2019年广西桂林市中考数学试卷(原卷)
- 格式:docx
- 大小:94.97 KB
- 文档页数:6
2019年广西桂林市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1.(3分)的倒数是()A.B.﹣C.﹣D.2.(3分)若海平面以上1045米,记做+1045米,则海平面以下155米,记做()A.﹣1200米B.﹣155米C.155米D.1200米3.(3分)将数47300000用科学记数法表示为()A.473×105B.47.3×106C.4.73×107D.4.73×1054.(3分)下列图形中,是中心对称图形的是()A.圆B.等边三角形C.直角三角形D.正五边形5.(3分)9的平方根是()A.3B.±3C.﹣3D.96.(3分)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.B.C.D.7.(3分)下列命题中,是真命题的是()A.两直线平行,内错角相等B.两个锐角的和是钝角C.直角三角形都相似D.正六边形的内角和为360°8.(3分)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.a2+a2=2a2D.(a+3)2=a2+99.(3分)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b B.a+c>b﹣cC.ac﹣1>bc﹣1D.a(c﹣1)<b(c﹣1)10.(3分)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(+1)π11.(3分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A.B.C.D.12.(3分)如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1D.y=x+二、填空题(共6小题.每小题3分,共18分,请将答案填在答题卡上)13.(3分)计算:|﹣2019|=.14.(3分)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:这组数据的众数是.15.(3分)一元二次方程(x﹣3)(x﹣2)=0的根是.16.(3分)若x2+ax+4=(x﹣2)2,则a=.17.(3分)如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC =,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为.18.(3分)如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A 关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D 时停止运动,点Q的运动路径长为.三.解答题(本大题共8题,共66分,请将解答过程写在答题卡上)19.(6分)计算:(﹣1)2019﹣+tan60°+(π﹣3.14)0.20.(6分)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐为(﹣4,3);(3)在(2)的条件下,直接写出点A1的坐标.21.(8分)先化简,再求值:(﹣)÷﹣,其中x=2+,y=2.22.(8分)某校在以“青春心向觉,建功新时代”为主题的校园文化艺术节期间,举办了A合唱,B群舞,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?扇形统计图中“D”部分的圆心角度数是多少?(2)请将条形统计图补充完整;(3)若全校共有1800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?23.(8分)如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.24.(8分)为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.(1)求购买一个A类足球和一个B类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣2,0)和B(l,0),与y轴交于点C.(1)求抛物线的表达式;(2)作射线AC,将射线AC绕点A顺时针旋转90°交抛物线于另一点D,在射线AD上是否存在一点H,使△CHB的周长最小.若存在,求出点H的坐标;若不存在,请说明理由;(3)在(2)的条件下,点Q为抛物线的顶点,点P为射线AD上的一个动点,且点P的横坐标为t,过点P作x轴的垂线l,垂足为E,点P从点A出发沿AD方向运动,直线l随之运动,当﹣2<t<1时,直线l将四边形ABCQ分割成左右两部分,设在直线l左侧部分的面积为S,求S关于t的函数表达式.2019年广西桂林市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1.【解析】的倒数是:.选A.2.【解析】若海平面以上1045米,记做+1045米,则海平面以下155米,记做﹣155米.选B.3.【解析】将47300000用科学记数法表示为4.73×107,选C.4.【解析】A、是中心对称图形,本选项正确;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、不是中心对称图形,本选项错误.选A.5.【解析】∵(±3)2=9,∴9的平方根为:±3.选B.6.【解析】当转盘停止转动时,指针指向阴影部分的概率是,选D.7.【解析】A、两直线平行,内错角相等,正确,是真命题;B、两个锐角的和不一定是钝角,故错误,是假命题;C、所有的直角三角形不一定相似,故错误,是假命题;D、正六边形的内角和为720°,故错误,是假命题;选A.8.【解析】A、a2•a3=a5,故此选项错误;B、a8÷a2=a6,故此选项错误;C、a2+a2=2a2,正确;D、(a+3)2=a2+6a+9,故此选项错误;选C.9.【解析】∵c<0,∴c﹣1<﹣1,∵a>b,∴a(c﹣1)<b(c﹣1),选D.10.【解析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.∴正三角形的边长==2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为2π×2=2π,∵底面积为πr2=π,∴全面积是3π.选C.11.【解析】由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,选B.12.【解析】由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0,∴k=,∴直线解析式为y=x+;选D.二、填空题(共6小题.每小题3分,共18分,请将答案填在答题卡上)13.【解析】|﹣2019|=2019,答案:2019.14.【解析】90出现了4次,出现的次数最多,则众数是90;答案:9015.【解析】x﹣3=0或x﹣2=0,所以x1=3,x2=2.答案x1=3,x2=2.16.【解析】∵x2+ax+4=(x﹣2)2,∴a=﹣4.答案:﹣4.17.【解析】∵AB=AC=,BC=4,点A(3,5).∴B(1,),C(5,),将△ABC向下平移m个单位长度,∴A(3,5﹣m),C(5,﹣m),∵A,C两点同时落在反比例函数图象上,∴3(5﹣m)=5(﹣m),∴m=;答案;18.【解析】如图,连接BA1,取BC使得中点O,连接OQ,BD.∵四边形ABCD是矩形,∴∠BAD=90°,∴tan∠ABD==,∴∠ABD=60°,∵A1Q=QC,BO=OC,∴OQ=BA1=AB=,∴点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,∴点Q的运动路径长==π.答案π.三.解答题(本大题共8题,共66分,请将解答过程写在答题卡上)19.【解析】原式=﹣1﹣2++1=﹣.20.【解析】(1)如图,△A1B1C1为所作;(2)如图,(3)点A1的坐标为(2,6).21.【解析】原式=•+=+=,当x=2+,y=2时,原式=.22.【解析】(1)本次调查的学生总人数是120÷60%=200(人),扇形统计图中“D”部分的圆心角度数是360°×=14.4°;(2)C项目人数为200﹣(120+52+8)=20(人),补全图形如下:(3)估计该校报名参加书法和演讲比赛的学生共有1800×=252(人).23.【解析】(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS)∴∠BAC=∠DAC即AC平分∠BAD;(2)由(1)∠BAE=∠DAE在△BAE与△DAE中,得∴△BAE≌△DAE(SAS)∴BE=DE24.【解析】(1)设购买一个A类足球需要x元,购买一个B类足球需要y元,依题意,得:,解得:.答:购买一个A类足球需要90元,购买一个B类足球需要120元.(2)设购买m个A类足球,则购买(50﹣m)个B类足球,依题意,得:90m+120(50﹣m)≤4800,解得:m≥40.答:本次至少可以购买40个A类足球.25.【解答】证明:(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DE•DC∴OA2=DE•DC=EO•DC(2)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣26.【解析】(1)抛物线与x轴交于点A(﹣2,0)和B(l,0)∴交点式为y=﹣(x+2)(x﹣1)=﹣(x2+x﹣2)∴抛物线的表示式为y=﹣x2﹣x+2(2)在射线AD上存在一点H,使△CHB的周长最小.如图1,延长CA到C',使AC'=AC,连接BC',BC'与AD交点即为满足条件的点H ∵x=0时,y=﹣x2﹣x+2=2∴C(0,2)∴OA=OC=2∴∠CAO=45°,直线AC解析式为y=x+2∵射线AC绕点A顺时针旋转90°得射线AD∴∠CAD=90°∴∠OAD=∠CAD﹣∠CAO=45°∴直线AD解析式为y=﹣x﹣2∵AC'=AC,AD⊥CC'∴C'(﹣4,﹣2),AD垂直平分CC'∴CH=C'H∴当C'、H、B在同一直线上时,C△CHB=CH+BH+BC=C'H+BH+BC=BC'+BC最小设直线BC'解析式为y=kx+a∴解得:∴直线BC':y=x﹣∵解得:∴点H坐标为(﹣,﹣)(3)∵y=﹣x2﹣x+2=﹣(x+)2+∴抛物线顶点Q(﹣,)①当﹣2<t≤﹣时,如图2,直线l与线段AQ相交于点F设直线AQ解析式为y=mx+n∴解得:∴直线AQ:y=x+3∵点P横坐标为t,PF⊥x轴于点E∴F(t,t+3)∴AE=t﹣(﹣2)=t+2,FE=t+3∴S=S△AEF=AE•EF=(t+2)(t+3)=t2+3t+3②当﹣<t≤0时,如图3,直线l与线段QC相交于点G,过点Q作QM⊥x轴于M∴AM=﹣﹣(﹣2)=,QM=∴S△AQM=AM•QM=设直线CQ解析式为y=qx+2把点Q代入:﹣q+2=,解得:q=﹣∴直线CQ:y=﹣x+2∴G(t,﹣t+2)∴EM=t﹣(﹣)=t+,GE=﹣t+2∴S梯形MEGQ=(QM+GE)•ME=(﹣t+2)(t+)=﹣t2+2t+∴S=S△AQM+S梯形MEGQ=+(﹣t2+2t+)=﹣t2+2t+③当0<t<1时,如图4,直线l与线段BC相交于点N设直线BC解析式为y=rx+2把点B代入:r+2=0,解得:r=﹣2∴直线BC:y=﹣2x+2∴N(t,﹣2t+2)∴BE=1﹣t,NE=﹣2t+2∴S△BEN=BE•NE=(1﹣t)(﹣2t+2)=t2﹣2t+1∵S梯形MOCQ=(QM+CO)•OM=×(+2)×=,S△BOC=BO•CO=×1×2=1∴S=S△AQM+S梯形MOCQ+S△BOC﹣S△BEN=++1﹣(t2﹣2t+1)=t2﹣2t+综上所述,S=。
2019年广西桂林市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1.(3分)的倒数是()A.B.﹣C.﹣D.2.(3分)若海平面以上1045米,记作+1045米,则海平面以下155米,记作()A.﹣1200米B.﹣155米C.155米D.1200米3.(3分)将数47300000用科学记数法表示为()A.473×105B.47.3×106C.4.73×107D.4.73×105 4.(3分)下列图形中,是中心对称图形的是()A.圆B.等边三角形C.直角三角形D.正五边形5.(3分)9的平方根是()A.3B.±3C.﹣3D.96.(3分)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.B.C.D.7.(3分)下列命题中,是真命题的是()A.两直线平行,内错角相等B.两个锐角的和是钝角C.直角三角形都相似D.正六边形的内角和为360°8.(3分)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.a2+a2=2a2D.(a+3)2=a2+99.(3分)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b B.a+c>b﹣cC.ac﹣1>bc﹣1D.a(c﹣1)<b(c﹣1)10.(3分)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(+1)π11.(3分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A.B.C.D.12.(3分)如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B (﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1D.y=x+二、填空题(共6小题.每小题3分,共18分,请将答案填在答题卡上)13.(3分)计算:|﹣2019|=.14.(3分)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:组别一二三四五六七八得分9095908890928590这组数据的众数是.15.(3分)一元二次方程(x﹣3)(x﹣2)=0的根是.16.(3分)若x2+ax+4=(x﹣2)2,则a=.17.(3分)如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC =4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为.18.(3分)如图,在矩形ABCD中,AB=,AD=3,点P是AD 边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为.三.解答题(本大题共8题,共66分,请将解答过程写在答题卡上)19.(6分)计算:(﹣1)2019﹣+tan60°+(π﹣3.14)0.20.(6分)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(﹣4,3);(3)在(2)的条件下,直接写出点A1的坐标.21.(8分)先化简,再求值:(﹣)÷﹣,其中x =2+,y=2.22.(8分)某校在以“青春心向党,建功新时代”为主题的校园文化艺术节期间,举办了A合唱,B群舞,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?扇形统计图中“D”部分的圆心角度数是多少?(2)请将条形统计图补充完整;(3)若全校共有1800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?23.(8分)如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.24.(8分)为响应国家“足球进校园”的号召,某校购买了50个A 类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.(1)求购买一个A类足球和一个B类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC;(3)求tan∠ACD的值.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣2,0)和B(1,0),与y轴交于点C.(1)求抛物线的表达式;(2)作射线AC,将射线AC绕点A顺时针旋转90°交抛物线于另一点D,在射线AD上是否存在一点H,使△CHB的周长最小.若存在,求出点H的坐标;若不存在,请说明理由;(3)在(2)的条件下,点Q为抛物线的顶点,点P为射线AD 上的一个动点,且点P的横坐标为t,过点P作x轴的垂线l,垂足为E,点P从点A出发沿AD方向运动,直线l随之运动,当﹣2<t<1时,直线l将四边形ABCQ分割成左右两部分,设在直线l左侧部分的面积为S,求S关于t的函数表达式.2019年广西桂林市中考数学试卷答案一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1.【分析】直接利用倒数的定义得出答案.【解答】解:的倒数是:.故选:A.2.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:若海平面以上1045米,记作+1045米,则海平面以下155米,记作﹣155米.故选:B.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将47300000用科学记数法表示为4.73×107,故选:C.4.【分析】根据中心对称图形的概念求解即可.【解答】解:A、是中心对称图形,本选项正确;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、不是中心对称图形,本选项错误.故选:A.5.【分析】根据(±3)2=9,即可得出答案.【解答】解:∵(±3)2=9,∴9的平方根为:±3.故选:B.6.【分析】用阴影部分扇形个数除以扇形的总个数即可得.【解答】解:当转盘停止转动时,指针指向阴影部分的概率是,故选:D.7.【分析】利用平行线的性质、钝角及锐角的定义、相似三角形的判定及正多边形的内角和公式分别判断后即可确定正确的选项.【解答】解:A、两直线平行,内错角相等,正确,是真命题;B、两个锐角的和不一定是钝角,故错误,是假命题;C、所有的直角三角形不一定相似,故错误,是假命题;D、正六边形的内角和为720°,故错误,是假命题;故选:A.8.【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、a8÷a2=a6,故此选项错误;C、a2+a2=2a2,正确;D、(a+3)2=a2+6a+9,故此选项错误;故选:C.9.【分析】根据不等式的性质即可求出答案.【解答】解:∵c<0,∴c﹣1<﹣1,∵a>b,∴a(c﹣1)<b(c﹣1),故选:D.10.【分析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.可计算边长为2,据此即可得出表面积.【解答】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.∴正三角形的边长==2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为2π×2=2π,∵底面积为πr2=π,∴全面积是3π.故选:C.11.【分析】由折叠可得,E,G分别为AD,CD的中点,设CD=2a,AD=2b,根据Rt△BCG中,CG2+BC2=BG2,可得即a2+(2b)2=(3a)2,进而得出的值.【解答】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG =3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,故选:B.12.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.二、填空题(共6小题.每小题3分,共18分,请将答案填在答题卡上)13.【分析】根据绝对值解答即可.【解答】解:|﹣2019|=2019,故答案为:2019.14.【分析】众数是一组数据中出现次数最多的数.【解答】解:90出现了4次,出现的次数最多,则众数是90;故答案为:9015.【分析】利用因式分解法把方程化为x﹣3=0或x﹣2=0,然后解两个一次方程即可.【解答】解:x﹣3=0或x﹣2=0,所以x1=3,x2=2.故答案为x1=3,x2=2.16.【分析】直接利用完全平方公式得出a的值.【解答】解:∵x2+ax+4=(x﹣2)2,∴a=﹣4.故答案为:﹣4.17.【分析】根据已知求出B与C点坐标,再表示出相应的平移后A 与C坐标,将之代入反比例函数表达式即可求解;【解答】解:∵AB=AC=,BC=4,点A(3,5).∴B(1,),C(5,),将△ABC向下平移m个单位长度,∴A(3,5﹣m),C(5,﹣m),∵A,C两点同时落在反比例函数图象上,∴3(5﹣m)=5(﹣m),∴m=;故答案为;18.【分析】如图,连接BA1,取BC使得中点O,连接OQ,BD.利用三角形的中位线定理证明OQ==定值,推出点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,即可解决问题.【解答】解:如图,连接BA1,取BC使得中点O,连接OQ,BD.∵四边形ABCD是矩形,∴∠BAD=90°,∴tan∠ABD==,∴∠ABD=60°,∵A1Q=QC,BO=OC,∴OQ=BA1=AB=,∴点Q的运动轨迹是以O为圆心,OQ为半径的圆弧,圆心角为120°,∴点Q的运动路径长==π.故答案为π.三.解答题(本大题共8题,共66分,请将解答过程写在答题卡上)19.【分析】先计算乘方、化简二次根式、代入三角函数值、零指数幂,再计算加减可得.【解答】解:原式=﹣1﹣2++1=﹣.20.【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系;(3)利用第二象限点的坐标特征写出点A1的坐标.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,(3)点A1的坐标为(2,6).21.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:原式=•+=+=,当x=2+,y=2时,原式=.22.【分析】(1)由A项目人数及其所占百分比可得总人数,用360°乘以D项目人数所占比例“D”部分的圆心角度数;(2)由各项目人数之和等于总人数可得C的人数,从而补全条形图;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的学生总人数是120÷60%=200(人),扇形统计图中“D”部分的圆心角度数是360°×=14.4°;(2)C项目人数为200﹣(120+52+8)=20(人),补全图形如下:(3)估计该校报名参加书法和演讲比赛的学生共有1800×=252(人).23.【分析】(1)由题中条件易知:△ABC≌△ADC,可得AC平分∠BAD;(2)利用(1)的结论,可得△BAE≌△DAE,得出BE=DE.【解答】解:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS)∴∠BAC=∠DAC即AC平分∠BAD;(2)由(1)∠BAE=∠DAE在△BAE与△DAE中,得∴△BAE≌△DAE(SAS)∴BE=DE24.【分析】(1)设购买一个A类足球需要x元,购买一个B类足球需要y元,根据“购买50个A类足球和25个B类足球共花费7500元,购买一个B类足球比购买一个A类足球多花30元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个A类足球,则购买(50﹣m)个B类足球,根据总价=单价×数量结合总费用不超过4800元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设购买一个A类足球需要x元,购买一个B类足球需要y元,依题意,得:,解得:.答:购买一个A类足球需要90元,购买一个B类足球需要120元.(2)设购买m个A类足球,则购买(50﹣m)个B类足球,依题意,得:90m+120(50﹣m)≤4800,解得:m≥40.答:本次至少可以购买40个A类足球.25.【分析】(1)由切线的性质和圆周角定理可得∠ACB=∠ABM=90°,由角平分线的性质可得∠CAB=∠CBA=45°;(2)通过证明△EDO∽△ODC,可得,即可得结论;(3)连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,由外角的性质可得∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,可求∠ODB=15°=∠OBD,由直角三角形的性质可得BD =DF+BF=AD+2AD,即可求tan∠ACD的值.【解答】证明:(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DE•DC∴OA2=DE•DC=EO•DC(3)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直径∴∠ADB=90°∴AF=2AD,DF=AD∴BD=DF+BF=AD+2AD∴tan∠ACD=tan∠ABD===2﹣26.【分析】(1)由抛物线与x轴两交点坐标,可得抛物线交点式为y=﹣(x+2)(x﹣1),去括号即得到抛物线的表达式.(2)由于点H在射线AD上运动,点C、B在射线AD的同侧,求△CHB的周长最小即求CH+BH最小,作点C关于直线AD的对称点C'即有CH=C'H,只要点C'、H、B在同一直线上时,CH+BH=C'H+BH=C'B最小.求点C坐标,即求直线AC解析式,由射线AD是由射线AC旋转90°得到可求得直线AD解析式.由点A为CC'中点求得点C'坐标,即求得直线C'B解析式,把直线AD与直线C'B解析式联立成方程组,求得的解即为点H 坐标.(3)求点Q坐标,画出图形,发现随着t的变化,直线l与四边形ABCQ不同的边相交,即直线l左侧部分的形状不相同,需分直线l分别与线段AQ、QC、CB相交三种情况.当直线l与线段AQ相交于点F时,S即为△AEF的面积,求直线AQ解析式,即能用t表示F的坐标进而表示AE、EF的长,代入面积公式即得到S与t的函数关系式;当直线l与线段QC相交于点G时,作QM⊥x轴于点M,S为△AQM与梯形MEGQ面积的和,求直线QC解析式,用t表示G的坐标进而表示GE、ME的长,再代入计算;当直线l与线段BC相交于点N时,S为四边形ABCQ与△BEN面积的差,求直线BC解析式,用t表示N的坐标进而表示NE、BE的长,代入计算即可.【解答】解:(1)抛物线与x轴交于点A(﹣2,0)和B(1,0)∴交点式为y=﹣(x+2)(x﹣1)=﹣(x2+x﹣2)∴抛物线的表示式为y=﹣x2﹣x+2(2)在射线AD上存在一点H,使△CHB的周长最小.如图1,延长CA到C',使AC'=AC,连接BC',BC'与AD交点即为满足条件的点H∵x=0时,y=﹣x2﹣x+2=2∴C(0,2)∴OA=OC=2∴∠CAO=45°,直线AC解析式为y=x+2∵射线AC绕点A顺时针旋转90°得射线AD∴∠CAD=90°∴∠OAD=∠CAD﹣∠CAO=45°∴直线AD解析式为y=﹣x﹣2∵AC'=AC,AD⊥CC'∴C'(﹣4,﹣2),AD垂直平分CC'∴CH=C'H∴当C'、H、B在同一直线上时,C△CHB=CH+BH+BC=C'H+BH+BC=BC'+BC最小设直线BC'解析式为y=kx+a∴解得:∴直线BC':y=x﹣∵解得:∴点H坐标为(﹣,﹣)(3)∵y=﹣x2﹣x+2=﹣(x+)2+∴抛物线顶点Q(﹣,)①当﹣2<t≤﹣时,如图2,直线l与线段AQ相交于点F设直线AQ解析式为y=mx+n∴解得:∴直线AQ:y=x+3∵点P横坐标为t,PF⊥x轴于点E∴F(t,t+3)∴AE=t﹣(﹣2)=t+2,FE=t+3∴S=S△AEF=AE•EF=(t+2)(t+3)=t2+3t+3②当﹣<t≤0时,如图3,直线l与线段QC相交于点G,过点Q作QM⊥x轴于M∴AM=﹣﹣(﹣2)=,QM=∴S△AQM=AM•QM=设直线CQ解析式为y=qx+2把点Q代入:﹣q+2=,解得:q=﹣∴直线CQ:y=﹣x+2∴G(t,﹣t+2)∴EM=t﹣(﹣)=t+,GE=﹣t+2∴S梯形MEGQ=(QM+GE)•ME=(﹣t+2)(t+)=﹣t2+2t+∴S=S△AQM+S梯形MEGQ=+(﹣t2+2t+)=﹣t2+2t+③当0<t<1时,如图4,直线l与线段BC相交于点N设直线BC解析式为y=rx+2把点B代入:r+2=0,解得:r=﹣2∴直线BC:y=﹣2x+2∴N(t,﹣2t+2)∴BE=1﹣t,NE=﹣2t+2∴S△BEN=BE•NE=(1﹣t)(﹣2t+2)=t2﹣2t+1∵S梯形MOCQ=(QM+CO)•OM=×(+2)×=,S△BOC =BO•CO=×1×2=1∴S=S△AQM+S梯形MOCQ+S△BOC﹣S△BEN=++1﹣(t2﹣2t+1)=﹣t2+2t+综上所述,S=。
绝密★启用前广西桂林市2019年中考数学试卷数学一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.23的倒数是()A .32B.32-C.23-D.232.若海平面以上1 045米,记做1045+米,则海平面以下155米,记做( )A.1200-米B.155-米C.155米D.1 200米3.将数47 300 000用科学记数法表示为 ()A.547310⨯B.647.310⨯C.74.7310⨯D.54.7310⨯4.下列图形中,是中心对称图形的是()A.圆B.等边三角形C.直角三角形D.正五边形5.9的平方根是()A.3B.3±C.3-D.96.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.12B.13C.14D.167.下列命题中,是真命题的是()A.两直线平行,内错角相等B.两个锐角的和是钝角C.直角三角形都相似D.正六边形的内角和为360o8.下列计算正确的是()A.236a a a=g B.824a a a÷=C.2222a a a+=D.22(3)9a a+=+9.如果a b>,0c<,那么下列不等式成立的是()A.a c b+>B.a c b c+->C.11ac bc-->D.(1)(1)a cb c--<10.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(31)π+11.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则ADAB的值为()A.65B.2C.32D.312.如图,四边形ABCD的顶点坐标分别为0()4,A-,()2,1B--,()3,0C,()0,3D,当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为( )A.116105y x=+B.2133y x=+C.1y x=+D.5342y x=+二、填空题(共6小题,每小题3分,共18分.把答案填写在题中的横线上)毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共6页)数学试卷第2页(共6页)数学试卷 第3页(共6页) 数学试卷 第4页(共6页)13.计算:||2019-= .14.某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习组别 一 二 三 四 五 六 七 八 得分9095908890928590这组数据的众数是 .15.一元二次方程2)30()(x x -=-的根是 . 16.若224)2(x ax x ++=-,则a = . 17.如图,在平面直角坐标系中,反比例(0)ky k x=>的图象和ABC △都在第一象限内,52AB AC ==,BC x ∥轴,且4BC =,点A 的坐标为(3,5).若将ABC △向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 . 18.如图,在矩形ABCD 中,3AB =,3AD =,点P 是AD 边上的一个动点,连接BP ,作点A 关于直线BP 的对称点A 1,连接A 1C ,设A 1C 的中点为Q ,当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的运动路径长为 .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(6分)计算:20190(1)12tan60(π 3.14)--++-o .20.(6分)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,ABC △的三个顶点均在格点上.(1)将ABC △先向右平移6个单位长度,再向上平移3个单位长度,得到111A B C △,画出平移后的111A B C △;(2)建立适当的平面直角坐标系,使得点A 的坐为()4,3-; (3)在(2)的条件下,直接写出点A 1的坐标.21.(8分)先化简,再求值:221121()2x xy y y x xy y x-+-÷--,其中22x =+,2y =.22.(8分)某校在以“青春心向觉,建功新时代”为主题的校园文化艺术节期间,举办了A 合唱,B 群舞,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?扇形统计图中“D ”部分的圆心角度数是多少? (2)请将条形统计图补充完整;(3)若全校共有1 800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(8分)如图,AB AD =,BC DC =,点E 在AC 上. (1)求证:AC 平分BAD ∠; (2)求证:BE DE =.24.(8分)为响应国家“足球进校园”的号召,某校购买了50个A 类足球和25个B 类足球共花费7 500元,已知购买一个B 类足球比购买一个A 类足球多花30元. (1)求购买一个A 类足球和一个B 类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4 800元的经费再次购买A 类足球和B 类足球共50个,若单价不变,则本次至少可以购买多少个A 类足球?25.(10分)如图,BM 是以AB 为直径的O e 的切线,B 为切点,BC 平分ABM ∠,弦CD 交AB 于点E ,DE OE =.(1)求证:ACB △是等腰直角三角形; (2)求证:2OA OE DC =g ; (3)求tan ACD ∠的值.26.(12分)如图,抛物线2y x bx c =-++与x 轴交于点0()2,A -和()1,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)作射线AC ,将射线AC 绕点A 顺时针旋转90o 交抛物线于另一点D ,在射线AD 上是否存在一点H ,使CHB △的周长最小.若存在,求出点H 的坐标;若不存在,请说明理由;(3)在(2)的条件下,点Q 为抛物线的顶点,点P 为射线AD 上的一个动点,且点P 的横坐标为t ,过点P 作x 轴的垂线l ,垂足为E ,点P 从点A 出发沿AD 方向运动,直线l 随之运动,当21t -<<时,直线l 将四边形ABCQ 分割成左右两部分,设在直线l 左侧部分的面积为S ,求S 关于t 的函数表达式.备用图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
绝密★启用前广西桂林市2019年中考数学试卷数学一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.23的倒数是()A .32B.32-C.23-D.232.若海平面以上1 045米,记做1045+米,则海平面以下155米,记做( )A.1200-米B.155-米C.155米D.1 200米3.将数47 300 000用科学记数法表示为 ()A.547310⨯B.647.310⨯C.74.7310⨯D.54.7310⨯4.下列图形中,是中心对称图形的是()A.圆B.等边三角形C.直角三角形D.正五边形5.9的平方根是()A.3B.3±C.3-D.96.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.12B.13C.14D.167.下列命题中,是真命题的是()A.两直线平行,内错角相等B.两个锐角的和是钝角C.直角三角形都相似D.正六边形的内角和为3608.下列计算正确的是()A.236a a a=B.824a a a÷=C.2222a a a+=D.22(3)9a a+=+9.如果a b>,0c<,那么下列不等式成立的是()A.a c b+>B.a c b c+->C.11ac bc-->D.(1)(1)a cb c--<10.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(31)π+11.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则ADAB的值为()A.65B.2C.32D.312.如图,四边形ABCD的顶点坐标分别为0()4,A-,()2,1B--,()3,0C,()0,3D,当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为( )A.116105y x=+B.2133y x=+C.1y x=+D.5342y x=+二、填空题(共6小题,每小题3分,共18分.把答案填写在题中的横线上)毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共24页)数学试卷第2页(共24页)数学试卷 第3页(共24页) 数学试卷 第4页(共24页)13.计算:||2019-= .14.某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况: 组别 一 二 三 四 五 六 七 八 得分9095908890928590这组数据的众数是 .15.一元二次方程2)30()(x x -=-的根是 . 16.若224)2(x ax x ++=-,则a = . 17.如图,在平面直角坐标系中,反比例(0)ky k x=>的图象和ABC △都在第一象限内,52AB AC ==,BC x ∥轴,且4BC =,点A 的坐标为(3,5).若将ABC △向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 . 18.如图,在矩形ABCD 中,3AB =,3AD =,点P 是AD 边上的一个动点,连接BP ,作点A 关于直线BP 的对称点A 1,连接A 1C ,设A 1C 的中点为Q ,当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的运动路径长为 .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(6分)计算:20190(1)12tan60(π 3.14)--++-.20.(6分)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,ABC △的三个顶点均在格点上.(1)将ABC △先向右平移6个单位长度,再向上平移3个单位长度,得到111A B C △,画出平移后的111A B C △;(2)建立适当的平面直角坐标系,使得点A 的坐为()4,3-; (3)在(2)的条件下,直接写出点A 1的坐标.21.(8分)先化简,再求值:221121()2x xy y y x xy y x-+-÷--,其中22x =+,2y =.22.(8分)某校在以“青春心向觉,建功新时代”为主题的校园文化艺术节期间,举办了A 合唱,B 群舞,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)本次调查的学生总人数是多少?扇形统计图中“D ”部分的圆心角度数是多少? (2)请将条形统计图补充完整;(3)若全校共有1 800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?数学试卷 第5页(共24页) 数学试卷 第6页(共24页)23.(8分)如图,AB AD =,BC DC =,点E 在AC 上. (1)求证:AC 平分BAD ∠; (2)求证:BE DE =.24.(8分)为响应国家“足球进校园”的号召,某校购买了50个A 类足球和25个B 类足球共花费7 500元,已知购买一个B 类足球比购买一个A 类足球多花30元. (1)求购买一个A 类足球和一个B 类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4 800元的经费再次购买A 类足球和B 类足球共50个,若单价不变,则本次至少可以购买多少个A 类足球?25.(10分)如图,BM 是以AB 为直径的O 的切线,B 为切点,BC 平分ABM ∠,弦CD 交AB 于点E ,DE OE =.(1)求证:ACB △是等腰直角三角形; (2)求证:2OA OE DC =; (3)求tan ACD ∠的值.26.(12分)如图,抛物线2y x bx c =-++与x 轴交于点0()2,A -和()1,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)作射线AC ,将射线AC 绕点A 顺时针旋转90交抛物线于另一点D ,在射线AD 上是否存在一点H ,使CHB △的周长最小.若存在,求出点H 的坐标;若不存在,请说明理由;(3)在(2)的条件下,点Q 为抛物线的顶点,点P 为射线AD 上的一个动点,且点P 的横坐标为t ,过点P 作x 轴的垂线l ,垂足为E ,点P 从点A 出发沿AD 方向运动,直线l 随之运动,当21t -<<时,直线l 将四边形ABCQ 分割成左右两部分,设在直线l 左侧部分的面积为S ,求S 关于t 的函数表达式.备用图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)广西桂林市2019年中考数学试卷答案解析一、选择题 1.【答案】A【解析】解:23的倒数是:32.故选:A . 2.【答案】B【解析】解:若海平面以上1 045米,记做1045+米,则海平面以下155米,记做155-米.故选:B . 3.【答案】C【解析】解:将47 300 000用科学记数法表示为74.7310⨯,故选:C . 4.【答案】A【解析】解:A 、是中心对称图形,本选项正确;B 、不是中心对称图形,本选项错误;C 、不是中心对称图形,本选项错误;D 、不是中心对称图形,本选项错误.故选:A . 5.【答案】B【解析】解:∵2(3)9±=,∴9的平方根为:3±.故选:B . 6.【答案】D【解析】解:当转盘停止转动时,指针指向阴影部分的概率是16,故选:D . 7.【答案】A【解析】解:A 、两直线平行,内错角相等,正确,是真命题;B 、两个锐角的和不一定是钝角,故错误,是假命题;C 、所有的直角三角形不一定相似,故错误,是假命题;D 、正六边形的内角和为720,故错误,是假命题;故选:A . 8.【答案】C【解析】解:A 、235a a a =,故此选项错误;B 、826a a a ÷=,故此选项错误;C 、2222a a a +=,正确;D 、22(39)6a a a +=++,故此选项错误;故选:C .9.【答案】D【解析】解:∵0c <,∴11c -<-, ∵a b >,∴()1(1)a c b c --<,故选:D . 10.【答案】C【解析】解:由三视图可知:该几何体是一个圆锥,.∴正三角形的边长2sin60==. ∴圆锥的底面圆半径是1,母线长是2, ∴底面周长为2π∴侧面积为12π22π2⨯⨯=,∵底面积为2ππr =, ∴全面积是3π. 故选:C . 11.【答案】B【解析】解:由折叠可得,AE OE DE ==,CG OG DG ==, ∴E ,G 分别为AD ,CD 的中点,设2CD a =,2AD b =,则2AB a OB ==,DG OG CG a ===,3BG a =,2BC AD b ==,∵90C ∠=,∴Rt BCG △中,222CG BC BG +=,即222(2)(3)a b a +=,∴222b a =,即b =,∴ba = ∴AD AB,故选:B . 12.【答案】D【解析】解:由0()4,A -,()2,1B --,()3,0C ,()0,3D ,数学试卷 第9页(共24页) 数学试卷 第10页(共24页)∴7AC =,3DO =, ∴四边形ABCD 分成面积11(||3)741422B AC y =⨯⨯+=⨯⨯=, 可求CD 的直线解析式为3y x =-+, 设过B 的直线l 为y kx b =+, 将点B 代入解析式得21y kx k =+-,∴直线CD 与该直线的交点为4251(,)11k k k k --++, 直线21y kx k =+-与x 轴的交点为12(,0)kk-, ∴112517(3)(1)21k k k k --=⨯-⨯++, ∴54k =或0k =,∴54k =,∴直线解析式为5342y x =+;故选:D . 二、填空题 13.【答案】2 019【解析】解:|2019|2019-=,故答案为:2 019. 14.【答案】90【解析】解:90出现了4次,出现的次数最多,则众数是90;故答案为:90. 15.【答案】13x =,22x =【解析】解:30x -=或20x -=,所以13x =,22x =.故答案为13x =,22x =. 16.【答案】4-【解析】解:∵224(2)x ax x ++=-,∴4a =-.故答案为:4-. 17.【答案】54【解析】解:∵52AB AC ==,4BC =,点(3,5)A .∴7(1,)2B ,()75,2C ,将ABC △向下平移m 个单位长度,∴(3,5)A m -,7(5,)2C m -,∵A ,C 两点同时落在反比例函数图象上,∴73(5)5()2m m -=-,∴54m =;故答案为54. 18.【答案】π3【解析】解:如图,连接BA 1,取BC 使得中点O ,连接OQ ,BD .∵四边形ABCD 是矩形, ∴90BAD ∠=,∴tan ADABD AB∠== ∴60ABD ∠=,∵1AQ QC =,BO OC =,∴11122OQ BA AB ===, ∴点Q 的运动轨迹是以O 为圆心,OQ 为半径的圆弧,圆心角为120,∴点Q 的运动路径长3120π32180==. .三、解答题19.【答案】解:原式11=--=-【解析】解:原式11=--=.20.【答案】解:(1)如图,111A B C △为所作;数学试卷 第11页(共24页) 数学试卷 第12页(共24页)(2)如图,(3)点1A 的坐标为(2,6).【解析】解:(1)如图,111A B C △为所作;(2)如图,(3)点1A 的坐标为(2,6).21.【答案】解: 原式221()x y xy xy x y x y -=+-- 21x y x y=+-- 3x y =-,当2x =,2y =时,=【解析】解:原式221()x y xy xy x y x y-=+-- 21x y x y=+-- 3x y=-,当2x =,2y =时, =22.【答案】解:(1)本次调查的学生总人数是12060%200()÷=人, 扇形统计图中“D ”部分的圆心角度数是836014.4200⨯=; (2)C 项目人数为200(120528)20()-++=人, 补全图形如下:(3)估计该校报名参加书法和演讲比赛的学生共有2081800252()200+⨯=人. 【解析】解:(1)本次调查的学生总人数是12060%200()÷=人, 扇形统计图中“D ”部分的圆心角度数是836014.4200⨯=; (2)C 项目人数为200(120528)20()-++=人, 补全图形如下:(3)估计该校报名参加书法和演讲比赛的学生共有2081800252()200+⨯=人. 23.【答案】解:(1)在ABC △与ADC △中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴(SSS)ABC ADC ≅△△数学试卷 第13页(共24页) 数学试卷 第14页(共24页)∴BAC DAC ∠=∠ 即AC 平分BAD ∠; (2)由(1)BAE DAE ∠=∠在BAE △与DAE △中,得BA DABAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴(SAS)BAE DAE ≅△△ ∴BE DE =.【解析】解:(1)在ABC △与ADC △中,AB ADAC AC BC DC =⎧⎪=⎨⎪=⎩∴(SSS)ABC ADC ≅△△ ∴BAC DAC ∠=∠ 即AC 平分BAD ∠; (2)由(1)BAE DAE ∠=∠在BAE △与DAE △中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴(SAS)BAE DAE ≅△△ ∴BE DE =.24.【答案】解:(1)设购买一个A 类足球需要x 元,购买一个B 类足球需要y 元,依题意,得:5025750030x y y x +=⎧⎨-=⎩,解得:90120x y =⎧⎨=⎩.答:购买一个A 类足球需要90元,购买一个B 类足球需要120元. (2)设购买m 个A 类足球,则购买(50)m -个B 类足球, 依题意,得:90120(50)4800m m +-≤, 解得:40m ≥.答:本次至少可以购买40个A 类足球.【解析】解:(1)设购买一个A 类足球需要x 元,购买一个B 类足球需要y 元, 依题意,得:5025750030x y y x +=⎧⎨-=⎩,解得:90120x y =⎧⎨=⎩.答:购买一个A 类足球需要90元,购买一个B 类足球需要120元. (2)设购买m 个A 类足球,则购买(50)m -个B 类足球, 依题意,得:90120(50)4800m m +-≤, 解得:40m ≥.答:本次至少可以购买40个A 类足球.25.【答案】证明:(1)∵BM 是以AB 为直径的O 的切线, ∴90ABM ∠=, ∵BC 平分ABM ∠, ∴1452ABC ABM ∠=∠= ∵AB 是直径 ∴90ACB ∠=, ∴45CAB CBA ∠=∠= ∴AC BC =∴ACB △是等腰直角三角形; (2)如图,连接OD ,OC∵DE EO =,DO CO =∴EDO EOD ∠=∠,EDO OCD ∠=∠ ∴EDO EDO ∠=∠,EOD OCD ∠=∠数学试卷 第15页(共24页) 数学试卷 第16页(共24页)∴EDO ODC △△ ∴OD DEDC DO= ∴2OD DE DC =∴2OA DE DC EO DC ==(2)如图,连接BD ,AD ,DO ,作BAF DBA ∠=∠,交BD 于点F ,∵DO BO = ∴ODB OBD ∠=∠,∴2AOD ODB EDO ∠=∠=∠,∵453CAB CDB EDO ODB ODB ∠=∠==∠+∠=∠, ∴15ODB OBD ∠==∠ ∵15BAF DBA ∠=∠= ∴AF BF =,30AFD ∠= ∵AB 是直径 ∴90ADB ∠=∴2AF AD =,DF∴2BD DF BF AD =+=+∴tan tan 2AD ACD ABD BD ∠=∠===-【解析】证明:(1)∵BM 是以AB 为直径的O 的切线, ∴90ABM ∠=, ∵BC 平分ABM ∠, ∴1452ABC ABM ∠=∠= ∵AB 是直径∴90ACB ∠=, ∴45CAB CBA ∠=∠= ∴AC BC =∴ACB △是等腰直角三角形; (2)如图,连接OD ,OC∵DE EO =,DO CO =∴EDO EOD ∠=∠,EDO OCD ∠=∠ ∴EDO EDO ∠=∠,EOD OCD ∠=∠ ∴EDO ODC △△ ∴OD DEDC DO= ∴2OD DE DC =∴2OA DE DC EO DC ==(2)如图,连接BD ,AD ,DO ,作BAF DBA ∠=∠,交BD 于点F ,∵DO BO = ∴ODB OBD ∠=∠,∴2AOD ODB EDO ∠=∠=∠,∵453CAB CDB EDO ODB ODB ∠=∠==∠+∠=∠, ∴15ODB OBD ∠==∠数学试卷 第17页(共24页) 数学试卷 第18页(共24页)∵15BAF DBA ∠=∠= ∴AF BF =,30AFD ∠= ∵AB 是直径 ∴90ADB ∠=∴2AF AD =,DF =∴2BD DF BF AD =+=+∴tan tan 2AD ACD ABD BD ∠=∠===26.【答案】解:(1)抛物线与x 轴交于点0()2,A -和()1,0B ∴交点式为221)2()(()y x x x x =-+-=-+- ∴抛物线的表示式为22y x x =--+(2)在射线AD 上存在一点H ,使CHB △的周长最小.如图1,延长CA 到C',使AC AC '=,连接BC',BC'与AD 交点即为满足条件的点H图1∵0x =时,222y x x =--+= ∴()0,2C ∴2OA OC ==∴45CAO ∠=,直线AC 解析式为2y x =+ ∵射线AC 绕点A 顺时针旋转90得射线AD ∴90CAD ∠=∴45OAD CAD CAO ∠=∠-∠=∴直线AD 解析式为2y x =-- ∵AC AC '=,AD CC '⊥ ∴4,(2)C '﹣﹣,AD 垂直平分CC' ∴CH C H '=∴当C'、H 、B 在同一直线上时,CHB C CH BH BC C H BH BC BC BC''=++=++=+△最小设直线BC'解析式为y kx a =+∴420k a k a -+=-⎧⎨+=⎩解得:2525k a ⎧=⎪⎪⎨⎪=-⎪⎩∴直线BC':2255y x =- ∵22552y x y x ⎧=-⎪⎨⎪=--⎩解得:8767x y ⎧=-⎪⎪⎨⎪=⎪⎩∴点H 坐标为86(,)77--(3)∵2212()24y y x x x =--+=-++∴抛物线顶点19(,)24Q - ①当122t --<≤时,如图2,直线l 与线段AQ 相交于点F图2数学试卷 第19页(共24页) 数学试卷 第20页(共24页)设直线AQ 解析式为y mx n =+∴201924m n m n -+=⎧⎪⎨-+=⎪⎩解得:323m n ⎧=⎪⎨⎪=⎩∴直线AQ :332y x =+ ∵点P 横坐标为t ,PF x ⊥轴于点E ∴3(,3)2F t t +∴(2)2AE t t =--=+,332FE t =+ ∴21133(2)(3)332224AEF S S AE EF t t t t ===++=++△ ②当102t -<≤时,如图3,直线l 与线段QC 相交于点G ,过点Q 作QM x ⊥轴于M图3∴13(2)22AM =---=,94QM =∴113927222416AQMS AM QM ==⨯⨯=△ 设直线CQ 解析式为2y qx =+把点Q 代入:19224q -+=,解得:12q =- ∴直线CQ :122y x =-+ ∴1(,2)2G t t -+∴11()22EM t t =--=+,122GE t =-+∴211911117(2)()22242246(1)MEGQ S QM GE ME t t t t =+=-++=--++梯形∴2227117111(2)21641644AQM MEGQ S S S t t t t =+=+-++=-++△梯形 ③当01t <<时,如图4,直线l 与线段BC 相交于点N图4设直线BC 解析式为2y rx =+ 把点B 代入:20r +=,解得:2r =- ∴直线BC :22y x =-+∴,2()2N t t -+∴1BE t =-,22NE t =-+∴211(1)(22)2122BEN S BE NE t t t t ==--+=-+△ ∵119117()(2)224216MOCQ S QM CO OM =+=⨯+⨯=梯形,1112122BOC S BO CO ==⨯⨯=△∴222717111(21)216164AQM BOC BEN MOCQ S S S S S t t t t =++-=++--+=-+△△△梯形数学试卷 第21页(共24页) 数学试卷 第22页(共24页)综上所述,2223133(2)4211112(0)442112(01)4t t t S t t t t t t ⎧++--⎪⎪⎪=-++-⎨⎪⎪-+⎪⎩<≤<<<【解析】解:(1)抛物线与x 轴交于点0()2,A -和()1,0B ∴交点式为221)2()(()y x x x x =-+-=-+- ∴抛物线的表示式为22y x x =--+(2)在射线AD 上存在一点H ,使CHB △的周长最小.如图1,延长CA 到C',使AC AC '=,连接BC',BC'与AD 交点即为满足条件的点H图1∵0x =时,222y x x =--+= ∴()0,2C ∴2OA OC ==∴45CAO ∠=,直线AC 解析式为2y x =+ ∵射线AC 绕点A 顺时针旋转90得射线AD ∴90CAD ∠=∴45OAD CAD CAO ∠=∠-∠= ∴直线AD 解析式为2y x =-- ∵AC AC '=,AD CC '⊥∴4,(2)C '﹣﹣,AD 垂直平分CC' ∴CH C H '=∴当C'、H 、B 在同一直线上时,CHB C CH BH BC C H BH BC BC BC''=++=++=+△最小设直线BC'解析式为y kx a =+∴420k a k a -+=-⎧⎨+=⎩解得:2525k a ⎧=⎪⎪⎨⎪=-⎪⎩∴直线BC':2255y x =- ∵22552y x y x ⎧=-⎪⎨⎪=--⎩解得:8767x y ⎧=-⎪⎪⎨⎪=⎪⎩∴点H 坐标为86(,)77--(3)∵2212()24y y x x x =--+=-++∴抛物线顶点19(,)24Q - ①当122t --<≤时,如图2,直线l 与线段AQ 相交于点F图2设直线AQ 解析式为y mx n =+∴201924m n m n -+=⎧⎪⎨-+=⎪⎩解得:323m n ⎧=⎪⎨⎪=⎩数学试卷 第23页(共24页) 数学试卷 第24页(共24页)∴直线AQ :332y x =+ ∵点P 横坐标为t ,PF x ⊥轴于点E ∴3(,3)2F t t +∴(2)2AE t t =--=+,332FE t =+ ∴21133(2)(3)332224AEF S S AE EF t t t t ===++=++△ ②当102t -<≤时,如图3,直线l 与线段QC 相交于点G ,过点Q 作QM x ⊥轴于M图3∴13(2)22AM =---=,94QM =∴113927222416AQMS AM QM ==⨯⨯=△ 设直线CQ 解析式为2y qx =+把点Q 代入:19224q -+=,解得:12q =- ∴直线CQ :122y x =-+ ∴1(,2)2G t t -+ ∴11()22EM t t =--=+,122GE t =-+∴211911117(2)()22242246(1)MEGQS QM GE ME t t t t =+=-++=--++梯形 ∴2227117111(2)21641644AQM MEGQ S S S t t t t =+=+-++=-++△梯形 ③当01t <<时,如图4,直线l 与线段BC 相交于点N图4设直线BC 解析式为2y rx =+ 把点B 代入:20r +=,解得:2r =- ∴直线BC :22y x =-+∴,2()2N t t -+∴1BE t =-,22NE t =-+∴211(1)(22)2122BEN S BE NE t t t t ==--+=-+△ ∵119117()(2)224216MOCQ S QM CO OM =+=⨯+⨯=梯形,1112122BOC S BO CO ==⨯⨯=△∴222717111(21)216164AQM BOC BEN MOCQ S S S S S t t t t =++-=++--+=-+△△△梯形 综上所述,2223133(2)4211112(0)442112(01)4t t t S t t t t t t ⎧++--⎪⎪⎪=-++-⎨⎪⎪-+⎪⎩<≤<<<。
广西桂林市2019年中考数学真题试题一、选择题(本大题共12小题,每小题3分,共36分)1.2019的绝对值是()A.2019 B.-2019 C.0 D.1 2017【答案】A.【解析】试题解析:2019的绝对值等于2019,故选A.考点:绝对值.2.4的算术平方根是()A.4 B.2 C.-2 D.±2【答案】B.考点:算术平方根.3.一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【答案】【解析】试题解析:数据2,3,5,7,8的平均数=378525++++=5.故选D.考点:算术平均数.4.如图所示的几何体的主视图是()A. B. C. D.【答案】A.考点:简单几何体的三视图.5.下列图形中不是中心对称图形的是()A. B. C. D.【答案】B.【解析】试题解析:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.考点:中心对称图形.6.用科学记数法表示数57000000为()A.57×106 B.5.7×106 C.5.7×107 D.0.57×108【答案】C.【解析】试题解析:用科学记数法表示数57000000为5.7×107,考点:科学记数法—表示较大的数.7.下列计算正确的是()A.a3÷a3=a B.(x2)3=x5 C.m2•m4=m6 D.2a+4a=8a【答案】C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.8.如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°【答案】B.【解析】试题解析:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.考点:平行线的判定.9.下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等考点:命题与定理.10.若分式242xx-+的值为0,则x的值为()A.-2 B.0 C.2 D.±2【答案】C.【解析】试题解析:由题意可知:24020 x=x-+≠⎧⎨⎩解得:x=2故选C.考点:分式的值为零的条件.11.一次函数y=-x+1(0≤x≤10)与反比例函数y=1x(-10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.-8910≤x≤1 B.-8910≤x≤899C.-899≤x≤8910D.1≤x≤8910【答案】B .∴x 1+x 2=1-y 2+11y . 设x=1-y+1y (-9≤y≤-110),-9≤y m <y n ≤-110, 则x n -x m =y m -y n +11n m y y =(y m -y n )(1+1y m n y )<0,∴x=1-y+1y中x 值随y 值的增大而减小, ∴1-(-110)-10=-8910≤x≤1-(-9)-19=899. 故选B .考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.12.如图,在菱形ABCD 中,∠ABC=60°,AB=4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,点F 的运动路径长为( )23π D.43π【答案】D.当点E从点A运动到点B时,点F的运动路径长为BG,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴BG的长=120218043ππ=.故选D.考点:菱形的性质.二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:x2-x= .【答案】x(x-1).【解析】考点:因式分解-提公因式法.14.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则AB= .【答案】4.考点:两点间的距离.15.分式212a b 与21ab 的最简公分母是 . 【答案】2a 2b 2【解析】 试题解析:212a b 与21ab 的分母分别是2a 2b 、ab 2,故最简公分母是2a 2b 2考点:最简公分母.16.一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 . 【答案】12. 【解析】试题解析:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个, ∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是3162. 考点:概率.17.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,过点A 作EA ⊥CA 交DB 的延长线于点E ,若AB=3,BC=4,则ACAE 的值为 .【答案】724.∴AO=OB=52, ∵12BH•AC=12AB•BC, ∴BH=3412=55⨯,在Rt △OBH 中,710, ∵EA ⊥CA ,∴BH ∥AE ,∴△OBH ∽△OEA , ∴A BH AE OH O =,∴771012245OA OHAE BH===.考点:相似三角形的判定与性质;矩形的性质.18.如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.【答案】12(3n-1)考点:图形规律.三、解答题(本大题共8小题,共66分)19.计算:(-2019)0--1.【答案】【解析】试题分析:根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.试题解析:原式=1-12+2+12.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.20.解二元一次方程组:2359x y=①x y=②++⎧⎨⎩.【答案】21 x=y=-⎧⎨⎩考点:解二元一次方程组.21.某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m= n= ;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【答案】(1)16,30,(2)18.(3)525名.考点:扇形统计图;用样本估计总体;频数(率)分布表;加权平均数.22.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【答案】(1)作图见解析;(2)证明见解析.【解析】试题分析:(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.试题解析:(1)如图所示:考点:作图-平移变换;全等三角形的判定.23.“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【答案】线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.考点:解直角三角形的应用.24.为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2019年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2019年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【答案】(1)20%.(2)2019年最多可购买电脑880台.试题解析:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=-2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2019年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500-m)台,根据题意得:3500m+2000(1500-m)≤86400000×5%,解得:m≤880.答:2019年最多可购买电脑880台.考点:一元二次方程的应用;一元一次不等式的应用.25.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【答案】(1)证明见解析;(2);(3) 52 15.【解析】试题分析:(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE:S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.(2)∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴CE CD CA CB=,∵AB=BC=10,CE=2,D是AC的中点,∴;(3)延长EF交⊙O于M,∴BD BE BE BP=,∴∴DP=BD-BP=15, ∴S △DPE :S △BPE =DP :BP=13:32,∵S △BCD = 12,S △BDE :S △BCD =BE :BC=4:5, ∴S △BDE =12,∴S △DPE =5215. 考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;垂径定理.26.已知抛物线y 1=ax 2+bx-4(a≠0)与x 轴交于点A (-1,0)和点B (4,0).(1)求抛物线y 1的函数解析式;(2)如图①,将抛物线y 1沿x 轴翻折得到抛物线y 2,抛物线y 2与y 轴交于点C ,点D 是线段BC 上的一个动点,过点D 作DE ∥y 轴交抛物线y 1于点E ,求线段DE 的长度的最大值;(2)在(2)的条件下,当线段DE 处于长度最大值位置时,作线段BC 的垂直平分线交DE 于点F ,垂足为H ,点P 是抛物线y 2上一动点,⊙P 与直线BC 相切,且S ⊙P :S △DFH =2π,求满足条件的所有点P 的坐标.【答案】(1) 抛物线y 1的函数解析式为:y 1=x 2-3x-4;(2)9;(3)(,(,(试题解析:(1)将点A(-1,0)和点B(4,0)代入y1=ax2+bx-3得:a=1,b=-3,∴抛物线y1的函数解析式为:y1=x2-3x-4;(2)由对称性可知,抛物线y2的函数解析式为:y2=-x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=-1,q=4,∴直线BC的解析式为:y=-x+4,设D(m,-m+4),E(m,m2-3m-4),其中0≤m≤4,∴DE=-m+4-(m2-3m-4)=-(m-1)2+9,∵0≤m≤4,∴当m=1时,DE max=9;此时,D(1,3),E(1,-6);∴S△DFH=1,设⊙P的半径为r,∵S⊙P:S△DFH=2π,∴∵⊙P与直线BC相切,∴点P在与直线BC∴点P在直线y=-x+2或y=-x+6的直线上,∵点P在抛物线y2=-x2+3x+4上,∴-x+2=-x2+3x+4,解得:x1x2-x+2=-x2+3x+4,解得:x3x4∴符合条件的点P坐标有4个,分别是((考点:二次函数综合题.。
广西桂林2019中考试题-数学【一】选择题〔共12小题,每题3分,共36分〕1、2018的相反数是【】A 、2018B 、-2018C 、|-2018|D 、1 2012 2、下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是【】A 、桂林11.2ºCB 、广州13.5ºCC 、北京-4.8ºCD 、南京3.4ºC3、如图,与∠1是内错角的是【】A 、∠2B 、∠3C 、∠4D 、∠54、计算2xy 2+3xy 2的结果是【】A 、5xy 2B 、xy 2C 、2x 2y 4D 、x 2y 45、以下几何体的主视图、俯视图和左视图基本上...长方形的是【】6、二元一次方程组⎩⎨⎧x +y =32x =4的解是【】A 、⎩⎨⎧x =3y =0B 、⎩⎨⎧x =1y =2C 、⎩⎨⎧x =5y =-2D 、⎩⎨⎧x =2y =17、两圆半径为5cm 和3cm ,圆心距为3cm ,那么两圆的位置关系是【】A 、相交B 、内含C 、内切D 、外切8、下面四个标志图是中心对称图形的是【】9、关于x 的方程x 2-2x +k =0有两个不相等的实数根,那么k 的取值范围是【】A 、k <1B 、k >1C 、k <-1D 、k >-110、中考体育男生抽测项目规那么是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50×2米、100米中随机抽取一项、恰好抽中实心球和50米的概率是【】 A 、1 3B 、 1 6C 、2 3D 、 19 11、如图,把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,那么平移后的抛物线解析式是【】A 、y =〔x +1〕2-1B 、y =〔x +1〕2+1C 、y =〔x -1〕2+1D 、y =〔x -1〕2-1A B C D12、如图,在边长为4的正方形ABCD 中,动点P 从A 点动身,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点动身,以每秒2个单位长度的速度沿BC →CD 方向运动,当P 运动到B 点时,P 、Q 两点同时停止运动、设P 点运动的时间为t ,△APQ 的面积为S ,那么S 与t 的函数关系的图象是【】13、2(21)x x -14、81.110⨯15、316、1x >17、2318、22n n ++ 【三】解答题:19、(此题总分值6分)解:原式=12- ··· 4分(求出一个值给1分)=3- ······························ 6分 20、(此题总分值6分)解:⎩⎨⎧≤-+>+1132)3(27x x x 解不等式①得:1x < ·························· 2分 解不等式②得:3x ≥- ························· 4分 把不等式①和②的解集在数轴上表示出来:··································· 5分(3)画对条形统计图: ······· 8分23、(此题总分值8分)解:过点P 作PD ⊥BC ,垂足为D 、…1分在Rt APD ∆中,60APD ∠=∴tan 60AD AD PD=== ······ 3分 在Rt BPD ∆中,30BPD ∠=∴tan 30BD BD PD === ·· 5分 ∴3AD BD =,1502BD =,∴75BD =………6分∵3BD =,∴PD =7分∵100>,∴不违反有关规定、 ·················· 8分24、(此题总分值8分)解:(1)设步行速度为x 米/分,那么自行车的速度为3x 米/分、 ······· 1分 依照题意得:21002100203x x=+ ···················· 3分 得70x = ······························· 4分 经检验70x =是原方程的解, ······················ 5分 答:李明步行的速度是70米/分、 ···················· 6分(2)依照题意得:210021001414270370++=<⨯ ················ 7分 ∴李明能在联欢会开始前赶到、 ··········· 8分[中^国教@育出版~网&*]① ② 第23题图25、(此题总分值10分)证明:(1)∵⊙O 1与⊙O 2是等圆,[来#源:中%国@教育出~*版网]∴1122AO O B BO O A === ········· 1分∴四边形12AO BO 是菱形、 ········· 2分(2)∵四边形12AO BO 是菱形[来@源:中教^网%&~]∴∠1O AB =∠2O AB ··········· 3分∵CE 是⊙O 1的切线,AC 是⊙O 1的直径,∴∠ACE =∠2AO C =90° ············ 4分[中&国教育*%出@~版网] ∴△ACE ∽△AO 2D ···························· 5分 2212DO AO EC AC ==即22CE DO = ····················· 6分 (3)∵四边形12AO BO 是菱形∴AC ∥2BO ∴△ACD ∽△2BO D , ··················· 8分 ∴212BO DB AD AC ==∴2AD BD =, ···················· 9分 ∵21AO D S ∆=∴212O DB S ∆= ·········· 10分[中#国%^@教育出版网~] 26、(此题总分值12分)(1)证明:∵∠BAC =90°AB =AC =6,D 为BC 中点∴∠BAD =∠DAC =∠B =∠C =45° ······ 1分∴AD =BD =DC ··············· 2分∵AE =CF ∴△AED ≌△CFD ·········· 3分(2)依题意有:FC =AE =x ·········· 4分∵△AED ≌△CFD ∴ADF CFD ADF AED AEDF S S S S S ∆∆∆∆+=+=四边形 ················ 5分 =S △ADC =9 ······························· 6分 ∴9321)6(2192+-=--=-=∆∆x x x x S S S AEF AEDF EDF 四边形 ∴93212+-=x x y ··························· 7分 (3)依题意有:AF =BE =x -6,AD =DB ,∠ABD =∠DAC =45°∴∠DAF =∠DBE =135° ··········· 8分∴△ADF ≌△BDE ·············· 9分∴ADF BDE S S ∆∆= ·············· 10分第25题图 第26题图1∴EDF EAF ADB S S S ∆∆∆=+ ·········· 11分 211(6)93922x x x x =-+=-+ ∴93212+-=x x y 12分 第26题图2。
2019年广西桂林市中考数学试卷
一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)
1.(3分)的倒数是()
A.B.﹣C.﹣D.
2.(3分)若海平面以上1045米,记做+1045米,则海平面以下155米,记做()A.﹣1200米B.﹣155米C.155米D.1200米
3.(3分)将数47300000用科学记数法表示为()
A.473×105B.47.3×106C.4.73×107D.4.73×105 4.(3分)下列图形中,是中心对称图形的是()
A.圆B.等边三角形
C.直角三角形D.正五边形
5.(3分)9的平方根是()
A.3B.±3C.﹣3D.9
6.(3分)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()
A.B.C.D.
7.(3分)下列命题中,是真命题的是()
A.两直线平行,内错角相等
B.两个锐角的和是钝角
C.直角三角形都相似
D.正六边形的内角和为360°
8.(3分)下列计算正确的是()
A.a2•a3=a6B.a8÷a2=a4
C.a2+a2=2a2D.(a+3)2=a2+9
9.(3分)如果a>b,c<0,那么下列不等式成立的是()
A.a+c>b B.a+c>b﹣c
C.ac﹣1>bc﹣1D.a(c﹣1)<b(c﹣1)
10.(3分)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()
A.πB.2πC.3πD.(+1)π11.(3分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D 都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()
A.B.C.D.
12.(3分)如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()
A.y=x+B.y=x+C.y=x+1D.y=x+
二、填空题(共6小题.每小题3分,共18分,请将答案填在答题卡上)
13.(3分)计算:|﹣2019|=.
14.(3分)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:
组别一二三四五六七八
得分9095908890928590这组数据的众数是.
15.(3分)一元二次方程(x﹣3)(x﹣2)=0的根是.
16.(3分)若x2+ax+4=(x﹣2)2,则a=.
17.(3分)如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为.
18.(3分)如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为.
三.解答题(本大题共8题,共66分,请将解答过程写在答题卡上)
19.(6分)计算:(﹣1)2019﹣+tan60°+(π﹣3.14)0.
20.(6分)如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.
(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画
出平移后的△A1B1C1;
(2)建立适当的平面直角坐标系,使得点A的坐为(﹣4,3);
(3)在(2)的条件下,直接写出点A1的坐标.
21.(8分)先化简,再求值:(﹣)÷﹣,其中x=2+,y=2.22.(8分)某校在以“青春心向觉,建功新时代”为主题的校园文化艺术节期间,举办了A 合唱,B群舞,C书法,D演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题:
(1)本次调查的学生总人数是多少?扇形统计图中“D”部分的圆心角度数是多少?
(2)请将条形统计图补充完整;
(3)若全校共有1800名学生,请估计该校报名参加书法和演讲比赛的学生共有多少人?
23.(8分)如图,AB=AD,BC=DC,点E在AC上.
(1)求证:AC平分∠BAD;
(2)求证:BE=DE.
24.(8分)为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.
(1)求购买一个A类足球和一个B类足球各需多少元?
(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?
25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD 交AB于点E,DE=OE.
(1)求证:△ACB是等腰直角三角形;
(2)求证:OA2=OE•DC:
(3)求tan∠ACD的值.
26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣2,0)和B(l,0),与y轴交于点C.
(1)求抛物线的表达式;
(2)作射线AC,将射线AC绕点A顺时针旋转90°交抛物线于另一点D,在射线AD 上是否存在一点H,使△CHB的周长最小.若存在,求出点H的坐标;若不存在,请说明理由;
(3)在(2)的条件下,点Q为抛物线的顶点,点P为射线AD上的一个动点,且点P 的横坐标为t,过点P作x轴的垂线l,垂足为E,点P从点A出发沿AD方向运动,直线l随之运动,当﹣2<t<1时,直线l将四边形ABCQ分割成左右两部分,设在直线l 左侧部分的面积为S,求S关于t的函数表达式.。