边形,进而求得□DECF是矩形;(3)根据矩形的对角线相等,求得EF=CD,因为当CD⊥AB时,CD的值最小,此时CD 的值为2,所以EF的最小值是2;解答:(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),由A(﹣1,0)、B(3,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴□DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;点评:本题考查了待定系数法求解析式,抛物线上点的坐标的求法,三角形相似的判定和性质,矩形的判定和性质等,本题是二次函数的综合性题,其难点是三角形相似的判定:两组对应边对应成比例且夹角相等的两个三角形相似;26.(14分)(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为 60 °.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为 45 °.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为 36 °.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.考点:四边形综合题.分析:(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.②作EN⊥BN,交BM于点N,由△ABP≌△ACE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.解答:解:(1)①证明:如图1,∵△ABC与△APE均为正三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE,在△ABP和△ACE中,,∴△ABP≌△ACE (SAS).②∵△ABP≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=60°,∠ECM=180°﹣60°﹣60°=60°.故答案为:60.(2)①如图2,作EN⊥BN,交BM于点N∵四边形ABCD和APEF均为正方形,∴AP=PE,∠B=∠ENP=90°,∴∠BAP+∠APB=∠EPM+∠APB=90°,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠ECM=∠CEN=45°②如图3,作EN∥CD交BM于点N,∵五边形ABCDF和APEGH均为正五边方形,∴AP=PE,∠B=∠BCD,∵EN∥CD,∴∠PNE=∠BCD,∴∠B=∠PNE∵∠BAP+∠APB=∠EPM+∠APB=180°﹣∠B,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠NCE=∠NEC,∵∠CNE=∠BCD=108°,∴∠ECM=∠CEN=(180°﹣∠CNE)=×(180°﹣108°)=36°.故答案为:45,36.(3)如图4中,过E作EK∥CD,交BM于点K,∵n边形ABC…和n边形APE…为正n边形,∴AB=BC AP=PE∠ABC=∠BCD=∠APE=∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK∴∠BAP=∠KPE∵EK∥CD,∴∠BCD=∠PKE∴∠ABP=∠PKE,在△ABP和△PKE中,,∴△ABP≌△PKE(AAS)∴BP=EK,AB=PK,∴BC=PK,∴BC﹣PC=PK﹣PC,∴BP=CK,∴CK=KE,∴∠KCE=∠KEC,∵∠CKE=∠BCD=∴∠ECK=.点评:本题主要考查了四边形综合题,涉及三角形全等的判定及性质,正多边形的内角及等腰三角形的性质,解题的关键是正确作出辅助线,运用三角形全等求出对应边相等.。
一、单选题1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【来源】浙江省湖州市2018年中考数学试题【答案】B点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.2.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【来源】浙江省湖州市2018年中考数学试题【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.学科*网3.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A. 20B. 24C.D.【来源】浙江省温州市2018年中考数学试卷【答案】B点睛: 本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键. 4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4B. 6C.D. 8【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.如图,已知,添加以下条件,不能判定的是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B.C. 点是的外心D.【来源】山东省潍坊市2018年中考数学试题【答案】D【解析】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.8.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【来源】山东省滨州市2018年中考数学试题【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【来源】江苏省扬州市2018年中考数学试题【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.11.如图,,且.、是上两点,,.若,,,则的长为()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】D【解析】分析:详解:如图,点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.学科*网12.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.二、解答题13.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【来源】陕西省2018年中考数学试题【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.14.如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.请你观察图形解答下列问题:(1)线段,,之间的数量关系是________;(2)若,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1);(2)80°.【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.15.已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【来源】山东省淄博市2018年中考数学试题【答案】证明见解析【解析】分析:过点A作EF∥BC,利用E F∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:证明:过点A作EF∥BC,点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.16.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【来源】山东省淄博市2018年中考数学试题【答案】(1)MG=NG;MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析【解析】分析:(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.详解:(1)连接BE,CD相较于H,如图1,(2)连接CD,BE,相较于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,如图3.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.学科*网17.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)BC=【解析】分析: (1)由翻折的性质得出△ADE≌△ADC,根据全等三角形对应角相等,对应边相等得出∠AED=∠ACD,AE=AC,根据同弧所对的圆周角相等得出∠ABD=∠AED,根据等量代换得出∠ABD=∠ACD,根据等角对等边得出AB=AC,从而得出结论;(2)如图,过点A作AH⊥BE于点H,根据等腰三角形的三线合一得出BH=EH=1,根据等腰三角形的性质及圆周角定理得出∠ABE=∠AEB=ADB,根据等角的同名三角函数值相等及余弦函数的定义得出BH∶AB = 1∶3,从而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的长.(2)解:如图,过点A作AH⊥BE于点H∵AB=AE,BE=2∴BH=EH=1∵∠ABE=∠AEB=ADB,cos∠ADB=∴cos∠ABE=cos∠ADB=∴=∴AC=AB=3∵∠BAC=90°,AC=AB∴BC=点睛: 本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.18.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【来源】四川省宜宾市2018年中考数学试题【答案】证明见解析.【解析】分析:由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.详解:证明:如图,点睛:考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.20.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺......分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD, 画出△ABD的AD边上的高 .【来源】江西省2018年中等学校招生考试数学试题【答案】(1)作图见解析;(2)作图见解析.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺......按要求作图,结合题意认真分析图形的成因是解题的关键.21.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3) 如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.【来源】江西省2018年中等学校招生考试数学试题【答案】(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3) .【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:连接 AC, ∵菱形 ABCD,∠ABC=60°, ∴△ABC 和△ACD 都是等边三角形, ∴AB=AC,∠BAD=120° , ∠BAP=120°+∠DAP, ∵△APE 是等边三角形, ∴AP=AE , ∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30° ,∵∠ADC=60°,∴∠DCE+∠ADC=90°, ∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;(3) 连接 AC 交 BD 于点 O,CE,作 EH⊥AP 于 H,由(2)知 BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE 是等边三角形,∴,,∵,∴,= = =,∴四边形 ADPE 的面积是 .【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键. 学科*网22.已知:在 中,, 为 的中点,,,垂足分别为点 ,且.求证: 是等边三角形.【来源】浙江省嘉兴市 2018 年中考数学试题 【答案】证明见解析.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键 是证明∠A=∠C. 23.如图,⊙O 为锐角△ABC 的外接圆,半径为 5. (1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧 BC 的交点 E(保留作图痕迹,不写作法); (2)若(1)中的点 E 到弦 BC 的距离为 3,求弦 CE 的长.【来源】安徽省 2018 年中考数学试题 【答案】(1)画图见解析;(2)CE=【详解】(1)如图所示,射线 AE 就是所求作的角平分线;(2)连接 OE 交 BC 于点 F,连接 OC、CE, ∵AE 平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在 Rt△OFC 中,由勾股定理可得 FC==,在 Rt△EFC 中,由勾股定理可得 CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC 是解题的关键.24.如图 1,Rt△ABC 中,∠ACB=90°,点 D 为边 AC 上一点,DE⊥AB 于点 E,点 M 为 BD 中点,CM的延长线交 AB 于点 F.(1)求证:CM=EM; (2)若∠BAC=50°,求∠EMF 的大小; (3)如图 2,若△DAE≌△CEM,点 N 为 CM 的中点,求证:AN∥EM.【来源】安徽省 2018 年中考数学试题 【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【详解】(1)∵M 为 BD 中点, Rt△DCB 中,MC= BD, Rt△DEB 中,EM= BD, ∴MC=ME; (2)∵∠BAC=50°,∠ACB=90°, ∴∠ABC=90°-50°=40°, ∵CM=MB, ∴∠MCB=∠CBM, ∴∠CMD=∠MCB+∠CBM=2∠CBM, 同理,∠DME=2∠EBM, ∴∠CME=2∠CBA=80°, ∴∠EMF=180°-80°=100°; (3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE, ∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°, ∴∠ABC=45°,∠ECM=45°, 又∵CM=ME= BD=DM, ∴DE=EM=DM, ∴△DEM 是等边三角形, ∴∠EDM=60°, ∴∠MBE=30°, ∵CM=BM,∴∠BCM=∠CBM, ∵∠MCB+∠ACE=45°, ∠CBM+∠MBE=45°, ∴∠ACE=∠MBE=30°, ∴∠ACM=∠ACE+∠ECM=75°,∵CM⊥EM, ∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形 外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.25.数学课上,张老师举了下面的例题:例 1 等腰三角形 中,,求 的度数.(答案: )例 2 等腰三角形 中,,求 的度数.(答案: 或 或 )张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形 中,,求 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现, 的度数不同,得到 的度数的个数也可能不同.如果在等腰三角形中,设,当 有三个不同的度数时,请你探索 的取值范围.【来源】2018 年浙江省绍兴市中考数学试卷解析【答案】(1)或 或 ;(2)当且, 有三个不同的度数.【解析】【分析】(1)分 为顶角和 为底角,两种情况进行讨论.(2)分①当时,②当时,两种情况进行讨论.【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.三、填空题26.在中,__________., 平分 , 平分 ,相交于点 ,且,则【来源】广东省深圳市 2018 年中考数学试题 【答案】【详解】如图,∵AD、BE 分别平分∠CAB 和∠CBA, ∴∠1=∠2,∠3=∠4, ∵∠C=90°,∴∠2+∠3=45°,∴∠AFE=45°, 过 E 作 EG⊥AD,垂足为 G,在 Rt△EFG 中,∠EFG=45°,EF= ,∴EG=FG=1,在 Rt△AEG 中,AG=AF-FG=4-1=3,∴AE=,过 F 分别作 FH⊥AC 垂足为 H, FM⊥BC 垂足为 M,FN⊥AB 垂足为 N,易得 CH=FH,设 EH=a,则 FH2=EF2-EH2=2-a2,在 Rt△AHF 中,AH2+HF2=AF2,即+2-a2=16,∴a= , ∴CH=FH= , ∴AC=AE+EH+HC= ,故答案为: .【点睛】本题考查了角平分线的性质,勾股定理的应用等,综合性质较强,正确添加辅助线是解题的关键.27.如图,四边形 ACDF 是正方形,和都是直角,且点 三点共线,,则阴影部分的面积是__________.【来源】广东省深圳市 2018 年中考数学试题 【答案】8 【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得 EC=AB=4,然后再利用三角形面积 公式进行求解即可.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出 CE=AB 是解题的关键.28.等腰三角形的一个底角为 ,则它的顶角的度数为__________. 【来源】四川省成都市 2018 年中考数学试题 【答案】点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.学科*网29.如图,在每个小正方形的边长为 1 的网格中,的顶点 , , 均在格点上.(1) 的大小为__________(度); (2)在如图所示的网格中, 是 边上任意一点. 为中心,取旋转角等于 ,把点 逆时针旋转,点 的对应点为 .当 最短时,请用无.刻.度.的直尺,画出点 ,并简要说明点 的位置是如何找到的(不要求 证明)__________. 【来源】天津市 2018 年中考数学试题 【答案】 ; 见解析 【解析】分析:(1)利用勾股定理即可解决问题; (2)如图,取格点 , ,连接 交 于点 ;取格点 , ,连接 交 延长线于点 ;取格点 ,连接 交 延长线于点 ,则点 即为所求. 详解:(1)∵每个小正方形的边长为 1,∴AC=,BC=,AB=,(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.30.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.31.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.【来源】浙江省金华市2018年中考数学试题【答案】AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.学科*网32.在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.【来源】山东省滨州市2018年中考数学试题【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.33.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】点睛:本题考查了三角形的中位线定理,属于基础题,解答本题的关键是掌握三角形的中位线定理. 34.如图,五边形是正五边形,若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.35.如图,为的平分线.,..则点到射线的距离为__________.【来源】山东省德州市2018年中考数学试题【答案】3点睛:本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.36.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用. 37.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【来源】浙江省湖州市2018年中考数学试题【答案】9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.学科*网。
中考一模数学试卷及答案一、选择题(共10 题,每小题3分,共30分)1. 由5a=6b(a≠0,b≠0),可得比例式( )A.B.C.D.2.若△ABC∽△DEF,相似比为3∶2,则对应面积的比为( )A.3∶2 B.3∶5 C.4∶9 D.9∶43.如图是由几个大小相同的小立方块所搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.4.如图,下列条件中,可以判定△ACD和△ABC相似的是( )A.B.C.AC2=AD·AB D.CD2=AD·BD 5.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )A.B.C.D.6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠BDE=55°,使A、C、E在一条直线上,那么点E与D的距离是( )A.500cos55°米B.500cos35°米C.500sin55°米D.500tan55°米7.已知反比例函数,则下列结论中不正确的是( )A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为( )A.210x+90(18-x)<2.1B.210x+90(18-x)≥2100C.210x+90(18-x)≤2100D.210x+90(18-x)≥2.19.如图所示,河堤横断面迎水坡AB的坡比是1∶,堤高BC=5 m,则坡面AB的长是( )A.10 m B.m C.15 m D.m10.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是( )A.B.C.D.二、填空题(共6 题,每小题3分,共18分)11. 已知反比例函数的图像经过点(-3,-1),则k= .12.已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为.13.如图,路灯距离地面8 m,身高1.6 m的小明站在距离灯的底部(点O)20 m的A处,则小明的影子AM的长为 m.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为.16.如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图象分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.三、解答题(共9 题,72分)17.(4分)计算:.18.(4分)如图已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2∶1.19.(4分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.20.(6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01 m3)21.(8分)如图:直线y=x与反比例函数(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式.22.(10 分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设.(1)求证:AE=BF;(2)连接BE,DF,设∠EDF=α,∠EBF=β.求证:23.(10 分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若,求tan∠BDC的值.24.(12 分)已知:A(a,y1),B(2a,y2)是反比例函数(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且,求a的值;(3)在(2)的条件下,如果3m=﹣4x+24,,求使得m>n的x的取值范围.25.(14 分)在平面直角坐标系中,点A(m,m+1)在反比例函数的图象上.(1)求点A的坐标;(2)若直角∠NAM绕点A旋转,射线AN分别交x轴、y轴于点B、N,射线AM交x轴于点M,连接MN.①当点B和点N分别在x轴的负半轴和y轴的正半轴时,若△BAM∽△MON,求点N的坐标;②在直角∠NAM绕点A旋转的过程中,∠AMN的大小是否会发生变化?请说明理由.答案:1-5 BDCCB6-10 ADBAC11.312.13.514. 915.16.817.解:原式.18.解:(1)如图所示,点C1的坐标是(2,﹣2);(2)如图所示.19.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴,.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴∠ACD=∠CAD=45°∴DC=AD=4,∴.20.解:(1)设,由题意知,所以k=96,故该函数的解析式为;(2)当P=140 kPa时,(m3).所以为了安全起见,气体的体积应不少于0.69 m3.21.解:(1)∵直线y=x经过点A(2,m),∴m=2,∴A(2,2),∵A在的图象上,∴k=4.(2)设B(0,n),由题意:,∴n=﹣2,∴B(0,﹣2),设AB所在直线的解析式为y=k′x+b,则有,∴,∴AB所在直线的解析式为y=2x﹣2.22.解:(1)∵四边形ABCD是正方形,∴∠BAF+∠EAD=90°,又∵DE⊥AG,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF⊥AG,∴∠DEA=∠AFB=90°,又∵AD=AB∴Rt△DAE≌Rt△ABF,∴AE=BF(2)易知Rt△BFG∽Rt△DEA,所以,在Rt△DEF和Rt△BEF中,,∴∴23.(1)证明:∵DC是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠DAB.(2)解:设线段AD与⊙O相交于点M如图,连接BM、OC交于点N.∵AB是直径,∴∠AMB=90°,由(1)知AD∥OC,∴∠ONB=∠AMB=90°=∠CNB,由垂径定理可知MN=BN∵OC=OB,∴∠OCB=∠OBC,∴,设BN=4k,BC=5k,则CN=3k,∵∠CDM=∠DMN=∠DCN=90°,∴四边形DMNC是矩形,∴DM=CN=3k,MN=BN=4k,CD∥BM,∴∠CDB=∠DBM,∴.24.解:(1)∵A、B是反比例函数(k>0)图象上的两点,∴a≠0,当a>0时,A、B在第一象限,由a<2a可知,y1>y2,同理,a<0时,y1<y2;(2)∵A(a,y1)、B(2a,y2)在反比例函数(k>0)的图象上,∴,,∴y1=2y2.又∵点A(a,y1)、B(2a,y2)在一次函数的图象上,∴,,∴,∴b=4a,∵又∵∴∴,∴a2=4,∵a>0,∴a=2.(3)由(2)得,A(2,),B(4,),将A,B两点代入得解得∴一次函数的解析式为,反比例函数的解析式为:,A、B两点的横坐标分别为2、4,∵3m=﹣4x+24,,∴、,因此使得m>n的x的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出2<x<4或x<0.25.解:(1)∵点A(m,m+1)在反比例函数的图象上.∴;解得m1=3,m2=-4∵m>0,∴m=3,∴点A的坐标是(3,4).(2)①如图,过点A作AC⊥y轴于C,作AD⊥x轴于D,则AC=3,AD=4,∠ACN=∠ADM=90°,设ON=x,则CN=4﹣x,∵△BAM∽△MON,∴∠ABM=∠NMO∴NB=NM,∵NO⊥BM,∴OB=OM=OA=5∵CA∥BO,∴△CAN∽△OBN,∴∴,解得∴点N的坐标为(0,);②在直角∠NAM绕点A旋转的过程中,∠AMN的大小不会发生变化.理由:当点B和点N分别在x轴的负半轴和y轴的正半轴时,∵∠CAD=∠NAM=90°,∴∠CAN=∠DAM,∴△CAN∽△DAM,∴∴∴∠AMN的大小不会发生变化.当点B和点N分别在x轴的非负半轴和y轴的非正半轴时,同理可证∠AMN的大小不会发生变化.中考第一次模拟考试数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共40 分)1、(4分) 点关于原点对称的点的坐标是()A. B. C. D.2、(4分) 下列事件中,属于随机事件的是()B.某篮球运动员投篮一次,命中.A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7C.在只装了红球的袋子中摸到黑球D.在三张分别标有数字2,4,6,的卡片中摸两球,数字和是偶数3、(4分) 如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.和B.C.D.4、(4分) 下列事件中,最适合采用全面调查的是()A.对某班全体学生出生日期的调查B.对全国中小学生节水意识的调查C.对某批次的灯泡使用寿命的调查.D.对厦门市初中学生每天阅读时间的调查5、(4分) 对于的图象,下列叙述正确的是()B.开口向下A.顶点坐标为C.当,y随x的增大而增大D.对称轴是直线6、(4分) 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是()A. B. C. D.7、(4分) 如图,正六边形中,分别是的中点,绕正六边形的中心经逆时针旋转后与重合,则旋转角度是()A.60°B.90°C.120°D.180°8、(4分) 已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.9、(4分) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变10、(4分) 已知(其中为常数,且),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()A. B.一元二次方程没有实数根C.当时D.一元二次方程有一根比3大二、填空题(本大题共 6 小题,共24 分)11、(4分) 计算:=12、(4分) 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为13、(4分) 方程的根是14、(4分) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是15、(4分) 已知,计算16、(4分) 如图,在菱形中,分别是边的中点,于点P,,则的度数是三、解答题(本大题共9 小题,共86 分)17、(8分) (1)不等式组的解集.(2)先化简,再求值:其中18、(8分) 画出函数的图象19、(8分) 在两个不透明的袋子中分别装入一些相同的纸牌,甲袋内的4张牌分别标记数字1、2、3、4:乙袋内的3张牌分别标记数字2、3、4.从甲、乙两个袋子里分别随机摸出一张牌,求两张牌上的标数相同的概率.20、(8分) 如图,在,以为直径的分别交于点,点F在的延长线上,且.(1)求证:直线是的切线。
2018年福建福州中考数学试卷及答案(word解析版)⼆〇⼀三年福州市初中毕业会考、⾼级中等学校招⽣考试数学试卷(全卷共4页,三⼤题,共22⼩题;满分150分;考试时间120分钟)⼀、选择题(共10⼩题,每题4分,满分40分;每⼩题只有⼀个正确的选项,请在答题卡的相应位置填涂)1.(2018福建福州,1,4分) 2的倒数是().A .12B .2C .-12D .-2【答案】A2.(2018福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是().A .20°B .40°C .50°D .60°【答案】C3.(2018福建福州,3,4分)2018年12⽉13⽇,嫦娥⼆号成功飞抵距地球约700万公⾥远的深空.7 000 000⽤科学记数法表⽰为().A .7×105B .7×106C .70×106D .7×107【答案】 B.4.(2018福建福州,4,4分)下列⽴体图形中,俯视图是正⽅形的是().ABCD【答案】D .5.(2018福建福州,5,4分)下列⼀元⼆次⽅程有两个相等实数根的是().A .x 2+3=0B .x 2+2x =0C .(x +1) 2=0D .(x +3)(x -1)=0【答案】C.6.(2018福建福州,6,4分)不等式1+x <0的解集在数轴上表⽰正确的是().12 OACA B C D【答案】A.7.(2018福建福州,7,4分)下列运算正确的是().A .a ·a 2=a 3B .(a 2)3=a 5C .22()a a b b=D .a 3÷a 3=a【答案】A .8.(2018福建福州,8,4分)如图,已知△ABC ,以点B 为圆⼼,AC 长为半径画弧;以点C 为圆⼼,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量⼀量线段AD 的长,约为().A .2.5 cmB .3.0 cmC .3.5 cmD .4.0 cm【答案】A.9.(2018福建福州,9,4分)袋中有红球4个,⽩球若⼲个,它们只有颜⾊上的区别.从袋中随机地取出⼀个球,如果取到⽩球的可能性较⼤,那么袋中⽩球的个数可能是().A .3个B .不⾜3个C .4个D .5个或5个以上【答案】D .10.(2018福建福州,10,4分)A 、B 两点在⼀次函数图象上的位置如图所⽰,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是().A .a >0B .a <0C .b =0D .ab <0【答案】B.⼆、填空题(共5⼩题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.(2018福建福州,11,4分)计算:21a a-=_________.【答案】1a; 12.(2018福建福州,12,4分)矩形的外⾓和等于_______度.【答案】360;13.(2018福建福州,13,4分)某校⼥⼦排球队队员的年龄分布如下表:AB C【答案】14;14.(2018福建福州,14,4分)已知实数a 、b 满⾜:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是___________.【答案】1000;15.(2018福建福州,15,4分)如图,由7个形状、⼤⼩完全相同的正六边形组成⽹格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的⾯积是____________.【答案】三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线⽤铅笔画完,再⽤⿊⾊签字笔描⿊) 16.(每⼩题7分,共14分)(1)(2018福建福州,16(1),7分)计算:0(1)4-+-- 【答案】解:0(1)4-+-- =1+4-=5-(2)(2018福建福州,16(2),7分)化简:2(3)(4)a a a ++-.【答案】解:2(3)(4)a a a ++- =a 2+6a +9+4a -a 2 =10a +9.17.(每⼩题8分,共16分)(1)(2018福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD .求证:BC =BD .【答案】证明⼀:∵AB 平分∠CAD ,∴∠BAC =∠BAD ,在△ABC 和△ABD 中 ,,,AB AB BAC BAD AC AD =??∠=∠??=?∴△ABC ≌△ABD .∴BC =BD .证明⼆:连接CD∵AC =AD ,AB 平分∠CAD ,∴AB 垂直平分CD ,∴BC =BD .(2)列⽅程解应⽤题(2018福建福州,17(2),8分)把⼀些图书分给某班学⽣阅读,如果每⼈分3本,则剩余20本;如果每⼈分4本则还缺25本.这个班有多少学⽣?【答案】解法⼀:设这个班有x 名学⽣,根据题意,得: 3x +20=4x -25 解得:x =45答:这个班共有45名学⽣.解法⼆:设这个班有x 名学⽣,图书⼀共有y 本. 320425y x y x =+??=-? ,解得45,155.x y =??=?答:这个班共有45名学⽣.18.(10分)(2018福建福州,18,10分)为了解某校学⽣的⾝⾼情况,随机抽取该校男⽣、⼥⽣进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣⼈数相同,利⽤所得数据绘制如下统计图表:⾝⾼情况分组表(单位:cm )男⽣⾝⾼情况直⽅图⼥⽣⾝⾼情况扇形统计图CDBA(1)样本中,男⽣⾝⾼的众数在_______组,中位数在_______组;(2)样本中,⼥⽣⾝⾼在E 组的⼈数有_______⼈;(3)已知该校共有男⽣400⼈、⼥⽣380⼈,请估计⾝⾼在160≤x <170之间的学⽣约有多少⼈?【答案】(1)众数在B 组;中位数在C 组.(2)样本⼥⽣⼈数=样本男⽣⼈数=40; E 组⼥⽣百分⽐=5%E 组⼥⽣⼈数=40×5%=2(⼈)(3)男⽣:400×1840=180(⼈).⼥⽣:380×40%=152(⼈).19.(2018福建福州,19,12分)如图,在平⾯直⾓坐标系xOy 中,点A 的坐标为(-2,0),等边三⾓形AOC 经过平移或轴对称或旋转都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度;△AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转⾓可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数.【答案】(1)平移的距离是2个单位;对称轴是y 轴;旋转⾓等于120°.(2)∵△ACO 、△BOD 是等边三⾓形,∴∠CAO =60°,OA =OD ,∵∠AOD =120°,OA =OD ,∴∠DAO =30°,∴AE 平分∠CAO ,∴AD 垂直平分CO ,∴∠AEO =90°.20.(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE.(1)求证:BC 是⊙O 的切线;(2)求BN 的长.第20题图C【答案】(1)证明:∵ME =1,AM =2,AE∴AE 2+ME 2=AM 2,∴∠AEM =90°,∵MN ∥BC ,∴∠B =∠AEM =90°,∵AB 为⊙O 的直径,∴BC 是⊙O 的切线.(2)连接OM ,BM ,∵∠AEM =90°,AB 为⊙O 的直径,∴BN =BM ,∠AMB =90°,∵∠AEM =90°,ME =1,AM =2,∴∠CAB =30°,∴∠BOM =60°,∵∠CAB =30°,AM =2,∴AB∴BM =60180π.∴BN .21.(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上⼀点,△P AD 的⾯积为12,设AB =x ,AD =y .(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值;(3)若∠APD =90°,求y 的最⼩值.备⽤图第21题图BCB【答案】(1)如图2,过点A 作AH ⊥BC ,垂⾜为H .在Rt △ABH 中,∠B =45°,AB =x ,所以AH =2x .由S △APD =12AD AH ?,可得11222y x =?.整理,得y x =.(2)当y =1时,x =如图3,如图4,由于∠APC =∠B +∠1,∠APC =∠APD +∠2,当∠APD =∠B =∠C =45°时,∠1=∠2.所以△ABP ∽△PCD .因此AB PCBP CD=.所以PC ·PD =AB ·CD =2.图2 图3 图4(3)如图5,当∠APD =90°时,点P 在以AD 为直径的圆上.如图6,当AD 最⼩时,圆与BC 相切于点P .此时△APD 是等腰直⾓三⾓形.所以AD =2AH ,即2y x =.由(1)知,y x=.于是可以解得此时y =.图5 图622.(14分)我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a =;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kx (k ≠0)上,请⽤含k 的代数式表⽰b ;(3)现有⼀组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x ,横坐标依次为1,2,…,n(n 为正整数,且n 为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂⾜记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正⽅形A n B n C n D n .若这组抛物线中有⼀条经过点D n ,求所有满⾜条件的正⽅形边长.【答案】(1)当顶点坐标为(1,1)时,a =-1;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是1a m=-.(2)设抛物线的顶点的坐标为(m ,km ),那么222()2y a x m km ax amx am km =-+=-++.对照y =ax 2+bx ,可得20,2.am km b am ?+=?=-? 由此得到b =2k .(3)正⽅形的顶点D 1,D 2,…,D n 的坐标分别为(2,1)、(4,2)、(6,3)、(8,4)、(10,5)、(12,6)、(14,7)、(16,8)、(18,9)、(20,10)、(22,11)、(24,12),这些点在直线1 2y x =上.由(1)知,当抛物线的顶点(m ,m )在直线y =x 上时,1a m=-.根据抛物线的对称性,抛物线与x 轴的交点为原点O 和(2m ,0).所以顶点为(m ,m )的抛物线的解析式为1(2)y x x m m=--.联⽴12y x =和1(2)y x x m m =--,可得点D 的坐标为33(,)24m m .当m 分别取正整数4、8、12时,对应的点D 为D 3(6,3)、D 6(12,6)、D 9(18,9),它们所对应的正⽅形的边长分别为3、6、9(如图1所⽰).图1。
2018年福建省中考数学试卷(A )及答案一、选择题(40分)1. 在实数3-、π、0、–2中,最小的是( ) . (A) 3- (B) –2 (C) 0 (D)π 2.一个几何体的三视图如右所示,则这个几何体可能是 ( ) . (A)圆柱 (B)三棱柱 (C)长方体 (D)四棱锥 3.下列各组数中,能作为三角形三条边长的是( ) .(A) 1、1、2 (B) 1、2、4 (C) 2、3、4 (D) 2、3、5 4.一个n 边形的内角和360°,则n 等于( ) .(A)3 (B) 4 (C) 5 (D)65.在等边△ABC 中,AD ⊥BC ,垂足为点D ,点E 在AD 边上, 若∠EBC =45°,则∠ACE =( ) .(A)15° (B)30° (C) 45° (D)60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ( ) .(A) 两枚骰子向上一面的点数之和大于1 (B) 两枚骰子向上一面的点数之和等于1 (C) 两枚骰子向上一面的点数之和大于12 (D) 两枚骰子向上一面的点数之和等于12 7.已知m =34+,则以下对m 的估算正确的是 ( ) .(A) 2<m <3 (B)3 <m < 4 (C) 4<m <5 (D)5 <m <68.古代 “绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( ) .(2题)俯视图 (5题)(19题)ABC DO(A) ⎪⎩⎪⎨⎧-=+=5215y x y x (B)⎪⎩⎪⎨⎧+=-=5215y x y x (C) ⎩⎨⎧-=+=525y x y x (D) ⎩⎨⎧+=-=525y x y x 9.如图,AB 是⊙O ,的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D , 若∠ACB =50°,则∠BOD = ( ) .(A) 40° (B) 50° (C) 60° (D) 80°,10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 二、填空题(24分)11.计算:1220-⎪⎪⎭⎫⎝⎛=___0___. 12.某8种食品所含的热量值分别为:120、134、120、119、126、120、118、124,则这组数据的众数为__120____.13.如图,在Rt △ABC 中,∠ACB =90°,AB =6,D 为AB 的中点,则CD = __3_____14. 不等式组⎩⎨⎧>-+>+02313x x x 的解集为__x >2_____.15.把两个相同大小的含45°角的三角板如图所示放置,其中一个三 角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的 锐角顶点B 、C 、D 在同一直线上,若AB =2,则CD =___3–1____. 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是___6_____. 三,解答题(共86分) 17.(8分)解方程组: ⎩⎨⎧=+=+1041y x y xA(13题)A18.(8分)如图,□ABCD 中,对角线AC 与BD 相交于点O ,EF 过点O ,交AD 于点E ,交BC 于点F .求证:OE =OF ,19.(8分)化简求值:m m m m 11122-÷⎪⎭⎫ ⎝⎛-+,其中13+=m20.(8分)求证:相似三角形对应边上的中线之比等于相似比.要求:①如图,∠A'=∠A .请用尺规作出△A' B' C'.使得:△A' B' C'.∽△ABC .(保留痕迹,不写作法)②根据图形,画出一组对应边上的中线,根据图形写出已知,求证,并证明.21.(8分) 已知Rt △ABC 中,∠B =90°,AC =8,AB =10.将AD 是由AB 绕点A 逆时针旋转90°得到的,再将△ABC 沿射线CB 平移得到△EFG ,使射线FE 经过点D(1)求∠BDF 的度数;(2)求CG 的长. 解:构辅助线如图所示: (1)∠BDF =45°EA A'B'(2)AD=AB=10,证△ABC ∽△AED , CG=AE=AD AC AB ⨯=10810⨯=22522.(10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为70元/日,每揽收一件抽成2元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的30天中随机抽取1于,求这一天甲公司揽件员人均揽件数超过40(不 含40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的 揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数; ②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.23.(10分)如图,在足够大的空地上有一段长为a 米旧墙MN .某人利用一边靠旧墙和另三边用总长100米的木栏围成一个矩形菜园ABCD ,其中AD ≤MN .(1)若a =20,所围成的矩形菜园ABCD 的面积为450平方米时,求所利用旧墙AD 长;(2)求矩形菜园ABCD 面积的最大值.24.(12分)如图1,四边形ABCD 内接于⊙O ,AC 为直径,DE ⊥AB 交AB 于点E ,交⊙O 于点F . (1)延长DC 、FB 相交于点P ,求证:PB =PC ;(2) 如图2,过点B 作BG ⊥AD 于点G ,交DE 于H .若AB =3,DH =1, ∠OHD =80°,求∠EDB 的度数.解:(1)易证:DF ∥BC ,从而CD=BF 和1==BF CDPB PC∴PB=PC ; (2)连接OD ,设∠EDB=x ,则∠EBD=90°–x ,易证:四边形BCDH 为□, AC=2 ∴BC=DH=1,∠CAB= 30° ∴∠ADB=∠ACB=60° OD=OA=r =1=OH∴∠ODH=180°–2∠OHD=180°–2×80°=20°∴∠OAD=∠ODA=∠ADB –(∠ODH+ x )=60°–(20°+ x )=40°–x 又∵∠AOD=2∠ABD=120°(图1)E CBADFPOG (图2)AB CDOE H G∴180°–2(40°–x )=120°,解之得:x =20°25.(14分)已知抛物线y =ax 2+bx +c 过点A (0,2) . (1)若图象过点(2-,0),求a 与b 满足的关系式;(2) 抛物线上任意两点M (x 1,y 1)、N (x 2,y 2)都满足x 1< x 2<0时,0))((2121>--y y x x ;0<x 1< x 2时,0))((2121<--y y x x .以原点O 为圆心,OA 为半径作⊙O 交抛物线于另两点B 、C ,且△ABC 中有一个内角为60°. ①求抛物线解析式;②P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:P A 平分∠MPN .解:(1)由抛物线过A(0,2) 得:c=2 又图象过(2-,0),∴0= a (2-)2+b (2-)+2∴a =b 22–1 (2)依题知抛物线:y =ax 2+2,AB=AC ,AD ⊥BC . ①又△ABC 中有一个内角为60°,∴△ABC 是正△. 连接OC ,则OC=OA=2,∴C(3,–1) 从而有y =–x 2+2,②设直线MN :y =kx ,则kx =–x 2+2, x 2+ kx –2=0x 1 + x 2 = –k ,x 1 x 2 =–2, x 2 = –k –x 1∵O 、M 、N 三点共线,故不妨令M 左,N 右 作ME ⊥y 轴于E ,NF ⊥y 轴于F ,则P(0,4)tan ∠1=PE ME =114y x --=114kx x --=22114x x kx x ⋅--=221214x x kx x x -=221x k +tan ∠2=PF NF=224y x -=224kx x -=11224x x kx x ⋅-=211214x kx x x x -=kx +221∴∠1=∠2即:PA 平分∠MPN .10.已知一元二次方程0)1(2)1(2=++++a b x a 有两个相等的实数根,则下面选项正确的是( ) . (A)1一定不是方程x 2+bx +a =0的根 (B)0一定不是方程x 2+bx +a =0的根 (C) 1和–1都是方程x 2+bx +a =0的根 (D) 1和–1不都是方程x 2+bx +a =0的根 第10题解析:由△=(2b )2–4(a +1)2=0得:b =±(a +1),且a +1≠0,所以:b ≠0 ①当b =–(a +1)时,x =1是方程x 2+bx +a =0的根 ②a +1≠0,a 可以取0,故x =0是方程x 2+bx +a =0的根 ③当b=a +1时,x =–1是方程x 2+bx +a =0的根但b =–(a +1)和b=a +1不能同时成立,即x =1和x =–1为方程根不能同时成立,故选(D) 16.如图,直线y =x +m 与双曲线xy 3=交于点A 、B 两点,作BC ∥x 轴,AC ∥y 轴,交BC 点C ,则S △ABC 的最小值是________.解析:x3=x +m , x 2+mx –3=0由y =x +m 知:AC=BC=x A –x B =∆=122+m∴ S △ABC =221BC =6)12(2122≥+m。