2018届中考数学专题复习五函数试题浙教版56
- 格式:doc
- 大小:1.02 MB
- 文档页数:14
浙教版初中数学专题复习第一篇数及式专题一实数一、中考要求:1.在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力.2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题.三、考点扫描1、实数的分类:2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数.若a、b互为相反数,则a+b=0,(a、b≠0)4、绝对值:代数定义:①定义(两种):几何定义: 数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()m m mmn nmn m n m b a ab a a a a a ⋅===⋅+,, (a ≠0)负整指数幂的性质:零整指数幂的性质:10=a (a ≠0) 8、实数的开方运算:()a a a a a =≥=22;0)( 9、实数的混合运算顺序1、运算法则(加、减、乘、除、乘方、开方)2、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3、运算顺序:A.高级运算到低级运算;*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2)(3)两个无理数的和、差、积、商也还是无理数,如(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一如此.*11、实数的大小比较:(1).数形结合法(2).作差法比较(3).作商法比较(4).倒数法: 如6-与6-75(5).平方法四、考点训练1、(2005、杭州,3分)有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17 是17的平方根,其中正确的有() A.0个 B.1个 C.2个 D.3个那么x取值范围是()2A、x ≤2 B. x <2 C. x ≥2 D. x>2)3、-8A.2 B.0 C.2或一4 D.0或-44、若2m-4及3m-1是同一个数的平方根,则m为()A.-3 B.1 C.-3或1 D.-15、若实数a和 b满足 b=a+5 +-a-5 ,则ab的值等于_______6、在 3 - 2 的相反数是________,绝对值是______.7、81 的平方根是()A.9 B.9 C.±9 D.±38、若实数满足|x|+x=0, 则x是()A.零或负数 B.非负数 C.非零实数D.负数五、例题剖析1、设a= 3 - 2 ,b=2- 3 ,c= 5 -1,则a、b、c的大小关系是()A.a>b>c B、a>c>bC.c>b>a D.b>c>a2、若化简|1-x|2x-5,则x的取值范围是()A.X为任意实数 B.1≤X≤4C.x≥1 D.x<43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:其中a=9时”,得出了不同的答案,小明的解答:原式= a+(1⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质:________4、计算:200120025、我国1990年的人口出生数为人。
5.2 函数(一)A 组1.(1)下列四个选项中,不是y 关于x 的函数的是(A )A. |y |=x -1B. y =2xC. y =2x -7D. y =x 2(2)下列说法中,正确的是(B )A. 若变量x ,y 满足y 2=x ,则y 是x 的函数B. 若变量x ,y 满足x +3y =1,则y 是x 的函数C. 代数式πr 3是它所含字母r 的函数43D. 在V =πr 3中,是常量,r 是自变量,V 是r 的函数43432.下列变量之间的关系不是函数关系的是(B )A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰直角三角形的斜边长与面积D .圆的周长与半径3.(1)下列图象中,表示y 是x 的函数的是(D ),A. ) ,B. ),C. ) ,D. )(2)若均匀地向如图①所示的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是(A )(第3题①) (第3题②)(3)如图②所示为一台自动测温记录仪的图象,它反映了某市冬季某天气温T与时间t之间的关系,观察图象得到下列信息,其中错误的是(C)A. 凌晨4时气温最低,为-3 ℃B. 14时气温最高,为8 ℃C. 从0时至14时,气温随时间增加而上升D. 从14时至24时,气温随时间增加而下降(第4题)4.一石激起千层浪,一枚石头投入水中,会在水面上激起一圈圈圆形涟漪,如图所示(这些圆的圆心相同).(1)在这个变化过程中,变量是圆的半径、圆的面积(或周长).(2)如果圆的半径为r,面积为s,那么s与r之间的函数表达式是s=πr2.(3)当圆的半径由1 cm增加到5 cm时,面积增加了24πcm2.5.一个正方形的边长为5 cm,它的边长减少x(cm)后得到的新正方形的周长为y(cm).(1)求y关于x的函数表达式.(2)当x=2时,求y的值,并说明这个函数值的实际意义.【解】 (1)y=20-4x.(2)当x=2时,y=20-4×2=12.其实际意义为当该正方形的边长减少2 cm后得到的新正方形的周长为12 cm.6.在等腰三角形ABC中,AB=AC,△ABC的周长是20,底边BC的长为y,腰长为x.(1)求y关于x的函数表达式.(2)当腰AC=8时,求底边BC的长.(3)当底边长为5时,求腰长.【解】 (1)由题意,得2x+y=20,∴y=-2x+20.(2)AC=8,即x=8.把x=8代入y=-2x+20,得y=-2×8+20=4.∴底边BC的长为4.(3)底边长为5,即y=5.把y=5代入y=-2x+20,得-2x+20=5,解得x=7.5.∴腰长为7.5.B 组7.物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t (s)的关系如图所示.(第7题)(1)下滑2 s 时物体的速度为__5__m/s.(2)v (m/s)与t (s)之间的函数表达式为v =t .52(3)下滑3 s 时物体的速度为7.5m/s.【解】 (1)由图可知,当t =2时,v =5,∴下滑2 s 时物体的速度为5 m/s.(2)由题意可知,平均每秒速度增加 m/s ,52∴v =t .52(3)当t =3时,v =×3=7.5(m/s).528.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一平面直角坐标系中,小亮和妈妈的行进路程S (km)与时间t (h)的函数图象如图所示.根据图象得到下列结论,其中错误的是(D )A. 小亮骑自行车的平均速度是12 km/hB. 妈妈比小亮提前0.5 h 到达姥姥家C. 妈妈在离家12 km 处追上小亮D. 9:30妈妈追上小亮(第8题)【解】 由图象可知,小亮去姥姥家所用的时间为10-8=2(h),∴小亮骑自行车的平均速度为24÷2=12(km/h),故A 正确.由图象可知,妈妈到姥姥家对应的时间t =9.5,小亮到姥姥家对应的时间t =10,10-9.5=0.5(h),∴妈妈比小亮提前0.5 h 到达姥姥家,故B 正确.由图象可知,当t =9时,妈妈追上小亮,此时小亮离家的时间为9-8=1(h),∴小亮走的路程为1×12=12(km),∴妈妈在离家12 km 处追上小亮,故C 正确.由图象可知,当t =9,即9:00时,妈妈追上小亮,故D 错误.9.在密码学中,直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a ,b ,c ,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号y =;当明码对应的序号x 为偶数时,密码对应的序号y =+13.x +12x 2字母,a,b,c,d,e,f,g,h,i,j,k,l,m序号,1,2,3,4,5,6,7,8,9,10,11,12,13字母,n,o,p,q,r,s,t,u,v,w,x,y,z序号,14,15,16,17,18,19,20,21,22,23,24,25,26按上述规定,将明码“love”译成密码是什么?【解】 对照表格可知:love 的第一个字母l 对应的序号是偶数12,代入y =+13=19,序号19对应的字母是s ;第二个字母o 对应的序号是奇数15,代入x 2y ==8,序号8对应的字母是h ;同理可得第三个字母v 对应的密码是x ,第四个x +12字母e 对应的密码是c.故将明码“love”译成密码是shxc.10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(min),所走的路程为s (m),s 与t 之间的函数关系如图所示,请回答下列问题:(第10题)(1)小明中途休息了几分钟?(2)求小明休息前爬山的平均速度.(3)小明在上述过程中所走的路程为多少米?(4)求小明休息后爬山的平均速度.【解】 (1)根据图象可知,在40~60 min ,路程没有发生变化,所以小明中途休息的时间为60-40=20(min).(2)根据图象可知,当t =40 时,s =2800,∴小明休息前爬山的平均速度为2800÷40=70(m/min).(3)根据图象可知,小明在上述过程中所走的路程为3800 m.(4)小明休息后爬山的平均速度为(3800-2800)÷(100-60)=25(m/min).数学乐园11.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500 m ,先到终点的人原地休息.已知甲先出发2 s ,在跑步过程中,甲、乙两人之间的距离y (m)与乙出发的时间t (s)之间的关系如图所示.求a ,b ,c 的值.(第11题)导学号:91354029【解】 当t =0时(即乙出发时),甲、乙相距8 m ,说明甲跑8 m 用了2 s, 则甲的速度为 =4(m/s).82乙跑500 m 用了100 s ,则乙的速度为=5(m/s).500100当t =a (s)时,甲、乙两人的距离为0 m ,说明乙追上了甲,则有(5-4)a =8,解得a =8.当乙出发100 s ,即甲出发(100+2)s 时,甲、乙两人的距离为b (m),∴b =5×100-4×(100+2)=92.当t =c (s)时,甲、乙两人的距离为0 m ,说明甲跑到了终点,∴c =-2=123.5004综上所述,a =8,b =92,c =123.。
2018年全国各地中考数学压轴题汇编(浙江专版)函数参考答案与试题解析1.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.2.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a ≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x <8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.3.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲65﹣x2(65﹣x)15乙x x130﹣2x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为(130﹣2x)元.故答案为:65﹣x;2(65﹣x);130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26=3198即当x=26时,W最大值答:安排26人生产乙产品时,可获得的最大利润为3198元.4.已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.5.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.6.设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.解:(1)由题意△=b2﹣4•a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0∴二次函数图象与x轴的交点的个数有两个或一个(2)当x=1时,y=a+b﹣(a+b)=0∴抛物线不经过点C把点A(﹣1,4),B(0,﹣1)分别代入得解得∴抛物线解析式为y=3x2﹣2x﹣1(3)当x=2时m=4a+2b﹣(a+b)=3a+b>0①∵a+b<0∴﹣a﹣b>0②①②相加得:2a>0∴a>07.如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4﹣1=3.8.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K 的范围.解:(1)将x=2代入y=2x,得:y=4,∴点M(2,4),由题意,得:,∴;(2)如图,过点P作PH⊥x轴于点H,∵点P的横坐标为m,抛物线的解析式为y=﹣x2+4x,∴PH=﹣m2+4m,∵B(2,0),∴OB=2,∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m,∴K==﹣m+4,由题意得A(4,0),∵M(2,4),∴2<m<4,∵K随着m的增大而减小,∴0<K<2.9.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.10.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).解:(1)∵P1(4,0),P2(0,0),4﹣0=4>0,∴绘制线段P1P2,P1P2=4;(2)∵P1(0,0),0﹣0=0,∴绘制抛物线,设y=ax(x﹣4),把(6,6)代入得:6=12a,解得:a=,∴y=x(x﹣4)=x2﹣2x.11.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?解:(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v ≥=20,答:平均每小时至少要卸货20吨.12.“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:路程(千米)甲仓库乙仓库A果园1525B果园2020设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣102×20×(80﹣x)2×20×(x﹣10)(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?解:(1)填表如下:运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x )B 果园80﹣xx ﹣102×20×(80﹣x )2×20×(x ﹣10)故答案为80﹣x ,x ﹣10,2×20×(80﹣x ),2×20×(x ﹣10);(2)y=2×15x +2×25×(110﹣x )+2×20×(80﹣x )+2×20×(x ﹣10), 即y 关于x 的函数表达式为y=﹣20x +8300, ∵﹣20<0,且10≤x ≤80,∴当x=80时,总运费y 最省,此时y 最小=﹣20×80+8300=6700.故当甲仓库运往A 果园80吨有机化肥时,总运费最省,最省的总运费是6700元.13.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升) ∴加满油时油箱的油量是40+30=70升. (2)设y=kx +b (k ≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70 ∴y=﹣0.1x +70, 当y=5 时,x=650即已行驶的路程的为650千米.14.设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=2x+1;(2)点(2a+2,a2)在该一次函数y=2x+1的图象上,∴a2=2(2a+2)+1,解得,a=﹣1或a=5,即a的值是﹣1或5;(3)反比例函数y=的图象在第一、三象限,理由:∵点C(x1,y1)和点D(x2,y2)在该一次函数y=2x+1的图象上,m=(x1﹣x2)(y1﹣y2),假设x1<x2,则y1<y1,此时m=(x1﹣x2)(y1﹣y2)>0,假设x1>x2,则y1>y1,此时m=(x1﹣x2)(y1﹣y2)>0,由上可得,m>0,∴m+1>0,∴反比例函数y=的图象在第一、三象限.15.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.解:(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组,解得,∴点E(,),F(0,1).点M在△AOB内,1<4b+1<∴0<b<.当点C,D关于抛物线的对称轴对称时,b﹣=﹣b,∴b=,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<时,y1>y2,②当b=时,y1=y2,③当<b<时,y1<y2.16.如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB==,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°﹣60°=30°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a,),∵点A、D在同一反比例函数图象上,∴2a=(3+a),∴a=3,∴OB=3.(3)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°﹣∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=30°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=3,∴P(3,),∴k=10.②如图3中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴=.∴=,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=30°,∠ADK=∠KA1P=30°,∴∠APD=∠ADP=30°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=3,∴P(3,4),∴k=12.17.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式;(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.解:(1)第一班上行车到B站用时=小时,第一班下行车到C站分别用时=小时;(2)当0≤t≤时,s=15﹣60t,当<t≤时,s=60t﹣15;(3)由(2)可知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,①当x=2.5时,往B站用时30分钟,还需要再等下行车5分钟,t=30+5+10=45,不合题意;②当x<2.5时,只能往B站乘下行车,他离B站x千米,则离他右边最近的下行车离C站也是x千米,这辆下行车离B站(5﹣x)千米,如果能乘上右侧的第一辆下行车,则,解得:x≤,∴0<x≤,∵18≤t<20,∴0<x≤符合题意;如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x>,,解得:x≤,∴,22≤t<28,∴符合题意;如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x>,,解得:x≤,∴<x≤,35≤t<37,不合题意,∴综上,得0<x≤;③当x>2.5时,乘客需往C站乘坐下行车.离他左边最近的下行车离B站是(5﹣x)千米,离他右边最近的下行车离C站也是(5﹣x)千米.如果乘上右侧第一辆下行车,则≤,解得:x≥5,不合题意.∴x≥5,不合题意.如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x<5,≤,解得x≥4,∴4≤x<5,30<t≤32,∴4≤x<5符合题意.如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x<4,≤,解得x≥3,∴3≤x<4,42<t≤44,∴3≤x<4不合题意.综上,得4≤x<5.综上所述,0<x≤或4≤x<5.18.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.解:(1)①如图1,∵m=4,∴反比例函数为y=,设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.。
(5)选择题1. (2002年浙江金华、衢州4分)抛物线y =(x -5)2十4的对称轴是【 】(A )直线x=4 (B )直线x=-4 (C )直线x=-5 (D )直线x=52. (2003年浙江金华、衢州4分)如图,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是【 】A .x >3B .x <3C .x >1D .x <13. (2004年浙江金华4分)抛物线()2y x 126=-+的顶点坐标是【 】A 、(-12,6)B 、(12,-6)C 、(12,6)D 、(-12,-6)4. (2005年浙江金华4分)抛物线2y=(x 1)+2-的对称轴是【 】A、直线x=-1 B、直线 x=1 C、直线x=-2 D、直线x=25. (2006年浙江金华4分)二次函数2y ax bx c =++(a 0≠)的图象如图所示,则下列结论:①a >0; ②c >0; ③2b c 4a ->0,其中正确的个数是【 】A. 0个B. 1个C. 2个D. 3个6. (2007年浙江金华4分)下列函数中,图象经过点(11)-,的反比例函数解析式是【 】A .1y x =B .1y x =-C .2y x =D .2y x=-7. (2007年浙江金华4分)一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k<0;②a>0;③当x <3时,y 1<y 2中,正确的个数是【 】A .0B .1C .2D .38. (2008年浙江金华3分)三军受命,我解放军各部队奋力抗战地救灾一线。
现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是【 】A 、1B 、2C 、3D 、49. (2009年浙江金华3分)抛物线2y (x 2)3=-+的对称轴是【 】A.直线x= -2 B.直线 x=2 C.直线x= -3 D.直线x=310. (2019年浙江金华3分)已知抛物线2y ax bx c =++的开口向下,顶点坐标为(2,-3),那么该抛物线有【 】A. 最小值 -3B. 最大值-3C. 最小值2D. 最大值211.(2019年浙江金华、丽水3分)若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点【 】A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)二、填空题1. (2002年浙江金华、衢州5分)函数2y ax ax 3x 1=-++的图象与x 轴有且只有一个交点,那么a 的值和交点坐标分别为 ▲ .2. (2005年浙江金华5分)请写出一个图象经过点(1,4)的函数解析式: ▲ .3. (2005年浙江金华5分)在直角坐标系xOy 中,O 是坐标原点,抛物线2y=x x 6--与x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴相交于点C 。
2018年秋浙教版八年级数学上册练习:5.2 函数(二)7.某剧院的观众席的座位为扇形,且按下列方式设置:排数(x)1234…座位数(y)50535659…(2)写出座位数y与排数x之间函数的表达式.(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.【解】(1)由图表中数据可得,当x每增加1时,y增加3.(2)由题意,得y=50+3(x-1)=3x+47.(3)某一排不可能有90个座位.理由如下:令y=90,得3x+47=90,解得x=433.∵x为整数,∴某一排不可能有90个座位.B组8.如图,根据流程图中的程序,当输出数值y=5时,输入的数值x是(C)A. 17 B. -13C. 17或-13 D.17或-17,(第8题))【解】当x>0时,1x-2=5,解得x=17.当x<0时,-1x +2=5,解得x=-13.∴输入的数值x是17或-13.(第9题)9.如图,一个水平放置的长方形水槽长18 dm ,宽12 dm ,高9 dm ,水深4 dm ,一个棱长为6 dm 的立方体铁块,以底面平行于液面的方式逐步没入水中,设铁块没入水中的高度为x (dm),同时水面上升的相应高度为y (dm),求y 关于x 的函数表达式和自变量x 的取值范围.【解】 由铁块没入水中的体积等于水面升高的体积,得18×12y =6×6x ,∴y =16x .当铁块放至水槽底部时,没入水中的铁块的高度x 即为水面上升的高度.此时的体积等于水的体积加上入水铁块的体积和,即18×12x =6×6x +18×12×4,解得x =4.8,∴x 的取值范围是0≤x ≤4.8.10.某厂生产一种零件,每一个零件的成本为40元,销售单价为60元.该厂为了鼓励客户购买,决定当一次性购买零件超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(1)当一次性购买多少个零件时,销售单价恰为51元?(2)设一次性购买零件x 个时,销售单价为y 元,求y 关于x 的函数表达式.(3)当客户一次性购买500个零件时,该厂获得的利润为多少?当客户一次性购买1000个零件时,该厂获得的利润又为多少?(利润=售价-成本.)【解】 (1)设当一次性购买x 个零件时,销售单价为51元.由题意,得(x -100)×0.02=60-51,解得x =550.答:当一次性购买550个零件时,销售单价恰为51元.(2)当0<x ≤100时,y =60;当100<x ≤550时,y =60-(x -100)×0.02=-0.02x +62;当x >550时,y =51.综上所述,y =⎩⎪⎨⎪⎧60(0<x ≤100),-0.02x +62(100<x ≤550),51(x>550).(3)当x =500时,利润为(62-0.02×500-40)×500=6000(元).当x =1000时,利润为(51-40)×1000=11000(元).答:当客户一次性购买500个零件时,该厂获得的利润为6000元;当客户一次性购买1000个零件时,该厂获得的利润为11000元.数学乐园11.某花卉基地出售两种盆栽花卉:太阳花的价格为6元/盆,绣球花的价格为10元/盆.若一次性购买绣球花超过20盆时,超过20盆的部分绣球花打8折.(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数表达式.(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花的数量不超过绣球花数量的一半,则两种花卉各买多少盆时,总费用最少?最少总费用为多少元?【解】 (1)太阳花:y =6x ;绣球花:y =⎩⎪⎨⎪⎧10x (0≤x ≤20),8x +40. (2)设购买绣球花x 盆,则购买太阳花(90-x)盆.由题意,得90-x ≤x 2,解得x ≥60. 设总费用为y 总,则y 总=6(90-x)+8x +40=2x +580.∴当x =60,即购买绣球花60盆,购买太阳花30盆时,总费用最少,最少总费用为700元.。
专题3.3 一元一次不等式(组)含参问题(12大类型)(全章知识梳理与考点分类讲解)第一部分【题型目录】【题型1】已知含参方程的解的正负性,求参数取值范围............................1;【题型2】已知含参一元一次不等式的解集,求参数取值范围........................2;【题型3】已知含参一元一次不等式整数解,求参数取值范围........................2;【题型4】已知含参一元一次不等式组有解,求参数取值范围........................2;【题型5】已知含参一元一次不等式组无解,求参数取值范围........................2;【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围......3;【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围......3;【题型8】已知含参一元一次不等式组解集,求参数值或取值范围.............3;【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围........4;【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围...4;【题型11】直通中考...........................................................5;【题型12】拓展延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】已知含参方程的解的正负性,求参数取值范围【例1】(23-24八年级下·陕西汉中·期末)1.关于x 的分式方程32211x mx x -=+++的解为负数,则m 的取值范围是( )A .0m <B .4m >-C .4m <-D .4m <-且5m ¹-【变式1】(20-21八年级下·江苏扬州·期中)2.已知关于x 的方程232x mx -=-的解是非负数,则m 的取值范围为 .【变式2】(23-24七年级下·贵州黔东南·阶段练习)3.若关于x 的方程528x a -=的解是非正数,则a 的取值范围是( )A .4a >-B .4a <-C .4a ³-D .4a £-【题型2】已知含参一元一次不等式的解集,求参数取值范围【例2】(23-24七年级下·全国·期中)4.已知关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,则a 的取值范围是( )A .5a £B .<5a C .3a £D .>5a 【变式1】(23-24七年级下·黑龙江齐齐哈尔·期末)5.如果关于x 的不等式(1)1a x -³解集为11x a³-,则a 的取值范围是 .【变式2】6.如果关于x 的不等式()11a x a +>+的解集为1x <,那么a 的取值范围是 .【题型3】已知含参一元一次不等式整数解,求参数取值范围【例3】(2024七年级下·江苏·专题练习)7.若关于x 的一元一次不等式1x m +£只有1个正整数解,则m 的取值范围是 .【变式1】(23-24八年级下·陕西宝鸡·期中)8.若关于x 的不等式57x m x +³的正整数解是1234、、、.则m 的取值范围为( )A .10m <B .8m ³C .810m ££D .810m £<【变式2】(23-24六年级下·上海浦东新·期末)9.若关于x 的不等式0x m -³的最小整数解是2x =,则m 的取值范围是⋯( )A .12m £<B .12m <£C .23m <£D .23m £<【题型4】已知含参一元一次不等式组有解,求参数取值范围【例4】(23-24七年级下·河南南阳·期末)10.已知关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,则实数m 的取值范围是( )A .3m >B .2m ≥C .1m <D .1m £-【变式1】(23-24七年级下·全国·单元测试)11.若不等式组12x x k <£ìí>î有解,则k 的取值范围是( )A .2k <B .2k ³C .1k <D .12k £<【变式2】(23-24七年级下·湖南衡阳·期中)12.关于x 的不等式组3284a x x a ->ìí+>î有解且每一个x 的值均不在26x -££的范围中,则a 的取值范围是 .【题型5】已知含参一元一次不等式组无解,求参数取值范围【例5】(23-24八年级下·陕西西安·期末)13.若关于x 的一元一次不等式组11340x xx a ì-³-ïíï->î无解,则a 的取值范围是 .【变式1】(23-24六年级下·上海杨浦·期末)14.若关于x 的不等式组62x x m m -<<ìí-<î无解,那么m 的取值范围是【变式2】(24-25八年级上·湖南长沙·开学考试)15.已知不等式组40329x a x x -<ìí-³-+î无解,则a 的取值范围是.【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围【例6】(24-25八年级上·湖南衡阳·开学考试)16.若关于x 的不等式组()()324122x x x m x ì-<-í-£-î,恰好有三个整数解,则m 的取值范围是 .【变式1】(22-23八年级下·四川达州·期中)17.若关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,则m 的取值范围是 .【变式2】(23-24八年级下·全国·单元测试)18.关于x 的不等式组()1023544133x x k x x k +ì+>ïïí+ï+>++ïî恰有三个整数解,则k 的取值范围是( )A .112k <£B .112k £<C .312k £<D .312k <£【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围【例7】(22-23七年级下·湖北武汉·阶段练习)19.如果关于x 的不等式组2030x m n x -³ìí-³î仅有四个整数解;1-、0、1、2,那么适合这个不等式组的整数m 、n 组成的有序实数对(),m n 最多共有( )A .4个B .6个C .8个D .9个【变式】(23-24七年级下·四川资阳·期末)20.已知关于x 的不等式组0217x a x -<ìí-³î至少有两个整数解,且存在以3,a ,6为边的三角形,则整数a 的值有个【题型8】已知含参一元一次不等式组解集,求参数值或取值范围【例8】(2024·湖北·模拟预测)21.若关于x 的一元一次不等式组63(1)51x x x m -+<-ìí->-î的解集是2x >,则m 的取值范围是( )A .3m >B .3m …C .3m <D .3m …【变式1】(23-24八年级下·全国·单元测试)22.若关于x 的不等式组220x a b x ->ìí->î的解集为11x -<<,则2019()a b +的值是( )A .1B .12C .1-D .12-【变式2】(22-23七年级下·江苏盐城·阶段练习)23.不等式组29612x x x k +>+ìí-<î的解集为2x <.则k 的取值范围为 .【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围【例9】(22-23八年级下·重庆忠县·期中)24.如果关于x 的不等式组441113(22m x x x ->ìïí-<+ïî有且仅有三个整数解,且关于x 的分式方程26122mx x x --=--有非负数解,则符合条件的所有整数m 的和为 .【变式1】(23-24七年级下·重庆北碚·期末)25.已知关于y 的分式方程52211a y y --=---解为非负整数,且关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,则所有满足条件的整数a 的和为( )A .6B .5C .9D .13【变式2】(22-23八年级下·江苏无锡·阶段练习)26.已知方程21144a a a +=--,且关于x 的不等式组x a x b>ìí£î只有2个整数解,那么b 的取值范围是( )A .13b -<£B .23b <£C .45b £<D .34b £<【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围【例10】(24-25八年级上·湖南长沙·开学考试)27.若存在一个整数m ,使得关于,x y 的方程组432173453x y m x y m +=+ìí+=-î的解满足1x y +£,且让不等式5041x m x ->ìí-<-î只有3个整数解,则满足条件的所有整数m 的和是( )A .12B .6C .—14D .—15【变式】(23-24七年级下·山东威海·期末)28.已知关于x ,y 的方程组3454331x y m x y m +=-ìí+=+î的解满足0,0x y x y +<->,求m 的取值范围.第三部分【中考链接与拓展延伸】【题型11】直通中考【例1】(2024·四川南充·中考真题)29.若关于x 的不等式组2151x x m -<ìí<+î的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m £【例2】(2023·四川眉山·中考真题)30.关于x 的不等式组35241x m x x >+ìí-<+î的整数解仅有4个,则m 的取值范围是( )A .54m -£<-B .54m -<£-C .43m -£<-D .43m -<£-【题型12】拓展延伸【例1】(22-23七年级下·重庆江津·期中)31.已知关于x 、y 的方程组3453x y ax y a +=-ìí-=î,下列结论中正确的个数有( )① 当3a =时,41x y =ìí=î是方程组的解;② 不存在一个实数a ,使得x 、y 的值互为相反数;③ 当方程组的解是52x y =ìí=-î时,方程组()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïî的解为3272m n ì=ïïíï=ïî;④ x 、y 都为自然数的解有3对.A .1个B .2个C .3个D .4个【例2】(23-24九年级上·重庆九龙坡·阶段练习)32.关于x 的分式方程23133a x x x -+=++的解为整数,且关于y 的不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,则所有满足条件的整数a 的值之和为 .1.D【分析】本题考查了分式方程的解,分式方程的解为负数的条件是有解且解为负数,解题的关键是能正确解分式方程并理解分式方程的解为负数的条件为有解且解为负数.【详解】解:322,11x mx x -=+++方程两边同乘以()1x +得:()3221,x x m -=++解得:4,x m =+∵关于x 的分式方程32211x mx x -=+++的解为负数,10x \+¹且 0,x <即410m ++¹且40,m +<解得:4m <-且 5.m ¹-故选:D .2.6m £且4m ¹##4m ¹且6m £【分析】本题考查了分式方程的解,解不等式等知识,首先求出关于x 的方程232x mx -=-的解,然后根据解是非负数,再解不等式求出m 的取值范围..【详解】解:关于x 的方程232x mx -=-得6x m =-+,20x -¹Q ,2x \¹,Q 方程的解是非负数,60m \-+³且62m -+¹,解这个不等式得6m £且4m ¹.故答案为:6m £且4m ¹.3.D【分析】本题考查了解一元一次方程和解一元一次不等式,熟练掌握解方程和不等式的方法是解题的关键.先解一元一次方程,再根据题意构建一元一次不等式,最后解不等式即可.【详解】∵528x a -=,∴825ax +=,∵关于x 的方程528x a -=的解是非正数,∴8205ax +=£,解得4a £-,故选:D .4.A【分析】考查不等式的解集,掌握一元一次不等式的求法是解题的关键. 先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】解:解不等式 413x a +>得,34ax ->,解不等式2103x +>得,12x >-,Q 关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,3142a -\³-,解得:5a £,故选:A ;5.1a <【分析】本题考查了不等式的性质,根据题意可知关于x 的不等式(1)1a x -³解集为11x a³-,则x 的系数的正数,再根据这个结果求出a 的取值范围,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:∵关于x 的不等式(1)1a x -³解集为11x a³-,∴10a ->,∴1a <,故答案为:1a <.6.1a <-【分析】本题考查了不等式的性质和解不等式,根据不等式的性质求解即可,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】∵关于x 的不等式()11a x a +>+的解集为1x <,∴10a +<,解得:1a <-,故答案为:1a <-.7.2<3m £【分析】先解一元一次不等式可得x ≤m−1,然后根据题意可得11<2m £-,进行计算即可解答.本题考查了一元一次不等式的整数解,准确熟练地进行计算是解题的关键.【详解】解:1x m +£,解得x ≤m−1,∵一元一次不等式1x m +£只有1个正整数解,∴11<2m £-,∴2<3m £,故答案为:2<3m £.8.D【分析】本题考查解不等式,解57x m x +³得2m x £,再由题意可得452m£<,解这个不等数组即可得出答案.【详解】解:解57x m x +³得2mx £,∵该不等式的正整数解为1、2、3、4,∴452m £<解得810m £<.故选:D .9.B【分析】本题主要考查解一元一次不等式的基本能力,解关于x 的不等式求得x m ³,根据不等式的最小整数解是2x =即可作答.【详解】解:0x m -³,移项,得:x m ³,Q 不等式的最小整数解是2x =,12m \<£,故选:B .10.A【分析】本题考查了求不等式的解集及其参数,先求出不等式组的解集,再根据不等式组有解的情况得到关于m 的不等式,求解即可,理解题意,熟练掌握求不等式组的解集是解题的关键.【详解】解:()12432x mx x -ì<-ïíï-£-î①②,解不等式①得,2x m <-,解不等式②得,1x ³,∵关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,∴21m ->,解得:3m >故选:A .11.A【分析】本题考查已知不等式的解集求参数,根据求不等式组解集的方法“大中取大,小中取小,大小小大中间找,大大小小找不到” 的原则求解即可.【详解】Q 不等式组有解,\两个不等式的解有公共部分,2.k \<故选:A .12.1a <【分析】本题考查了解一元一次不等式组,根据不等式组的解的情况求参数的取值范围,先求出不等式组的解集为243a x a -<<-,再结合题意得出243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,求解即可得出答案.【详解】解:3284a x x a ->ìí+>î①②,解不等式①得:3x a <-,解不等式②得:24x a >-,Q 不等式组有解,243a x a \-<<-,Q 每一个x 的值均不在26x -££的范围中,\243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,解得:1a <,故答案为:1a <.13.0a ³【分析】本题考查了解一元一次不等式组,不等式组解集的情况求参数,先对不等式进行求解,再根据关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解即可解答,熟练掌握知识点的应用是解题的关键.【详解】解:11340x x x a ì-³-ïíï->î①②解不等式①得,0x £,解不等式②得,x a >,∵关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解,∴0a ³,故答案为:0a ³.14.3m £-【分析】本题考查了不等式的解集,先解不等式x m m -<,然后根据不等式组无解,即可求出m 的取值范围.【详解】解:解不等式x m m -<,得2x m <,∵62x x m m -<<ìí-<î无解,∴26m £-,∴3m £-,故答案为:3m £-.15.16a £【分析】本题考查了解一元一次不等式组.熟练掌握解一元一次不等式组是解题的关键.解40x a -<得4a x <,解329x x -³-+得4x ³,由不等式组40329x a x x -<ìí-³-+î无解,可得44a £,计算求解即可.【详解】解:40329x a x x -<ìí-³-+î,40x a -<,解得,4a x <,329x x -³-+,解得,4x ³,∵不等式组40329x a x x -<ìí-³-+î无解,∴44a £,解得,16a £,故答案为:16a £.16.14m £<##41m >³【分析】本题考查不等式组的整数解问题,正确理解恰有3个整数解得意义是解题的关键.先解不等式组,写出不等式组的解集,再根据恰有三个整数解,可求出m 的范围.【详解】解:()()324122x x x m x ì-<-í-£-î①②解不等式①得:2x >-,解不等式②得:23m x +£,Q 不等式组有解,\不等式组的解集是:223m x +-<£.Q 不等式组恰好有3个整数解,则整数解是1,0,1-,\2123m +£<.14m \£<,故答案为:14m £<.17.5433m -<£-【分析】本题考查了根据一元一次不等式组解的情况求参数的取值范围,先求出不等式组的解集,再根据不等式组的解集只有3个整数解可得3322m -<+£-,解不等式即可求解,掌握解一元一次不等式组是解题的关键.【详解】解:()213644x x m x +<ìïí-³+ïî①②,由①得,x <1,由②得,32x m ³+,∴不等式组的解集为321m x +£<,∵关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,∴3322m -<+£-,即322323m m +£-ìí+>-î,解得5433m -<£-,故答案为:5433m -<£-.18.D【分析】本题主要考查了根据不等式组的解集情况求参数,先分别求出不等式组中两个不等式得解集,再根据原不等式组只有三个整数解建立关于k 的不等式组,解之即可得到答案.【详解】解:()1023544133x x k x x k +ì+>ïïí+ï+>++ïî①② 解不等式①得:25x >-,解不等式②得:2x k <,∵原不等式组恰有三个整数解,∴223k <£,∴312k £<,故选:D .19.B【分析】先求出不等式组的解,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】解:∵解不等式20x m -³得:2m x ³,解不等式30n x -³得:3n x £,∴不等式组的解集是23m n x ££,∵关于x 的不等式组的整数解仅有1-,0,1,2,∴212m -<-≤,233n £<,解得:4269m n -<£-£<,,即m 的值是32--,,n 的值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(),mn 共有6个,是()()()()()()363738262728------,,,,,,,,,,,.故选:B .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.20.3【分析】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.依据不等式组至少有两个整数解,即可得到a 5>,再根据存在以3,a ,6为边的三角形,可得39a <<,进而得出a 的取值范围是59a <<,即可得到a 的整数解有3个.【详解】解:解不等式组得:4x a £<,∵至少有两个整数解,则整数解至少为4和5,∴5a >,又∵存在以3,a ,6为边的三角形,∴39a <<,∴a 的取值范围为59a <<,∴整数a 的值为:6,7,8,有3个故答案为:3.21.D【分析】本题考查的是解一元一次不等式组,求出第一个不等式的解集,根据口诀:“同大取大、同小取小、大小小大中间找、大大小小无解”即可确定m 的范围.【详解】解:解不等式63(1)5x x -+<-得x >2,解不等式1x m ->-得1x m >-,∵解集是2x >,∴12m -£,解得3m £,故选D .22.C【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据不等式组的解集得到a 、b 的值,代入计算即可.【详解】解:220x a b x ->ìí->î①②,解①得:2x a >+,解②得:2b x <,∵不等式组220x a b x ->ìí->î的解集为11x -<<,∴2112a b +=-ìïí=ïî,解得:32a b =-ìí=î,∴()20192019()321a b +=-+=-.故选:C .23.0k ³##0k £【分析】本题考查了根据不等式组的解集求参数,先分别求解两个不等式,再根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”得出22k £+,求解即可.【详解】解:29612x x x k +>+ìí-<î①②,由①可得:2x <,由②可得:2x k <+,∵该不等式组的解集为2x <,∴22k £+,解得:0k ³,故答案为:0k ³.24.5【分析】本题主要考查解一元一次不等式组,分式方程的综合,掌握不等式的性质,不等式组的取值方法,解分式方程的方法是解题的关键.根据不等式的性质分别求解,根据不等式组的取值方法“同大取大,同小取小,大小小大中间找,大大小小无解”及不等式组的解集的情况可得04m <£,再根据解分式方程的方法得到61x m =-,由分式方程有非负数解,可得14m <<,由此即可求解.【详解】解:441113(22m x x x ->ìïí-<+ïî,解不等式44m x ->,得:44m x -<,解不等式111322x x æö-<+ç÷èø,得:72x >-,∵不等式组有且仅有三个整数解,∴4104m --<£,解得:04m <£,解关于x 的分式方程26122mx x x --=--,得:61x m =-,∵分式方程有非负数解,∴601m ³-,且621m ¹-,10m -¹,解得:1m ³且4m ¹且1m ¹,综上,14m <<,所以所有满足条件的整数m 的值为2,3,∴符合条件的所有整数m 的和为235+=.故答案为:5.25.A【分析】本题主要考查解分式方程和一元一次不等式方程组,首先解得不等式方程组的解,根据题意找到a 的范围,再解的分式方程的解,结合分式方程的解和a 的范围求得a 的可能值即可.【详解】解:2311122y a y ->ìïí+£ïî由23y a ->,解得32a y +>,由11122y +£,解得5y £,则不等式方程组的解为,352a y +<£,∵关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,∴3252a +££,解得17a ££,52211a y y --=---,去分母得,()()2152y a ---=,去括号、移项得,25y a -=-,系数化为1得,52a y -=,∵1y =为分式方程的增根,∴512a -¹,解得3a ¹,∵y 的分式方程52211a y y --=---解为非负整数,∴502a y -=³,解得5a £,∴15a £<且3a ¹,∴当1a =时,2y =;当2a =时,32y =,舍去;当3a =时,1y =,舍去;当4a =时,12y =,舍去;当5a =时,0y =;则所有满足条件的整数a 的和为156+=.故选:A .26.D【分析】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.先解分式方程,得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:解方程21144a a a+=--,得1a =,经检验,1a =是该分式方程的解,∵关于x 的不等式组x a x b >ìí£î,即1x x b >ìí£î只有2个整数解,∴34b £<.故选:D .27.D【分析】根据方程组的解的情况,以及不等式组的解集情况,求出m 的取值范围,再进行求解即可.本题主要考查了解二元一次方程组、解不等式组,求不等式的整数解等知识点,掌握解方程组和不等式组的方法是解题的关键.【详解】解:432173453x y m x y m +=+ìí+=-î①②,+①②,得:77714x y m +=+,∴2x y m +=+,∵1x y +£,∴21m +£, 解得:1m £-,解不等式50x m ->,得:5m x >, 解不等式41x -<-,得:3x <,故不等式组的解集是:35m x <<∵不等式组只有3个整数解,∴105m -£<,解得50m -£<,∴51m -££-,∴符合条件的整数m 的值的和为5432115-----=-,故选:D .28.31m -<<【分析】本题考查根据方程组的解集的情况求参数的范围,求不等式组的解集,根据方程组的解集的情况,得到关于m 的不等式组,求解即可.【详解】解:3454331x y m x y m +=-ìí+=+î①②,+①②得:7744x y m +=-,即447m x y -+=,-②①得:26x y m -=+,∵00x y x y +-,,∴4407260m m -ì<ïíï+>î∴31m -<<,故答案为:31m -<<.29.B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<ìí<+î,得:31x x m <ìí<+î,∵不等式组的解集为:3x <,∴13m +³,∴2m ≥;故选B .30.A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x >+ìí-<+î①②,由②得:3x <,解集为33m x +<<,由不等式组的整数解只有4个,得到整数解为2,1,0,1-,∴231m -£+<-,∴54m -£<-;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m -£+<-是解此题的关键.31.B【分析】此题考查了二元一次方程组的解,一元一次不等式组,①把3a =代入方程组求出解,即可做出判断;②根据题意得到0x y +=,代入方程组求出a 的值,即可做出判断;③()()()()391232106m n m n a m n m n aì++-=-ïí+--=ïî的各项和原方程成比例,故可得方程52m n m n +=ìí-=-î,即可解答;④用a 表示,x y ,可得一元一次不等式组,再根据a 的取值范围,即可解答,熟知方程的各项成比例时,两个方程的解相同,是解题的关键.【详解】解:当3a =时,原方程为343533x y x y +=-ìí-=´î,解得41x y =ìí=-î,故①错误;x 、y 的值互为相反数时,可得0x y +=,可得方程3453y y a y y a-+=-ìí--=î,方程无解,故②正确;()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïîQ 的各项和原方程成比例,故可得52m n m n +=ìí-=-î,解得3272m n ì=ïïíï=ïî,故③正确;解3453x y a x y a +=-ìí-=î,可得5212a x a y +ì=ïïí-ï=ïî,当,x y 为自然数时,可得502102a a +ì³ïïí-ï³ïî,解得51a -££且a 为奇数,故5,3,1,1a =---,即x 、y 都为自然数的解有4对,故④错误;故选:B .32.20-【分析】本题考查了分式方程的解,一元一次不等式组的整数解,由分式方程得12a x +=,由一元一次不等式组得23a y +<£-,根据不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,即可得到125a -<<-,再由12a x +=为整数,即可得到a 的值,正确掌握解一元一次不等式组和解分式方程得方法是解题的关键.【详解】解:∵23133a x x x-+=++,∴12a x +=,由1313212y y a y y +ì+³ïïí+ï<-ïî得23a y +<£-,∵不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,∴125a -<<-,∵12a x +=为整数,∴11a =-或9-或―7,又∵30x +¹,∴1302a ++¹,∴7a ¹-,∴11a =-或9-,∴所有满足条件的整数a 的值之和()11920=-+-=-,故答案为:20-.。
第二部分题型研究题型三函数实际应用题类型一图像类针对演练A、B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发.图1. (2017青岛)llAst(h)的关系.请结合图象解答下列问题:,(km)表示两人离与时间地的距离中21All);甲的速度是乙离或地的距离与时间关系的图象是________(填(1)表示21________km/h;乙的速度是________km/h;(2)甲出发多少小时两人恰好相距5 km?第1题图A、BAB城出发沿这一公路驶向两城间的公路长为2. 450千米,甲、乙两车同时从BAyx(与行驶时间小(千米)城,甲车到达城1小时后沿原路返回.如图是它们离城的路程时)之间的函数图象.yx之间的函数解析式,并写出函数自变量的取值范围;与 (1)求甲车返回过程中(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.第2题图3. (2017宿迁)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速.当天早上小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车yx(分钟)之间的函数图象如图所示.与行驶时间(千米) 辆从安康小区站出发所行驶路程Am的值;的纵坐标(1)求点(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.第3题图4. (2015丽水)甲、乙两人匀速从同一地点到1500米处的图书馆看书.甲出发5分钟st(分),米)甲行走的时间为,/后,乙以50米分的速度沿同一路线行走.设甲、乙两人相距(st的函数图象的一部分如图所示.关于(1)求甲行走的速度;st的函数图象的其余部分;关于在坐标系中,补画(2)(3)问甲、乙两人何时相距360米?题图4第5. 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶xyyx之间的函数关系.与(km),图中的折线表示的时间为 (h),两车之间的距离为B的实际意义图千米;中点是的(1)甲、乙两地之间距离为__________________________;BCyxx的取值范围; (2)求线段所表示的之间的函数关系式,并写出自变量与(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车晚出发多少小时?yyx之间的函数关系.请在图②中画出快车和慢车距离甲地的路程与行驶时间, (4)BA第5题图考向2 费用问题(绍兴:2017、2013.18)针对演练1. 某市为鼓励市民节约用水,自来水公司按分段收费标准收费,如图反映的是每月水yx(吨)与用水量之间的函数关系.费(元)yx的函数解析式;关于10(1)当用水量超过吨时,求(2)按上述分段收费标准,小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?1题图第A、B两类图书进月23日的“世界读书日”,计划购进2. 某书店为了迎接2017年4A、BAB本,购进/类图书的单价为16两类图书共1000本,其中购进元行销售,若购进yx(本)之间存在如图所示的函数关系)(元与购买数量.类图书所需费用yx之间的函数关系式;与(1)求AA、B两类图书共需要多少元?类图书400本,则购进若该书店购进(2)第2题图3. 如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行驶8千米时,收费应为________元;(2)从图象上你能获得哪些信息(请写出2条);(3)求出收费y(元)与行驶路程x(千米)(x≥3)之间的函数关系式.第3题图某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘)淮安4. (2017.ABCDyx(人))制了如图所示的图象,图中折线与参加旅游的人数表示人均收费之间的(元函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?第4题图5. (2017上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.yx(平方米)与绿化面积)是一次函数关系,如图所示.甲公司方案:每月的养护费用 (元乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.yx的函数解析式;求如图所示的与(1)(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.第5题图6. (2017天门)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付yyx之间的函数关系如图所示.)单位:元,款金额(与原价)单位:元(乙甲.yyx的函数关系式;, (1)直接写出关于乙甲(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?第6题图考向3流量问题(绍兴:2016.19)针对演练1. (2017吉林)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水yx(s)与注水时间s时注满水槽.水槽内水面的高度之间的函数图象如(cm)槽中注水,28图②所示.第1题图(1)正方体的棱长为________cm;ABx的取值范围;对应的函数解析式,并写出自变量(2)求线段tt的值.恰好将此水槽注满,直接写出(3)如果将正方体铁块取出,又经过 (s)2. 一个有进水管与出水管的容器,从某时刻开始4 min内只进水不出水,在随后的8y(单位:内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量minL)与x之间的关系如图所示.min)单位:(时间.xyx的函数解析式; 4≤关于≤12时,求(1)当(2)直接写出每分钟进水、出水量各多少升.第2题图3. 某游泳池一天要经过“注水-保持-排水”三个过程,如图,图中折线表示的是游3xy(min))与时间之间的关系.泳池在一天某一时间段内池中水量(m xyx与的取值范围;(1)求排水阶段之间的函数关系式,并写出时间一共有多少分钟.(2)求水量不超过最大水量的一半值的第3题图答案针对演练l;30;20 解:(1);1. 2x轴的交点坐标为(0.5,0.5小时后,乙才出发,∴乙图象与示】【解法提∵甲先出发lAt的函数图象;是乙离地距离与时间0),故2甲经过2小时走完全程,则甲的速度为60÷2=30(km/h).从0.5小时开始,经过3.5-0.5=3小时,乙走完全程,∴乙的速度为60÷3=20 (km/h).t小时,两人相距5 km设甲出发后,经过, (2)①当两人相遇前相距5 km时,则:tt,5-60=0.5)-20(+30.t=1.3解得,②当两人相遇后相距5 km时,则:t-0.5)=60++20(5, 30t t=1.5解得,答:甲出发1.3 h,1.5 h时,两人恰好相距5 km.yxykxb,与之间的函数解析式为+2.解:(1)设甲车返回过程中=∵图象过(5,450),(10,0)两点,5k+b=450??∴,?10k+b=0??k=-90??解得,?b=900??yxx≤10);90 ∴+900(5≤=-xy=-90×6+900=360时,=6, (2)当360v==60(千米/小时).乙6答:乙车的行驶速度为60千米/小时.3AHyxb,=解: (1)如解图,由题意可设的表达式为+3.14第3题解图HAH上, 3)(6,由在33bb=-,+×3则有=6,即1124.33AHyx-,的表达式为=∴42AmAH上, ) 由在(8,339mm=,-,即则有=×84229Am的值为;的纵坐标故点23BCyxb,的表达式为+=(2) 如解图,由题意可设249BBC 上,在由 (10, )293bb=-3,,即×则有=10+22243BCyx-3=∴,的表达式为4yxC(16,9),时,=16,即当=9E(15,9),∴F(9,0)∵,327EFyx-,的表达式为=∴223??3x-y=4?,联立方程组 327??y=x-22x=14???,解得15y=??2.1539-=(千米),223答:小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校千米.24. 解:(1)甲行走的速度:150÷5=30(米/分).t=35时,甲行走的路程为:35×30=1050(米),乙行走的路程为:(2)当(35-5)×50=1500(米),t=35时,乙已经到达图书馆,甲距离图书馆的路程还有:1500-1050=∴当450(米),∴甲到达图书馆还需时间:450÷30=15(分),∴35+15=50(分),s=0时,横轴上对应的时间为∴当50.补画的图象如解图所示(横轴上对应时间为50),第4题解图xxx,5030 (3)设乙出发经过=分和甲第一次相遇,根据题意得:150+x=7.5解得,7.5+5=12.5(分),ts=0,即当=12.5时,B的坐标为(12.5,0)∴点,tBC:sktbk≠0),≤35时,设+的解析式为=≤当12.5(12.5k+b=0k=20????CB(12.5,0)代入可得:,解得把450)(35,,,??35k+b=450b=-250????1.st-250,=20 ∴tCDskxbk≠0)的解析式为,=( 35∴当<+≤50时,设11150k+b=0??11DC(35,450)代入得:,把(50,0),?35k+b=450??1k=-30??1解得,?b=1500??1s=-30t+1500∴,s=360,∵甲、乙两人相距360米,即tt=38,=30.5,解得:21答:当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.5. 解:(1)900,4小时两车相遇;(2)慢车速度是:900÷12=75 km/h,两车的速度和:900÷4=225 km/h,快车速度是:225-75=150 km/h;相遇时慢车行驶的路程是:75×4=300 km,两车相遇后快车到达乙地所用的时间:300÷150=2 h,两车相遇后2 h两车行驶的路程:225×2=450 km,BC(6,450),(4,0),所以,4k+b=0k=225????BCykxb, 则+设线段的解析式为,解得=??6k +b=450b=-900.????BCyx之间的函数关系式为:所以线段与所表示的yxx≤6);-900(4≤225=(3)第一列快车与慢车相遇时快车行驶的路程:900-300=600 km, 1第二列快车与慢车相遇时快车行驶的路程:600-75×=562.5 km,2.第二列快车与慢车相遇时快车所用的时间:562.5÷150=3.75 h, 4.5-3.75=0.75 h.答:第二列快车比第一列快车晚出发0.75小时.(4)快车从甲地驶往乙地,故快车的图象从(0,0)开始,速度为150 km/h,路程为900km,故快车的终点坐标为(6,900),画出图象如解图的实线所示;慢车从乙地驶往甲地,故慢车的图象从(0,900)开始,速度为75 km/h,路程为900 km,.,0),画出图象如解图的虚线所示故慢车的终点坐标为(12 题解图第5 费用问题考向2针对演练yxykx+b吨时,设关于=的解析式是,结合图象得:1. 解:(1)当用水量超过1010k +b=30k=4????,解得,??20k+b=70b=-10????yxyx-10;=即当用水量超过10吨时,4关于的函数解析式是yyx-10,=(2)将4=38代入xx=12,解得,,38=4 -10得即三月份用水12吨,四月份用水为:27÷(30÷10)=9(吨),12-9=3(吨),答:四月份比三月份节约用水3吨.xyxykx, 之间的函数关系式是(1)当0≤时,设≤100=与2. 解:kk=18,1800, 由100解得=xyxyx,=即当0≤≤100时,与18之间的函数关系式是xyxyaxb,+=之间的函数关系式是与时,设100>当100a+b=1800a=15????由,解得,??200a+b=3300b=300????xyxyx+300, 之间的函数关系式是>100时,=与即当15yx之间的函数关系式是:∴与18x(0≤x≤100)??y=;?15x+300(x>100)??AB类图书600本,书店购进(2) 类图书400本,则购进A类图书花费:400×16=6400(元),则B类图书花费:15×600+300=9300(元),A、B两类图书共需要:6400+9300=15700( ∴购进元),A、B两类图书共需要答:购进15700元.3. 解:(1)11;(2)①行驶路程小于或等于3千米时,收费是5元;②超过3千米但不超过8千米时,每千米收费1.2元;x≥3时,直线过点(3,5)、(8,11), (3)当yxykxb,与之间的函数关系式为+设=3k+b=5??则,?8k+b=11??k=1.2??解得,?b=1.4??yxxyx+1.4. =1.2∴收费元()与行驶路程(千米)(≥3)之间的函数关系式为4. 解:(1)240.(2)∵3600÷240=15,3600÷150=24,BC段,∴收费标准在.10k+b=240k=-6????BCykxb,则有,解得=,设直线+的解析式为??25k+b=150b=300????y =-6x+300,∴xx=3600,+300)由题意(-6x=20或30(舍)解得.答:参加这次旅行的人数是20人.ykxb,将(0,400),(100,900)分别代入得:5. 解:(1)设=+b=400??,?100k+b=900??k =5??解得,?b=400??yxyx+400;的函数解析式为=∴5与(2)绿化面积是1200平方米时,甲公司的费用为:5×1200+400=6400(元),乙公司的费用为:5500+4×(1200-1000)=6300(元),∵6300<6400,∴选择乙公司的服务,每月的绿化养护费用较少.6. 解:(1)y=0.8x,甲x(0<x<2000)??y=.?乙0.7x+600(x≥2000)??ykx,把(2000,=1600)代入,【解法提示】设甲kk=0.8,解得1600,得2000 =yx;=0.8∴甲xyax,=<2000时,设<当0 乙xk=1,解得2000, 20002000)(2000把,代入,得=yx∴;=乙.xymxn,+=当≥2000时,设乙ymxn中+=,2000),(4000,3400)代入,把(200022000m+n=2000,??得,?4000m+n=3400??m=0.7??解得,?n=600??x(0<x<2000)??y=;∴?乙0.7x+600(x≥2000)??xxx,到甲商店购买更省钱;<<2000时,(2)当0<0.8xxx+600,<0.7当≥2000时,若到甲商店购买更省钱,则0.8x<6000;解得若到乙商店购买更省钱,xxx>6000,解得6000.8;>0.7 +则xxx=6000,解得;=0.7 +600若到甲、乙两商店购买一样省钱,则0.8答:当原价小于6000元时,到甲商店购买更省钱;当原价大于6000元时,到乙商店购买更省钱;当原价等于6000元时,到甲、乙两商店购买花钱一样.考向3 流量问题针对演练1.解:(1)10;【解法提示】由题图可知,12秒时水槽内水面的高度为10 cm,12秒后水槽内水面高度变化趋势改变,故正方体的棱长为10 cm,ABykxb. (2)设线段=对应的函数解析式为+AB(28,20),,∵图象过(12,10)12k+b=10??∴,?28k+b=20??5??=k8?,解得 5??b=255AByxx≤28);(12≤=∴线段对应的函数解析式为+82t=(3)4.【解法提示】∵28-12=165,∴没有正方体时,水面上升10 cm,所用时间为16秒,又∵前12秒由于正方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,又经过了4秒,恰好将水械,槽注满.≤xyxykxbk≠0),的函数关系式为=2. 解:(1)当4(≤12时,设与+5??20b=4k+=k??4?,,∴,解得,函数图象经过点(4,20)、(1230)∵?30=12k+b????15=b5xyx+4≤15≤12时,;=∴当415(2)每分钟进水、出水量各是5L、L.4【解法提示】根据图象,每分钟的进水量为:20÷4=5 L,mm=30-205×8-8,设每分钟出水,则 L15m=,解得415故每分钟进水、出水量各是5 L、L.4yxykxb,与之间的函数关系式是+=(13. 解:)设排水阶段 285k+b=1500k=-100????由,解得,??300k +b=0b=30000????yxyx+30000,=-即排水阶段100与之间的函数关系式是yx=280,30000,得=2000时,2000=-100x 当+yxyxx≤300);100与之间的函数关系式为+30000(280≤=-即排水阶段yxymx,设注水阶段与=的函数关系式为 (2)mm=50,1500=,解得则30yxyx, =的函数关系式为∴注水阶段 50与yxx=20,=时,100050 ,解得当=1000yyxx=290, 1000=代入100=-,解得+30000将∴水量不超过最大水量的一半值的时间一共有:20+(300-290)=30(分钟), 即水量分钟.30不超过最大水量的一半值的时间一共有.。
【初中数学】浙江省2018年中考数学总复习试题(112套)-人教版52第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法考试内容考试要求等式的性质性质1:等式两边加(或减)同一个数或同一个____________________,所得结果仍是等式;性质2:等式两边乘(或除以)同一个数(除数不能为0),所得结果仍是.ab方程的概念含有未知数的叫做方程.方程的解使方程左右两边的值的未知数的值叫做方程的解.3.列方程解应用题的一般步骤考试内容考试要求列方程解应用题的一般步骤c 1.审审清题意和数量关系,弄清题中的已知量和未知量,明确各数量之间的关系.2.设设未知数(可设直接或____________________未知数).3.列根据题意寻找列方程.4.解解方程.5.答检验所求的未知数的值是否符合题意(分式方程既要检验求出来的解是否为原方程的根,又要检验是否符合题意),写出答案.考试内容考试要求基本思想解分式方程的基本思想:把分式方程转化为整式方程,即分式方程――→去分母转化整式方程.c 基本方法1.分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.2.列方程的关键是寻找等量关系,寻找等量关系常用的方法有:①抓住不变量;②找关键词;③画线段图或列表格;④运用数学公式.1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为( ) A.518=2(106+x) B.518-x=2×106C.518-x=2(106+x) D.518+x=2(106-x)2.(2017·宁波)分式方程2x+13-x=32的解是____________________.3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x+1=1x-1.【问题】给出以下五个代数式:2x-4,x-2,x,12,3.(1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程;(2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一等式性质和方程的解的含义例1(1)(2017·杭州)设x,y,c是实数,( )A.若x=y,则x+c=y-cB.若x=y,则xc=ycC.若x=y,则xc=ycD.若x2c=y3c,则2x=3y(2)已知关于x的方程2x+a-9=0的解是x=2,则a=________.(3)已知关于x的方程3x+n2x+1=2的解是负数,则n的取值范围为______________.【解后感悟】(1)熟记等式的性质并根据等式的性质求解是解题关键;(2)本题利用方程的思想,通过方程的解来构造关于a的一元一次方程,求出a值;(3)本题是分式方程的解和解一元一次不等式,关键是得出n-2<0和n-2≠-12,注意题目中的隐含条件2x+1≠0不要忽略.1.(1)已知等式3a=2b+5,则下列等式中不一定成立的是( )A.3a-5=2b B.3a+1=2b+6C.3ac=2bc+5 D.a=23b+53(2)如果方程x+2=0与方程2x-a=0的解相同,那么a=____________________.(3)(2017·成都)已知x=3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( ) A .-1 B .0 C .1 D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.【解后感悟】(1)去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项(尤其是常数项),若分子是多项式,则要把它看成一个整体加上括号;(2)去括号可用分配律,注意符号,勿漏乘.2.解方程:(1)(2016·贺州)解方程:x 6-30-x 4=5;(2)7x-12⎣⎢⎡⎦⎥⎤x-12(x-1)=23(x-1).类型三分式方程的解法例3(2015·营口)若关于x的分式方程2 x-3+x+m3-x=2有增根,则m的值是( )A.m=-1B.m=0C.m=3 D.m=0或m=3【解后感悟】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程:③把增根代入整式方程即可求得相关字母的值.例4(1)(2017·湖州)解方程:2x-1=1 x-1+1;(2)(2017·陕西模拟)解方程:2-xx-3=13-x-2.【解后感悟】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.解分式方程:(1)xx-3=x-63-x+3;(2)xx+1-4x2-1=1.类型四一元一次方程和分式方程的应用例5(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】解分式方程:x2-4xx2-1+1=2xx+1. 参考答案第6讲一元一次方程与分式方程及其应用【考点概要】1.整式等式等式相等一 1 括号同类项 2.未知数整式最简公分母不为0 3.间接等量关系【考题体验】1.C 2.x=1 3.160x=200x+54.x=3【知识引擎】【解析】(1)答案不唯一,2x-4=3和2x-4 x-2=12;(2)2x-4=3,解得x=3.5;2x-4x-2=12,解得x=2,代入方程x=2是方程的增根,舍去,所以,方程无解.【例题精析】例1 (1)B;(2)5;(3)解方程3x+n2x+1=2得x=n-2.∵关于x的方程3x+n2x+1=2的解是负数,∴n-2<0.解得:n<2.又∵原方程有意义的条件为:x≠-12,∴n-2≠-12,即n≠32.∴n<2且n≠32. 例2 6x-3(x-1)=12-2(x+2),6x-3x+3=12-2x-4,3x+3=8-2x,3x+2x =8-3,5x=5,∴x=1. 例3 方程两边都乘以(x-3)得,2-x-m=2(x-3),∵分式方程有增根,∴x-3=0,解得x=3,∴2-3-m=2(3-3),解得m=-1.故选A. 例4 (1)方程两边都乘以x-1得:2=1+x-1,解得:x=2,检验:∵当x=2时,x-1≠0,∴x=2是原方程的解,即原方程的解为x=2. (2)方程的两边同乘(x-3),得:2-x=-1-2(x-3),解得:x=3,检验:把x=3代入(x-3)=0,即x=3不是原分式方程的解.则原方程无解.例5 (1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:x+2x-600=6600,解得:x=2400,2x-600=4200,答:B花木数量为2400棵,则A 花木数量是4200棵; (2)设安排a 人种植A 花木,由题意得:420060a =240040(26-a ),解得:a =14,经检验:a =14是原分式方程的解,26-a =26-14=12,答:安排14人种植A 花木,12人种植B 花木.【变式拓展】1.(1)C (2)-4 (3)D 2. (1)x =30; (2)x =-573.3.(1)解得x =3,经检验x =3是增根,分式方程无解. (2)x =-3.4.设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为(x +5)元.根据题意,得12000x +5=5000x .解得x =257.经检验,x =257是原方程的解,且符合题意,则科普类图书平均每本的价格为257+5=607元,答:文学类图书平均每本的价格为257元,科普类图书平均每本的价格为607元.【热点题型】【分析与解】(1)寻找规律:1张这样的餐桌四周可坐6人,2张这样的餐桌拼接起来四周可坐6+4人,3张这样的餐桌拼接起来四周可坐6+4×2人,4张这样的餐桌拼接起来四周可坐6+4×3人,…n张这样的餐桌拼接起来四周可坐6+4(n-1)人.∴4张这样的餐桌拼接起来四周可坐18人,8张这样的餐桌拼接起来四周可坐34人.(2)∵n张这样的餐桌拼接起来四周可坐6+4(n-1)人,∴若用餐的人数有90人,则6+4(n-1)=90,解得n =22.∴若用餐的人数有90人,则这样的餐桌需要22张.【错误警示】原方程变形为x2-4x(x+1)(x-1)+1=2xx+1.方程两边同乘(x+1)(x-1),得x2-4x+(x+1)(x-1)=2x(x-1).整理得x2-4x+x2-1=2x2-2x,即2x=-1,x=-12.检验:当x=-12时,(x+1)(x-1)≠0,所以x=-12是原方程的根.。
浙教版八年级数学上册第五章一次函数复习题一、选择题1、下列函数解析式中, (1)x y 2=; (2)y=-x -3;(3)y=+2x 1; (4)y=2-x 是一次函数的有( ). (A )(1),(2),(3) (B )(2),(3) (C )(2),(4) (D )(2),(3),(4)2、如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别 表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( ) A 、 2.5米 B 、 2米 C 、 1.5米 D 、 1米3、已知等腰三角形的周长为20cm ,将底边y (cm )表示成腰长x (cm )•的函数关系式是y=20-2x ,则其自变量的取值范围是( )A .0<x<10B .5<x<10C .x>0D .一切实数4、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )5、小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A .12分钟B .15分钟C .25分钟D .27分钟6、一次函数y=ax+b,若a+b=1,则它的图象必经过点( )A.(-1,-1)B. (-1, 1)C. (1, -1)D. (1, 1)7、如图,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+B .2y x =+C .2y x =-D .2y x =--8、如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n),且2m +n =6,则直线ABA DCB的解析式是( ).A 、y =-2x -3B 、y =-2x -6C 、y =-2x +3D 、y =-2x +69、一次函数的图象经过点A (-2,-1),且与直线y=2x-3平行,•则此函数的解析式为( ) A .y=x+1 B .y=2x+3 C .y=2x-1 D .y=-2x-510、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( ).二 、填空题:1、正比例函数的图像经过(1,-5)点,它的解析式是__ ______.2、若点(3,a )在一次函数13+=x y 的图像上,则=a 。
浙教版初中数学九年级上册专题50题含答案一、单选题是圆心角的是()1.下图中ACBA.B.C.D.【答案】B【分析】根据圆心角的定义判断即可.【详解】顶点在圆心上,角的两边与圆周相交的角叫圆心角.如图,∠AOB的顶点O是圆O的圆心,OA、OB交圆O于A、B两点,则∠AOB是圆心角.故选B.【点睛】本题考查圆心角的定义,关键在于熟记定义.2.通常温度降到0∠以下,纯净的水结冰.这个事件是()A.必然事件B.不可能事件C.随机事件D.确定性事件【答案】A【分析】根据随机事件的定义即可得出答案.【详解】解:∠通常温度降到0∠以下,纯净的水会结冰,∠这个事件是必然事件.故选:A.【点睛】本题考查的是必然事件,不可能事件,随机事件的概念.必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.如图,在▱ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB=4,BC=6,CE=1,则CF的长为()B.1.5C D.1A【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.4.已知(0,y1),y 2),(3,y 3)是抛物线y =ax 2﹣4ax +1(a 是常数,且a <0)上的点,则( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1 C .y 2>y 3>y 1 D .y 2>y 1>y 35.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,过点A 作EA CA ⊥交DB 的延长线于点E ,过点B 作BH AC ⊥于点H ,若3AB =,4BC =,则ACAE的值为( )A .712B .512C .1 D6.平移抛物线y=(x+3)(x-1)后得到抛物线y=(x+1)(x-3),则()A.向左平移2个单位B.向右平移2个单位C.向左平移4个单位D.向右平移4个单位【答案】B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:y=(x+3)(x-1)=(x+1)2-4,顶点坐标是(-1,-4).y=(x+1)(x-3)=(x-1)2-4,顶点坐标是(1,-4).所以将抛物线y=(x+3)(x-1)向右平移2个单位长度得到抛物线y=(x+1)(x-3),故选:B.【点睛】此题主要考查了二次函数图象与几何变换,属于基础题,熟练掌握平移的规律是解题关键.7.随机投掷标有1至6点的骰子一次,落地后,骰子朝上一面的点数为奇数的概率是()A.16B.13C.12D.238.如图,AB为∠O的直径,C,D为∠O上两点,若∠CAB=30°,则∠D等于()A.30°B.60°C.120°D.150°【答案】B【分析】根据圆周角定理得到∠ACB=90°,∠D=∠B,然后利用互余计算出∠B即可.【详解】解:∠AB为∠O的直径,∠∠ACB=90°,∠∠CAB=30°,∠∠B=90°﹣∠CAB=60°,∠∠D=∠B=60°.故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.如图,在∠ABC中,∠C=90°,点D,E分别在边AC,AB上,若∠B=∠ADE,下列说法:∠∠AED=90°;∠∠A与∠ADE互为余角;∠BC=BE;∠∠CDE与∠B互为补角,其中说法正确的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据∠C=90°,可知∠A与∠B互余,根据∠B=∠ADE,再结合公共角∠A,可证~△△,则有∠AED=∠C=90°,∠B=∠ADE,在四边形BCDE中有ACB AED∠B+∠ADE=180°=∠C+∠DEB,即可求解.【详解】∠∠C=90°,∠∠A与∠B互余,∠∠B=∠ADE,∠A=∠A,∠ACB AED△△,~∠∠AED=∠C=90°,∠B=∠ADE,即①正确,∠∠ADE与∠A互余,∠BED=90°,即②正确,∠∠B=∠ADE,∠∠B+∠CDE=180°,即④正确,根据已有的条件无法判断BC=BE,故③错误,则说法正确的个数为3个, 故选:C .【点睛】本题考查了相似三角形的判定和性质,余角、补角的概念等知识,根据已有的角相等条件证得ACB AED ~△△是解答本题的关键.10.如图,点A 、C 、B 在∠O 上,已知∠AOB =∠ACB =α,则α的值为( )A .135°B .100°C .110°D .120°【答案】D【分析】根据圆周角定理得出优弧所对的圆心角为2α,利用周角为360度求解即可 【详解】解:∠∠ACB =α ∠优弧所对的圆心角为2α ∠2α+α=360° ∠α=120°. 故选D .【点睛】题目主要考查圆周角定理,结合图形,熟练运用圆周角定理是解题关键. 11.如图,Rt ABC 中,90C ∠=︒,5cm AB =,4cm AC =,点P 从点A 出发,以1cm/s 的速度沿A C →向点C 运动,同时点Q 从点A 出发,以2cm/s 的速度沿A B C →→向点C 运动,直到它们都到达点C 为止.线段PQ 的长度为y (cm ),点P 的运动时间为t (s ),则y 与t 的函数图象是( )A .B .C.D.12.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数a b cyx-+=在同一坐标系内的图象大致为()A.B.C.D.【答案】A13.如图,直径为10的∠A经过点C和点O,点B是y轴右侧∠A优弧上一点,∠OBC=30°,则点A的坐标为()A.)B.52)C.(5,52)D.,52)【答案】B【分析】首先设∠O与x轴的交点为D,连接CD,由圆周角定理可得CD是直径,且CD=10,∠ODC=∠OBC=30°,继而求得OC与OD的长,然后可求得答案.【详解】解:如图,14.如图,点(2,A ,()1,0N ,60AON ∠=,点M 为平面直角坐标系内一点,且MO MA =,则MN 的最小值为( )A .1B .32C .3D .2故选B.【点睛】本题考查了相似三角形的判定与性质、坐标与图形性质,涉及到中垂线、线段平行性质等知识点,综合性较强,难度适中.15.在Rt∠ABC中,∠C = 90°,AC = 20 cm,BC = 21 cm,则它的外心与顶点C的距离等于().A.13 cm B.13.5 cm C.14 cm D.14.5 cm【答案】D【分析】此题应根据勾股定理先求出斜边AB的长度为29,要理解外心是这个三角形外接圆的圆心,在直角三角形中,它的外心就是斜边的中点,顶点C与外心的距离即为斜边的中线.【详解】先根据题意画图,知道AB为三角形的斜边求得AB2=AC2+BC2=202+212=841=292,要理解外心是这个三角形外接圆的圆心,要求得该直角三角形的外接圆的圆心,则为AB边的一半,求得AB的一半为14.5,应该选择答案为D.【点睛】本题考查了勾股定理和三角形的外接圆和圆心,解题的关键是要理解外心是这个三角形外接圆的圆心.16.一个密码锁有五位数字组成,每一位数字都是0,1,2,3,4,5,6,7,8,9之中的一个,小明只记得其中的三个数字,则他一次就能打开锁的概率为()A.15B.12C.120D.110017.已知二次函数2y ax bx c =++的图象如图所示,给出以下结论: ∠0a b c ++<;∠<0a b c -+;∠ 20b a +<;∠0abc >.其中正确结论的序号是( )A .∠∠B .∠∠C .∠∠D .∠∠∠(4)当x =1时,可以确定y =a +b +c 的值;当x =﹣1时,可以确定y =a ﹣b +c 的值. 18.抛物线的顶点坐标是( ) A .(2,1) B .(-2,1)C .(2,-1)D .(-2,-1)【答案】B【详解】试题分析:根据抛物线的解析式直接可确定它的顶点坐标为(-2,1).故答案选B . 考点:抛物线的顶点坐标.19.已知二次函数y =(x +m -6)(m -x )+3,点A (1x ,1y ),B (2x ,2y )( 1x <2x )是其图象上两点( )A .若1x +2x <6,则1y >2yB .若1x +2x >6,则1y >2yC .若1x +2x >-6,则1y >2yD .若1x +2x <-6,则1y >2y【答案】B【分析】化简二次函数,计算1y -2y ,作差比较,判断即可. 【详解】∠y =(x +m -6)(m -x )+3, ∠y =22663x x m m -++-+,∠1y -2y =22221122(663)(663)x x m m x x m m -++-+--++-+=22211266x x x x -+- =212121()()6()x x x x x x -+-- =(2x -1x )(1x +2x -6), ∠1y >2y ,1x <2x , ∠1x +2x -6>0, 即1x +2x >6, 故选B .【点睛】本题考查了二次函数的增减性,熟练运用作差法解题是解题的关键. 20.如图,长为定值的弦CD 在以AB 为直径的O 上滑动(点C 、D 与点A 、B 不重合),点E 是CD 的中点,过点C 作CF AB ⊥于F ,若3CD =,8AB =,则EF 的最大值是( )A.92B.4C.83D.6二、填空题21.已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1_____y2.(填“>”“<”或“=”)22.如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借一段墙体(墙体的最大可用长度a=10m),设AB的长为xm,所围的花圃面积为ym2,则y的最大值是__________.23.小明上学途中要经过一个十字路口,十字路口红灯亮30秒、黄灯亮5秒,绿灯亮25秒,小明到达路口恰好遇到绿灯的概率是______.24.抛物线222=-与x正半轴的交点坐标为__________.y x x【答案】(1,0)【分析】令y=0,解方程2x2﹣2x=0,求出抛物线与x轴的交点坐标,,然后取正半轴上的点即可.【详解】当y=0时,2x2﹣2x=0,解得:x1=0,x2=1,∠抛物线与x轴的交点坐标为(0,0),(1,0),∠抛物线与x轴正半轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数与坐标轴的交点坐标与一元二次方程解的关系,二次函数与x轴的交点横坐标是ax2+bx+c=0时方程的解,纵坐标是y=0.25.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.∠c1=4,c2=﹣4(舍去),∠线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.26.如图,四边形ABCD中,AC、BD相交于O,若AO DOCO BO=,8AO=,12CO=,15BC=,则AD=______.27.图1是一款由若干条吊链等间距悬挂而成的挂帘,吊链顶端悬挂在水平横梁上,自然下垂时底部呈圆弧形,其中最长吊链为95cm,最短吊链为45cm,挂满后呈轴对称分布.图2是其示意图,其中最长两条吊链AC与BD之间的距离AB为114cm.∠若吊链数量为奇数,则圆弧半径为______cm.∠若吊链数量为偶数,记对称轴右侧最短挂链的底端为点F,当C,F,B三点在同一条直线上时,吊链的数量为______.,设O吊链数量为奇数,=AC BD∴=FM EM设O的半径为在Rt OCM△÷=1146∴共有20故答案为:【点睛】本题考查了勾股定理,轴对称图形的性质,相似三角形的判定与性质,作出辅助线是解决本题的关键.28R(R为半径),则此弓形的面积为_________.90,2AOBS=,扇形AOB 90π360R此弓形的面积为:90,2AOBS=,扇形AOB 270π360R此弓形的面积为:4429.如图,在Rt∠ABC中,∠C 为直角,AC=6,BC=8,现在Rt∠ABC内从左往右叠放边长为1的正方形小纸片,第一层小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放______个在直角∠ABC中,AB==10.1 21 2∠CD==4.8.∠GH 4.82BC 4.8-=,则,解得:DE=356整数部分是:7.则最下边一排是7个正方形.则,解得:GH=,整数部分是5,则第二排是5个正方形;30.已知ABC内接于,O AB AC=,圆心O到BC的距离为2cm,圆的半径为6cm,则腰长AB=_____.31.AB是O的直径,C是O上一点,E是ABC的内心,OE EBAE=ABE的面积为交O 于点F 是O 的直径,可得,证明FEA 是等腰直角三角形,可得2EF ==,根据垂径定理,进而可得ABE 的面积.【详解】解:如下图,延长BE 交O 于点F ,AB 是O 的直径,90AFB C ∴∠=∠=CAB CBA ∴∠+∠E 是ABC 的内心,12EAB CAB ∴∠=∠EAB EBA ∴∠+∠45FEA ∴∠=︒,FEA ∴是等腰直角三角形,2AE AF ∴=22AE =AF EF ∴=OE EB ⊥EF BE ∴=ABE ∴的面积为:故答案为:2.【点睛】本题考查了垂径定理、三角形的内心,勾股定理,圆周角定理,等腰三角形,三角形的外角,解题的关键是作出辅助性构建直角三角形.32.如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连接DQ.给出如下结论:DQ 1=①;PQ 3BQ 2=②;PDQ 1S 8=③;ADQ 2DQP.④∠∠=其中正确的结论是______.(填写序号)【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质、勾股定理等知识,综合性比较强,在几何证明中,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用. 33.∠ABC 是半径为2的圆的内接三角形,若BC=2,则∠A 的度数为_____. 【答案】60°或120°.【详解】试题分析:本题可直接由外接圆半径公式求得.解:由外接圆公式:2R=== 且已知R=2,BC=2所以sin∠A== 因为∠A 为三角形内角,所以∠A 的度数为60°或120°.考点:三角形的外接圆与外心.34.如图∠,1234,,,O O O O 为四个等圆的圆心,,,,A B C D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是___;如图∠,12345,,,,O O O O O 为五个等圆的圆心,,,,,A B C D E 为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是 __.(答案不唯一)【答案】 作图见解析,1O 和3O (答案不唯一) 作图见解析,13O O 与24O O 的交点O 和5O (答案不唯一) 【分析】利用中心对称图形进行分析,对于图∠,过13,O O 的直线即可满足题意;对于图∠过13O O 和24O O 的交点O 和5O 的直线即可满足题意.【详解】解:图∠既是轴对称图形,也是中心对称图形,则只需过它的对称中心任意画一条直线即可,如图所示:如过13,O O 的一条直线(答案不唯一),故答案为:1O 和3O ;图∠它不是中心对称图形,图∠中,直线过图形的对称中心即可;一个圆时,只要过圆心即可,则画一条过13O O 和24O O 的交点O 和5O 的直线即可,如图所示:故答案为:13O O 与24O O 的交点O 和5O .【点睛】本题考查利用对称性质作图,借助图形,准确分析图形的对称特征是解决问题的关键.35.如图,正方形ABCD 的边长为2,分别以点B 、C 为圆心,以正方形的边长为半径的圆相交于点P ,则图中阴影部分的面积为__________.【点睛】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键.36.抛物线形拱门的示意图如图所示,底部宽AB为6米,最高点O距地面5米.现有一辆集装箱车,宽为2.8米,高为4米,此车______(填能或不能)通过拱门.37.已知二次函数2y ax bx c =++的图象如图所示,下列结论:∠<0abc ;∠0a b c ++>;∠0a b c -+>;∠20a b -=;∠80a c +<,其中正确结论的序号为____________.【详解】解:抛物线开口向下,对称轴抛物线的对称轴为2b x a=-2b a ∴=-2a b ∴+=2a b +=3a c ∴+=50a <,80a c∴+<,故∠正确.故答案为:∠∠∠.【点睛】本题考查二次函数的图象与性质,解题的关键在于能结合图象灵活运用二次函数的性质进行求解判断.38.若5m=3n,则+m nm=_____.39.如图,已知正方形ABCD,以AB为腰向正方形内部作等腰∠BAE,其中BE=BA,过点E作EF∠AB于点F,点P是∠BEF的内心,连接CP,若正方形ABCD的边长为2,则CP的最小值为____.【详解】解:EF AB⊥90EBF=︒点Rt ONC中,'=-CP OC OPCP的最小值为故答案为:10【点睛】本题主要考查了最短路径问题,涉及到正方形的性质、三角形的内心、三角40.如图,在ABCD中,E是BC边上的中点,AP CD⊥于点P,将ABE沿AE翻折,点B的对称点B'落在AP上,延长EB'恰好经过点D,若4AB=,则折痕AE的长为________.AEB ∆'是由AE BB ∴⊥EB EC =CB B ∴∠'//CB AE ∴'四边形AB CD ∴=AP CD ⊥AP AB ∴⊥BAP ∴∠由翻折的性质可知,PAE ∴∠=APD ∠=PAD ∴∆∽∴PD PB PD='2(4)m ∴-4m ∴=BJ JB ='12JE CB ∴=2AJ=2∴=AE AJ故答案为:三、解答题41.某校教务处为了解九年级学生“居家学习”的学习能力,随机抽取该年级部分学生,对他们的学习能力进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图(其中学习能力指数级别“1”级,代表学习能力很强;“2”级,代表学习能力较强;“3”级,代表学习能力一般;“4“级,代表学习能力较弱)请结合图中相关数据回答问题.(1)本次抽查的学生人数人,并将条形统计图补充完整;(2)本次抽查学生“居家学习”能力指数级别的众数为级,中位数为级.(3)已知学习能力很强的学生中只有1名女生,现从中随机抽取两人写有关“居家学习”的报告,请用列表或画树状图的方法求所抽查的两位学生中恰好是一男一女的概率.;42.如图所示,O为四边形ABCD上一点,以O为位似中心,将四边形ABCD放大为原来的2倍.【答案】见解析.【分析】根据位似的定义,结合位似变换的方法,可以连接AO并延长到A′,使A′O=2AO,可知A′是A的对应点;用同样的方法确定B,C,D的对应点,顺次连接对应点,可以得到四边形A′B′C′D′;在O 的另一侧,连接OA 并延长到A″,使OA″=2AO ,用同样的方法确定其它三个点的对应点,顺次连接对应点,即可得到四边形A″B″C″D″. 【详解】连接AO 并延长到A′,使A′O=2AO ,A′是A 的对应点;用同样的方法确定B ,C ,D 的对应点,顺次连接对应点,可以得到四边形A′B′C′D′; 在O 的另一侧,连接OA 并延长到A″,使OA″=2AO ,用同样的方法确定其它三个点的对应点,顺次连接对应点,即可得到四边形A″B″C″D″.如图所示,四边形A′B′C′D′和四边形A″B″C″D″为所要求作的四边形.【点睛】本题考查位似变换作图,可以根据位似比,结合定义和性质画出图形. 43.某超市销售一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得1600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【答案】(1)y 与x 之间的函数表达式为2180y x =-+.(2)该天的销售单价应定为50元/千克或70元/千克.(3)当销售单价定为60元/千克时,才能使当天的销售利润最大,最大利润是1800元.【分析】(1)设y 与x 之间的函数表达式为(0)y kx b k =+≠,再在表中任选两组数据代入计算出k 和b 的值即可.(2)依题意列出关于销售单价x 的方程,然后解一元二次方程组即可.(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】(1)设y 与x 之间的函数表达式为(0)y kx b k =+≠,将表中数据(55,70)、(60,60)代入,得:55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩. ∠y 与x 之间的函数表达式为2180y x =-+.(2)由题意得:(30)(21801600x x --+=), 解得1250,70x x ==.答:该天的销售单价应定为50元/千克或70元/千克.(3)设当天的销售利润为w 元,则:(30)(2180)w x x =--+222405400x x =-+-,22(60)1800x =--+,∠20-<,∠当60x =时,1800w =最大值.答:当销售单价定为60元/千克时,才能使当天的销售利润最大,最大利润是1800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,解题的关键是理清题目中的数量关系.44.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).(1)求事件“转动一次,得到的数恰好是1-”发生的概率;(2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.45.如图,AB 是∠O 的一条弦,OD∠AB ,垂足为点C ,交∠O 于点D ,点E 在∠O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3,6OC OA ==,求tan DEB ∠的值.46.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=4x的图象上的概率.47.在四边形ABCD 中,ADC ACB ∠=∠,AC 为对角线,AD CB DC AC ⋅=⋅.(1)如图1,求证:AC 平分DAB ∠;(2)如图1,求8AC =,12AB =,求AD 的长;(3)如图2,若90ADC ACB ∠=∠=︒,E 为AB 的中点,连接CE 、DE ,DE 与AC 交于点F ,6CB =,5CE =,求DF EF 的值.48.已知:在正方形ABCD中,E为对角线BD上一点,过点E作EF BD⊥,交BC于点F,连接DF,G为DF的中点,连接EG,CG.(1)【猜想论证】猜想线段EG与CG的数量关系,并加以证明.(2)【拓展探究】将图1中BEF△绕B点逆时针旋转45°得到图2,取DF中点G,连接EG,CG.你在(1)中得到的结论还成立吗?写出你的猜想并加以证明.质,矩形的判定定理和性质,三角形内角和定理,等角对等边,勾股定理,全等三角形的判定定理和性质,综合应用这些知识点是解题关键.49.河西王府井销售一种T 恤衫,每件进价为40 元,经过市场调查,一周的销售量y 件与销售单价x 元/件满足某种函数关系:(1)请根据所学的知识,选择合适的函数模型,求出y 与x 的之间的函数关系式;(2)设一周的销售利润为w 元,请求出w 与x 的函数关系式,并确定当销售单价为多少时一周的销售利润最大,并求出最大利润;(3)商场决定将一周销售T 恤衫的利润全部捐给某村用于精准扶贫的水网改造项目,在商场购进该T 恤衫的资金不超过6000 元情况下,请求出该商场最大捐款数额是多少元?【答案】(1) y=−5x+600;(2)当销售单价为80元时一周的销售利润最大,最大利润为答:当销售单价为80元时一周的销售利润最大,最大利润为8000元;(3)∠商场购进该T 恤衫的资金不超过6000元,∠y∠6000÷40,即−5x+600∠150,解得:x∠90,∠w=−5(x−80)2+8000中,当x>80时w 随x 的增大而减小,∠当x=90时,w 取得最大值,最大值为7500,答:该商场最大捐款数额是7500元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系列出函数关系式.50.探究:如图∠,直线123l l l ,点C 在2l 上,以点C 为直角顶点作90ACB ∠=,角的两边分别交1l 于3l 于点A 、B ,连结AB .过点C 作1CD l ⊥于点D ,延长DC 交3l 于点E .求证:ACD CBE ∆∆∽.应用:如图∠,在图1的基础上,设AB 与2l 的交点为F ,若AC BC =,1l 与2l 之间的距离为2,2l 与3l 之间的距离为1,求AF 的长度.90,再由同角的余角相等可得,如此即可证明两个三角形相似;ACD CBE ≅∆13l ,CD ⊥90ADC CEB ∠=∠.90ACD DAC ∠+∠.90ACB ∠=,90ACD ECB ∠+∠.90,90,10AC =123l l ,23AF DC AB DE ==2103AF =. 【点睛】本题考查了相似和全等的关系以及平行线分线段成比例,运用平行线分线段。
函数一. 教学目标:1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标2. 会确定点关于x 轴,y 轴及原点的对称点的坐标3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。
4. 能准确地画出一次函数,反比例函数,二次函数的图像并根据图像和解析式探索并理解其性质。
5. 能用适当的函数表示法刻画某些实际问题中变量之间的关系并用函数解决简单的实际问题。
二. 教学重点、难点:重点:一次函数,反比例函数,二次函数的图像与性质及应用 难点:函数的实际应用题是中考的重点又是难点。
三.知识要点:知识点1、平面直角坐标系与点的坐标 一个平面被平面直角坐标分成四个象限,平面内的点可以用一对有序实数来表示平面内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴上的点的特征。
点P (x 、y )在x 轴上⇔y =0,x 为任意实数,点P (x 、y )在y 轴上,⇔x =0,y 为任意实数,点P (x 、y )在坐标原点⇔x =0,y =0。
知识点2、对称点的坐标的特征点P (x 、y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称轴点P 2的坐标为(-x ,y );关于原点的对称点P 3为(-x ,-y )知识点3、距离与点的坐标的关系点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b | 点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a |点P (a ,b )到原点的距离等于:22b a +知识点4、与函数有关的概念函数的定义,函数自变量及函数值;函数自变量的取值必须使解析式有意义当解析式是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。
知识点5、已知函数解析式,判断点P (x ,y )是否在函数图像上的方法,若点P (x ,y )的坐标适合函数解析式,则点P 在其图象上;若点P 在图象上,则P (x ,y )的坐标适合函数解析式.知识点6、列函数解析式解决实际问题设x 为自变量,y 为x 的函数,先列出关于x ,y 的二元方程,再用x 的代数式表示y ,最后写出自变量的取值范围,要注意使自变量在实际问题中有意义。
知识点7、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。
知识点8、一次函数的图象和性质一次函数y =kx +b 的图象是经过点(0,b )和点(-kb,0)的一条直线,k 值决定直线自左向右是上升还是下降,b 值决定直线交于y 轴的正半轴还是负半轴或过原点。
知识点9、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定 k 1≠k 2⇔ 1与 2相交,k 1=k 2,b 1≠b 2⇔ 1与 2平行,k 1=k 2, b 1=b 2⇔ 1与 2重合。
知识点10、反比例函数的定义形如:y =xk 或y =kx -1(k 是常数且k ≠0)叫做反比例函数,也可以写成xy =k (k ≠0)形式,它表明在教学准备反比例函数中自变量x 与其对应的函数值y 之积等于已知常数k ,知识点11、反比例函数的图像和性质反比例函数的图像是双曲线,它是以原点为对称中心的中心对称图形,同时又是直线y =x 或y =-x 为对称轴的轴对称图形,当k >0时,图像的两个分支分别在一、三象限,在每个象限内y 随x 的增大而减小,当k<0时,图象的两个分支分别在二、四象限,在每个象限内,y 随x 的增大而增大。
知识点12、反比例函数中比例系数k 的几何意义。
过双曲线上任意一点P 作x 轴、y 轴的垂线PA 、PB 所得矩形的PAOB 的面积为|k|。
知识点13、二次函数的定义形如:y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)那么y 叫做x 的二次函数,它常用的三种基本形式。
一般式:y =ax 2+bx +c (a ≠0)顶点式:y =a (x -h )2+k (a ≠0) 交点式:y =a (x -x 1)(x -x 2)( a ≠0,x 1、x 2是图象与x 轴交点的横坐标) 知识点14、二次函数的图象与性质二次函数y =ax 2+bx +c (a ≠0)的图象是以(ab ac a b 44,22--)为顶点,以直线y =a b 2-为对称轴的抛物线。
在a >0时,抛物线开口向上,在对称轴的左侧,即x <ab2-时,y 随x 的增大而减小;在对称轴的右侧,即当x >ab2-时,y 随着x 的增大而增大。
在a <0时,抛物线开口向下,在对称轴的左侧,即x <ab2-时,y 随着x 的增大而增大。
在对称轴的右侧,即当x >ab2-时,y 随着x 的增大而减小。
当a >0,在x =a b 2-时,y 有最小值,y 最小值=a b ac 442-,当a <0,在x =a b 2-时, y 有最大值,y 最大值=ab ac 442-。
知识点15、二次函次图象的平移二次函数图象的平移只要移动顶点坐标即可。
知识点16、二次函数y =ax 2+bx +c 的图象与坐标轴的交点。
(1)与y 轴永远有交点(0,c )(2)在b 2-4ac >0时,抛物线与x 轴有两个交点,A (x 1,0)、B (x 2,0)这两点距离为AB =|x 1-x 2|,(x 1、x 2是ax 2+bx +c =0的两个根)。
在b 2-4ac =0时,抛物线与x 轴只有一个交点。
在b 2-4ac <0时,则抛物线与x 轴没有交点。
知识点17、求二次函数的最大值常见的有两种方法:(1)直接代入顶点坐标公式(ab ac a b 44,22--)。
(2)将y =ax 2+bx +c 配方,利用非负数的性质进行数值分析。
两种方法各有所长,第一种方法过程简单,第二种方法有技巧。
例1. 若一次函数y =2x222m m --+m -2的图象经过第一、二、三象限,求m 的值.分析:这是一道一次函数概念和性质的综合题.一次函数的一般式为y =kx +b (k ≠0).首先要考虑m 2-例题精讲2m -2=1.函数图象经过第一、二、三象限的条件是k >0,b >0,而k =2,只需考虑m -2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值.所以m =3例2. 鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值: (1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数?(2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式;(3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?分析:本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.解:(1)一次函数,(2)设y =kx +b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得,∴y =2x -10, (3)当x =26时,y =2×26-10=42.答:应该买42码的鞋.例3. 某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出当x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?分析:本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.解:(1)当x ≤40时,设y =kx +b .根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x•≤40时,y 与x 之间的关系式是y =50x +1500,∴当x =40时,y =50×40+1500=3500,当x ≥40•时,根据题意得,y =100(x -40)+3500,即y =100x -500. ∴当x ≥40时,y 与x 之间的关系式是y =100x -500.(2)当y ≥4000时,y 与x 之间的关系式是y =100x -500, 解不等式100x -500≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 例4. 若函数y =(m 2-1)x 235m m +-为反比例函数,则m =________.分析:在反比例函数y =k x中,其解析式也可以写为y =k ·x -1,故需满足两点,一是m 2-1≠0,二是3m 2+m -5=-1 解:m =43-点评:函数y =kx为反比例函数,需满足k ≠0,且x 的指数是-1,两者缺一不可. 例5. 已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =•2x的图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A. y 3<y 2<y 1 B. y 1<y 2<y 3C. y 2<y 1<y 3D. y 2<y 3<y 1解析:反比例函数y =2x的图象是双曲线、由k =2>0•知双曲线两个分支分别位于第一、三象限内,且在每一个象限内,y 的值随着x 值的增大而减小的,点P 1,P 2,P 3•的横坐标均为负数,故点P 1,P 2均在第三象限内,而P 3在第一象限.故y >0.•此题也可以将P 1,P 2,P 3三点的横坐标取特殊值分别代入y =2x中,求出y 1,y 2,y 3的值,再比较大小.解:C例6. 如图,一次函数y =kx +b 的图象与反比例函数y =mx图象交于A (-2,1),B (1,n )两点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.解析:(1)求反比例函数解析式需要求出m 的值.把A (-2,1)代入y =mx中便可求出m =-2.把B (1,n )代入y =2x中得n =-2.由待定系数法不难求出一次函数解析式.(2)认真观察图象,结合图象性质,便可求出x 的取值范围.解:(1)y =-2x,y =-x -1 (2)x <-2或0<x <1 例7. (1)二次函数y =ax 2+bx +c 的图像如图(1),则点M (b ,ca)在(D ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限(2)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图(2)所示,•则下列结论:①a 、b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能取0.其中正确的个数是( B )A. 1个B. 2个C. 3个D. 4个(1) (2)点评:弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键. 例8. 已知抛物线y =12x 2+x -52.(1)用配方法求它的顶点坐标和对称轴. (2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.点评:本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.解:(1)顶点(-1,-3),对称轴x =-1,(2)例9. 已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.分析:本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好地考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.解:设矩形PNDM 的边为DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4)易知CN =4-x ,EM =4-y .且有NP BC BF CN AF -=(作辅助线构造相似三角形),即34y x --=12,∴y =-12x+5,S =xy =-12x 2+5x (2≤x ≤4), 此二次函数的图象开口向下,对称轴为x =5, ∴当x ≤5时,•函数的值是随x 的增大而增大, 对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12. 例10. 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元? 解:(1)设此一次函数表达式为y =kx +b .则⎩⎨⎧=+=+20202515b k b k ,解得k =-1,b =40,•即一次函数表达式为y =-x +40.(2)设每件产品的销售价应定为x 元,所获销售利润为w 元w =(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225. 产品的销售价应定为25元,此时每日获得最大销售利润为225元.点评:解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程.例11. 已知点A (0,-6),B (-3,0),C (m ,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,可不写画法).点评:本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.解:设直线AB 的解析式为y =k 1x +b ,则130,6,k b b -+=⎧⎨=-⎩ 解得k 1=-2,b =-6.•所以直线AB 的解析式为y =-2x -6.∵点C (m ,2)在直线y =-2x -6上,∴-2m -6=2, ∴m =-4,即点C 的坐标为C (-4,2), 由于A (0,6),B (-3,0)都在坐标轴上,反比例函数的图象只能经过点C (-4,2),设经过点C 的反比例函数的解析式为y =2k x .则2=24k-, ∴k 2=-8.即经过点C•的反比例函数的解析式为y =-8x.例12. 某校九年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a 元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y (桶)之间满足如图所示关系. (1)求y 与x 的函数关系式;(2)若该班每年需要纯净水380桶,且a 为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?(3)当a 至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?点评:这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y 与x 的关系式,同时这也是一道确定最优方案的题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.解:(1)设y =kx +b ,∵x =4时,y =400;x =5时,y =320,∴400480,:3205720k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解之得 ∴y 与x 的函数关系式为y =-80x +720.(2)该班学生买饮料每年总费用为50×120=6000(元), 当y =380时,380=-80x +720,得x =4.25.该班学生集体饮用桶装纯净水的每年总费用为380×4.25+780=2395(元), 显然,从经济上看饮用桶装纯净水花钱少. (3)设该班每年购买纯净水的费用为W 元, 则W =xy =x (-80x +720)=-80(x -92)2+•1620. ∴当x =92时,W 最大值=1620.要使饮用桶装纯净水对学生一定合算, 则50a ≥W 最大值+780,•即50a•≥1620+780.解之得,a ≥48. 所以a 至少为48元时班级饮用桶装纯净水对学生一定合算,由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯.例13. 一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y 1与上市时间x 的关系可用图(a )的一条线段表示;•它的种植成本y 2与上市时间x 的关系可用图(b )中的抛物线的一部分来表示.(1)求出图(a )中表示的市场售价y 1与上市时间x 的函数关系式.(2)求出图(b )中表示的种植成本y 2与上市时间x 的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)点评:本题是一道函数与图象信息有关的综合题.学生通过读题、读图.从题目已知和图象中获取有价值的信息,是问题求解的关键.解:(1)设y 1=mx +n ,因为函数图象过点(0,5.1),(50,2.1),∴0 5.150 2.1n m n +=⎧⎨+=⎩解得:m =-350,n =5.1,∴y 1=-350x +5.1(0≤x ≤50). (2)又由题目已知条件可设y 2=a (x -25)2+2.因其图象过点(15,3),∴3=a (15-25)2+2,∴a =1100, ∴y 2=1100x 2-12x +334(或y =1100(x -25)2+2)(0≤x ≤50)(3)设第x 天上市的这种绿色蔬菜的纯利润为:y 1-y 2=-1100(x 2-44x +315)(0≤x ≤55).依题意:y 1-y 2=0,即x 2-44x +315=0,∴(x -9)(x -35)=0,解得:x 1=9,x 2=35. 所以从5月1日起的第9天或第35天出售的这种绿色蔬菜,既不赔本也不赚钱.一. 选择题1. 如图,一次函数y =kx +b 的图象经过A 、B 两点,则kx +b >0的解集是( ) A. x >0 B. x >2 C. x >-3 D. -3<x <22. 如图,直线y =kx +b 与x 轴交于点(-4,0),则y >0时,x 的取值范围是( ) A. x >-4 B. x >0 C. x <-4 D. x <0课后练习3. 已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为( )4. 某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例.如图表示的是该电路中电流I与电阻R 之间关系的图像,则用电阻R 表示电流I 的函数解析式为( )A. I =2366...B I C I D I RRRR===-5. 如图,过原点的一条直线与反比例函数y =k x(k <0)的图像分别交于A 、B 两点,若A 点坐标为(a ,b ),则B 点的坐标为( )A. (a ,b )B. (b ,a )C. (-b ,-a )D. (-a ,-b )6. 反比例函数y =kx与正比例函数y =2x 图象的一个交点的横坐标为1,则反比例函数的图像大致为( )7. 函数y =kx(k ≠0)的图象如图所示,那么函数y =kx -k 的图象大致是( )8. 已知点P 是反比例函数y =kx(k ≠0)的图像上的任一点,过P•点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为( ) A. 2 B. -2 C. ±2 D. 49. 如图,梯形AOBC 的顶点A 、C 在反比例函数图象上,OA ∥BC ,上底边OA 在直线y =x 上,下底边BC 交x 轴于E (2,0),则四边形AOEC 的面积为( )A. 31110. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:①a >0;②c >0;•③b 2-4ac >0,其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个11. 根据下列表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y•的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,cA. 6<x <6.17B. 6.17<x <6.18C. 6.18<x <6.19D. 6.19<x <6.20 二. 填空题1. 函数y 1=x +1与y 2=ax +b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_ ______.2. 经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .3. 如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是________.4. 将抛物线y =x 2向左平移4个单位后,再向下平移2个单位,•则此时抛物线的解析式是_____________5. 如图,在平面直角坐标系中,二次函数y =ax 2+c (a ≠0)的图象过正方形ABOC•的三个顶点A ,B ,C ,则ac 的值是___ _____.三. 解答题1. 地表以下岩层的温度t (℃)随着所处的深度h (千米)的变化而变化.t 与h 之间在一定范围内近似地成一次函数关系.(1)根据下表,求t (℃)与h (千米)之间的函数关系式; (2)求当岩层温度达到2. 甲、乙两车从A 地出发,沿同一条高速公路行驶至距A•地400千米的B 地.L 1、L 2分别表示甲、乙两车行驶路程y (千米)与时间x (时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L 2的函数表达式(不要求写出x 的取值范围);(2)甲、乙两车哪一辆先到达B 地?该车比另一辆车早多长时间到达B 地? 3. 在平面直角坐标系XOY 中,直线y =-x 绕点O 顺时针旋转90°得到直线L ,直线L 与反比例函数y =k x的图象的一个交点为A (a ,3),试确定反比例函数的解析式.4. 某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了完全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,•构筑成一条临时通道,木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如下图所示.(1)请直接写出反比例函数表达式和自变量的取值范围;(2)当木板面积为0.2m 2时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?5. 如图,已知反比例函数y 1=mx(m ≠0)的图象经过点A (-2,1),一次函数y 2=kx +b (k ≠0)的图象经过点C (0,3)与点A ,且与反比例函数的图象相交于另一点B .(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.6. 如图,一次函数y=ax+b的图象与反比例函数y=mx的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA tan∠AOC=12,点B的坐标为(12,-4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.7. 观察下面的表格:(1)求a,b,c的值,并在表格内的空格中填上正确的数;(2)求二次函数y=ax2+bx+c图象的顶点坐标与对称轴.8. 如图,P为抛物线y=34x2-32x+14上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.9. 在平面直角坐标系中,已知二次函数y=a(x-1)2+k•的图像与x轴相交于点A、B,顶点为C,点D在这个二次函数图像的对称轴上,若四边形ABCD•是一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.10. 近几年,连云港市先后获得“中国优秀旅游城市”和“全国生态建设示范城市”等十多个殊荣.到连云港观光旅游的客人越来越多,花果山景点每天都吸引大量游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价40元,现设浮动票价为x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元①试用x的代数式表示w;②试问:当票价定为多少时,该景点一天的门票收入最高?最高门票收入是多少?11. 某环保器材公司销售一种市场需求量较大的新型产品.已知每件产品的进价为40元.经销过程中测出销售量y(万件)与销售单价x(元),存在如图所示的一次函数关系.每年销售该种产品的总开支z(万元)(不含进价)与年销售量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式.(2)试写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价为x为何值的,年获利最大?最大值是多少?(3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下使产品的销售量最大,你认为销售单价应为多少元?一. 选择题1. C2. A3. A4. C5. D6. B7. C8. C9. D 10. B 11. C 二. 填空题1. -1<x <22. y =x -2或y =-x +23. y =-12x4. y =(x +4)2-2(y =x 2+8x +14) 5. -2三. 解答题 1. 解:(1)t 与h 的函数关系式为t =35h +20.(2)当t =1770℃时,有1770=35h +20,解得:h =50千米.2. 解:(1)设L 2的函数表达式是y =k 2x +b ,则2230,419400.4k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k 2=100,b =-75,∴L 2的函数表达式为y =100x -75. (2)乙车先到达B 地,∵300=100x -75,∴x =154. 设L 1的函数表达式是y =k 1x ,∵图象过点(154,300), ∴k 1=80.即y =80x .当y =400时,400=80x , ∴x =5,∴5-194=14(小时),∴乙车比甲车早14小时到达B 地. 3. 解:依题意得,直线L 的解析式为y =x .因为A (a ,3)在直线y =x 上,则a =3,即A (3,3),又因为(3,3)在y =k x 的图象上,可求得k =9,所以反比例函数的解析式为y =9x4. 解:(1)P =600S (S >0),(2)当S =0.2时,P =6000.2=3000.即压强是3000Pa .(3)由题意知,600S≤6000,∴S ≥0.1.即木板面积至少要有0.1m 2.5. 解:(1)反比例函数的解析式为y =-2x ,一次函数的解析式为y =x +3.(2)点B 的坐标为B (-1,2)6. 解:1)反比例函数的解析式为y =-2x ,一次函数的解析式为y =-2x -3.(2)S △AOB =154个平方单位.7. 解:(1)a =2,b =-3,c =4,0,8,3 (2)顶点坐标为(34,238),对称轴是直线x =348. 解.∵PA ⊥x 轴,AP =1,∴点P 的纵坐标为1.当y =1时,34x 2-32x +14=1,即x 2-2x -1=0,•解得x 1=1x 2=1∵抛物线的对称轴为x =1,点P 在对称轴的右侧,∴x =1PAOB 的面积为(19. 解:本题共四种情况,设二次函数的图像的对称轴与x 轴相交于点E ,(1)如图①,练习答案当∠CAD =60°时,因为ABCD 为菱形,一边长为2,所以DE =1,BEB 的坐标为(10),点C 的坐标为(1,-1), 解得k =-1,a =13,所以y =13(x -1)2-1. (2)如图②,当∠ACB =•60°时,由菱形性质知点A 的坐标为(0,0),点C 的坐标为(1,解得kay =x -1)2同理可得:y =-13(x -1)2+1,yx -1)2所以符合条件的二次函数的表达式有: y =13(x -1)2-1,yx -1)2y =-13(x -1)2+1,yx -1)210. 解:(1)设函数解析式为y =kx +b ,由图象知:直线经过(50,3500)(60,3000)两点. 则50350050,6030006000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得,∴函数解析式为y =6000-50x . (2)①w =xy =x (6000-50x ),即w =-50x 2+6000x .②w =-50x 2+6000x =-50(x 2-120x )=-50(x -60)2+180000,∴当票价定为60元时,•该景点门票收入最高,此时门票收入为180000元 11. 解.(1)由题意,设y =kx +b ,图象过点(70,5),(90,3),∴1570,1039012k b k k b b ⎧=+=-⎧⎪⎨⎨=+⎩⎪=⎩解得 ∴y =-110x +12.(2)由题意,得w =y (x -40)-z =y (x -40)-(10y +42.5)=(-110x +12)(x -40)-10×(-110x +12)-42.5 =-0.1x 2+17x -642.5=-110(x -85)2+80.当x =85时,年获利的最大值为80万元.(3)令w =57.5,得-0.1x 2+17x -642.5=57.5,整理,得x 2-170x +7000=0.解得x 1=70,x 2=100.由图象可知,要使年获利不低于57.5万元,销售单价为70元到100元之间. 又因为销售单位越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.。