第十章 数据的收集、整理和描述
- 格式:doc
- 大小:238.50 KB
- 文档页数:2
§10.1 统计调查(1)【教学目标】1.了解通过全面调查收集数据的方法和划记法,经历简单的数据的收集、整理、描述和分析数据得出结论,即数据处理的一般过程;2.会设计简单的调查问卷收集数据,能根据问题查找有关资料,获得数据信息,会用表格整理数据,用条形图、扇形图直观地描述数据;3.通过实际参与收集、整理、描述、分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,初步培养重视调查研究的良好习惯和科学态度.【教学过程】一、预习导航回忆小学所学的统计的有关知识,并在旁边空白处记录下来.二、新知探究自学课本回答下列问题:我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.尝试练习1:问题一:如果要了解全班同学对语文、数学、外语、政治、历史、地理、生物七个学科的喜爱情况,你会怎样做?1.收集数据如何收集数据,让各小组的同学在下面的问卷调查中获取数据.填完后交小组长,由小组长表唱票,小组成员在表格中进行统计.1. 确定调查目的;2. 选择调查对象;3. 设计调查问题.2.整理数据语数外物政历地生51 1 2 人学科类3.描述数据描述数据的方法通常用条形统计图或扇形统计图来直观地反映数据揭示的信息. 条形统计图:就是用坐标的形式来描述.如:扇形统计图:用一个圆代表总体,然后将各部分所占的百分比将圆分成若干个部分,再在各部分中标出相应的百分比和名称.如图所示:制作扇形统计图关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360o ,如语文所占的百分比是20%,则相对应的圆心角为360o ×20%=72o.注意:各部分的圆心角之和可能与360 o有一定的误差.条形统计图与扇形统计图的优缺点各是什么? 4.全面调查的意义 在上面的调查中,我们利用调查问卷得到了全班同学喜爱的学科数据,利用表格整理数据,并用统计图直观形象的描述了数据.利用表和图分析了解到了全班同学喜爱学科的情况.在这个调查中,全班同学是要考查的全体对象.像这样考查全体对象的调查就叫做全面调查(也叫做普查).三、巩固提高例 经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其他占10%,请画出扇形图描述以上统计数据.例 春节文艺晚会是大家都喜欢的节目,下面是路刚班级喜爱某种节目的人数分布 表,但因不小心,他打翻墨水,有些地方被墨水遮掉了.请你帮他解决以下问题.(1)被墨水遮掉的3处应是① _______ ②_______ ③________;(2)从上表中可知该班同学喜欢_______的人数最多;(3)画出条形图表示全班同学喜欢某种节目的分布情况. 四、课堂小结五、当堂检测1. 某中学初一(3)班50名学生参加数学测验,测验题目共20题,每题5分满分100分.统计结果如下:节目编号节目类别 划计 人数 百分比 1 相声 ① ② ③_ 2 小品 正 8 19% 3 歌曲 正5 12% 4 舞蹈 正 8 19% 5 杂技 正 7 17%6 戏曲 3 7% 合计42421语文% 数学25 %全对的2人对19题的8人对18题的10人对17题的9人对16题的6人对15题的6人对14题的5人对12题的2人对10题的1人对6题的1人.(1)请你设计一张表格对以上数据进行统计并填上相应数据?(2)你能用条形图把上述数据表示出来吗?2. 根据下面的数据制作扇形统计图并回答问题.对滨州市家庭人口数据的一次统计结果表明:2口之家占24%,3口之家占41%,4口之家占20%,5口之家占10%,6口之家占3%,其他占2%.(1)哪一类家庭人口多?占百分之几?(2)哪两类家庭的百分比之和超过了半数,且最多?(3)哪两类家庭的百分比之和刚达到30%?§10.1 统计调查(2)【教学目标】1.了解总体、个体、样本及样本容量的概念,通过抽样调查,初步感受抽样的必要性及样本的代表性,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析;2.理解抽样调查的方法,通过案例理解简单随机抽样,体会用样本估计总体的统计思想,合理运用抽样调查方法来解决实际问题;3.通过实际参与收集、整理、描述、分析数据的活动,体会数学在生活和生产中的作用,激发学生爱数学的热情.【教学过程】一、预习导航我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.二、新知探究自学课本,回答下列问题:如果要对某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?(1) 抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查.,叫做抽样调查.(2)总体、个体、样本、样本容量的定义总体: .个体: .样本: .样本容量: .(3)抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查2000名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映2000名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在2000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此,随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.尝试练习:某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?⑴可以用全面调查的方法对全校学生逐个进行调查吗?这样做你认为有什么不足之处?⑵能否有既省时省力又能解决问题的新方法?请阅读教材P153-155后,小组讨论交流你的理解.⑶什么是总体、个体、样本、样本容量?在上面的问题中总体、个体、样本、样本容量分别是什么?⑷你明白了统计的思想了吗?抽样调查是实际中经常采用的调查方式.抽样调查有什么优点?需要注意什么?⑸见教材P154表10-2,你知道哪个节目最受学生喜爱?百分比为多少?据此你知道全校2000名学生中有多少学生最喜爱这个节目?⑹试用条形图和扇形图来描述表10-2中的数据.三、巩固提高1. 为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们的身高的平均值作为全校学生的平均身高的估计.⑴小明的调查是抽样调查吗?⑵如果是抽样调查,指出调查的总体、个体、样本和样本容量.⑶这个调查结果能较好地反映总体的情况吗?如果不能,请说明理由.2. 举出不宜用全面调查的例子,并说明理由.3. 某班要选3名学生代表本班参加班级间的交流活动.现在按下面的办法抽取:把全班同学的姓名分别写在没有明显差别的小纸片上,把纸片混放在一个盒子里,充分搅拌后,随意抽取3张,按照纸片上所写的名字选取3名同学.你觉得上面的抽取过程是简单随机抽样吗?为什么?四、课堂小结五、当堂检测1.要调查下面几个问题,你认为应该作全面调查还是抽样调查?⑴了解全班同学每周体育锻炼的时间.⑵调查市场上某种食品的色素含量是否符合国家标准.⑶鞋厂检测生产的鞋底能承受的弯折次数.2.指出下列调查中的总体、个体、样本和样本容量.⑴从一批电视机中抽取20台,调查电视机的使用寿命.⑵从学校七年级中抽取30名学生,调查学校七年级学生每周用于数学作业的时间.3.小明家搞池塘养鱼已三年,头一年放养鱼苗20000尾,其成活率约为70%,在秋季捕捞时,随意捞出10尾,称得每尾的质量如下(单位:千克):0.8 0.9 1.2 1.3 0.8 0.9 1.1 1.0 1.2 0.8.⑴估计这塘鱼的总产量是多少千克?⑵如果把这塘鱼全部卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入是多少元?⑶已知该养鱼户的第二年纯收入为48000元,那么第二年比第一年增长的百分率是多少?§10.1 统计调查(3)【教学目标】1.感受分层抽样的必要性,初步掌握分层抽样的基本步骤和方法;2.经历收集、处理数据的过程,会用分层抽样的方法来收集数据、整理数据、分析数据、做出决策,能利用分层抽样的知识解决简单实际生活中的问题;3.增强用统计方法解决实际问题的意识,通过研究解决问题的过程,初步培养学生合作交流的意识和探究精神.【教学过程】一、预习导航1.什么是抽样调查?2.什么是总体、个体、样本和样本容量?3.统计的思想是什么?4.抽样调查有什么优点?简单随机抽样时需要注意什么?二、新知探究:自学课本,回答下列问题:(1)分层抽样:.分层抽样的优点:.(2)在什么情况下分层?分层的根据是什么?尝试练习问题某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况.⑴不能用对学生调查数据去估计整个地区电视观众的情况呢?⑵如果抽取一个容量为1000的样本进行调查,你会怎样调查?⑶采用分层抽样与在整个地区直接进行简单随机抽样相比,这样抽取样本一般能更好地反映总体.如果青少年、成年人、老年人的人数比为2∶5∶3,则可按下表抽取:教材P157表10-3是按上述做法进行调查并整理得到的数据,从中可以大致估计出整个地区观众对五种节目的喜爱情况.请你画条形图和扇形图描述表10-3中的数据.⑷由表10-3中数据还可以估计各个年龄段中观众对某类节目喜爱的情况.如,各个娱乐37% 35.2% 19.7%三、巩固提高1. 如果整个地区的观众中,青少年、成年人、老年人的人数比为3∶4∶3,要抽取容量为500的样本,则各年龄段分别抽取多少人合适?2. 根据表10-3,请你计算各个年龄段中最喜爱新闻、体育、戏曲类节目的百分比,画出折线图,分析随年龄变化,观众喜爱节目的变化情况.3. 活动1的问题中,除了根据年龄段分不同的人群,还可以按其他特征分吗?四、课堂小结五、当堂检测1.调查收集数据的方式通常有______________和_____________两种.当总体中个体数目较少时用________________的方式获得数据较好,当总体中个体数目较多时用____________的方式获得数据较好.但关于电视机寿命、火柴质量等具有破坏性的调查不宜采用_____________,国家人口普查采用________________.2.对某中学学生户外活动时间进行抽样调查,学校共有学生1500名,其中男生有800名,女生有700名.如果样本大小为150,小明现有三种方案:A:在七年级学生中用简单随机抽样,抽取150名学生进行调查;B:对全校学生进行简单随机抽样,抽取150名学生进行调查;C:分别在男生中用简单随机抽样抽取80名,在女生中用简单随机抽样抽取70名进行调查.你觉得哪种方案调查的结果会更精确一点?说说你的理由.3.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是 .4.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成 下列各题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4)50403020100项目金额/§10.2 直方图(1)【教学目标】1.了解频数及频数分布的概念,根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布,会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息;2.通过学习用表格整理数据表示频数分布,体会表格在整理数据中的作用,通过学习用简单频数分布直方图描述数据的方法,进一步体会统计图表在描述数据中的作用;3. 初步建立统计的观念,初步培养调查研究的良好习惯和实事求是的科学态度.【教学过程】一、预习导航1.什么是分层抽样?2.分层抽样的优点是什么?二、新知探究自学课本回答下列问题:称为组距.叫做频数.尝试练习:活动1提出问题探索解决问题的方法问题1:为了参加学校年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.你知道应该怎样选择吗?为什么?问题2:已知63名学生的身高数据,为了使选取的参赛选手身高比较整齐,你知道怎样做才能知道数据(身高)的分布情况吗?(即在哪些身高范围学生比较多?而哪些身高范围学生比较少?)活动2 用频数分布描述数据的方法阅读教材,并结合以上探究,你知道用频数分布描述数据的一般步骤是什么?注意对以下概念的理解:1.组距2.频数3.频数分布直方图4.频数折线图活动3 应用频数分布解决简单的实际问题为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度(数据见教材).列出样本的频数分布表,画出频数分布直方图.问题在活动1的问题2中,对数据进行分组时,组距取3,把数据分成8组.如果组距取2或4,那么数据分成几个组?这样做能否选出身高比较整齐的40名队员?三、巩固提高1. 为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):cm)根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.四、课堂小结五、当堂检测1.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( ) A .10组 B .9组 C .8组 D .7组2.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别是2, 8, 15, 5,则第四组频数是______.3.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( ) A .5 B .7 C .16 D .33(第3题)/min§10.2 直方图(2)【教学目标】1.根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布;2.会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息. 进一步体会统计图表在描述数据中的作用;3. 增强学习统计的兴趣,初步培养调查研究的良好习惯和科学态度.【教学过程】一、预习导航1.什么是组距、频数?2.用频数分布描述数据的一般步骤是什么?二、新知探究:活动熟练掌握用频数分布直方图解决问题的一般步骤从蔬菜大棚中收集到50株西红柿秧上小西红柿的个数:28 62 54 29 32 47 68 27 55 4336 79 46 54 25 82 16 39 32 6461 59 67 56 45 74 49 36 39 5285 65 48 58 59 64 91 67 54 5768 54 71 26 59 47 58 52 52 70请按组距为10将数据分组,列出频数分布表,画出频数分布直方图和频数折线图,分析数据分布的情况.(先独立思考后分组交流评讲)三、巩固提高:⑴全班有多少同学?⑵组距是多少?组数是多少?⑶跳绳的次数x在100≤x<140范围内的同学有多少?占全班同学的百分之几?⑷画出适当的统计图表示上面的信息.⑸你怎样评价这个班的跳绳成绩?四、课堂小结五、当堂检测1.某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数..)(1)抽取样本的容量为;(2)根据表中数据,补全图中频数分布直方图;(3)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为人.2.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小护士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位: dB ),将调查的数据进行处理(设所测数据均为正整数)组别噪声声级分组频数频率1 44.5~59.5 4 0.12 59.5~74.5 a 0.23 74.5~89.5 10 0.254 89.5~104.5 b c5 104.5~119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=___________,b=____________,c=____________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有多少个?第十章 数据的收集、整理与描述复习【教学目标】1. 通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实;2. 通过复习,进一步明确数据处理的一般过程;3. 在与他人交流合作的过程中学会收集、整理、描述数据. 【教学过程】一、本章知识网络: 数据处理的一般过程得出结论直方图折线图扇形图条形图据收集数据抽样调查全面调查二、知识链接:1. 统计图 扇形统计图 容易表示出一个对象在总体中所占的百分比. 条形统计图 可以表示出各种情况下各个项目的具体数目. 折线统计图 可以表现出同一对象的发展变化情况2. 全面调查 为一特定目的而对所有考察对象作的全面调查 抽样调查 为一特定目的而对部分考察对象作的调查 抽样调查中的总体 所要考察的对象的全体 个体 其中每一个考察对象样本 从总体中取出的一部分个体 样本容量 样本中个体的数目 3. 直方图画频数分布直方图的一般步骤(1)计算最大值与最小值 (2)决定组距与组数(3)列频数分布表 (4)画频数分布直方图三、巩固练习:1. 右图是根据某中学为地震灾区捐款情况而制作的统计图,已知该校在校学生2000人,请你根据统计图计算该校七年级有学生 人, 七年级共捐款 元,该校三个年级共捐款 元.人均捐款数(元)0246810121416七年级八年级九年级年级/日4821温度/℃2. 某校七年级学生进行体育测试,七年级(2)班男生的立定跳远成绩制成频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答下列问题.(1)该班有多少名男生?(2)若立定跳远的成绩在 2.0米以上(包括2.0米)为合格率是多少四、当堂检测 一、精心选一选,你一定能行1.下列调查适合作全面调查的是( ) A.了解在校大学生的主要娱乐方式 B.了解我市居民对废电池的处理情况 C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI 流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是( ) A.调查全校女生 B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人 3.要反映某市一周内每天的最高气温的变化情况,宜采用( ) A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是( ) A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变 B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变 C.小明所在班级的学生人数不少于28人 D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角度数是( ) A.144 B.162 C.216 D.250二、耐心填一填,你一定很棒的! 6.为了考察某校七年级男生的身高情况,调查了60名男生的身高,那么它的总体是____________,个体是__________________,样本是______________.7.小明家本月的开支情况如右图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元.8.某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中,身体素质达标的大约有_____________万人.9.测得某市2月份1~10日最低气温随日期变化折线图如图所示 ()1 最低气温为2c 的天数为_______天.()2 该市这10天的天气变化趋势是___________________.三、挑战你的技能10.老师布置每位学生估计本班的数学平均成绩,小玲是数学兴趣小组的成员,就向数学兴趣小组的全体成员做了调查,用他们的数学平均成绩估计本班的数学平均成绩,这样的抽样调查合理吗?为什么?11.某校为了了解七年级学生的学习情况,在这个年级抽取了50名学生对某课进行了测试.将所得的成绩(成绩均为整数)进行整理(如下边所示),请你画出频数分布直方图和频数折线图,并回答问题:(1)全班有多少同学?(2)组距是多少?组数是多少?(3)测试成绩在70≤x<80范围的同学有多少?占全班同学的百分比?(4)画出适当的统计图表示上面的信息.(5)你怎样评价这个班的测试成绩?12. 某校学生会准备调查全校七年级学生 每天(除课间操外)的课外锻炼时间. (1)确定调查方式时,甲说:“我到(1)班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最合理的是(填“甲”、或“乙”或“丙”)____________________(2)他们采用了最为合适的调查方法收集数据,并绘制了条形和扇形统计图,请将两幅统计图补充完整;图1(3)若该七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数.20分钟约40分钟及以上图2。
第十章数据的收集、整理与描述统计调查(1)学习目标:1.了解全面调查的概念。
2。
会设计简单的调查问卷,收集数据。
3。
掌握划记法,会用表格整理数据。
4。
会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般过程,体验统计与生活的关系.重点、难点:全面调查的过程(数据的收集、整理、描述)是重点;绘制扇形统计图是难点。
导学流程:一、问题导入在日常生活中,我们可能遇到下面一些问题:[投影1](1)中央电视台《青年歌手大奖赛》的收视情况怎样?[投影2](2)班级里同学出生主要集中在哪一年?[投影3](3)本年度最受欢迎的影片是哪几部?要解决这些问题,需要进行统计调查。
二、数据的收集看下面的问题:[投影4]问题1 现在我们如果要了解全班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?举手表决、问卷调查等。
问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷。
你认为设计调查问卷应包括哪些内容?问卷设计的内容应包括调查中所提的问题、答案选项以及要求等。
就上面的问题我们可以设计如下的调查问卷:[投影5]如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容?应加“男□女□(打勾)”这一项.问卷设计好后,请每位同学填写,然后收集起来。
例如,调查的结果是:[投影6]D C A D B C A D C DC D A B D D B C D BD B D C D B D C D BA B B D D D C D B D注意:用字母代替节目的类型,可方便统计.三、数据的整理从上面的数据中你容易看出全班同学喜爱各类节目的情况吗?为什么?不容易。
因为这些数据杂乱无章,不容易发现其中的规律。
为了更清楚地了解数据所蕴含的规律,需要对数据进行整理。
你认为应该怎样整理我们收集到的数据?划“正”字。
这就是所谓的划记法。
下面我们利用下表整理数据。
全班同学最喜爱节目的人数统计表:上表可以清楚地反映全班同学喜爱各类节目的情况。
第十章“数据的收集、整理与描述”单元备课本章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程.本章共安排三个小节和两个选学内容,教学(不包括选学内容)约需10课时,具体安排如下(仅供参考):10.1 统计调查约3课时10.2 直方图约2课时课题学习从数据谈节水约3课时数学活动小结约2课时一、教科书内容与本章学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容10.1节“统计调查”,主要介绍收集、整理与描述数据的一些常用方法.全面调查和抽样调查是统计调查的常用方法.教科书以调查人们对几种电视节目的喜爱情况为背景,设计了两个问题,通过统计调查问题1回顾了全面调查;通过统计调查问题2介绍了抽样调查.教科书首先设置问题1,要求学生考察全班同学喜爱五种电视节目的情况.解决这个问题需要统计调查,首先是收集数据,由此引出利用调查问卷收集数据的方法;对于收集到的数据需要进行整理才能看出数据分布的规律,这就涉及如何整理数据的问题,教科书介绍了利用频数分布表(没有给出频数分布的概念)整理数据的方法;为了更直观地看出全班同学喜爱五种电视节目的情况,教科书选用了学生在小学已经学过的条形图和扇形图展示了数据的分布规律;最后通过分析统计图表就可以看出全班同学五种电视节目的情况.对于扇形图,学生在小学只能从扇形图中读出信息,不会画出扇形图来描述数据,在本节中,教科书结合问题1介绍了如何画出扇形图,这是本学段的一个教学要求.问题1的统计调查过程实际上让学生经历了一个收集、整理、描述和分析数据得出结论,即数据处理的一般过程.数据的来源一般有两条渠道:一条是通过统计调查或科学试验直接得到第一手统计数据;另一条是通过查阅资料等间接获得第二手统计数据.统计调查是获得第一手数据的重要途径,它们常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊杂志、广播、电视媒体等提供了大量的统计数据,通过这些资料或媒体可以获得第二手数据.本章主要学习通过统计调查来收集数据,并对收集到的数据进行整理的方法.关于通过科学试验获得数据的方法,教科书通过一个选学栏目作了简单介绍;对于通过查阅资料等间接手段收集数据的方法,主要安排在课题学习和习题中.用样本估计总体是统计的基本思想,抽样调查是实际中经常采用的一种调查方式,也是本节重点介绍的统计调查方法.教科书沿用问题1的情景,设计了问题2,介绍利用抽样调查收集数据.在问题2中,调查全校学生对五种电视节目的喜爱情况,由于学生人数较多,采用全面调查的方式收集数据不太实际,抽样调查是一种经济、有效、省时省力的方法,这就使学生对抽样的必要性有所感受.结合着必要性的讨论,教科书给出了与抽样调查有关的概念和术语,如样本、总体、个体、样本容量等.为了使样本尽可能具有好的代表性,抽取样本时,要求每一个学生都有相等的机会被抽到,教科书介绍了一种利用学号随机抽取样本,实现简单随机抽样的方法.这个抽样方法简单有效,便于学生理解样本的代表性.有了样本数据,就可以整理、描述和分析样本数据,通过分析样本数据来估计总体的情况.通过问题2的学习,学生经历了一个利用抽样调查处理数据、解决问题的统计过程,对抽样调查的必要性、样本的代表性、单随机抽样,以及通过样本估计总体的思想等有所了解.在问题1,2的基础上,教科书设置了问题3.问题3是比较学生所在学校三个年级学生的平均体重,教科书没有给数据,也没有给分析和解决过程,需要学生自主合作完成.教科书这么做的目的是考虑到统计内容有较强的实践性,希望学生通过亲自参与统计活动这种有效方式学习统计内容.问题3中设置的三个小问题,事实上是给学生完成此问题适当的引导.其中调查方案的确定,需要根据学生自己所在学校的实际情况进行综合权衡,选取相对合适的调查方案.即使是调查同一所学校,也完全可以采用不同的调查方式收集数据,但要能解决所提问题为前提,其实这是辩证地认识两种调查方式特点的过程,更是正确认识统计方法特点的过程.通过问题3,让学生亲自参与在实际问题中收集、整理、描述和分析数据得出结论的统计过程,培养应用意识和解决问题的能力,初步建立数据分析观念,感受统计的思想.“捉-放-捉(capture-recapture)”是生产和科研中经常用到的方法,常常被用来根据部分的情况估计整体的情况,例如估计养鱼池中鱼的个数,森林中某种动物的个数等,这个方法体现了用样本估计总体的思想.教科书在选学栏目“实验与探究瓶子中有多少粒豆子”中,模拟这种方法设计了一个活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解试验也是获得数据的有效方法.10.2节“直方图”,重点讨论利用直方图来描述数据.对于直方图,学生在前两个学段没有接触,这是本学段学习的一种新统计图.教科书从学生熟悉的问题情景入手:从63名学生中选出40名参加广播体操比赛.选择参赛队员的一个要求是队员的身高应尽可能整齐.我们可以用不同的方法选出符合这个要求的队员,教科书介绍了利用频数分布确定人选的方法.分析数据的频数分布,首先是将数据分组,根据一组数据的最大值、最小值可以确定这组数据的极差,极差反映了数据的变化范围.参照极差,可以确定组距,进而可以将数据进行分组,利用频数分布表给出了身高数据的分布情况,分析频数分布表可以看出大部分学生的身高分布在哪个范围,由此可以确定参赛选手的身高.对于取值比较少的数据(如前一节最喜爱的电视节目),可以用条形图描述频数分布,而对于取值比较多的数据(如身高),分组后可以用直方图来描述频数分布.教科书利用问题4介绍了根据频数分布表作出频数分布直方图的方法.教科书结合一个实际问题介绍直方图描述数据的方法,使得对于统计图表的认识具体化.10.3节“课题学习从数据谈节水”,要求学生综合利用学过的统计知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.教科书选择了一个具有实际意义和时代气息的问题——水资源问题为主题编写课题学习,这不仅有利于统计知识的深入学习,而且具有“节能减污,保护环境”的教育价值.这个课题学习由两部分组成,第一部分要求学生阅读背景材料,从中收集数据,通过数据处理回答问题.第二部分要求学生运用已学的统计调查知识,完成一个以“家庭人均月生活用水量”为题的统计调查活动,并结合第一部分的内容撰写一份报告.课题学习的设计目的,一方面是让学生感受对数据进行合适处理,可以挖掘其中蕴涵的信息,体会统计方法的意义;另一方面是让学生经历在实际问题中收集、整理、描述和分析数据得出结论的统计过程,在经历这个统计调查的过程中,发展学生的数据分析观念,感受统计的思想,逐步建立用数据说话的习惯.(三)本章学习目标1.经历收集数据、整理、描述和分析数据的活动,了解数据处理的过程.了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷.2.通过实例,体会抽样的必要性,了解简单随机抽样.通过简单随机抽样,体会样本估计总体的合理性,能根据统计结果作出简单的判断和预测.3.通过实例,了解频数及频数分布的意义,会用表格整理数据,体会表格在整理数据中的作用.5.能画扇形图和简单频数分布直方图(等距分组的情形),并能利用频数分布直方图解释数据中蕴涵的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.6.通过表格、折线图、趋势图等,感受随即现象的变化趋势.7.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立数据分析观念,培养重视调查研究的良好习惯和科学态度.三、对教学的几个建议1.注意统计思想的渗透与体现2.在统计过程中学习统计,改进学生的学习方式3.挖掘现实生活中的素材进行教学4.准确把握教学要求5.关注信息技术的使用。
第十章数据的收集、整理与描述1.全面调查与抽样调查(1)全面调查和抽样调查是按调查对象范围不同划分的调查方式.全面调查是对调查对象中的所有单位全部加以调查,抽样调查是一种非全面调查,它是从研究的总体中按随机原则抽取部分样本单位进行调查,并根据样本单位的调查结果来推断总体,以达到认识总体的一种统计调查方式.(2)抽样调查与全面调查有着相辅相成的关系:在实际运用中,没有必要进行全面调查和不可能进行全面调查时宜采用抽样调查.(3)抽样调查的优点:一是由于只从总体中抽取一部分样本进行调查,工作量小,所以比全面调查节省人力、物力、财力,比较经济;二是可以及时取得调查资料,提高数据的时效性;三是数据质量有保证,可以减少人为因素干扰,只要取样、推断方法科学,均有利于提高数据的质量;四是调查方法灵活,如实际工作中使用较多的问卷调查、入户调查、电话调查等,适应面广,特别适于对范围大的总体作调查.【例】电视剧《铁血将军》在我市拍摄,该剧展示了抗日民族英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是( )A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况【标准解答】选C.根据总体、样本的含义,可得在这次调查中,总体是:2 400名学生对“民族英雄范筑先”的知晓情况,样本是:所抽取的100名学生对“民族英雄范筑先”的知晓情况.1.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生视力情况C.调查重庆市初中学生锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况2.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,一段时间后,再从鱼塘中打捞出100条鱼,发现只有两条鱼是做了记号的鱼,假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( ) A.5 000条 B.2 500条C.1 750条D.1 250条3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全名新闻》栏目的收视率4.2016年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计,在这个问题中样本是( )A.1.6万名考生B.2 000名考生C.1.6万名考生的数学成绩D.2 000名考生的数学成绩5.下列调查适合抽样调查的是( )A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查6.下列调查,样本具有代表性的是( )A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解某小区居民的防火意识,对你们班同学进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查2.统计图的转化解决与统计有关的信息题转换的方法:解题的关键是根据统计图的信息求出所抽取的样本的总数.(1)结合各类统计图的特点,认真分析各个统计图之间的已知与未知.(2)综合考虑相同的元素在不同的统计图中的表示形式,找到它们之间的对应关系.(3)根据条形图、折线图所提供的部分元素的具体数据,结合扇形统计图所反映的百分比,求出样本总数,或根据频率与频数的关系求出样本总数.(4)根据样本总数求出相关数据及信息.【例】某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数(人) 7 8 14 6请根据统计表(图)解答下列问题:(1)本次调查抽取了多少名学生?(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比.(3)该校共有学生1 800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽,那么学校在“大间操”时至少应提供多少个毽?【标准解答】(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1-30%-16%-24%-10%=20%,又知九年级最喜欢排球的人数为10人,所以九年级抽取的学生人数有10÷20%=50(人),所以本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50-7-8-6-14=15人,那么八年级最喜欢跳绳的人数有15-5=10人,最喜欢跳绳的学生有15+10+50×16%=33人,所以“最喜欢跳绳”的学生占抽样总人数的百分比为22%.七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数(人) 7 8 15 14 6(3)由图可知,八年级最喜欢踢毽的人数有13人,所以学校在“大间操”时至少应提供的毽数为×1 800÷4=126(个).学校为了解全校1 600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选,将调查得到的结果绘制如图所示的频数分布直方图和扇形统计图(均不完整).(1)问:在这次调查中,一共抽取了多少名学生?(2)补全频数分布直方图.(3)估计全校所有学生中有多少人乘坐公交车上学.3.数据的整理与描述(1)扇形统计图直接反映部分占总体的百分比大小.用扇形统计图描述数据,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.【例】某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图.若该校有1 000名学生,则赞成该方案的学生约有人.【标准解答】由扇形统计图可知赞成的百分比为:1-20%-10%=70%,∴1 000名学生中赞成该方案的学生约有1 000×70%=700人.答案:7001.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是( )A.棋类B.书画C.球类D.演艺1题图2题图2.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类球的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是( )A.100人B.200人C.260人D.400人3.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为人.3题图4题图5题图4.为了解学生课外阅读的喜好,某校从八年级1 200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.5.某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是.(2)用条形图描述数据【例】下列材料来自2006年5月衢州有关媒体的真实报道:有关部门进行民众安全感满意度调查,方法是:在全市内采用等距抽样,抽取32个小区,共960户,每户抽一名年满16周岁并能清楚表达意见的人,同时,对比前一年的调查结果,得到统计图如下:写出2005年民众安全感满意度的众数选项是;该统计图存在一个明显的错误是.【标准解答】∵安全选项小组小长方形的高最高,∴众数为安全选项;统计图存在一个明显的错误是 2004年满意度统计选项总和不到100%.答案:安全2004年满意度统计选项总和不到100%.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2 000人,由此估计选修A课程的学生有人.(3)用折线统计图描述数据【例】多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A.最大值与最小值的差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月【标准解答】选C.A.最大值与最小值的差为:83-28=55,故本选项错误;B.众数为:58,故本选项错误;C.中位数为:(58+58)÷2=58,故本选项正确;D.每月阅读数量超过40本的有2月,3月,4月,5月,7月,8月,共六个月,故本选项错误;故选C.1.下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是( )A.4:00气温最低B.6:00气温为24 ℃C.14:00气温最高D.气温是30 ℃的为16:002.北京市2009~2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约万人次,你的预估理由是.(4)综合运用条形统计图和扇形统计图获取信息【例】漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整.(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标.(3)若该校学生有1 200人,请你估计此次测试中,全校达标的学生有多少人?【标准解答】(1)成绩一般的学生占的百分比=1-20%-50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=96.(3)1 200×(50%+30%)=960(人).答:估计全校达标的学生有960人.1.夷昌中学开展“阳光体育活动”,九年级一班全体同学在2016年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是( )A.50B.25C.15D.102.为了了解2016年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2012年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名.(2)根据抽样的结果,估计2016年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名.(3)比较2012年与2016年抽样学生50米跑成绩合格率情况,写出一条正确的结论.(5)综合运用折线统计图和条形统计图获取信息解题【例】以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有量是多少万辆(结果保留三个有效数字)?(2)补全条形统计图.(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6 L的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.排量(L) 小于1.6 1.6 1.8 大于1.8数量(辆) 29 75 31 15如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6 L的这类私人轿车(假设每辆车平均一年行驶1万千米)的碳排放总量约为多少万吨?【标准解答】(1)146×(1+19%)=173.74≈174(万辆),所以2008年北京市私人轿车拥有量约是174万辆.(2)如图(3)276××2.7=372.6(万吨).所以估计2010年北京市仅排量为1.6 L的这类私人轿车的碳排放总量约为372.6万吨.1.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其他项目的资金共38万元,图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:①在2010年总投入中购置器材的资金最多;②2009年购置器材投入资金比2010年购置器材投入资金多8%;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元.其中正确判断的个数是( )A.0B.1C.2D.32.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图.(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?4.直方图直方图与条形图的区别:(1)条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的高表示频数.(2)条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围.(3)条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙.【例】4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有名学生.(2)补全直方图.(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1小时的学生有多少人?【标准解答】(1)由题意可得:4÷8%=50(人).(2)由(1)得:0.5~1小时的为:50-4-18-8=20(人),如图所示:(3)∵除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,∴1~1.5小时在扇形统计图中所占比例为:165÷(600-50)×100%=30%,故0.5~1小时在扇形统计图中所占比例为:1-30%-10%-12%=48%,如图所示:(4)该年级每天阅读时间不少于1小时的学生有:(600-50)×(30%+10%)+18+8=246(人).为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图,如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 6第3组35≤x<40 14第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值.(2)请把频数分布直方图补充完整.(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?答案解析1.全面调查与抽样调查【跟踪训练】1.【解析】选B.调查一批电视机的使用寿命情况、调查重庆市初中学生锻炼所用的时间情况、调查重庆市初中学生利用网络媒体自主学习的情况适合抽样调查;调查某中学九年级一班学生视力情况适合用普查.2.【解析】选B. 标记的鱼有50条,放入后捞起来有标记的鱼占捞出来鱼的比例为 ,则共有的鱼为:50÷=2 500(条).3.【解析】选B.A选项我省中学生样本容量过大,不适合全面调查;B选项样本容量适合全面调查,且不具有破坏性;C选项具有破坏性,不适宜全面调查;D选项台州范围较大,样本容量过大不适合全面调查.4.【解析】选D.根据样本的概念可知样本为2 000名考生的数学成绩.5.【解析】选D.A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查.6.【解析】选D.A、了解全校同学对课程的喜欢情况,对某班男同学进行调查,不具代表性、广泛性,故A错误;B、了解某小区居民的防火意识,对你们班同学进行调查,调查不具代表性、广泛性,故B错误;C、了解商场的平均日营业额,选在周末进行调查,调查不具有代表性,故C错误;D、了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查,调查具有代表性、广泛性,故D正确.2.统计图的转化【跟踪训练】【解析】(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).(2)被抽到的学生中,步行的人数为80×20%=16(人),直方图略.(3)被抽到的学生中,乘公交车的人数为80-(24+16+10+4)=26(人),∴全校所有学生中乘坐公交车上学的人数约为×1 600=520(人).3.数据的整理与描述【跟踪训练】1.【解析】选C.在各兴趣小组中,球类的学生占总人数的35%最大,所以球类兴趣小组的人数最多.2.【解析】选D.根据题意得:320÷32%=1 000(人),喜欢羽毛球的人数为1 000×15%=150(人),喜欢篮球的人数为1 000×25%=250(人),∴喜欢足球、网球的总人数为1 000-320-250-150=280(人),这批被抽样调查的学生最喜欢足球的人数不可能是400人.3.【解析】总人数为:6÷(40%-30%)=60(人).答案:604.【解析】喜爱科普常识的学生所占的百分比为:1-40%-20%-10%=30%,1 200×30%=360.答案:3605.【解析】∵“其他”部分所对应的圆心角是36°,∴“其他”部分所对应的百分比为:×100%=10%, ∴“步行”部分所占百分比为:100%-10%-15%-35%=40%.答案:40%【跟踪训练】【解析】选修A课程的学生所占的比例:=,选修A课程的学生有:2 000×=800(人),答案:800【跟踪训练】1.【解析】选D.A、由纵坐标看出4:00气温最低是22 ℃,故A正确;B、由纵坐标看出6:00气温为24 ℃,故B正确;C、由纵坐标看出14:00气温最高31 ℃;D、由横坐标看出气温是30 ℃的时刻是12:00,16:00,故D错误.2.【解析】预估2015年北京市轨道交通日均客运量约980万人次,根据2009~2011年呈直线上升,故2013~2015年也呈直线上升.答案:980 根据2009~2011年呈直线上升,故2013~2015年也呈直线上升【跟踪训练】1.【解析】选C.25÷50%=50(人),50-25-10=15(人).参加乒乓球的人数为15人.2.【解析】(1)100 000×10%=10 000(名),10 000×45%=4 500(名).(2)100 000×40%×90%=36 000(名).(3)例如:与2012年相比,2016年该市大学生50米跑成绩合格率下降了5%(答案不唯一).答案:(1)10 000 4 500(2)36 000(3)答案不唯一【跟踪训练】1.【解析】选C.①因为购置器材所占的面积最大,所以是资金最多的,故①正确.②2009年资金的增长是相对于2008年来说的,2010年的资金是相对于2009年来说的,故②是错误的.③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同也是增长了32%,所以2011年购置器材的投入是38×38%×(1+32%),故③正确.故选C.2.【解析】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件.(2)如图所示:(3)300×=5 700(件).估计该市300个学雷锋小组在2015年3月份共做好事5 700件.4.直方图【跟踪训练】【解析】(1)a=50-4-6-14-10=16.(2)如图所示:(3)本次测试的优秀率是:×100%=52%.。
人教版七年级下册数学第十章数据的收集、整理与描述含答案一、单选题(共15题,共计45分)1、下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查2、下列调查适合用全面调查的是()A.检查嫦娥五号探测器的零部件B.调查长江水质情况C.调查一批LED灯的使用寿命D.调查全国初三学生的视力情况3、能清楚的看出每个项目的具体数量的统计图是()A.扇形统计图B.折线统计图C.条形统计图D.以上三种均可4、甲、乙二人在相同条件下各射靶10次,每次射靶成绩如图所示,经计算得:=1,S =1.2,S =5.8,则下列结论中不正确的是()A.甲、乙的总环数相等B.甲的成绩稳定C.甲、乙的众数相同 D.乙的发展潜力更大5、一组数据共40个,分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率是0.10,则第6组的频率是()A.0.15B.0.20C.0.25D.0.306、下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定 D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件7、下面调查统计中,适合采用普查方式的是()A.华为手机的时长占有率B.乘坐飞机的旅客是否携带了违禁物品C.某市市民对中美贸易摩擦的知晓情况D.“比亚迪”汽车每百公里的耗油量8、下图中以OA为边的角出现的频率为()A.20%B.40%C.60%D.80%9、为了准确反映某车队8名司机6月份耗去的汽油费用,且便于比较,那么选用最合适、直观的统计图是()A.折线统计图B.扇形统计图C.条形统计图D.统计表10、从500个数据中用适当的方法抽取50个作为样本进行统计,在频数分布表中,落在126.5~130.5这一组的频率是0.12,那么估计总体数据在126.5~130.5之间的个数为()A.60B.120C.12D.611、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%12、下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24℃C.14:00气温最高D.气温是30℃的时刻为16:0013、为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12B.48C.72D.9614、为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了60株黄瓜,并可估计出这个新品种黄瓜平均每株结出的黄瓜根数是()A.12B.12.5C.13D.1415、下列说法正确的是( )A.一个游戏的中奖概率是,则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式 C.一组数据6,8,7,8,8,9,10的众数和中位数都是8 D.若甲组数据的方差S 2甲=0.1,则乙组数据比甲组数据稳定=0.01,乙组数据的方差S 2乙二、填空题(共10题,共计30分)16、在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是________.17、给出下列10个数据:63,62,67,69,66,64,65,68,64,65,对这些数据编制频数分布表,其中这组的频数是________.18、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这个样本的容量(即样本中个体的数量)是________.19、在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有________个.20、某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是________.21、小明想了解自己一学期数学成绩的变化趋势,应选用________ 统计图来描述数据.22、从某市不同职业的居民中抽取200户调查各自的年消费额,在这个问题中样本是________23、在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为________人.24、教育部规定,初中生每天的睡眠时间应为9个小时,皓皓记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则皓皓这一周的睡眠够9个小时的有________天.25、小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表,则他家通话时间不超过15min的频率为________.通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数/通话次数20 16 9 5三、解答题(共6题,共计25分)26、红星小学对全校同学进行最喜欢的运动项目调查,调查情况具体如图,其中150名同学喜欢羽毛球,喜欢跳绳的同学有多少名?27、李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质考试成绩体育测试满分100 100 100小聪72 98 60小亮90 75 95调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议.(3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?28、2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?29、琪琪想了解全市八年级学生每天写作业的时间,她对某校八年级(4)班全体学生每天写作业的时间进行了一次调查.(1)调查的问题是什么?(2)调查的范围有多大?用了哪种调查方式?30、电信公司最近推出多种话费套餐,小亮为帮助爸爸选择哪种套餐更合算,将爸爸上月的手机费中各项费用情况绘制成两幅统计图(不完整):(1)上月爸爸一共消费多少元话费?(2)补全两幅统计图;(3)若接听免费,长途话费0.6元/分,求爸爸长途通话时间为多少分钟?参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、C5、B6、A7、B8、B9、C10、A11、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
人教版七年级下册数学第十章数据的收集、整理与描述含答案一、单选题(共15题,共计45分)1、某校八年一班的全体同学最喜欢的球类运动用如图所示的扇形统计图来表示,下面说法正确的是()A.从图中可以直接看出全班的总人数B.从图中可以直接看出喜欢各种球类的具体人数C.从图中可以直接看出全班同学中喜欢排球的人数多于喜欢足球的人数D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系2、下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率。
其中适合用抽样调查的个数有( )A.1个B.2个C.3个D.4个3、下列调查方式合适的是()A.为了了解市民对电影《功夫熊猫3》的感受,小华在某校随机采访了8名九年级学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式4、下列调查中,适宜采用全面调查方式的是()A.调查春节联欢晚会在武汉市的收视率B.了解全班同学参加社会实践活动的情况C.调查某品牌食品的色素含量是否达标D.了解一批手机电池的使用寿命5、某超市销售A,B,C,D四种品牌的冷饮,某天的销售情况如图所示,则该超市应多进的冷饮品牌是()A.A品牌B.B品牌C.C品牌D.D品牌6、如图,小明用条形统计图记录某地汛期一个星期的降雨量,如果日降雨量在25 mm及以上为大雨,那么这个星期下大雨的天数为()A.3天B.4天C.5天D.6天7、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.38、下列调查中,适宜采用抽样调查方式的是()A.调查中国民众对叙利亚局势持乐观态度的比例B.调查某6人小组中喜欢打篮球的人数C.调查重庆龙头寺火车站是否有乘客携带了危险物品 D.调查初三某班的体考成绩的优秀率9、以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱10、某篮球队队员年龄结构直方图如下图所示,根据图中信息,可知该队队员年龄的中位数为()A.18岁B.21岁C.23岁D.19.5岁11、某牧场为估计该地区山羊的只数,先捕捉20只山羊给它们分别做上标志,然后放回,待有标志的山羊完全混合于山羊群后,第二次捕捉80只山羊,发现其中2只有标志,从而估计该地区有山羊()A.400只B.600只C.800只D.1000只12、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x 2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查13、为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条14、已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.0.4和0.3B.0.4和9C.12和0.3D.12和915、某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可二、填空题(共10题,共计30分)16、要表示某品牌奶粉中蛋白质、钙、维生素、糖和其他物质的含量的百分比,应该利用________统计图最好.17、图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为________千元.18、期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优生人数为________.19、为了了解一批圆珠笔心的使用寿命,宜采用________方式进行调查;为了了解你们班同学的身高,宜采用________方式进行调查.20、某中学七年级(1)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息可知a的值为________.21、调查市场上手机中某种重金属含量是否超过国家规定标准,这种调查适合用________(填“普查”或“抽样调查”).22、某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况如表,请你估计这400名同学的家庭一个月节约用水的总量大约是________.节水量/m30.2 0.25 0.3 0.4 0.5家庭数/个 2 4 6 7 123、某校八年级共有400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于1。
1、数据处理的基本过程:收集数据、整理数据、描述数据、分析数据、得出结论。
2、调查的方式有两种:全面调查和抽样调查。
3、全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查。
普查的方法有:问卷调查、访问调查、电话调查等.4、只抽取一部分对象进行调查,然后根据调查数据推断出全体对象的情况的调查方式是抽样调查。
5、总体:要考察的全体对象称为总体。
6、个体:组成总体的每一个考察对象称为个体。
7、样本:被抽取的那些个体组成一个样本。
8、样本容量:样本中个体的数目叫样本容量(不带单位)。
9、抽取样本的要求:(1)、抽取的样本容量要适当(2)、要尽量使每一个个体被抽取到的机会相等——简单随机抽样。
10、总体中的每一个个体都有相等机会被抽到的抽样方法是一种简单随机抽样。
11、若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,则采用抽样调查。
抽样调查还适用一些具有破坏性的调查,如关于灯泡寿命、火柴质量等。
12、抽样调查的意义:(1)、减少统计的工作量。
(2)、抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查。
13、对样本进行分析、归纳,得出的结论可以用来估计总体的情况,这就是统计的思想。
14、全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况.15、先将总体分成几个层次,然后再在各层中进行简单随机抽样,就是分层抽样。
16、对于总体量大,个体差异程度较大的问题,需要采取分层抽样的方法确定样本,这样可使样本更具有代表性。
1、为了了解某县七年级2000名学生的身高,从中抽取500名学生进行测量,对这个问题,下面说法正确的是()A、2000名学生是总体B、每个学生是个体C、抽取500名学生是所抽的一个样本D、每个学生的身高是个体2、为了了解某校学生的每日动运量,收集数据正确的是()A.调查该校舞蹈队学生每日的运动量 B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量 D.调查该校某一班级的学生每日的运动量3、要了解某市九年级学生视力状况,从中抽查500名学生的视力状况,那么样本是指()A.某市所有的九年级学生B.被抽查的500名九年级学生C.某市所有的九年级学生的视力状况D.被抽查的500名学生的视力状况4、要了解某地农户用电情况,抽查了部分农户在某地一个月中用电情况:用电15度的有3户,用电20度的有5户,用电30度的有7户,那么平均每户用电()A.23.7度 B.21.6度 C.20度 D.5.416度5、下列调查中:①、为了了解七年级学生每天做作业的时间,对某区七年级⑴班的学生进行调查②、爱心中学美术爱好小组拟组织一次郊外写生活动,为了确定写生地点,对美术爱好小组全体成员进行调查③、为了了解观众对电视剧的喜爱程度,数学兴趣小组调查了某小区的100位居民,其中属于抽样调查的有()A. 3个B. 2个C. 1个D. 0个6、请指出下列抽样调查中,样本缺乏代表性的是()①、在某大城市调查我国的扫盲情况②、在十个城市的十所中学里调查我国学生的视力情况③、在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况④、在某一农村小学里抽查100名学生,调查我国小学生的建康状况A.①②B.①④C.②④D.②③7、为了估计鱼池里有多少条鱼,先捕上100条作上记号,然后放回到鱼池里,过一段时间,待有记号的鱼完全混合鱼群后,再捕上200条鱼,发现其中带有记号的鱼有20条,则可判断鱼池里大约有条鱼。
第十章数据的收集、整理与描述10.1统计调查第1课时统计调查(1)【知识与技能】1.了解统计调查、收集数据、整理数据的意义.2.掌握用统计表整理数据的方法.3.掌握用条形图和扇形图来描述数据的方法.4.理解全面调查的概念.5.能用全面调查的方法做一次简单的统计调查.【过程与方法】由问题引入统计调查,在此基础上学习有关概念和方法,然后布置学生用全面调查的方法做一次简单的统计调查.【情感态度】培养学生合作交流的意识和探究精神,体会数学在实际生活中的作用,激发学生爱数学的热情.【教学重点】用统计表整理数据,用条形图和扇形图描述数据.【教学难点】设计调查问卷,收集数据,扇形统计图的画法.一、情景导入,初步认识问题如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?为了解决这个问题,需要做________.首先设计问卷,用问卷调查法_____数据.为了使被调查的人易于答卷,也为了收集数据便于操作,所以最好将问卷的题目设计成______题,请设计问卷.二、思考探究,获取新知提前提出问题,出示设计、制出的调查问卷,然后下发调查问卷,3分钟后收集数据.用表格统计数据.用条形图和扇形图来描述数据.思考:1.条形图和扇形图各自的特点是怎样的?2.怎样画扇形统计图?【归纳结论】1.条形图能够显示每组中的具体数据,易于比较数据之间的差别;扇形图用扇形的大小表示部分在总体中所占百分比,易于显示每组数据相对于总数的大小,但不能直接判断出每组数的绝对大小.2.扇形图通过扇形的大小来反映各个部分占总体的百分比.画扇形图时,用圆代表总体,每一个扇形代表总体的一部分,画扇形时,先确定扇形圆心角的度数,如果某部分占20%,则它所在扇形的圆心角为360°×20%=72°.扇形图画好后,要标明各部分的名称及相应的百分比.3.全面调查:考察全体对象的调查叫做全面调查.三、运用新知,深化理解.1.对“天宫一号”空间站的零部件合格性的调查应采用的调查方式是_____.2.在暑假社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所花的时间相同,那么a的值为____,每人每小时组装C型玩具____套.3.“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最喜爱的“阳光体育”运动项目,小王对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如下的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A.120°B.144°C.180°D.72°4.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5~1小时D.0.5小时以下如图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图①中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【教学说明】题1可采用抢答方式练习,题2、3让学生分组讨论,然后给出正确答案,并说明理由,题4先让学生思考,然后教师给予提示,最后指派学生上台写出解题过程.【答案】1.全面调查2.(1)132 60 48 (2)4 6解析:(1)A型玩具有240×55%=132(套),C型玩具有240×25%=60(套),B型玩具有240-132-60=48(套);(2)由题意得:,解得a=4.故2a-2=6,即每人每小时组装C型玩具6套.3.B解析:喜爱打篮球的人数占总人数的百分比为20/50×100%=40%,因此所求的圆心角度数为360°×40%=144°.4.解:(1)60÷30%=200(名),即本次一共调查了200名学生;(2)选项B的学生有200-60-30-10=100(名),补图略;(3)3000×5%=150(名)四、师生互动,课堂小结统计调查,全面调查,条形图,扇形图1.布置作业:从教材“习题10.1”中选取.2.完成练习册中本课时的练习.统计与现实生活的联系是非常紧密的,通过选择学生感兴趣的典型例题对教学课堂概念进行拓展.在教学过程中,充分体现学生是学习的主体,通过让学生亲自动手收集和整理数据,让学生体会到数学活动充满了乐趣,使学生更好地体会统计思想,建立统计概念,培养学生的创新精神与实践能力.第十章数据的收集、整理与描述10.1统计调查第2课时统计调查(2)【知识与技能】1.理解为什么要进行抽样调查.2.掌握总体、个体、样本、样本容量等概念.3.理解简单随机抽样、分层抽样的概念及它们在抽样调查中的合理性,并能设计出简单随机抽样或分层抽样的方法进行抽样调查.4.掌握折线的画法,并能从折线图中获取信息.【过程与方法】由问题入手,理解抽样调查的合理性与必要性.从而理解总体、个体、样本、样本容量等概念.为了使抽样调查能较好地反映总体,我们必须使抽取的样本具有代表性,这样就顺理成章地引出了简单随机抽样和分层抽样两种简单的抽样方法.最后学习折线图,知道折线图也是描述数据的一种方法.【情感态度】在了解统计思想方法的基础上,锻炼用样本估计总体的本领,提高数学兴趣.【教学重点】抽样调查,简单随机抽样,分层抽样,折线统计图.【教学难点】抽样方案的制订,折线图.一、情境导入,初步认识问题1 某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?分析:如果采用全面调查,那么花费时间长,消耗人力、物力大.因此,需要寻找一种只要调查部分学生就能了解全体学生喜爱各类电视节目的情况的方法.达到省时省力又能解决问题的目的.这种调查方法就是________.这样,就必须引入总体、个体、样本及样本容量的概念.“总体”的定义:________.“个体”的定义:________.“样本”的定义:________.“样本容量”的定义:________.为了使样本能较好地反映总体的情况,除了有合适的________外,抽取时还要尽量使每一个个体都有________被抽到,这种抽样方法叫________.问题2 某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,应怎样调查?分析:由于这500万人个体差异大(如年龄段),所以不适合________抽样,而应当分成青少年、成年人、老年人三个层次,在每个层次进行________抽样,然后汇总调查结果,这种抽样方法叫________________.【教学说明】全班同学先阅读教材,再完成以上自学提纲.二、思考探究,获取新知思考 1.为什么要进行抽样调查?2.什么叫总体、个体、样本、样本容量?3.什么叫简单随机抽样?什么叫分层抽样?4.什么情况下适宜简单随机抽样?什么情况下适宜分层抽样?5.折线图的特点是什么?【归纳结论】抽样调查:从全体对象中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫抽样调查.总体:要考察的全体对象称为总体.个体:组成总体的每一个考察对象称为个体.样本:从总体抽取的一部分个体组成一个样本.样本容量:样本中个体的数目叫样本容量.(注意:样本容量是一个数目,不能带单位,样本容量一定要适当,太少,则不能较好地反映总体的情况,太多,达不到省时省力的目的.)适合抽样调查的情况:(1)总体数目巨大;(2)调查具有破坏性.简单随机抽样:总体中的每一个个体都有相等的机会被抽到,这样的抽样方法叫简单随机抽样.分层抽样:先将总体按一定的要求分成若干层次,在每个层次都进行简单的随机抽样.然后汇总调查结果,这种抽样方法叫分层抽样.简单随机抽样适合的情况:个体的差异不大.分层抽样适合的情况:个体的差异大.折线图的特点:能较好反映数据的变化趋势.三、运用新知,深化理解1.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中生视力情况D.为保证“神舟8号”成功发射,对其零部件进行检查2.要了解我国八年级学生的视力情况,你认为合适的调查方式是.3.如图是我市城乡居民储蓄存款余额的统计图,请你根据图写出两条正确的信息:(1)________________________;(2)________________________.城乡居民储蓄存款余额(亿元)4.如图是根据我市2007年至2011年财政收入绘制的折线统计图,观察统计图可得:同上年相比,我市财政收入增长速度最快的年份是_______年,比它的前一年增加_______亿元.5.某专业户要出售100只羊,现在市场上羊的价格为每千克11元,为了估计这100只羊能卖多少钱,该专业户从中随机抽取5只羊,每只羊的重量如下(单位:千克):26 31 32 36 37(1)在这个问题中,样本是指什么?总体是指什么?(2)估计这100只羊能卖多少钱?6.某种电脑在七个月之内销售量增长变化情况如图所示,下列结论中不正确的是()A.2~6月销售量逐月减少B.7月份的销售量开始回升C.这7个月中,每月的销售量不断上涨D.这7个月中销售量有涨有跌【教学说明】题1、2、5考查的是全面调查、抽样调查、样本、总体、个体等概念;题3、4、6考查的是从折线统计图中获取信息.【答案】1.D2.抽样调查3.(1)2011年我市城乡居民储蓄存款余额达到239.6亿元(2)我市城乡居民储蓄存款余额逐年增长(答案不唯一,合理即可)4. 2011 505.解:(1)样本是5只羊的重量;总体是100只羊的重量.(2)5只羊的平均重量是:(26+31+32+36+37)÷5=32.4(千克),故100只羊的重量约为100×32.4=3240(千克),可卖3240×11=35640(元)6.C四、师生互动,课堂小结点学生口答,老师将小结内容放映在屏幕上.1.布置作业:从教材“习题10.1”中选取.2.完成练习册中本课时的练习.本课时主要讲解抽样调查问题,抽样调查要注意选取的样本应具有广泛性和代表性,由样本估计总体时,要搞清总体和样本的比例及样本容量的大小.通过这些问题,让学生学会用数据和事实说话,培养学生实事求是的科学态度,促进学生学习方式的转变,积极主动地参与活动.。
班级姓名学号分数《第十章数据的收集、整理和描述》测试卷(B卷)(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.下列调查中,适合用抽样调查的是()A.了解报考军事院校考生的视力B.旅客上飞机前的安检C.对招聘教师中的应聘人员进行面试D.了解全市中小学生每天的零花钱2.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条 B.500条 C.800条 D.1000条3.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A.216 B.252 C.288 D.3244.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为()A.1120B.400C.280D.805.母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.请你根据图中提供的信息,若全校共有990名学生,估计这所学校所有知道母亲的生日的学生有()名.A.440B.495C.550D.6606.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是( )A.0.4 B.0.5 C.0.6 D.0.77.已知样本容量为30,在以下样本频数分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第2组的频数为( )A.12 B.10 C.9 D.68.下列调查的样本具有代表性的是()A、利用当地的七月份的日平均最高气温值估计当地全年的日最高气温B、在农村调查市民的平均寿命C、利用一块实验水稻田的产量估水稻的实际产量D、为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验9.某校测量了初二(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法正确的是( )A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人10.对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图不可互相转换二、填空题(共10小题,每题3分,共30分)11.某班主任把本班学生上学方式的调查结果绘制成如图所示的不完整的统计图,已知乘公交车上学的学生有20人,骑自行车上学的学生有26人,则乘公交车上学的学生人数在扇形统计图中对应的扇形所占的圆心角的度数为 .12.如图是统计学生跳绳情况的频数分布直方图,如果跳75次以上(含75次)为达标,则达标学生所占比例为.13.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为 .14.光明中学对图书馆的书分为3类,A表示技术类,B表示科学类,C表示艺术类,所占百分比如图,如果该校共有图书8500册,则艺术类的书有册.15.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频率之和为0.9,最后一组的频数是15,则此次抽样调查的人数为 人.(注:横轴上每组数据包含最小值不包含最大值)16.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为 人.17.在条形统计图上,如果表示数据180的条形高是4.5厘米,那么表示数据160的条形高为厘米. 18.为了支援地震灾区同学,某校开展捐书活动,八(1)班40名同学积极参与.捐书数量在5.5~6.5组别的频数8,则频率是 .19.某校八年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.20.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于4分钟的人数为A.8 B.16 C.19 D.32三、解答题(共60分)21.(10分)学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为 %;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?22.(10分)为了响应岳阳市政府“低碳出行、绿色出行”的号召,某中学数学兴趣小组在全校2000名学生中就上学方式随机抽取了400名学生进行抽样调查,经统计整理绘制出图a、图b两幅不完整的统计图:A:步行;B:骑自行车;C:乘公共交通工具;D:乘私家车;E:其他.请根据统计图提供的信息解答下列问题:(1)图a中“B”所在扇形的圆心角为 ;(2)请在图b中把条形统计图补充完整;(3)请根据样本数据估计全校骑自行车上学的学生人数.23.(10分)为了让学生了解安全知识,增强安全意识,我市某中学举行了一次“安全知识竞赛”.为了了解这次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)为样本,绘制成绩统计图,如图所示,请结合统计图回答下列问题:(1)本次测试的样本容量是多少?(2)分数在80.5~90.5这一组的频率是多少?(3)若这次测试成绩80分以上(含80分)为优秀,则优秀人数不少于多少人?24.(10分)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?25.(10分)某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:组别分数段/分频数/人数频率150.5~60.52a260.5~70.560.15370.5~80.5b c480.5~90.5120.30590.5~100.560.15合计40 1.00(1)表中a= ,b= ,c= ;(2)请补全频数分布直方图;(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.26.(10分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?班级姓名学号分数(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.下列调查中,适合用抽样调查的是()A.了解报考军事院校考生的视力B.旅客上飞机前的安检C.对招聘教师中的应聘人员进行面试D.了解全市中小学生每天的零花钱【答案】D【解析】考点:全面调查与抽样调查2.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条 B.500条 C.800条 D.1000条【答案】D.【解析】试题分析:设湖中有x条鱼,则200:10=x:50,解得x=1 000(条).故选D.考点:用样本估计总体.3.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A.216 B.252 C.288 D.324【答案】B【解析】故选B.考点:1、条形统计图;2、用样本估计总体.4.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为()A.1120B.400C.280D.80【答案】B【解析】试题分析:由题意知从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,∴希望举办文艺演出的学生所占的百分比为:80÷280=,学科¥网∴该学校希望举办文艺演出的学生人数为:1400×=400人.故选B.考点:用样本估计总体.5.母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.请你根据图中提供的信息,若全校共有990名学生,估计这所学校所有知道母亲的生日的学生有()名.A.440B.495C.550D.660【答案】C【解析】考点:1、条形统计图;2、扇形统计图.6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是( )A.0.4 B.0.5 C.0.6 D.0.7【答案】D【解析】试题分析:(15+20)÷(5+10+15+20)=0.7,故选D.考点:频数(率)分布直方图7.已知样本容量为30,在以下样本频数分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第2组的频数为( )A.12 B.10 C.9 D.6【答案】A.【解析】考点:频数(率)分布直方图.8.下列调查的样本具有代表性的是()A、利用当地的七月份的日平均最高气温值估计当地全年的日最高气温B、在农村调查市民的平均寿命C、利用一块实验水稻田的产量估水稻的实际产量D、为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验【答案】D.【解析】试题分析:A.抽取七月份的平均最高气温,样本太小,缺乏代表性B.农村和城市人的寿命有差别,样本不具有代表性;C利用一块试验田,样本太小D从仓库中任意抽取100袋进行检验的样本是随机的,具有代表性.故选D.考点:样本估计总体.9.某校测量了初二(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法正确的是( )A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人【答案】B.【解析】考点:直方图.10.对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图不可互相转换【答案】C.【解析】试题分析:条形统计图能清楚地表示出每个项目的数据,∴A错误;折线统计图能清楚地反映事物的变化情况,∴B错误;扇形统计图直接反映部分占总体的百分比大小,∴C正确;因为这三种图是能互相转换,∴D错误.故选C.考点:统计图的选择.二、填空题(共10小题,每题3分,共30分)11.某班主任把本班学生上学方式的调查结果绘制成如图所示的不完整的统计图,已知乘公交车上学的学生有20人,骑自行车上学的学生有26人,则乘公交车上学的学生人数在扇形统计图中对应的扇形所占的圆心角的度数为 .【答案】144°.【解析】考点:扇形统计图.12.如图是统计学生跳绳情况的频数分布直方图,如果跳75次以上(含75次)为达标,则达标学生所占比例为.【答案】90%.【解析】试题分析:(15+20+10)÷(15+20+10+5)=90%,因此,达标学生所占比例为90%.考点:频率分布直方图.13.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为 .【答案】108°.【解析】考点:扇形统计图.14.光明中学对图书馆的书分为3类,A表示技术类,B表示科学类,C表示艺术类,所占百分比如图,如果该校共有图书8500册,则艺术类的书有册.【答案】595.【解析】试题分析:∵艺术类所占的百分比是:1﹣28%﹣65%=7%,∴艺术类的书有8500×7%=595(册).考点:1.扇形统计图;2.频数、频率和总量的关系.15.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频率之和为0.9,最后一组的频数是15,则此次抽样调查的人数为 人.(注:横轴上每组数据包含最小值不包含最大值)【答案】150.【解析】试题分析:由题意可知:最后一组的频率=1-0.9=0.1,则由频率=频数÷总人数可得:总人数=15÷0.1=150人.考点:频数(率)分布直方图.16.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为 人.【答案】120【解析】试题分析:1500×(1﹣48%﹣44%)=1500×8%=120.学#科网考点:扇形统计图17.在条形统计图上,如果表示数据180的条形高是4.5厘米,那么表示数据160的条形高为厘米.【答案】4.【解析】考点:条形统计图.18.为了支援地震灾区同学,某校开展捐书活动,八(1)班40名同学积极参与.捐书数量在5.5~6.5组别的频数8,则频率是 .【答案】0.2.【解析】试题分析:频率=840=0.2.考点:频数与频率.19.某校八年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.【答案】0.4【解析】试题分析:20÷(1+4+10+20+15)=0.4考点:1、频率颁布直方图;2、频率.20.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于4分钟的人数为A.8 B.16 C.19 D.32【答案】32【解析】考点:频数(率)分布直方图.三、解答题(共60分)21.(10分)学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为 %;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?【答案】(1)8,12.5%;(2)将条形统计图补充完整见解析;(3)10500.【解析】(3)∵×28000=10500(人次),∴估计其中约有10500人次读者是职工. 学科!网考点:1.条形统计图;2. 扇形统计图;3. 频数、频率和总量的关系;4.用样本估计总体.22.(10分)为了响应岳阳市政府“低碳出行、绿色出行”的号召,某中学数学兴趣小组在全校2000名学生中就上学方式随机抽取了400名学生进行抽样调查,经统计整理绘制出图a 、图b 两幅不完整的统计图:38A:步行;B:骑自行车;C:乘公共交通工具;D:乘私家车;E:其他.请根据统计图提供的信息解答下列问题:(1)图a中“B”所在扇形的圆心角为 ;(2)请在图b中把条形统计图补充完整;(3)请根据样本数据估计全校骑自行车上学的学生人数.【答案】(1)90°;(2)图形见解析;(3)根据样本数据估计全校骑自行车上学的学生人数为500人.【解析】;(3)根据样本数据估计全校骑自行车上学的学生人数为:2000×25%=500(人).考点:1.条形统计图2.用样本估计总体3.扇形统计图.23.(10分)为了让学生了解安全知识,增强安全意识,我市某中学举行了一次“安全知识竞赛”.为了了解这次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)为样本,绘制成绩统计图,如图所示,请结合统计图回答下列问题:(1)本次测试的样本容量是多少?(2)分数在80.5~90.5这一组的频率是多少?(3)若这次测试成绩80分以上(含80分)为优秀,则优秀人数不少于多少人?【答案】(1)100(2)0.52(3)75人学科!网【解析】考点:直方图.24.(10分)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?【答案】(1)40(人)(2)见解析(3)480人【解析】(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.考点:1、条形统计图;2、用样本估计总体;3、扇形统计图.25.(10分)某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:组别分数段/分频数/人数频率150.5~60.52a260.5~70.560.15370.5~80.5b c480.5~90.5120.30590.5~100.560.15合计40 1.00(1)表中a= ,b= ,c= ;(2)请补全频数分布直方图;(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.【答案】(1)a=0.05 ,b=14 ,c=0.35 ;(2)作图见解析;(3)该公司员工“六五”普法知识知晓程度达到优秀的人数1350人【解析】考点:1、频数(率)分布表;2、频数(率)分布直方图;3、用样本估计总体 26.(10分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?【答案】(1)100;(2)补全频数分布直方图见解析,90°;(3)13.2.【解析】扇形统计图中“25吨~30吨”部分的圆心角度数为25100×360°=90°.(3)∵10+20+36100×20=13.2(万户),∴该地20万用户中约有13.2万户居民的用水全部享受基本价格.考点:1.扇形统计图;2.频数分布直方图;3.频数、频率和总量的关系;4.求扇形圆心角;5.用样本估计总体.。
章复习第10章数据的收集、整理与描述一、数据的收集、整理1、数据的收集、整理⑴数据的收集过程:①明确调查______;②确定调查______;③选择调查______;④展开______;⑤记录______;⑥得出______.设计调查问卷的步骤:①明确调查______;②选择调查______;③设计调查______.⑵数据的整理为了清楚地了解调查结果,需要对数据进行______,一般用______整理数据.可以用______法记录数据.2、总体、个体、样本、样本容量⑴总体:要考察的____________.⑵个体:组成总体的每一个____________.⑶样本:____________的那些个体组成一个样本.⑷样本容量:样本中个体的______.注:“考察对象”是一种数量指标,并非考察目标本身.如,考察某地区九年级学生的身高情况,总体应是某地区九年级学生的身高的全体,而非该地区九年级学生.样本容量越大,代表性越强。
3、普查、抽样调查⑴普查是一种________调查,是为了某一特定目的而专门组织的一次______性调查.⑵抽样调查是__________________进行调查,然后根据调查数据推断____________的情况.注:统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式,调查时,可以采用不同的方法获得数据,除问卷调查、访问调查等外,查阅文献资料和试验、测量也是获得数据的有效方法.抽取样本调查常用的方法有简单随机抽样和分层抽样两种。
全面调查的优点:可靠、准确;抽样调查的优点:省时、省力,减少破坏性。
二、数据的描述1、几种常见的统计图⑴与统计图有关的概念:①频数:将一组数据分组后,落在不同小组中____________叫做该组的频数;②频率:______与____________的比;③组数:把数据分组,______的个数称为组数;④组距:每一组两个端点的______称为组距.⑵各种统计图的特点:统计中常见的统计图有条形图、扇形图、折线图和直方图四种,它们各有特点,可以从不同的角度清楚、有效地描述数据.①条形图的特点:10.能够显示每组中的____________;20.易于比较______之间的差别.②扇形图的特点:10.用扇形的______表示部分在总体中所占的百分比;20.易于显示____________相对于______的大小.③折线图的特点:易于显示数据的____________.④直方图的特点:10.能够显示_______________的情况;20.易于显示各组之间______的差别.注:①扇形图是指用圆代表______,圆中各个扇形分别代表总体中的不同部分的统计图;②频数分布直方图是以小长方形的面积来反映数据落在各小组内的频数的大小,小长方形的底边为______,高为频数与组距之比,但实际上常直接用长方形的高表示______.2、用图表描述数据⑴用扇形图描述数据扇形图中,扇形的大小反映了_______________的百分比的大小,因此,扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.制作扇形图的一般步骤:①算出各部分占总体的百分比;②算出表示各部分的扇形所对圆心角的度数;③取适当半径画一圆,并按②中算出的圆心角的度数,画出各个扇形;④在每个扇形中标明所表示部分的名称和所占的百分比;⑤写出统计图的名称.注:①扇形图中,所有部分所占比例之和等于1;②扇形图只能反映各部分在总体中所占比例的大小,一般______表示具体的数量。
第十章数据的收集、整理与描述1、统计调查(1)全面调查:考察全体对象的调查,例如2010年我国进行的第六次人口普查,就是一次全面调查.(2)抽样调查:采用调查部分对象的方式来收集数据,根据部分来估计整体的情况,叫做抽样调查。
统计中常用样本特性来估计总体特性.需要注意的是,在抽样调查中,如果抽取样本的方法得当,一般样本能客观地反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。
①总体:所要考察对象的全体叫做总体.②个体:总体中每一个考察对象叫做个体。
③样本:从总体中所抽取的一部分个体叫做总体的一个样本。
④样本容量:样本中个体的数目(不含单位)。
(3)简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。
抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。
【总结】全面调查与抽样调查的比较:例1、要调查下面几个问题,你认为应该作全面调查还是抽样调查?A.检测某城市的空气质量B。
调查一个村子所有家庭的收入C.调查一批重型导弹的杀伤半径D.考查一批光盘的质量例2、为了了解一批电视机的使用寿命,从中抽取了10台进行试验,对于这个问题,下列说法中正确的是( )A.每台电视机的使用寿命是个体B。
一批电视机是总体C。
10台电视机是总体的一个样本D.10台是样本容量例3、某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A。
在公园调查了1000名老年人的健康状况B。
在医院调查了1000名老年人的健康状况C。
调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况例4、在鱼塘里第一次捕捞出10条鱼,把它们全部做上标记后放到池塘里,过一段时间进行第二次捕捞,若一共捕捞到100条鱼,其中2条鱼身上有标记,你能估计出池塘里鱼的数目吗?2。
1
2013—2014学年度第二学期单元检测卷 (第十章 数据的收集、整理和描述)
一、选择题(每题3分,共30分) 1. 为了了解某校九年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析 ,在这个问题中,总体是指( ) A .400名学生 B .被抽取的50名学生 C .400名学生的体重 D .被抽取的50名学生的体重 2. 对60个数据进行处理时,适当分组,各组数据个数之和与百分率之和分别等于( )A .60,1 B .60,60 C .1,60 D .1,1 3. 为了考察某市初中3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是( ) A .3500 B .20 C .30 D .600 4. 下列调查方式中,不适合的是( )
A .了解中央电视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式
B .了解某渔场中青鱼的平均重量,采用抽查的方式
C .了解某型号联想电脑的使用寿命,采用普查的方式
D .了解一批汽车的刹车性能,采用普查的方式 5. 某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是( )
A 、30吨
B 、31吨
C 、32吨 D、33吨
6、请下列抽样调查中,样本缺乏代表性的是( )
①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况 ;④在某一农村小学里抽查100名学生,调查我国小学生的建康状况. A.①② B.①④ C.②④ D.②③ 7、考察50名学生的年龄,列频数分布图时这些学生的年龄落在5个小组,第一、二、三、五组的数据分别是2、8、15、5,则第四组占总人数的百分比是( )(李璐) A. 20% B. 40% C. 60% D. 30% 8、下列说法正确的是( )(王雪洁)
A 、考察对象的全体叫样本容量
B 、总体中的部分叫做样本
C 、样本中所有的个体叫总体
D 、总体抽出的部分个体叫总体的样本 9、如果想了解某商店一周销售营业额趋,用什么统计图比较合适( )(鞠佳琪) A 、折线统计图 B 、条形统计图 C 、扇形统计图 D 、直方图
10、PM2.5指数是测控空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )(杨校航) A 、随机选择5天进行观测 B 、选择某个月进行连续观测 C 、选择在春节7天期间连续观测 D 、每个月都随机选5天观测 二、填空题(每题3分,共30分)
11、为了了解某产品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他的做法是_____________________(填“全面调查”或“抽样调查”).
12.如图,扇形A 表示地球陆地面积占全球面积百分比,则此扇形的圆心角为_____度. 13、 要反映我市一周内每天的最高气温的变化情况,适合选用的统计图是
_____________. 14、 某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有__________名学生是骑车上学的. 15、 如果将统计数据进行适当分组,那么落在各组里的数据的个数叫做___________. 16、 一组数据的最大值与最小值差为23,若确定组距为3,则分成的组数是________. 17、 有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6.第5组的频
率是0.1,则第6组的频数是________.
18、 频数分布直方图是以小长方形的____来反映数据落在各个小组内的频数的大小. 19、如果调查50名学生的身高用 调查,调查黄河水污染情况用 调查(陈哲) 20、在扇形统计图中其中一个圆心角是90度,则该扇形图的数据占总体的 %(赵) 三、解答题(共40分) 21、(本题10分)为了了解某校七年级男生的体能情况,从该校七年级抽取50名男
生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图(如图8)
.已知
2
图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.
(1)求第二小组的频数和频率;
(2)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.
22(本题10分)图①、②是李晓同学根据所在学校三个年级男女生人数画出的两幅条形图.⑴两个图中哪个能更好地反映学校每个年级学生的总人数?哪个图能更好地
比较每个年级男女生的人数?
⑵请按该校各年级学生人数在图③中画出扇形统计图.
23、(本题10分)随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008年2月底,该市五个地区的100周岁以上的老人分布如
根据表格中的数据得到条形图如下:
解答下列问题:
(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;
(2)填空:该市五个地区100周岁以上老人中,男性人数的极差(最大值与最
小值的差)是 人,女性人数的最多的是地区______;
(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100
人,请你估算2015年地区一增加100周岁以上的男性老人多少人?
24
、(本题10分)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°.
(1(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)
为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
频数
(学生人数)次数
149.5
124.599.574.549.5
(第22题)
体育成绩统计图
26分27分28分
29分
30分。