开关电源电路的PSPICE仿真
- 格式:pdf
- 大小:2.29 MB
- 文档页数:3
pspice仿真实验报告Pspice仿真实验报告引言:电子电路设计与仿真是电子工程领域中的重要环节。
通过使用电路仿真软件,如Pspice,能够在计算机上对电路进行模拟,从而节省了大量的时间和成本。
本文将介绍一次使用Pspice进行的仿真实验,并对实验结果进行分析和讨论。
实验目的:本次实验的目的是设计一个低通滤波器,通过Pspice进行仿真,并验证其性能指标。
实验步骤:1. 设计电路图:根据低通滤波器的设计要求,我们选择了一个二阶巴特沃斯滤波器。
根据滤波器的截止频率和阻带衰减要求,我们确定了电路的参数,包括电容和电感的数值。
2. 选择元件:根据电路图,我们选择了适当的电容和电感元件,并将其添加到Pspice软件中。
3. 设置仿真参数:在Pspice中,我们需要设置仿真的时间范围和步长,以及输入信号的幅值和频率等参数。
4. 运行仿真:通过点击运行按钮,Pspice将开始对电路进行仿真。
仿真结果将以图表的形式显示出来。
实验结果:通过Pspice的仿真,我们得到了低通滤波器的频率响应曲线。
从图表中可以看出,在截止频率以下,滤波器对输入信号的衰减非常明显,而在截止频率以上,滤波器对输入信号的衰减较小。
这符合我们设计的要求。
此外,我们还可以通过Pspice的仿真结果,得到滤波器的幅频特性和相频特性。
通过分析这些结果,我们可以进一步了解滤波器的性能,并对其进行优化。
讨论与分析:通过本次实验,我们深入了解了Pspice仿真软件的使用方法,并成功设计了一个低通滤波器。
通过仿真结果的分析,我们可以看到滤波器的性能符合预期,并且可以通过调整电路参数来进一步优化滤波器的性能。
然而,需要注意的是,仿真结果可能与实际电路存在一定的误差。
因此,在实际应用中,我们需要结合实际情况,对电路进行实际测试和调整。
结论:通过Pspice的仿真实验,我们成功设计了一个低通滤波器,并验证了其性能指标。
通过对仿真结果的分析和讨论,我们进一步了解了滤波器的特性,并为实际应用提供了一定的参考。
基于PSPICE的直流稳压电源电路仿真分析现代生活中电源的应用十分广泛,大部分的电子、电气设备,都必须有电源给其提供能量,它才能工作。
因此电源是所有电子设备必不可少的组成部分,电源的产生,使电子轻工业,特别是电子计算机、家用电器、实验仪器仪表等现代社会生活中必不可少的组成部分得到了快速发展,并促进了人类生活方式的变革。
本文将简要设计并分析一种线性直流稳压电源的设计原理、工作原理及参数计算仿真结果,并给出其技术指标。
一、直流稳压电源设计要求1.输出电压Vo=6~12V连续可调2.纹波电压﹤=10mV一、概述本题所设计的直流稳压电源根据其技术指标设定,该电源可用作实验用电压源或生活中的充电及收音机、录音机的电源;该电源制作成本低,效果好稳定性高,且带有安全保护装置。
缺点就是体积较大、笨重,不便于携带。
但从总的方面来说,利大于弊,我们把它用在该用的地方,就能发挥它应有的作用,更好的为我们服务。
随着电子计算机技术的发展,计算机辅助设计已经逐渐进入电子设计的领域。
模拟电路中的电路分析、数字电路中的逻辑模拟,甚至是印制电路板、集成电路版图等等都开始采用计算机辅助工具来加快设计效率,提高设计成功率。
而大规模集成电路的发展,使得原始的设计方法无论是从效率上还是从设计精度上已经无法适应当前电子工业的要求,所以采用计算机辅助设计来完成电路的设计已经势在必行。
同时,微机以及适合于微机系统的电子设计自动化软件的迅速发展使得计算机辅助设计技术逐渐成为提高电子线路设计的速度和质量的不可缺少的重要工具。
在电路设计工作方面,最初使用的是Protel公司DOS版本的Tango软件,在当时这一软件被看作是多么的先进,因为在这以前没有人能像电脑那样快速、准确的画出电路图,制出电路板。
如今,随着Windows95/98及NT操作系统的出现,一些更方便、快捷的电路设计软件应运而生。
如:Tango、Protel、OrCAD、PSpice、Electronics Workbench、VeriBest、PAD2000等。
DC/DC功率变换器软开关技术及Pspice仿真引言随着生产技术的发展,电力电子技术的应用已深入到工业生产和社会生活的各方面,目前功率变换器的开关变换技术主要采用两种方式:脉宽调制(PWM技术和谐振变换技术。
传统的PWM控制方式由于开关元件的非理想性,其状态变化需要一个过程,即开关元件上的电压和电流不能突变,开关器件是在承受电压或流过电流的情况下接通或断开电路的,因此在开通或关断过程中伴随着较大的损耗。
变频器工作频率一定时,开关管开通或关断一次的损耗也是一定的,所以开关频率越高,开关损耗就越大,因而硬开关变换器的开关频率不能太高。
相比之下软开关变换器的作用是,当电压加在器件两端或者电流流经器件时,抑制功率器件转换时间间隔, 即软开关的开关管在开通或关断过程中,或是加于其上的电压为零,或是通过器件的电流为零。
这种开关方式明显减小了开关损耗,不仅可以允许更高的开关频率以及更宽的控制带宽,同时又可以降低dv/dt 和电磁干扰。
本文为了更好地说明不同软开关技术的区别,采用Pspice 软件对其中两种有代表性的变换电路进行了仿真和分析。
图 1 升压半波模式的零电压开关准谐振变换器原理图图 2 开关管通断及其所受电压应力仿真波形图3 升压零电压PW变换器原理图图 4 主副开关管的驱动仿真波形软开关的原理谐振开关技术的核心问题是为器件提供良好的开关工作条件,使得器件在零电压或零电流条件下进行状态转变,从而把器件的开关损耗降到最低水平。
软开关下的器件通断可以明显减少功率的开关损耗。
减小开关损耗通常有以下两种方法:在开关管开通时,使其电流保持在零或抑制电流上升的变化率,减少电流与电压的重叠区,从而减少开通的功率损耗,即零电流导通;在开关管开通前,减小或消除加在其上的电压,即零电压导通。
减小关断损耗有以下两种方法:开关管关断前,减小或消除加在其上的电流,即零电流关断;开关管关断前,减小或消除加在其上的电压,即零电压关断。
2001年第19卷第3,4期 长春邮电学院学报 2001 V o l119 N o13,4 JOU RNAL O F CHAN GCHUN PO ST AND TEL ECOMMUN I CA T I ON I N ST ITU TE文章编号:100021794(2001)0320094205正激式零电压转换开关电源设计及PSP I CE仿真α刘大年(扬州大学工学院,江苏扬州 225009)摘要:利用电子电路分析程序PSP I CE(Pers onal Si m ulati on P rogram w ith In tegrated C ircuit)软件,设计了一种基于正激式Z V T2P WM(零电流转换脉宽调制)变换器的开关稳压电源,分析了变换电路的工作过程,仿真结果表明了理论分析和参数计算的正确性。
关键词:脉宽调制:开关电源;仿真;正激式;零电流转换中图分类号:TN702 文献标识码:A引 言 传统的P WM(脉宽调制)开关电源中应用的硬开关技术,其主要缺点是随着开关频率的提高,开关过程引起的功耗占功率元件总损耗的比重较大,且元件易受过电压和过电流损坏。
目前较好的解决途径是采用软开关技术。
软开关技术可较大地减小开关损耗,提高开关变换器的效率,其开关频率可达到几十千赫兹,从而使DC DC变换器的高性能、小型化成为可能。
笔者利用PSP I CE(Pers onal Si m ulati on P rogra m w ith In tegrated C ircuit)设计了基于正激式零电压转换脉宽调制变换器的稳压电源,它是在Z V T2P WM变换器的基础上,引入了反馈控制环节,从而构成开关稳压电源,使其输出电压对输入电压和负载参数的变化不敏感。
文中对Z V T2P WM电路的工作过程作了分析,进行了参数设计,针对具体的电路模型作了电路动态和稳态的仿真,给出了运行波形和分析结果。
1 PSP I CE的功能和特点 随着计算机技术的发展,计算机辅助设计与分析(CAD CAA)技术也有了较大的发展,而在电子设计领域中,该技术发展成为电子设计自动化(EDA),并已在电路与系统的设计中发挥了极其重要的作用,PSP I CE是美国M icroSi m公司开发的电子线路设计仿真的微机版EDA软件,具有较高的分析计算能力和精度,其主要功能有:1)直流的工作点、直流小信号传输函数、直流转移特性曲线分析;2)交流小信号的频域分析、噪声α收稿日期:2001208226作者简介:刘大年(1962— ),男,江苏扬州人,扬州大学工学院电气工程系讲师,主要从事高频功率电子电力变换技术及感应电机变频技术的研究。
1 PSPICE软件的简介与使用1.1 PSPICE的发展与现状根据实际电路(或系统)建立模型,通过对模型的计算机分析、研究和试验以达到研制和开发实际电路(或系统)的目的,这一过程,称为计算机仿真(Simulation)的高效、高精度、高经济性和高可靠性,因此倍受业界喜爱。
在设计或分析各类开关电源时,计算机仿真起了重要的作用。
数字仿真手段可用以检验设计的系统是否满足性能要求。
应用数字仿真可以减少电路实验的工作,与电路实验相比,计算机仿真所需时间要少得多,并可以更全面、更完整地进行,以期改进设计质量。
目前流行的许多著名软件如PSpice、Icape等,它们各自都有其本身的特点。
而随着Windows的全面普及,PSpice推出了Windows版本,用户不用象DOS版那样输入数据网表文件,而是图形化,只需选择相应的元器件的图标代号,然后使用线连接就可以自动生成数据网表文件,整个过程变得直观简单。
因此它已广泛应用于电力电子电路(或系统)的分析中。
用于模拟电路仿真的SPICE(Simulation Program with Integrated Circuit Emphasis)软件于1972年由美国加州大学伯克利分校的计算机辅助设计小组利用FORTRAN语言开发而成,主要用于大规模集成电路的计算机辅助设计。
SPICE 的正式实用版SPICE 2G在1975年正式推出,但是该程序的运行环境至少为小型机。
1985年,加州大学伯克利分校用C语言对SPICE软件进行了改写,1988年SPICE被定为美国国家工业标准。
与此同时,各种以SPICE为核心的商用模拟电路仿真软件,在SPICE的基础上做了大量实用化工作,从而使SPICE成为最为流行的电子电路仿真软件。
PSPICE则是由美国Microsim公司在SPICE 2G版本的基础上升级并用于PC 机上的SPICE版本,其中采用自由格式语言的5.0版本自80年代以来在我国得到广泛应用,并且从6.0版本开始引入图形界面。
实验报告院(系):学号:专业:实验人:实验题目:运用Pspice软件进行电路仿真实验。
一、实验目的1、通过实验了解并掌握Pspice软件的运用方法,以及电路仿真的基本方法。
2、学会用电路仿真的方法分析各种电路。
3、通过电路仿真的方法验证所学的各种电路基础定律,并了解各种电路的特性。
二、软件简介Pspice是主要用于集成电路的分析程序,Pspice起初用在大规模电子计算机上进行仿真分析,后来推出了能在 PC上运行的Pspice软件。
Pspice5.0以上版本是基于windows 操作环境。
Pspice软件的主要用途是用于于仿真设计:在实际制作电路之前,先进行计算机模拟,可根据模拟运行结果修改和优化电路设计,测试各种性能,不必涉及实际元器件及测试设备。
三、具体实验内容A、电阻电路(实验一exe 3.38、实验二exe 3.57)1、原理说明:对于简单的电阻电路,用Pspice软件进行电路的仿真分析时,现在要在capture环境(即Schematics程序)下画出电路图。
然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。
Pspice软件是采用节点电压法求电压的,因此,在绘制电路图时,一定要有零点(即接地点)。
同时,要可以用电路基础理论中的方法列电路方程,求解电路中各个电压和电流。
与仿真结果进行对比分析2、步骤:(1)打开Schematics程序,进入画图界面。
(2)原理图界面点击Get New Part图标,添加常用库,点击Add Library ,将常用库添加进来。
本例需添加Analog( 包含电阻、电容等无源器件),Soure(包含电压源、电流源等电源器件)。
在相应的库中选取电阻R,电压源IDC, F1(实验一),以及地线GND,点取Place 放到界面上。
(3)调节好各元件的位置以及方向,并设好大小,最后连线,保存。
(4)按键盘“F11”(或界面smulate图标)开始仿真。
如原理图无错误,则显示Pspice A/D 窗口。
DC/DC功率变换器软开关技术及Pspice仿真引言随着生产技术的发展,电力电子技术的应用已深入到工业生产和社会生活的各方面,目前功率变换器的开关变换技术主要采用两种方式:脉宽调制(PWM)技术和谐振变换技术。
传统的PWM控制方式由于开关元件的非理想性,其状态变化需要一个过程,即开关元件上的电压和电流不能突变,开关器件是在承受电压或流过电流的情况下接通或断开电路的,因此在开通或关断过程中伴随着较大的损耗。
变频器工作频率一定时,开关管开通或关断一次的损耗也是一定的,所以开关频率越高,开关损耗就越大,因而硬开关变换器的开关频率不能太高。
相比之下软开关变换器的作用是,当电压加在器件两端或者电流流经器件时,抑制功率器件转换时间间隔,即软开关的开关管在开通或关断过程中,或是加于其上的电压为零,或是通过器件的电流为零。
这种开关方式明显减小了开关损耗,不仅可以允许更高的开关频率以及更宽的控制带宽,同时又可以降低dv/dt 和电磁干扰。
本文为了更好地说明不同软开关技术的区别,采用Pspice软件对其中两种有代表性的变换电路进行了仿真和分析。
图1 升压半波模式的零电压开关准谐振变换器原理图图2 开关管通断及其所受电压应力仿真波形图3 升压零电压PWM变换器原理图图4 主副开关管的驱动仿真波形软开关的原理谐振开关技术的核心问题是为器件提供良好的开关工作条件,使得器件在零电压或零电流条件下进行状态转变,从而把器件的开关损耗降到最低水平。
软开关下的器件通断可以明显减少功率的开关损耗。
减小开关损耗通常有以下两种方法:在开关管开通时,使其电流保持在零或抑制电流上升的变化率,减少电流与电压的重叠区,从而减少开通的功率损耗,即零电流导通;在开关管开通前,减小或消除加在其上的电压,即零电压导通。
减小关断损耗有以下两种方法:开关管关断前,减小或消除加在其上的电流,即零电流关断;开关管关断前,减小或消除加在其上的电压,即零电压关断。
开关电源Pspice仿真技巧及收敛性问题摘要:本文主要讲述了开关电源的Pspice仿真中,速度与精度的权衡,收敛性问题的常规解决方法。
收敛性问题快速解决办法在做开关电源仿真时,经常会遇到收敛性的问题。
我也在其中遇到各种各样的收敛性问题,根据我的经验和前辈的传授,下面我对这个问题进行一个说明。
如果在仿真时遇到收敛性问题,快速解决办法如下:设置.OPTION设置里的一些选项。
_ ABSTOL = 0.01μ (Default=1p)_ VNTOL = 10μ (Default=1μ)_ GMIN = 0.1n (Default=1p)_ RELTOL = 0.05 (Default=0.001)_ ITL4 = 500 (Default=10)这些设置可以解决大多收敛性问题,当然如果电路中的错误,它是解决不了的。
如果模型不够精确,上面的设置需要实时调整才能得到想要的结果。
开关仿真中速度与精度的权衡开关仿真就是仿真时有很多重复的周期性的上升下降信号的仿真,比如开关电源的仿真。
在这种仿真中,需要丢弃一些仿真时间点,不然仿真将会非常慢。
而尽管如此,开关电源的仿真还是非常慢。
这种仿真中,pspice的时间步长会在一个很大的步长范围内波动。
这个波动范围主要由一些设置限定,比如RELTOL,ABSTOL,VNTOL等。
因为它是线性迭代算法,为了在信号的上升沿和下降沿得到限定精度范围内的值,在沿处理时,它需要提高步长细度,否则难以得到限定的仿真精度。
因为一般可信的仿真精度是不可能有太大的误差的。
为解决这种问题,通常可以通过设置TRTOL=25(DEFAULT 7),和TMAX,将时间步长限定在开关周期的1/10到1/100之间。
这样做基本可以提高一倍的仿真速度。
当然精度应该在可接受范围内。
收敛性问题在进行DC和瞬态仿真时,SPICE会先给每一个节点假定一个初始值,然后通过误差范围内的数次迭代,最终得到一个误差范围内的结果,这个迭代次数也是有限定的,通过ITL来限定。