平行关系小题练习(2015年)
- 格式:ppt
- 大小:156.50 KB
- 文档页数:8
第2讲 空间中的平行与垂直考情解读 1.以选择、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.1.线面平行与垂直的判定定理、性质定理2提醒 3.平行关系及垂直关系的转化热点一 空间线面位置关系的判定例1 (1)设a ,b 表示直线,α,β,γ表示不同的平面,则下列命题中正确的是()A .若a ⊥α且a ⊥b ,则b ∥αB .若γ⊥α且γ⊥β,则α∥βC .若a ∥α且a ∥β,则α∥βD .若γ∥α且γ∥β,则α∥β(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α思维启迪 判断空间线面关系的基本思路:利用定理或结论;借助实物模型作出肯定或否定.思维升华 解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.设m 、n 是不同的直线,α、β是不同的平面,有以下四个命题:①若α⊥β,m ∥α,则m ⊥β ②若m ⊥α,n ⊥α,则m ∥n③若m ⊥α,m ⊥n ,则n ∥α ④若n ⊥α,n ⊥β,则β∥α 其中真命题的序号为( )A .①③B .②③C .①④D .②④热点二 平行、垂直关系的证明例2 如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点,求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ; (3)平面BEF ⊥平面PCD .思维启迪 (1)利用平面P AD ⊥底面ABCD 的性质,得线面垂直;(2)BE ∥AD 易证;(3)EF 是△CPD 的中位线. 思维升华 垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.如图所示,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点. 求证:(1)AF ∥平面BCE ; (2)平面BCE ⊥平面CDE .热点三 图形的折叠问题例3 如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?请说明理由.思维启迪 折叠问题要注意在折叠过程中,哪些量变化了,哪些量没有变化.第(1)问证明线面平行,可以证明DE ∥BC ;第(2)问证明线线垂直转化为证明线面垂直,即证明A 1F ⊥平面BCDE ;第(3)问取A 1B 的中点Q ,再证明A 1C ⊥平面DEQ .思维升华 (1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,折线同一侧线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.如图(1),已知梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =2AD =4,E ,F 分别是AB ,CD上的点,EF ∥BC ,AE =x .沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF (如图(2)所示),G 是BC 的中点.(1)当x =2时,求证:BD ⊥EG ;(2)当x 变化时,求三棱锥D -BCF 的体积f (x )的函数式.1.证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行; (2)利用平行四边形进行转换; (3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明. 2.证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证线线平行; (2)利用面面平行的性质定理,把证明线面平行转化为证面面平行. 3.证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行. 4.证明线线垂直的常用方法(1)利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直; (2)利用勾股定理逆定理;(3)利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可. 5.证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直; (2)利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;(3)利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. 6.证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.真题感悟1.(2014·辽宁)已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α2.(2014·辽宁)如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,DC ,AD 的中点. (1)求证:EF ⊥平面BCG ; (2)求三棱锥D -BCG 的体积.附:锥体的体积公式V =13Sh ,其中S 为底面面积,h 为高.押题精练1.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线P A 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题: ①P A ∥平面MOB ;②MO ∥平面P AC ; ③OC ⊥平面P AC ;④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)证明:平面ADC 1B 1⊥平面A 1BE ;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?并证明你的结论.(推荐时间:60分钟)一、选择题1.(2014·广东)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定2.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A .α⊥β,且m ⊂αB .m ∥n ,且n ⊥βC .α⊥β,且m ∥αD .m ⊥n ,且n ∥β3.ABCD -A 1B 1C 1D 1为正方体,下列结论错误的是( ) A .BD ∥平面CB 1D 1B .A 1C ⊥BD C .AC 1⊥平面CB 1D 1 D .AC 1⊥BD 14.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB 沿BD折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC 5.直线m ,n 均不在平面α,β内,给出下列命题:①若m ∥n ,n ∥α,则m ∥α;②若m ∥β,α∥β,则m ∥α;③若m ⊥n ,n ⊥α,则m ∥α; ④若m ⊥β,α⊥β,则m ∥α.其中正确命题的个数是( ) A .1 B .2 C .3 D .46.在正三棱锥S -ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥S -ABC 外接球的表面积是( ) A .12π B .32π C .36π D .48π 二、填空题7.已知两条不同的直线m ,n 和两个不同的平面α,β,给出下列四个命题:①若m ∥α,n ∥β,且α∥β,则m ∥n ;②若m ∥α,n ⊥β,且α⊥β,则m ∥n ;③若m ⊥α,n ∥β,且α∥β,则m ⊥n ;④若m ⊥α,n ⊥β,且α⊥β,则m ⊥n .其中正确的个数为_________________.8.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________(写出所有符合要求的图形序号).9.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .10.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (不含端点)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.三、解答题11.如图所示,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点, (1)求证:AC ⊥BC 1; (2)求证:AC 1∥平面CDB 1.12.如图所示,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,D ,E 分别为A 1B 1,AA 1的中点,点F 在棱AB 上,且AF =14AB .(1)求证:EF ∥平面BC 1D ;(2)在棱AC 上是否存在一个点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G 的位置;若不存在,请说明理由.13.如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E ,M 分别为AB ,DE 的中点,将△ADE 沿直线DE 翻折成△A ′DE ,F 为A ′C 的中点,A ′C =4. (1)求证:平面A ′DE ⊥平面BCD ; (2)求证:FB ∥平面A ′DE .例1 (1)D (2)D 变式训练 D 答案 B 答案 ②④DBDDDC 7.2 8.①③ 9.a 或2a 10.⎝⎛⎭⎫12,111.证明 (1)直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5, ∴AB 2=AC 2+BC 2, ∴AC ⊥BC .CC 1⊥平面ABC , AC ⊂平面ABC ,∴AC ⊥CC 1,又BC ∩CC 1=C , ∴AC ⊥平面BCC 1B 1, BC 1⊂平面BCC 1B 1, ∴AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE , ∵D 是AB 的中点,E 是C 1B 的中点, ∴DE ∥AC 1,∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.12.(1)证明 取AB 的中点M ,连接A 1M . 因为AF =14AB ,所以F 为AM 的中点.又E 为AA 1的中点,所以EF ∥A 1M .在三棱柱ABC -A 1B 1C 1中,D ,M 分别是A 1B 1,AB 的中点, 所以A 1D ∥BM ,A 1D =BM ,所以四边形A 1DBM 为平行四边形,所以A 1M ∥BD . 所以EF ∥BD .因为BD ⊂平面BC 1D ,EF ⊄平面BC 1D , 所以EF ∥平面BC 1D .(2)解 设AC 上存在一点G ,使得平面EFG 将三棱柱分割成两部分的体积之比为1∶15,如图所示.则V E -AFG ∶VABC -A 1B 1C 1=1∶16, 所以V E -AFGVABC -A 1B 1C 1=13×12AF ·AG sin ∠GAF ·AE 12×AB ·AC sin ∠CAB ·AA 1=13×14×12×AG AC =124×AG AC , 由题意,124×AG AC =116,解得AG AC =2416=32.所以AG =32AC >AC ,所以符合要求的点G 不存在.13.证明 (1)由题意,得△A ′DE 是△ADE 沿DE 翻折而成的, ∴△A ′DE ≌△ADE .∵∠ABC =120°,四边形ABCD 是平行四边形, ∴∠A =60°. 又∵AD =AE =2,∴△A ′DE 和△ADE 都是等边三角形. 如图,连接A ′M ,MC , ∵M 是DE 的中点, ∴A ′M ⊥DE ,A ′M = 3.在△DMC 中,MC 2=DC 2+DM 2-2DC ·DM cos 60° =42+12-2×4×1×cos 60°, ∴MC =13.在△A ′MC 中,A ′M 2+MC 2=(3)2+(13)2=42=A ′C 2. ∴△A ′MC 是直角三角形,∴A ′M ⊥MC . 又∵A ′M ⊥DE ,MC ∩DE =M , ∴A ′M ⊥平面BCD . 又∵A ′M ⊂平面A ′DE , ∴平面A ′DE ⊥平面BCD . (2)取DC 的中点N ,连接FN ,NB .∵A ′C =DC =4,F ,N 分别是A ′C ,DC 的中点, ∴FN ∥A ′D .又∵N ,E 分别是平行四边形ABCD 的边DC , AB 的中点, ∴BN ∥DE .又∵A ′D ∩DE =D ,FN ∩NB =N , ∴平面A ′DE ∥平面FNB . ∵FB ⊂平面FNB , ∴FB ∥平面A ′DE .。
平行与相交专项练习30题(有答案)ok平行与相交专项练30题(有答案)1.下列对于线的描述,说法正确的是()A.不相交的两条直线是平行线B.两条直线相交成直角时,这两条直线互相垂直C.过直线外一点,能画无数条平行线D.有一条直线长6分米2.从直线外一点画已知直线的平行线,可以画()条.A.1B.2C.无数3.下面的图形中,()只有2组平行线.A.B.C.D.4.如果在同一平面内画两条直线,它们都和第三条直线相交成直角,那么这两条直线(A.互相垂直B.互相平行C.不垂直也不平行5.下列各句话中有()句是错误的.(1)两条直线相交,这两条直线互相垂直.(2)两条直线的交点,叫做这两条直线的垂足.(3)平行线之间的线段到处相等.(4)两条直线都与另一条直线相交,这两条直线一定平行.A.1B.2C.3D.46.在同一平面内,若把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()A.相互平行B.相互垂直C.相交7.同一平面内的两条直线最多有()个交点.A.B.1C.28.一张长方形纸对折两次后展开,折痕()A.相互平行B.相互垂直C.可能相互垂直,也可能相互平行9.在两条平行线之间画垂直线段,第一条长7厘米,第二条长()A.大于7厘米B.小于7厘米C.等于7厘米10.关于平行线的说法正确的是()A.不相交的两条线段B.不相交的两条直线C.在同一平面内,不相交的两条直线11.直线a、b、c在同一平面里,a与b相互垂直,b与c 相互垂直,那么a与c相互(A..垂直B.平行C.平行或垂直12.有两条直线都与同一条直线平行,则这两条直线一定()平行与相交----1))A.相互垂直B.相互平行C.相交13.在同一个平面上垂直于同一条直线的两条直线一定()A.互相垂直B.互相平行C.两种都有可能D.A、B两种都不可能.14.在同一平面内,两条直线可能_________,也可能_________,互相垂直是一种特殊的_________.15.指出左图形中各有几组互相平行的线段,并写在括号里,(_________).16.在同一平面内不相交的两条直线叫做_________,也可以说这两条直_________.在同一平面内的两条直线的位置关系有_________、_________两种情况.17.语文课本的封面,相对的两条边是相互_________的,相邻的两条边是相互_________的.18.点到直线的所有线段中,_________最短.19.平行线之间的垂直线段不但相互_________,并且长度_________.20.在同一平面内,两条不重合的直线的位置干系有_________、_________.21.上面有一排字母:TEFNKHXZ有互相垂直线段的字母是_________;有互相平行线段的字母是_________;既有互相垂直,又有互相平行的线段的字母是_________.22.如图,能找到_________组相互垂直的线段.23.两条直线不相交,就说这两条直线相互平行._________.24.图中有几组相互垂直的线段?_________组.25.当两条直线相交成直角时,这两条直线相互平行._________.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交._________.平行与相交----227.在同一平面内,两条直线的位置干系可分红哪两类?相交或垂直_________相交或平行_________平行或垂直_________.28.过直线外一点只能画一条直线的垂线._________.29.小猪要过河,它走下面的哪条路最近?这条路有什么特点?30.点A是大象的家,XXX表示河.大象要去河岸边饮水,请设想一条使大象饮水近来的线路图.平行与相交----3参考答案:1.A、不相交的两条直线是平行线,说法错误,前提是:在同一平面内;B、根据互相垂直的含义:两条直线相交成直角时,这两条直线互相垂直,说法正确;C、过直线外一点,能画无数条平行线,说法错误,应为一条平行线;D、因为直线无限长,所以有一条直线长6分米,说法错误;故选:B.2.按照平行的性质得:过直线外一点画直线的平行线,可以画一条直线与直线平行,应选:A.3.A、是正六边形,有3组平行线;B、没有平行线;C、有2组平行线;D、是正八边形,有4组平行线;故选:C.4.如图:在同一平面内,p⊥d,k⊥d,所以XXX,故选:B.5.(1)两条直线相交,这两条直线互相垂直,说法错误,应为:两条直线相交成直角时,这两条直线就互相垂直;(2)两条直线的交点,叫做这两条直线的垂足,说法错误;因为两条直线相交成直角,这两条直线就互相垂直,交点叫做垂足;(3)平行线之间的线段处处相等,说法错误,应为:平行线之间的距离处处相等;(4)根据垂直的性质可知:两条直线都与另一条直线相交,这两条直线一定平行,说法错误,前提必须在同一个平面内;故选:D.6.如图所示,,a和b都垂直于c,则a和b平行;应选:A.7.同一平面内的两条直线最多有1个交点.应选:B.8.由阐发可知:把一张长方形的纸对折两次后,折痕的干系是可能相互平行,也可能相互垂直;应选:C.9.由阐发可知:两条平行线中可以画无数条垂线段,这些线段的长度都相等,所以在两条平行线之间画垂直线段,第一条长7厘米,第二条也长7厘米;应选:C.10.因为在同一平面内,两条不相交的直线是平行线,故A、B错误;应选:C.11.由垂直和平行的特征和性质可知:直线a、b、c在同一平面里,a与b相互垂直,b与c相互垂直,那么a与c互相平行;故选:B.12.根据平行的性质可得:有两条直线都与同一条直线平行,则这两条直线一定互相平行;故选:B13.由垂直的性质可得:在同一个平面内垂直于同一条直线的两条直线一定互相平行;故选:B.14.在同一平面内,两条直线可能相交,也可能平行,互相垂直是一种特殊的相交.15.指出左图形中各有几组互相平行的线段,并写在括号里,(9组).如图:平行与相交----4图中的平行线段有:AD∥EF,BD∥EF,DE∥FB,DE∥FC,DF∥AE,DF∥EC,DE∥BC,DF∥AC,EF∥AB;共有9对;故谜底为:9组16.在同一平面内不相交的两条直线叫做平行线,也能够说这两条直线相互平行.在同一平面内的两条直线的位置干系有相交、平行两种情形.由阐发得出:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行,在同一平面内的两条直线的位置关系有相交、平行两种情况.故答案为:平行线;线互相平行;相交;平行17.语文课本的封面,相对的两条边是相互平行的,相邻的两条边是相互垂直的.18.点到直线的所有线段中,垂线段最短.19.平行线之间的垂直线段不但相互平行,并且长度相等.20.在同一平面内,两条不重合的直线的位置干系有相交、平行.21.上面有一排字母:XXX有相互垂直线段的字母是T、E、H;有相互平行线段的字母是E、N、Z、H;既有相互垂直,又有相互平行的线段的字母是E、H.22.如图,能找到8组相互垂直的线段.23.两条直线如果永不相交,这两条直线一定互相平行,说法错误,前提是必须在同一平面内;故答案为:错误.24.图中有几组互相垂直的线段?6组.25.当两条直线相交成直角时,这两条直线相互平行.错误.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交.正确.由分析可知:在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交;故答案为:正确.27.在同一平面内,两条直线的位置关系可分成哪两类?相交或垂直×相交或平行√平行或垂直×.28.过直线外一点只能画一条已知直线的垂线.正确.29.如图:PC近来,这条路垂直于河对岸的路.30.如图所示:根据垂直线段最短的性质,红色的垂线段就是使大象饮水最近的线路,。
小学六年级数学题《平行线问题大全及答案》姓名:_____________ 年级:____________ 学号:______________1、下面语句中,正确的是①不相交的两条直线叫做平行线;②在同一平面内,两条直线的位置关系只有相交和平行两种;③如果线段ab和线段cd不相交,那么直线ab和直线cd平行;④如果a∥b,b∥c,那么a∥c.[ ]a.②和④b.①和②c.②和③d.①和④答案与解析:a2、我们知道生活中许多美丽的事物都是由许多的图形组成的,如我们可以用两条平行线,一个等腰三角形,一个圆(或半圆)来表示一个可爱娃娃。
怎么样,开动你的脑筋,用你的灵巧小手,用两条平行线、一个等腰三角形,一个圆(或半圆)来描绘我们美好事物,并给它起一个好听的名字。
答案与解析:答案不唯一,只要美观即可。
3、三条平行线上分别有3个点,4个点和5个点,且不在同一条平行线上的三个点不共线,以这些点为顶点的三角形共有______个.答案与解析:根据题干分析可得:(1)在第一条直线上取一点,另外两点分别在第二条直线上,或在第三条直线上,可以得到的三角形的个数为:3x6+3x10=48(个),(2)在第二条直线上取一点,另外两点分别在第一条直线上,或在第三条直线上,可以得到的三角形的个数为:4x3+4x10=52(个),(3)在第三条直线上取一点,另外两点分别在第二条直线上,或在第一条直线上,可以得到的三角形的个数为:5x3+5x6=45(个),(4)每条直线上各取一点有,可得三角形的个数为:3x4x5=60(个),所以48+52+45+60=205(个).答:以这些点为顶点的三角形共有205个.故答案为:205.4、在图中,过a作已知直线的垂线,再过b作已知直线的平行线,量出a、b间的距离,并与ab为直径画一个圆.答案与解析:答案如图,5、下面平行线中的三个图形,它们的面积从大到小排列是[ ]a.②③①b.②①③c.③②①答案与解析:c6、比较平行线间的两个阴影部分面积,如下图[ ]a.甲乙b.甲乙c.甲=乙答案与解析:c7、在两条平行线间,分别画出面积相等的长方形、平行四边形、三角形和梯形。
2019年4月16日初中数学作业学校: ______________ 姓名: _____________ 班级:_______________ 考号:______________一、单选题1. 如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2. 下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是()A. ab// cdB. A // BC. a// BD. a// b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键.4 .在同一平面内,下列说法正确的是()A .没有公共点的两条线段平行B .没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D .不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.详解】A. 在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B. 在同一平面内,没有公共点的两条射线不一定平行,故本选项错误;C. 在同一平面内,不垂直的两条直线不一定互相平行,故本选项错误;D. 在同一个平面内,不相交的两条直线一定互相平行,故本选项正确;【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的定义.5.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过一点只能画一条直线与已知直线垂直D. 在同一平面内,经过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据平行线的定义及平行公理进行判断.【详解】A 中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误B. C. D 是公理,正确.故选A.【点睛】本题考查了平行线的定义和公理,熟练掌握定义和公理是解题的关键.6.在同一平面内,无公共顶点的两个直角,如果它们有一条边共线,那么另一边互相( )A •平行B.垂直C.共线 D.平行或共线【答案】A【解析】【分析】结合图形,由平行线的判断定理进行分析.【详解】如图所示:n n无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行•故选A.【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键7 .下列结论正确的是()A .过一点有且只有一条直线与已知直线垂直B. 过一点有且只有一条直线与已知直线平行C. 在同一平面内,不相交的两条射线是平行线D. 如果两条直线都与第三条直线平行,那么这两条直线互相平行【答案】D【解析】【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【详解】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选D.【点睛】本题主要考查了平行线的定义,垂线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.8 .在同一平面内,直线AB与CD相交,AB与EF平行,则CD与EF()A •平行B.相交C. 重合D.三种情况都有可能【答案】B【解析】【分析】先根据题意画出图形,即可得出答案.【详解】如图,•••在同一平面内,直线AB与CD相交于点O, AB // EF,••• CD与EF的位置关系是相交,故选B.【点睛】本题考查了平行线的性质的应用,能根据题意画出图形是解此题的关键,注意:数形结合思想的应用.9 .下列语句不正确的是()A .在同一平面内,过直线外一点有且只有一条直线与已知直线平行B. 两直线被第三条直线所截,如果同位角相等,那么两直线平行C. 两点确定一条直线D. 内错角相等【答案】D【解析】【分析】根据平行线的公理、推论及平行线的判定,可得答案.【详解】A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故A正确;B、两直线被第三直线所截,如果同位角相等,那么两直线平行,故B正确;C、两点确定一条直线,故C正确;D、两直线平行,内错角相等,故D错误;故选D.【点睛】本题考查了平行公理及推论,熟记公理、推论是解题关键.10 .下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误. 故选:B.【点睛】本题考查线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11 .下列说法中正确的是()A .两条相交的直线叫做平行线B. 在直线外一点,只能画出一条直线与已知直线平行C. 如果a // b, b // c,贝U a不与b平行D. 两条不平行的射线,在同一平面内一定相交【答案】B【解析】【分析】根据平行线的性质进行解题即可,见详解.详解】解:两条不相交的直线叫做平行线,故A 错误,在直线外一点,只能画出一条直线与已知直线平行如果a// b , b // c ,则a // b,平行线的传递性,故C 错误, 射线一端固定,另一端无限延伸,故D 错误, 综上选B. 【点睛】,属于简单题,熟悉平行线的性质是解题关键【解析】【分析】 根据平行线的传递性即可解题 【详解】解:••• AB // CD ,CD // EF ,••• AB // EF ,(平行线的传递性)故选A. 【点睛】本题考查了平行线的传递性 ,属于简单题,熟悉平行线的性质是解题关键13 •一条直线与另两条平行直线的关系是 ( )A .一定与两条平行线平行B .可能与两条平行线的一条平行,一条相交C . 一定与两条平行线相交D .与两条平行线都平行或都相交【答案】D 【解析】 【分析】根据在同一平面内,两条直线的位置关系有两种:平行和相交,可知如果一条直线与另 两条平行线中的一条相交,则它与另一条平行线也相交;如果一条直线与另两条平行线中的一条平行,则它与另一条平行线也平行即可求出本题答案【详解】,正确,// EF ,那么AB 和EF 的位置关系是本题考查了平行线的性质C.垂直D.不能确定【答案】A•••在同一平面内,两条直线的位置关系有两种:平行和相交,•••如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交,否则与平行公理相矛盾;如果一条直线与另两条平行线中的一条平行,根据平行于同一直线的两条直线平行,则它与另一条平行线也平行.故答案为:D.【点睛】本题考查了平行线的相关知识,熟练掌握平行线的有关性质是本题解题的关键.14.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a// b, a // c,那么b // c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1) 过直线外一点有且只有一条直线与已知直线平行,故错误;(2) 根据平行公理的推论,正确;(3) 线段的长度是有限的,不相交也不一定平行,故错误;(4) 应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为:A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.15 •已知在同一平面内有一直线AB和一点P,过点P画AB的平行线,可画()A • 1条B. 0条 C. 1条或0条D.无数条【答案】C【解析】【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可得答案.【详解】如果点P在直线上,过点P画直线与AB的平行线可画0条,如果点P在直线外,过点P画直线与AB的平行线可画1条•故答案为:C.【点睛】本题考查了平行公理及推论,熟练掌握该知识点是本题解题的关键16 .下列说法中,正确的是()A •平面内,没有公共点的两条线段平行B. 平面内,没有公共点的两条射线平行C. 没有公共点的两条直线互相平行D. 互相平行的两条直线没有公共点【答案】D【解析】【分析】回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断•【详解】对于A,如图所示,A错误;对于C,如果两条直线不在同一个平面内,不相交也可能不平行,则C错误;对于D,根据平行线的定义可知D正确•故答案为:D.【点睛】本题考查了两条直线的位置关系,直线、射线、线段的定义,熟练掌握直线的位置关系及相关定义是本题解题的关键•17 .下面说法正确的是( )A .过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据直线公理:经过两点有且只有一条直线;角的概念;平行线的定义和平行公理及推论进行判断.【详解】A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A .【点睛】本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18 .下列说法错误的是( )A .对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A .根据对顶角的性质判定即可;B. 根据线段的性质判定即可;C. 根据补角的性质判定即可;D .根据平行公理判定即可 .【详解】A .对顶角相等,故选项正确;B. 两点之间连线中,线段最短,故选项正确;C•等角的补角相等,故选项正确;D .过直线外一点P,能画一条直线与已知直线平行,故选项错误•故选D.【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题 .二、填空题19 . L i, 12, 13为同一平面内的三条直线,如果11与12不平行,12与13不平行,则11与13的位置关系是_______________ .【答案】相交或平行【解析】【分析】根据关键语句“若?有?不平行,??与?不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若?不平行,??与?3不平行,则?3可能相交或平行,故答案为:相交或平行•【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交20 •小明列举生活中几个例子,你认为是平行线的是_________________ (填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.【答案】①②③④【解析】【分析】根据平行线的判定进行判断即可•【详解】解:是平行线的是①②③④.故答案为:①②③④【点睛】本题考查了平行线的含义,应结合生活实际进行解答21.如图,用符号表示下列两棱的位置关系.AB ___ A ' B AA ' __________ AB ; AD _____ B ' C【答案】// 丄 //【解析】【分析】根据题意,可由立体图形中的平行线的判定条件,以及垂直的判定条件进行分析,然后填空即可.【详解】解:由图可知,AB// A B', AA丄AB AD// B' C'【点睛】本题主要考查的是直线的位置关系•22 .如图,在正方体中,与线段AB平行的线段有________ 条.【答案】3【解析】【分析】与线段AB平行的线段的种类为:①直接与AB平行,②与平行于AB的线段平行. 【详解】解:与AB平行的线段是:DC EF;与CD平行的线段是:HG所以与AB线段平行的线段有:EF、HG DC.故答案是:EF、HG DC【点睛】本题考查了平行线•平行线的定义:在同一平面内,不相交的两条直线叫平行线.23 .如图所示,用直尺和三角尺作直线AB , CD,从图中可知,直线AB与直线CD的位置关系为 ________ .【答案】平行【解析】【分析】根据同位角相等,两直线平行判断.【详解】如图,C 亠丘D根据题意,/ 1与/ 2是三角尺的同一个角,所以/仁/2,所以,AB // CD (同位角相等,两直线平行)故答案为:平行.【点睛】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.24 .在如图的长方体中,与棱AB平行的棱有 ________________________________________;与棱AA'平行的棱有DD , BB , CC解析】【分析】根据平行的定义,结合图形直接找出和棱AB平行的棱,与棱AA平行的棱即可.【详解】由图可知,和棱AB平行的棱有CD , AB', CD;与棱AA 平行的棱有DD ,BB ,CC .故答案为:CD , A B , C D ;DD , BB , CC .【点睛】本题考查了认识立体图形的知识点,熟练掌握平行的定义是本题解题的关键.25.在同一平面内,直线AB 与直线CD 满足下列条件,则其对应的位置关系是(1)___________________________________________________________________ 若直线AB与直线CD没有公共点,则直线AB与直线CD的位置关系为______________________________ ;(2)直线AB 与直线CD 有且只有一个公共点,则直线AB 与直线CD 的位置关系为_______________ 【答案】平行;相交.【解析】【分析】根据“在同一平面内,两条直线的位置关系是:平行或相交.平行没有公共点,相交只有一个公共点”即可推出本题答案.【详解】在同一平面内,直线AB与CD满足下列条件,则其对应的位置关系是:(1)若AB与CD没有公共点,则AB与CD的位置关系是平行;(2 )若AB与CD有且只有一个公共点,则AB与CD 的位置关系为相交• 故答案为:(1)平行;(2)相交.【点睛】本题考查了直线的位置关系,熟练掌握判定方法是本题解题的关键.三、解答题26 .把图中的互相平行的线段用符号“//”写出来,互相垂直的线段用符号“丄”写出来:【解析】【分析】根据平行线和垂直的定义即可解答.【详解】解:如图所示,在长方体中:互相平行的线段:AB// CD EF// GH MN PQ互相垂直的线段:AB丄EF, AB丄GH CDL EF, CDL GH【点睛】本题考查了平行线和垂直的定义,理解定义是解题的关键•27 .如图,过点0 '分别画AB , CD的平行线.【答案】详见解析•【解析】【分析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和O点重合,过O点沿三角板的直角边画直线即可.【详解】解:如图,本题考查了学生利用直尺和三角板作平行线的能力28 •如图,按要求完成作图⑴过点P作AB的平行线EF;(2) 过点P作CD的平行线MN ;(3) 过点P作AB的垂线段,垂足为G.【点睛】【答案】作图见解析【解析】【分析】利用题中几何语言画出对应的几何图形.【详解】如图,本题考查了平行线的作法和作垂线的步骤.29 •我们知道相交的两条直线的交点个数是 1 ;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是 1 ;依此类推(1) 请你画图说明平面内五条直线最多有几个交点.(2) 平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3) 在平面内画出10条直线,使交点个数恰好是31.【答案】(1)平面内五条直线的交点最多有10个,⑵五条直线可以有4个交点,⑶答案不唯一•【解析】【分析】(1)直接让五条直线中的任意两条互相相交即可;(2)不妨先让其中的四条直线相交得到3个交点,然后再使最后一条直线,与其中任意一条相交且与之前的交点不重合即可,接下来自己试着想想还有哪些画法;(3)结合已知,禾U用平行线的性质画出图形即可【详解】解:(1)平面内五条直线的交点最多有 10个,如图①.(2)五条直线可以有4个交点,如图②(a // b// c // d),图③(AD // BC , AB // DC),图④(a // b).團② 関③(3) 答案不唯一,如图, a / b / c / d / e , f // g // h , l // m.【点睛】此题考查平面内不重合直线的位置关系, 解答时要分各种情况解答, 的所有情形,不要遗漏,否则讨论的结果就不全面.30 •如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?⑵过点M 画AB 的平行线.⑶过点N 画GH 的平行线.37T~/ 、A7 D 、M / 7~■【答案】(1)AB // CD ; (2)画图见解析;⑶画图见解析【解析】【分析】(1) 根据图形可观察出互相平行的线段.(2) 过点M 画AB 的平行线.(3)过点N 画GH 的平行线.要考虑到可能出现【详解】(1)由图形可得:AB // CD .⑵(3)所画图形如下:本题考查了平行线的判定方法及过一点作平行线的知识, 的判定方法及作图的基本步骤.【点睛】 属于基础题, 主要掌握平行线。
相交线与平行线测试卷(一)一、选择题1.下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线。
B.P是直线L外一点,A、B、C分别是L上的三点,已知PA=1,PB=2,PC=3,则点P•到L的距离一定是1。
C.相等的角是对顶角。
D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,则图中的邻补角一共有()A.3对 B.4对 C.5对 D.6对(1) (2) (3)3.若∠1与∠2的关系为内错角,∠1=40°则∠2等于()A.40° B.140° C.40°或140° D.不确定5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A.a∥b,b∥c。
B.a⊥b,b⊥c。
C.a⊥c,b∥c。
D.c截a,b所得的内错角的邻补角相等6.如图2,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a∥b的条件的序号是()A.(1)、(2) B.(1)、(3)C.(1)、(4) D.(3)、(4)7.如图3,若AB∥CD,则图中相等的内错角是()A.∠1与∠5,∠2与∠6。
B.∠3与∠7,∠4与∠8。
C.∠2与∠6,∠3与∠7。
D.∠1与∠5,∠4与∠88.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.若∠1=72°,•则∠2的度数为()A.36° B.54° C.45° D.68°(4) (5) (6)9.已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•则符合条件的直线L的条数为()A.1 B.2 C.3 D.410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,则∠A的度数为(• )A.65° B.80° C.100° D.115°11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有()A.1个 B.2个 C.3个 D.4个12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为()A.30°B.70°C.30°或70° D.100°二、填空题13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).•如果∠C=60°,那么∠B的度数是________.14.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______(2)∵∠3=∠5(已知),∴AB∥_____,(___________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(__________)16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____度,•∠BOC=___度.17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE为_________.(7)(8)18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,若∠1=43°,•则∠2=_______度.(9)(10)20.如图10,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•则∠1•与∠2•的大小关系是________.三、解答题22.如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?23.如图,已知AB∥CD,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).24.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.25.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,•∠3=80°.求∠BCA的度数.26.如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.1、∵直线AB、CD相交于点O,∴∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD.∵∠AOC+∠BOD=240°,∴∠AOC=∠BOD=120°.又∵∠AOC和∠BOC是邻补角,∴∠BOC=180°-∠AOC,∴∠BOC=60°..2、[点拨] 观察图形,∠AOF与∠BOF是邻补角,∠BOF 与∠AOE是对顶角,利用它们的性质可求出∠EOC的度数.[解答] 设∠BOF=x,则∠AOF=3x,∵∠AOF+∠BOF=180°∴x+3x=180°∴x=45°,即∠BOF=45°∴∠AOE=∠BOF=45°∴∠EOC=∠AOC-∠AOE=90°-45°=45°.[方法规律] 通过设未知数列方程求解,是求角的度数一种常用的方法.3、[点拨]过一点画射线或线段的垂线时,是指画它们所在直线的垂线,垂足有时在射线反向延长线或在线段的延长线上.本题垂足分别在射线OB的反向延长线上和线段AO的延长线上.[解答]如图5.1.2-3所示,直线AE为过点A与OB垂直的直线,垂足为E;直线BD为过点B与OA垂直的直线,垂足为D.图5.1.2-3[方法规律] ①所有的垂足都要作垂直标记;②垂线画实线,延长线画虚线.5、 [方法规律] 判断两条直线平行要抓住两个关键一个前提.两个关键:一是“在同一平面内”;二是“不相交”. 一个前提:两条直线.6、[点拨]运用平行公理的推论加以判断.[解答]因为a∥b,b∥c,所以a∥c,又因为c∥d,所以a∥d.[方法规律] 对于n条直线l1,l2,l3…l n,若l1∥l2,l2∥l3,…,l n-1∥l n,那么这n条直线互相平行.7、[点拨]由∠1=∠2,及角平分线定义,可得∠EAQ=∠ABN,从而可证PQ∥MN.[解答] ∵AF平分∠EAQ,BC平分∠ABN,∴∠1=12∠EAQ,∠2=12∠ABN∵∠1=∠2,∴∠EAQ=∠ABN∴PQ∥MN[方法规律]本题不能直接判定PQ∥MN,要经过转化才能成为直接条件.8、[点拨]从标出的3个角可知:∠1与∠3是同位角,若∠1=∠3,则AB∥CD,由图可知,∠1+∠2=180°,已知∠2=3∠1,故可求出∠1,又由∠1+∠3=90°,可求出∠3.[解答] ∵∠1+∠2=180°,∠2=3∠1∴∠1+3∠1=180°,∴∠1=45°∵∠1+∠3=90°,∴∠3=45°∴∠1=∠3,∴AB∥CD.[方法规律] 利用角的关系和邻补角定义,求角定线.9、点拨] ∠1和∠3,∠2和∠3分别是l1与l3被l 所截而成的内错角及l2与l3被l所截而成的同旁内角,若它们满足平行的判定条件再由平行公理推论即可得到l1∥l2.[解答] ∵∠1=∠3=80°∴l1∥l3∵∠2=100°∴∠2+∠3=180°∴l2∥l3∴l1∥l2[方法规律] 这里l3为l1与l2平行架起了桥梁,这就是转化,它为已知与求证结论铺平了道路[点拨] ∠1与∠3是AD、DC被AC所截的同旁内角,由∠1=∠3并不能推出两条直线平行,但∠2=∠1所以能代换得到∠2=∠3,这时∠2与∠3是AB与DC被AC所截得的内错角,由内错角相等可推出AB∥CD.10、[解答]由已知条件可判断AB∥CD,理由如下:∵AC平分∠DAB(已知),∴∠1=∠2(角平分线定义).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).[方法规律] 要判断两条直线平行,得寻找同位角、内错角相等或同旁内角互补.[点拨] 本题直接求∠C不容易,如果过点C作FC∥AB,就可以把问题转化为求已知的∠B及∠D的同旁内角,进而求得∠C.11、[解答] 过点C作FC∥AB,∵AB∥ED,∴FC∥ED,∴∠1+∠B=180°,∠2+∠D=180°,∴∠1+∠2+∠B+∠D=360°.∵∠B=140°,∠D=120°,∴∠1+∠2=360°-140°-120°=120°[方法规律]此类题型,一般都是过拐点作已知直线的平行线,从而把未知问题转化为已知问题.12、点拨]利用对顶角相等,转化为同旁内角互补,得l1∥l2,再根据平行性质和对顶角相等即可求出∠4的度数.[解答]∵∠1=60°,∠2=120°,∴∠1+∠2=180°∵∠1=∠6,∴∠6+∠2=180°,∴l1∥l2∴∠7=∠3=70°,∵∠4=∠7,∴∠4=70°.[方法规律]本题的切入点是对顶角相等,再根据平行的判定和性质,可求出∠4的度数.点拨] 由∠2=∠EBD,∠1=∠2,得∠1=∠EBD,从而得FG∥CD,再由平行线的性质和∠3=55°,可求出∠4的度数.[解答] ∵∠2=∠EBD,∠1=∠2,∴∠1=∠EBD∴GF∥CD,∴∠4=∠ABD∵∠3=55°,∴∠ABD=125°,∴∠4=125°,∴选D.13、[方法规律]本题综合运用了平行线的判定和性质,在解题过程中应由未知想已知,不断促使问题的转化.[点拨]由CD⊥AB,EF⊥AB,得DC∥EF,从而得∠1=∠BCD,再由∠1=∠2,可得DG∥BC.[解答] DG∥BC.∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴CD∥EF.(同位角相等,两直线平行)∴∠1=∠BCD.(两直线平行,同位角相等)又∵∠1=∠2,∴∠2=∠BCD.∴DG∥BC.(内错角相等,两直线平行)[方法规律]本题抓住垂直证平行,促使已知条件向未知条件转换.相交线平行线答案1.D2.D 点拨:图中的邻补角分别是:∠AOC与∠BOC,∠AOC与∠AOD,∠COE与∠DOE,∠BOE与∠AOE,∠BOD与∠BOC,∠AOD与∠BOD,共6对,故选D.3.D 4.C 5.C 6.A7.C 点拨:本题的题设是AB∥CD,解答过程中不能误用AD∥BC这个条件.8.B 点拨:∵AB∥CD,∠1=72°,∴∠BEF=180°-∠1=108°.∵ED平分∠BEF,∴∠BED=12∠BEF=54°.∵AB∥CD,∴∠2=∠BED=54°.故选B.9.C 点拨:如答图,L1,L2两种情况容易考虑到,但受习惯性思维的影响,L3这种情况容易被忽略.10.B11.D 点拨:∠FCD=∠F=∠A=∠1=∠ABG=45°.故选D.12.C 点拨:由题意,知,230A BA B∠=∠⎧⎨∠=∠-︒⎩或180,230A BA B∠+∠=︒⎧⎨∠=∠-︒⎩解之得∠B=30°或70°.故选C.13.120°14.(1)BC;同位角相等,两直线平行(2)CD;内错角相等,两直线平行(3)AB;CD;同旁内角互补,两直线平行15.(2),(3),(5)16.115;65点拨:设∠BOC=x°,则∠AOC=x°+50°.∵∠AOC+∠BOC=180°.∴x+50+x=180,解得x=65.∴∠AOC=115°,∠BOC=65°.17.145°18.10219.133点拨:如答图,延长AB交L2于点F.∵L1∥L2,AB⊥L1,∴∠BFE=90°.∴∠FBE=90°-∠1=90°-43°=47°.∴∠2=180°-∠FBE=133°.20.∠1=∠221.解:如答图,由邻补角的定义知∠BOC=100°.∵OD,OE分别是∠AOB,∠BOC的平分线,。
平行的判定和性质专题平行的判断方法及性质汇总:一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面专题训练一.选择题:1.两直线a, b平行于平面α,那么a, b的位置关系是 D(A)平行(B)相交(C)异面(D)平行、相交或异面2.两条直线a//b,b在平面α内,则a与α的位置关系是C(A)a//α(B)a与α相交(C)a//α或a在α内(D)a在α内3.直线l与平面α平行,在平面α内,与l平行的直线有 C(A)1条(B)2条(C)无数条(D)n条(n是一正整数)4.若一直线和一平面平行,夹在直线和平面间的两条线段相等,那么这两条线段所在的直线的位置关系是 D(A)平行(B)相交(C)异面(D)平行、相交或异面5.若a, b是异面直线,a//平面α,那么b与α的位置关系是 D(A)b//α(B)b与α相交(C)b在α内(D)不确定6.若直线a//平面α,且点A∈α,则过点A且a与平行的直线 B(A)只有一条,但不一定在α内(B)只有一条,且在α内(C)有无数条,但都不在α内(D)有无数条,且都在α内7.能够保证直线a∥平面β的条件是…………………………………(C )(A)β⊂b,a∥b (B)a∥b∥c,β⊂b,β⊂c(C)β⊄a,β⊂b,a∥b (D)β⊂b,BDACbDCaBA=∈∈,,,,8.如果l∥α,则l平行于α内的( B )(A)全部直线(B)过l的平面与α的交线(C)任一直线(D)唯一确定地直线9.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是 C(A)平行(B)相交(C)平行或相交(D)无法确定10.在下列条件中,可判定平面α与平面β平行的是( D )(A)α、β都垂直于平面γ(B)α内不共线的三个点到β的距离相等(C)l、m是α内两条直线,且l∥β,m∥β(D)l、m是两异面直线且l∥α,m∥α,且l∥β,m∥β11.若两条直线m, n分别在平面α、β内,且α//β,则m, n的关系一定是(D )(A)平行(B)相交(C)异面(D)平行或异面12.已知直线l和平面α:(1)若直线l与平面α内无数条直线平行,则l//α;(2)若直线l与平面α内任意一直线都不平行,则直线l与平面α相交;(3)若l⊄α,则直线l与平面α内某些直线平行;(4)若直线l∩平面α=A,则存在α内的直线b,使b⊥l. 其中正确命题的个数是 C(A)0 (B)1 (C)2 (D)313.能保证直线a与平面α平行的条件是 A(A)a⊄α, b⊂α, a//b (B)b⊂α, a//b(C)b⊂α, c//α, a//b, a//c (D)b⊂α, A∈a, B∈a, C∈b, D∈b, 且AC=BD14.若直线m不平行于平面α,且m⊄α,则下列结论成立的是 B(A)α内的所有直线与m异面(B)α内不存在与m平行的直线(C)α内存在惟一的直线与m平行(D)α内的直线与m都相交15.如果两条直线a//b,且直线a//平面α,则b与α的位置关系是 D(A)相交(B)b//α (C)b⊂α (D)b//α或b⊂α16.设直线a与平面M平行,则必有 D(A)在平面M内不存在与a垂直的直线(B)在平面M内存在与a垂直的惟一直线(C)在平面M内有且只有一条直线与a平行(D)在平面M内有无数条直线与a平行17.已知∠ABC=90°,BC//平面M,AB与平面M斜交,那么∠ABC在平面M内的射影是B(A)锐角(B)直角(C)锐角或直角(D)锐角或直角或钝角18.在正方体ABCD-A1B1C1D1中,点E, F分别是AA1与AB的中点,O1为正方形A1B1C1D1的中心,则EF与BO1所成的角为 A(A)30°(B)45°(C)60°(D)90°19.已知A, B, C, D是空间不共面的四点,它们到平面α的距离之比依次为1 : 1 : 1 : 2,则满足条件的平面α的个数是 C(A)3 (B)4 (C)7 (D)820.下列命题中正确的是 C(A)经过两条异面直线中的一条且与另一条平行的平面至少有一个(B)若两条直线在同一平面内的射影平行,则这两条直线也平行(C)若a, b是异面直线,则一定存在平面α与a, b所成的角相等(D)与两条异面直线都平行的平面只有一个二.填空题:1.过直线外一点且与这条直线平行的平面有无数个。
平行线的性质专项练习60题(有答案)1.如图,AB∥CD,证明:∠A=∠C+∠P.2.如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD的度数.3.已知:如图所示,直线AD∥BC,AD平分∠CAE,求证:∠B=∠C.4.已知∠E=∠F,AD∥EF,问:AD是∠BAC平分线吗?为什么?5.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.6.如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,求证:EG⊥FG.7.如图所示,AB∥DF,DE∥BC,∠1=65°,求∠2,∠3的度数,并说明理由.8.已知AB∥CD,FE⊥AB交AB于G点,∠GEH=138°,求∠EHD的度数.9.如图,AD∥BC,∠B=25°,∠C=30°,求∠EAC的度数.10.如图,AB∥CD,AC⊥BC,∠BAC=65°,求∠BCD度数.11.如图,AB∥CD,∠BAE=∠DCE=45°,说明AE⊥CE.12.如图,AB∥CD∥EF,∠ABC=55°,∠CEF=150°,求∠BCE的度数.13.如图,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度数.14.已知:如图AB∥CD,EF⊥AB于E,FH交CD于H,∠CHG=130度.求∠EFH度数.15.已知:如图,AC∥BD,∠A=∠D,求证:∠E=∠F.16.已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.17.如图,已知AB⊥AC,垂足为A,AD∥BC,且∠1=30°,试求∠2与∠B的度数.18.如图所示,AB∥CD,若∠B=45°,∠D=20°,求∠1的度数.19.如图,△ABC中,角平分线BO与CO的相交点O,OE∥AB,OF∥AC,△OEF的周长=10,求BC的长.20.如图,若AB∥CD,∠C=60°,求∠A+∠E的度数.21.如图所示,已知AB∥CD,BC∥DE,若∠B=55°,求∠D的度数.22.如图所示,已知∠ACB=60°,∠ABC=50°,BO,CO分别平分∠ABC,∠ACB,EF经过点O且平行于BC,求∠BOC的度数.23.已知:如图所示,AB∥CD,∠B=120°,CA平分∠BCD.求证:∠1=30°.24.如图,AB∥CD,∠A=40°,∠C=65°,求∠E的度数.25.如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.26.如图,点A在直线MN上,且MN∥BC,求证:∠BAC+∠B+∠C=180°.27.已知:如图,OP平分∠AOB,MN∥OB.求证:∠1=∠3.28.如图所示,AB∥CD,∠1=55°,∠D=∠C,求出∠D,∠C,∠B的度数.29.已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.30.如图,已知直线AB∥CD,直线m与AB、CD相交于点E、F,EG平分∠FEB,∠EFG=50°,求∠FEG的度数.31.如图,已知CD∥AB,OE平分∠BOD,∠D=52°,求∠BOE的度数.32.如图所示,直线l1∥l2,∠A=90°,∠ABF=25°,求∠ACE的度数.33.如图,AB∥CD,∠1=45°,∠D=∠C,求∠D、∠C、∠B的度数.34.如图,CD∥AB,CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.35.如图:a∥b,∠1=122°,∠3=50°,求∠2和∠4的度数.36.如图,已知AB∥CD,∠1=50°,BD平分∠ADC,求∠A的度数.37.已知,如图所示,DE∥BC,BE平分∠ABC,且∠ABC=∠ACB,∠AED=72°,求∠CEB的度数.38.如图,若AB∥EF,∠C=90°,求x+y﹣z度数.39.如图,已知AB∥DE,∠B=70°,CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.40.如图,DE∥AB,∠1=∠2,那么∠A=∠3吗?说明理由.41.如图,已知DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠PAG的度数.42.已知:如图AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一条直线上.求∠AEC的度数.43.已知:如图,直线l1∥l2,AB⊥l1垂足为O,BC与l2相交于点D,∠1=43°,求∠2的度数.44.如图,直线AB∥MN,分别交直线EF于点C、D,∠BCD、∠CDN的角平分线交于点G,求∠CGD的度数.45.如图所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.46.如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由.47.已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.求证:∠A=∠B.48.如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于F,∠1+∠2=90°,试问:直线AB、CD在位置上有什么关系?∠2与∠3在数量上有什么关系?49.如图,已知直线AB∥CD,直线GH分别与直线AB、CD交于点E、G,直线CF交直线GH于点F,已知∠CFG=30°,∠HEB=50°,求∠FCG的度数.50.如图,AB∥CD,BC∥ED,求:∠B+∠D的度数.51.如图,已知AB∥CD,∠B=∠DCE,求证:CD平分∠BCE.52.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.53.如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB于E,请说明AE=BE.54.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=55°,求∠BED的度数.55.如图,CD⊥AB,DE∥AC,EF⊥AB,EF平分∠BED,求证:CD平分∠ACB.56.如图,△ABC中,EB平分∠ABC,EC平分△ABC的外角∠ACG,过点E作DF∥BC交AB于D,交AC于F,求证:DB﹣CF=DF.57.已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF的度数.58.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.59.如图,已知DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度数;(2)∠A+∠B+∠C的度数.60.如图,已知AB∥CD,∠1=∠2,∠EFD=56°,求∠EGD的度数.11 / 17第11页共17 页平行线的性质60题参考答案:1.∵AB∥CD,∴∠A=∠PED,(两直线平行,同位角相等)又∠PED为△PCE的外角,∴∠P+∠C=∠PED,∴∠P+∠C=∠A.2.解法一:过C点作CF∥AB,则∠1=∠ACF=35°(两直线平行,内错角相等),∵AB∥ED,CF∥AB(已知),∴CF∥ED(平行于同一直线的两直线平行)∴∠FCD=180°﹣∠2=180°﹣80°=100°(两直线平行,同旁内角内角互补)∴∠ACD=∠ACF+∠FCD=35°+100°=135°;解法二:延长DC交AB于F∵AB∥ED(已知),∴∠BFC=∠2=80°(两直线平行,内错角相等),∵∠ACF=∠BFC﹣∠1=80°﹣35°=45°(三角形一个外角等于它不相邻的两个内角的和)∴∠ACD=180°﹣∠ACF=180°﹣45°=135°(1平角=180°).解法三:延长AC、ED交于F∵AB∥ED,∴∠DFC=∠1=35°∵∠CDF=180°﹣∠2=180°﹣80°=100°∴∠ACD=∠CDF+∠DFC=100°+35°=135°.3.∵AD∥BC,∴∠C=∠CAD,∠B=∠DAE,又∵AD平分∠CAE,∴∠CAD=∠DAE,即∠C=∠B.4.∵AD∥EF(已知)∴∠BAD=∠E(两直线平行,同位角相等)∠DAC=∠F(两直线平行,内错角相等)∵∠E=∠F(已知)∴∠BAD=∠DAC(等量代换)∴AD是∠BAC的平分线.5.设∠3=3x,∠2=2x,由∠3+∠2=180°,可得3x+2x=180°,∴x=36°,∴∠2=2x=72°;∵AB∥CD,∴∠1=∠2=72°6.∵AB∥CD,∴∠BEF+∠EFD=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠1=∠BEF,∠2=∠EFD,∴∠1+∠2=(∠BEF+∠EFD)=×180°=90°,在△EFG中,∠G=180°﹣∠1﹣∠2=90°,∴EG⊥FG.7.∵DE∥BC,∴∠1+∠2=180°,又∵∠1=65°,∴∠2=115°;∵AB∥DF,∴∠3=∠2=115°.8.如图,过点E作EP∥AB,而AB∥CD,则EP∥CD,∴∠FEP=∠FGB,∵EF⊥AB,∴∠FGB=90°,∵∠GEH=138°,∴∠PEH=138°﹣90°=48°∵EP∥CD,∴∠EHD=180°﹣∠PEH=132°9.∵AD∥BC,∴∠EAD=∠B=25°,∠DAC=∠C=30°,∴∠EAC=∠EAD+∠DAC=25°+30°=55°.10.∵AB∥CD,∴∠ACD=180°﹣65°=115°,∵AC⊥BC,∴∠BCD=115°﹣90°=25°.11.过点E作EF∥AB,∴∠AEF=∠BAE=45°,∵AB∥CD,∴EF∥CD,∴∠FEC=∠DCE=45°,∴∠AEC=∠AEF+∠FEC=90°,∴AE⊥CE.12.∵AB∥CD,∠ABC=55°,∴∠BCD=∠ABC=55°,∵EF∥CD,∴∠ECD+∠CEF=180°,∵∠CEF=150°,∴∠ECD=180°﹣∠CEF=180°﹣150°=30°,∴∠BCE=∠BCD﹣∠ECD=55°﹣30°=25°,∴∠BCE的度数为25°.13.设∠1为x,∵∠1=∠2,∴∠2=x,∴∠DBC=∠1+∠2=2x,∵∠D:∠DBC=2:1,∴∠D=2×2x=4x,∵DE∥BC,∴∠D+∠DBC=180°,即2x+4x=180°,解得x=30°,∵DE∥BC,∴∠DEB=∠1=30°.14.∵EF⊥AB于E,MN∥AB∴EF⊥MN即∠EFM=90°.∵MN∥CD∴∠NFH=∠GHD=180°﹣130°=50°∴∠EFH=∠EFM+∠NFH=90°+50°=140°.15.∵AC∥BD,∴∠1=∠2.又∵∠A=∠D,∠A+∠1+∠E=180°,∠D+∠2+∠F=180°,∴∠E=∠F.16.∵HG∥AB(已知),∴∠1=∠3(两直线平行,内错角相等),又∵HG∥CD(已知),∴∠2=∠4(两直线平行,内错角相等),∵AB∥CD(已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补),又∵EG平分∠BEF(已知),∴∠1=∠BEF(角平分线的定义),又∵FG平分∠EFD(已知),∴∠2=∠EFD(角平分线的定义),∴∠1+∠2=(∠BEF+∠EFD),∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换)即∠EGF=90°17.∵AD∥BC,∴∠2=∠1=30°,∵AB⊥AC,∴∠B=90°﹣∠2=60°.18.过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF=45°,∠DEF=∠D=20°,∴∠1=∠BEF+∠DEF=45°+20°=65°.19.∵OB,OC分别是∠ABC,∠ACB的平分线,∴∠1=∠2,∠4=∠5,∵OE∥AB,OF∥AC,13 / 17第13页共17 页∴∠1=∠3,∠4=∠6,∴BE=OE,OF=FC,∴BC=BE+EF+FC=OF+OE+EF,∵△OEF的周长=10,∴BC=10.20.∵AB∥CD,∠C=60°,∴∠EFB=∠C=60°;∵∠EFB=∠A+∠E,∴∠A+∠E=60°.21.∵AB∥CD,∴∠C=∠B.∵∠B=55°,∴∠C=55°.∵BC∥DE,∴∠C+∠D=180°,即∠D=180°﹣∠C=180°﹣55°=125°.22.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°.∴∠EOB=25°,∠FOC=30°.又∵∠EOB+∠BOC+∠FOC=180°,∴∠BOC=180°﹣∠EOB﹣∠FOC=180°﹣25°﹣30°=125°23.∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=120°,∴∠BCD=60°;又∵CA平分∠BCD,∴∠2=30°,∵AB∥CD,∴∠1=∠2=30°24.∵AB∥CD,∴∠EFB=∠C=65°,∵∠EFB=∠A+∠E,∴∠E=∠EFB﹣∠A=65°﹣40°=25°.25.∵CD是∠ACB的平分线,∠ACB=40°,∴∠DCB=∠ACD=20°,又DE∥BC,∴∠EDC=∠DCB=20°,在△BCD中,∵∠B=70°,∴∠BDC=90°.∴∠EDC和∠BDC的度数分别为20°、90°26.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC,∵∠MAB+∠BAC+∠NAC=180°,∴∠BAC+∠B+∠C=180°27.∵OP平分∠AOB,(已知)∴∠1=∠2(角平分线定义)∵MN∥OB(已知)∴∠2=∠3(两直线平行,内错角相等)∴∠1=∠3(等量代换).28.∵AB∥CD,∴∠D=∠1=55°,∵∠C=∠D,∴∠C=55°;∵AB∥CD,∴∠B+∠C=180°,∴∠B=180°﹣∠C=180°﹣55°=125°.29.∵AD∥BC,∴∠ABC=180°﹣∠A=60°,∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB=∠2=30°,∵BD⊥CD,∴∠BDC=90°,∠C=180°﹣(30°+90°)=60°,故∠C的度数为60°.30.∵AB∥CD(已知)∴∠EFG+∠FEB=180°(两直线平行,同旁内角互补)∵∠EFG=50°(已知)∴∠FEB=130°(等式的性质)∵EG平分∠FEB(已知)∴∠FEG=∠FEB=65°(角平分线的定义).31.∵CD∥AB,∴∠BOD=∠D=52°;∵OE平分∠BOD,∴∠BOE=26°32.如答图所示,∵L1∥L2,∴∠ECB+∠CBF=180°.∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°,∴∠ACB+∠CBA=90°.又∠ABF=25°,∴∠ECA=180°﹣90°﹣25°=65°33.∠D=∠C=45°,∠B=135°.理由:∵AB∥CD,∴∠D=∠1=45°(两直线平行,同位角相等)∴∠B+∠C=180°(两直线平行,同旁内角互补)∵∠D=∠C=45°,∴∠B=180°﹣∠C=180°﹣45°=135°.34.∵CD∥AB,∴∠A+∠ACD=180°,又∵CD∥EF,∴∠E=∠ECD=∠ACD﹣∠ACE=75°﹣51°=24°.35.∵a∥b,∠1=122°,∴∠2=∠5=180°﹣∠1=180°﹣122°=58°;∵a∥b,∠3=50°,∴∠3=∠6=50°;又∵∠6=∠4,∴∠4=50°.36.∵BD平分∠ADC,∴∠CDB=∠1=50°,∠ADC=100°,又AB∥CD,∴∠ADC+∠A=180°,∴∠A=80°.37.∵DE∥BC,∴∠C=∠AED=72°,∵BE平分∠ABC,且∠ABC=∠ACB,∴∠EBC=∠ABC=×72°=36°,在△BEC中,∠CEB=180°﹣72°﹣36°=72°38.如图,过点C、D分别作CM、DN平行于AB、EF,则x=∠5,4=∠3,1=∠z,又∠1+∠3=y,∠4+5=90°,即x+∠4=90°,又∠4=∠3=y﹣∠1=y﹣z,∴x+y﹣z=90°39.∵AB∥DE,∠B=70°,∴∠DCB=180°﹣∠B=180°﹣70°=110°,∠BCE=∠B=70°,∵CM平分∠DCB,∴∠BCM=∠DCB=×110°=55°,∵CM⊥CN,垂足为C,∴∠BCN=90°﹣∠BCM=90°﹣55°=35°,∴∠NCE=∠BCE﹣∠BCN=70°﹣35°=35°.40.∠A=∠3.理由如下:∵DE∥AB,∴∠1=∠A,∠2=∠3,又∵∠1=∠2,∴∠A=∠341.∵DB∥FG∥EC,∴∠BAG=∠ABD=84°,∠GAC=∠ACE=60°;∴∠BAC=∠BAG+∠GAC=144°,∵AP是∠BAC的平分线,∴∠PAC=∠BAC=72°,∴∠PAG=∠PAC﹣∠GAC=72°﹣60°=12°42.过E作EF平行于AB,则EF∥CD,∵AB∥EF,∴∠A=∠AEF=∠1,∵CD∥EF,∴∠C=∠FEC=∠2,∵∠BED=180°,∴∠1+∠AEF+∠FEC+∠2=180°,即∠AEF+∠CEF=°=90°.43.解法一:延长AB交l2于点E.∵AB⊥l1,l1∥l2,∴AB⊥l2.∵∠2是△BED的外角,∴∠2=90°+∠1=90°+43°=133°.解法二:过点B作BF∥l1,利用平行线的性质求出∠2的度数.∵l1∥l2,∴BF∥l2,∴∠ABF=180°﹣90°=90°,∠FBC=∠1=43°,∴∠2=∠ABF+∠FBC=90°+43°=133°.15 / 17第15页共17 页44.∵AB∥MN(已知)∴∠BCD+∠CDN=180°(两直线平行,同旁内角互补)∵CG、DG是角平分线∴∠1=∠BCD,∠2=∠CDN(角平分线定义)∴∠1+∠2=90°∵∠1+∠2+∠CGD=180°(三角形内角和等于180°)∴∠CGD=90°45.由题意得:∠BEC=80°,∠BED=100°,∠BEF=∠BEC=40°,∴∠BEG=90°﹣∠BEF=50°,∠DEG=∠BED﹣50°=50°.∴∠BEG和∠DEG都为50°46.∵∠AEF=125,∴∠CEA=55°∵AE∥BD,∠CDB=∠CEA=55°,在△BCD中,∵∠CBD=57°,∴∠C=68°.47.∵CE是∠DCB的角平分线,∴∠1=∠2.∵CE∥AB,∴∠1=∠A,∠2=∠B,∴∠A=∠B.48.AB∥CD,∠2+∠3=90°.理由如下:∵BE、DE分别平分∠ABD、∠CDB,∴∠ABD=2∠1,∠BDC=2∠2.∵∠2+∠1=90°,∴∠ABD+∠CDB=180°,∴AB∥CD.∴∠3=∠ABF.∵∠1=∠ABF,∠2+∠1=90°.∴∠2+∠3=90°.49.由题意可知,AB∥CD,∠HEB=50°,∴∠FGD=50°,又∵∠CFG=30°,∴∠FCG=20°50.∵AB∥CD,BC∥ED,∴∠B=∠C,∠C+∠D=180°,∴∠B+∠D=180°.51.∵AB∥CD(已知),∴∠B=∠BCD(两直线平行,内错角相等)又∵∠B=∠DCE(已知),∴∠BCD=∠DCE(等量代换)即CD平分∠BCE.52.∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°53.∵DE∥AC,∴∠ADE=∠CAD,∵AD是∠BAC的平分线,∴∠EAD=∠CAD,∴∠ADE=∠EAD,∴AE=DE,∵BD⊥AD,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,∴∠ABD=∠BDE,∴BE=DE,∴AE=BE.54.如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1;又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=55°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×55°=110°.55.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠BCD=∠BEF,∠DEF=∠CDE;∵DE∥AC,∴∠ACD=∠CDE,∴∠ACD=∠DEF;∵EF平分∠BED,∴∠DEF=∠BEF,∴∠ACD=∠BCD,即CD平分∠ACB56.∵EB平分∠ABC,EC平分∠ACG,∴∠DBE=∠CBE,∠FCE=∠GCE,∵DF∥BC,∴∠DEB=∠CBE,∠FEC=∠GCE,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DB=DE,FE=FC,∵DE﹣EF=DF,∴DB﹣CF=DF57.∵AB∥CD,(已知)∴∠GFC=∠GMA.(两直线平行,同位角相等)∵∠GMA=52°,(已知)∴∠GFC=52°.(等量代换)∵CD是直线,(已知)∴∠GFC+∠GFD=180°.(邻补角定义)∴∠GFD=180°﹣52°=128°.(等式性质)∵EF平分∠GFD,(已知)∴∠EFD=∠GFD=64°.(角平分线定义)∵AB∥CD,(已知)∴∠BEF+∠EFD=180°.(两直线平行,同旁内角互补)∴∠BEF=180°﹣64°=116°.(等式性质)答:∠BEF=116°58.∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FPA=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).59.(1)∵DF∥AC,∴∠EDF=∠DEC=85°.∵DE∥AB,∴∠A=∠DEC=85°.(2)∵DF∥AC,DE∥AB,∴∠EDC=∠B,∠BDF=∠C,又∠A=∠EDF,∴∠A+∠B+∠C=∠EDF+∠EDC+∠BDF=180°.60.∵AB∥CD,∠EFD=56°,∴∠BEF=180°﹣∠EFD=124°;∵∠1=∠2,∴∠1=∠BEF=62°;∵∠EGD=∠1+∠EFD,∴∠EGD=118°17 / 17第17页共17 页。
数学ⅱ北师大版 1.5.2 平行关系的性质( 1)练习第一章第六节直线与平面平行的性质定理讲堂练习〔1〕假定 l // , A,那么以下说法正确的选项是〔 〕A 、过 A 在平面 内可作很多条直线与l 平行 B 、 过 A 在平面内仅可作一条直线与 l 平行C 、 过 A 在平面 内可作两条直线与 l 平行D 、 与 A 的地点相关〔2〕a //b ,aP ,那么 b 与 的关系为〔〕A 、 必订交 B、 必平行C、 必在内D 、 以上均有可能〔3〕平行四边形 EFGH 的四个极点 E 、F 、G 、H分别在空间四边形ABCD 的四条边 AB 、 BC 、 CD 、 〕 .AD 上,又 EH ∥ FG ,那么〔A.EH ∥ BD , BD不平行于 FGB.FG ∥BD ,EH不平行于BDC.EH ∥BD ,FG ∥BDD. 以上都不对〔4〕直线 a ∥ b , a ∥平面 ,那么 b 与平面 的地点关系是 ________〔5〕如图, a ∥ , A 是另一侧的点, B 、 C 、D ∈a ,线段 AB 、AC 、AD 交 a 于 E 、F 、G点,假定 BD = 4 ,CF = 4 ,AF = 5 ,求 EG .课后作业〔1〕直线 a ∥平面, 平面 内有 n 条直线交于一点,那么这n 条直线中与直线 a 平行的〔 〕A 、起码有一条B 、至多有一条C 、有且只有一条D 、不行能有〔2〕设 AB,BC,CD 是不在同一平面内的三条线段,那么经过他们的中点的平面和直线AC 的地点关系是〔〕A 、平行B、订交 C 、平行或订交 D、 AC 在此平面内①假定直线 l 上有很多个点不在平面内,那么 l ∥ ;②假定直线 l 与平面 平行,那么 l 与平面 内的随意一条直线都平行; ③若是两条平行直线中的一条直线与一个平面平行,那么另一条直线也与那个平面平行;④假定直线 l 与平面 平行,那么 l 与平面内的随意一条直线都没有公共点.〔4〕ABCD 是平行四边形,点 P 是平面 ABCD 外一点, M 是 PC 的中点,在 DM 上取一点 G ,过G 和 AP 作平面交平面 BDM 于 GH ,求证: AP ∥ GH 、〔创新题〕〔 5〕 AB、 CD为异面线段,E、F 分别为 AC、 BD中点,过E、 F 作平面α ∥ AB.〔1〕求证: CD∥ α ;〔2〕假定 AB=4, EF= 5, CD=2,求 AB与 CD所成角的大小 .参照答案讲堂练习〔1〕选 B;提示:直线l 与点A只好确立独一的一个平面,此平面与平面的交线与 l 平行。
相交线与平行线测试题〔一〕一、选择题1.以下说法中,正确的选项是〔〕A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线;B.P是直线L外一点,A、B、C分别是L上的三点,PA=1,PB=2,PC=3,那么点P•到L的距离一定是1;C.相等的角是对顶角;D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,那么图中的邻补角一共有〔〕A.3对 B.4对 C.5对 D.6对(1) (2) (3)3.假设∠1与∠2的关系为错角,∠1=40°那么∠2等于〔〕 A.40° B.140° C.40°或140° D.不确定5.a,b,c为平面不同的三条直线,假设要a∥b,条件不符合的是〔〕A.a∥b,b∥c;B.a⊥b,b⊥c;C.a⊥c,b∥c; D.c截a,b所得的错角的邻补角相等6.如图2,直线a、b被直线c所截,现给出以下四个条件:〔1〕∠1=∠5;〔2〕∠1=•∠7;〔3〕∠2+∠3=180°;〔4〕∠4=∠7,其中能判定a∥b的条件的序号是〔〕A.〔1〕、〔2〕 B.〔1〕、〔3〕C.〔1〕、〔4〕 D.〔3〕、〔4〕7.如图3,假设AB∥CD,那么图中相等的错角是〔〕A.∠1与∠5,∠2与∠6;B.∠3与∠7,∠4与∠8;C.∠2与∠6,∠3与∠7;D.∠1与∠5,∠4与∠88.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.假设∠1=72°,•那么∠2的度数为〔〕A.36° B.54° C.45° D.68°(4) (5)(6)9.线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•那么符合条件的直线L的条数为〔〕A.1 B.2 C.3 D.410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,那么∠A的度数为〔• 〕A.65° B.80° C.100° D.115°11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有〔〕A.1个 B.2个 C.3个 D.4个12.假设∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,那么∠B的度数为〔〕A.30°B.70°C.30°或70° D.100°二、填空题13.如图,一个合格的弯形管道,经过两次拐弯后保持平行〔即AB∥DC〕.•如果∠C=60°,那么∠B的度数是________.14.,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将以下推理过程补充完整:〔1〕∵∠1=∠ABC〔〕,∴AD∥______〔2〕∵∠3=∠5〔〕,∴AB∥_____,〔___________〕〔3〕∵∠ABC+∠BCD=180°〔〕,∴_______∥________,〔__________〕16.直线AB、CD相交于点O,∠AOC-∠BOC=50°,那么∠AOC=_____度,•∠BOC=___度.17.如图7,B、C、E在同一直线上,且CD∥AB,假设∠A=105°,∠B=40°,那么∠ACE为_________.1 / 5〔7〕〔8〕18.如图8,∠1=∠2,∠D=78°,那么∠BCD=______度19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,假设∠1=43°,•那么∠2=_______度.〔9〕〔10〕20.如图10,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•那么∠1•与∠2•的大小关系是________.三、解答题22.如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?23.如图,AB∥CD,试再添上一个条件,使∠1=∠2成立〔•要求给出两个答案〕.24.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.25.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,•∠3=80°.求∠BCA的度数.26.如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.2 / 51、∵直线AB、CD相交于点O,∴∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD.∵∠AOC+∠BOD=240°,∴∠AOC=∠BOD=120°.又∵∠AOC和∠BOC是邻补角,∴∠BOC=180°-∠AOC,∴∠BOC=60°..2、[点拨] 观察图形,∠AOF与∠BOF是邻补角,∠BOF 与∠AOE是对顶角,利用它们的性质可求出∠EOC的度数.[解答] 设∠BOF=x,那么∠AOF=3x,∵∠AOF+∠BOF=180°∴x+3x=180°∴x=45°,即∠BOF=45°∴∠AOE=∠BOF=45°∴∠EOC=∠AOC-∠AOE=90°-45°=45°.[方法规律] 通过设未知数列方程求解,是求角的度数一种常用的方法.3、[点拨]过一点画射线或线段的垂线时,是指画它们所在直线的垂线,垂足有时在射线反向延长线或在线段的延长线上.此题垂足分别在射线OB的反向延长线上和线段AO的延长线上.[解答]如图-3所示,直线AE为过点A与OB垂直的直线,垂足为E;直线BD为过点B与OA垂直的直线,垂足为D.图-3[方法规律] ①所有的垂足都要作垂直标记;②垂线画实线,延长线画虚线.5、 [方法规律] 判断两条直线平行要抓住两个关键一个前提.两个关键:一是“在同一平面〞;二是“不相交〞. 一个前提:两条直线.6、[点拨]运用平行公理的推论加以判断.[解答]因为a∥b,b∥c,所以a∥c,又因为c∥d,所以a∥d.[方法规律] 对于n条直线l1,l2,l3…l n,假设l1∥l2,l2∥l3,…,l n-1∥l n,那么这n条直线互相平行.7、[点拨]由∠1=∠2,与角平分线定义,可得∠EAQ=∠ABN,从而可证PQ∥MN.[解答] ∵AF平分∠EAQ,BC平分∠ABN,∴∠1=12∠EAQ,∠2=12∠ABN∵∠1=∠2,∴∠EAQ=∠ABN∴PQ∥MN[方法规律]此题不能直接判定PQ∥MN,要经过转化才能成为直接条件.8、[点拨]从标出的3个角可知:∠1与∠3是同位角,假设∠1=∠3,那么AB∥CD,由图可知,∠1+∠2=180°,∠2=3∠1,故可求出∠1,又由∠1+∠3=90°,可求出∠3.[解答] ∵∠1+∠2=180°,∠2=3∠1∴∠1+3∠1=180°,∴∠1=45°∵∠1+∠3=90°,∴∠3=45°∴∠1=∠3,∴AB∥CD.[方法规律] 利用角的关系和邻补角定义,求角定线.9、点拨] ∠1和∠3,∠2和∠3分别是l1与l3被l 所截而成的错角与l2与l3被l所截而成的同旁角,假设它们满足平行的判定条件再由平行公理推论即可得到l1∥l2.[解答] ∵∠1=∠3=80°∴l1∥l33 / 54 / 5∵∠2=100° ∴∠2+∠3=180° ∴l 2∥l 3∴l 1∥l 2[方法规律] 这里l 3为l 1与l 2平行架起了桥梁,这就是转化,它为与求证结论铺平了道路[点拨] ∠1与∠3是AD 、DC 被AC 所截的同旁角,由∠1=∠3并不能推出两条直线平行,但∠2=∠1所以能代换得到∠2=∠3,这时∠2与∠3是AB 与DC 被AC 所截得的错角,由错角相等可推出AB ∥CD .10、[解答]由条件可判断AB ∥CD ,理由如下: ∵AC 平分∠DAB 〔〕,∴∠1=∠2〔角平分线定义〕. 又∵∠1=∠3〔〕,∴∠2=∠3〔等量代换〕. ∴AB ∥CD (错角相等,两直线平行).[方法规律] 要判断两条直线平行,得寻找同位角、错角相等或同旁角互补.[点拨] 此题直接求∠C 不容易,如果过点C 作FC ∥AB ,就可以把问题转化为求的∠B 与∠D 的同旁角,进而求得∠C .11、[解答] 过点C 作FC ∥AB , ∵AB ∥ED ,∴FC ∥ED ,∴∠1+∠B =180°,∠2+∠D =180°, ∴∠1+∠2+∠B +∠D =360°. ∵∠B =140°,∠D =120°,∴∠1+∠2=360°-140°-120°=120°[方法规律]此类题型,一般都是过拐点作直线的平行线,从而把未知问题转化为问题.12、点拨]利用对顶角相等,转化为同旁角互补,得l 1∥l 2,再根据平行性质和对顶角相等即可求出∠4的度数.[解答]∵∠1=60°,∠2=120°,∴∠1+∠2=180° ∵∠1=∠6,∴∠6+∠2=180°,∴l 1∥l 2 ∴∠7=∠3=70°,∵∠4=∠7,∴∠4=70°.[方法规律]此题的切入点是对顶角相等,再根据平行的判定和性质,可求出∠4的度数.点拨] 由∠2=∠EBD ,∠1=∠2,得∠1=∠EBD ,从而得FG ∥CD ,再由平行线的性质和∠3=55°,可求出∠4的度数.[解答] ∵∠2=∠EBD ,∠1=∠2,∴∠1=∠EBD ∴GF ∥CD ,∴∠4=∠ABD∵∠3=55°,∴∠ABD =125°,∴∠4=125°,∴选D.13、[方法规律]此题综合运用了平行线的判定和性质,在解题过程中应由未知想,不断促使问题的转化.[点拨]由 CD ⊥AB ,EF ⊥AB ,得DC ∥EF , 从而得∠1=∠BCD ,再由∠1=∠2,可得DG ∥BC . [解答] DG ∥BC .∵CD ⊥AB ,EF ⊥AB , ∴∠CDB =∠EFB =90°∴CD ∥EF .〔同位角相等,两直线平行〕 ∴∠1=∠BCD .〔两直线平行,同位角相等〕 又∵∠1=∠2,∴∠2=∠BCD .∴DG ∥BC .〔错角相等,两直线平行〕[方法规律]此题抓住垂直证平行,促使条件向未知条件转换. 相交线平行线答案 1.D2.D 点拨:图中的邻补角分别是:∠AOC 与∠BOC ,∠AOC 与∠AOD ,∠COE 与∠DOE ,∠BOE 与∠AOE ,∠BOD 与∠BOC ,∠AOD 与∠BOD ,共6对,应选D . 3.D 4.C 5.C 6.A7.C 点拨:此题的题设是AB ∥CD ,解答过程中不能误用AD ∥BC 这个条件.8.B 点拨:∵AB ∥CD ,∠1=72°, ∴∠BEF=180°-∠1=108°. ∵ED 平分∠BEF , ∴∠BED=12∠BEF=54°.∵AB ∥CD ,∴∠2=∠BED=54°.应选B . 9.C 点拨:如答图,L 1,L 2两种情况容易考虑到,但受习惯性思维的影响,L 3这种情况容易被忽略. 10.B11.D 点拨:∠FCD=∠F=∠A=∠1=∠ABG=45°.应选D .12.C 点拨:由题意,知,230A B A B ∠=∠⎧⎨∠=∠-︒⎩或5 / 5180,230A B A B ∠+∠=︒⎧⎨∠=∠-︒⎩ 解之得∠B=30°或70°.应选C . 13.120°14.〔1〕BC ;同位角相等,两直线平行 〔2〕CD ;错角相等,两直线平行 〔3〕AB ;CD ;同旁角互补,两直线平行 15.〔2〕,〔3〕,〔5〕 16.115;65点拨:设∠BOC=x °,那么∠AOC=x °+50°. ∵∠AOC+∠BOC=180°. ∴x+50+x=180,解得x=65. ∴∠AOC=115°,∠BOC=65°. 17.145° 18.102 19.133点拨:如答图,延长AB 交L 2于点F . ∵L 1∥L 2,AB⊥L 1,∴∠BFE=90°. ∴∠FBE=90°-∠1=90°-43°=47°. ∴∠2=180°-∠FBE=133°. 20.∠1=∠221.解:如答图,由邻补角的定义知∠BOC=100°. ∵OD ,OE 分别是∠AOB ,∠BOC 的平分线,。
北师大版必修2第一章《平行关系》单元测试题班级:姓名:一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.若直线a不平行于平面α,则下列结论成立的是( ).A.α内的所有直线均与a异面 B.α内不存在与a平行的直线C.α内直线均与a相交 D.直线a与平面α有公共点2.下列说法中正确的是( ).①一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.A.①②③④ B.①②③ C.②④ D.①②④3.若α∥β,a α,下列四种说法中正确的是( ).①a与β内所有直线平行;②a与β内的无数条直线平行;③a与β内的任何一条直线都不垂直;④a与β无公共点.A.①② B.②④ C.②③ D.①③④4.P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出四个命题:①OM∥平面PCD;②OM∥平面PBC;③OM∥平面PDA;④OM∥平面PBA.其中正确命题的个数是( )A.1 B.2 C.3 D.45.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为( )A.都平行 B.都相交且交于同一点C.都相交但不一定交于同一点 D.都平行或都交于同一点6.不同直线m、n和不同平面α,β,给出下列命题:①⎭⎪⎬⎪⎫n∥αm⊂α⇒m∥n;②⎭⎪⎬⎪⎫m∥nm∥β⇒n∥β;③⎭⎪⎬⎪⎫m⊂αn⊂β⇒m,n不共面;④⎭⎪⎬⎪⎫n∥βm∥α⇒m∥n,其中假命题的个数是( ) A.1 B.2 C.3 D.47.设平面α∥平面β,直线a⊂α,点B∈β,则在β内过点B的所有直线中( ).A.不一定存在与a平行的直线 B.只有两条与a平行的直线C.存在无数条与a平行的直线 D.存在唯一一条与a平行的直线8.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有( )A.4条B.6条 C.8条D.12条9.直线l与平面α平行,点A是平面α内的一点,则下列说法正确的是( )A.过点A作与l平行的直线只能作一条,且在α内B.过点A作与l平行的直线只能作一条,且在α外C.过点A作与l平行的直线可作无数条,可在α内,也可在α外D .过点A 不可作与l 平行的直线10.下列四个命题中,正确的个数是( )①AB 是平面α外的线段,若A 、B 到平面α的距离相等,则AB∥α; ②若一个角的两边分别平行于另一个角的两边,则这两个角相等; ③若直线a∥直线b ,则a 平行于过b 的所有平面; ④若直线a∥平面α,直线b∥平面α,则a∥b.A .0个B .1个C .2个D .3个二、填空题:请把答案填在题中横线上(每小题5分,共25分). 11.如图,在空间四边形ABCD 中,M∈AB,N∈AD,若AM MB =ANND,则MN 与平面BDC 的位置关系是_____. 12.在长方体ABCD -A 1B 1C 1D 1中,①与直线AB 平行的平面是________; ②与直线AA 1平行的平面是________; ③与直线AB 1平行的平面是________.13.已知α∥β,A ,C∈α,B ,D∈β,直线AB 与CD 交于点S ,且AS= 8,BS =9,CD =34.(1)当S 在α,β之间时,CS =________. (2)当S 不在α,β之间时,CS =________.14.正方体ABCD -A 1B 1C 1D 1中,平面AA 1C 1C 和平面BB 1D 1D的交线与棱CC 1的位置关系是________,截面BA 1C 1和直线AC 的位置关系是________.15.在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、CD 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足__________时,有MN∥平面B 1BDD 1.三、解答题:解答应写出文字说明、证明过程或演算步骤(共75分). 16.(12分)如图,已知四边形ABCD 是平行四边形,点P 是平面ABCD外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH. 求证:AP ∥GH.17.(12分)如图所示,P 为平行四边形ABCD 所在平面外一点,M 、N分别为AB 、PC 的中点,平面PAD∩平面PBC =l. (1)判断BC 与l 的位置关系,并证明你的结论;(2)判断MN 与平面PAD 的位置关系,并证明你的结论. 18.(12分)如图,已知有公共边AB 的两个全等的矩形ABCD 和ABEF不在同一个平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.19.(12分)已知四面体ABCD中,M、N分别是三角形ABC和三角形ACD 的重心,求证:(1)MN∥面ABD;(2)BD∥面CMN.20.(13分)如图,已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.21.(14分)用平行于四面体ABCD的一组相对棱AB、CD的平面截此四面体,如图所示.(1)求证所得截面MNPQ是平行四边形;(2)如果AB=CD=a,求证四边形MNPQ的周长为定值.北师大版必修2第一章《平行关系》单元测试题答案一、选择题: 1.[答案]D 2.[答案]D 3.[答案]B 4.[答案]B [解析] 由已知OM∥PD,∴OM∥平面PCD 且OM∥平面PAD.故正确的只有①③,选B.5.[答案]D[解析] 当直线与平面平行时,a∥b∥c…,当直线与平面α相交时,设l ∩α=O ,则a 、b 、c ,…是过O 点的直线,故选D. 6.[答案]D[解析] ①中m 与n 可能平行,也可能异面,②中可能n ⊂β,③中可能m∥n,④中不知道α与β的位置,无法判断m 与n 的关系,故四个命题全不正确.7.[答案]D[解析] 依题意,由点B 和直线a 可确定唯一的平面γ,平面γ与平面β的交线设为c ,则必有c∥a,且这样的直线c 是唯一的.8.[答案]D[解析] 如图所示,设M 、N 、P 、Q 为所在边的中点,则过这四个点中的任意两点的直线都与面DBB 1D 1平行,这种情形共有6条;同理,经过BC 、CD 、B 1C 1、C 1D 1四条棱的中点,也有6条;故共有12条,故选D. 9.[答案] A10.[答案] A[解析] ①若AB 与α相交,则AB 上存在两点与α距离相等,故①错误.②由等角定理知,应注意条件中的“方向”,即此两角也可能互补,故②错误.③a 也可能与b 共面,故③错误.④由条件知,a 与b 可异面、相交、平行,故④错. 二、填空题:11.[答案] 平行[解析] ∵M∈AB,N∈AD,AM MB =ANND,∴MN∥BD,∵MN ⊄平面BDC ,BD ⊂平面BCD ,∴MN∥平面BDC. 12.[答案]①面A 1C 1,面CD 1;②面BC 1,面CD 1;③面CD 1 13.[答案](1)16 (2)272[解析](1)如右图所示,∵AB 与CD 相交于S ,∴AB,CD 可确定平面γ,且α∩γ=AC ,β∩γ=BD.∵α∥β,∴AC∥BD,则有AS BS =CS DS ,即AS AS +BS =CSCD,∴CS 34=817,∴CS=16. (2)如右图所示,由(1)知AC∥BD,则有AS BS =CS DS ,即89=CSCS +34. 解得CS =272.14.[答案]平行 平行[解析] 如图所示,平面AA 1C 1C∩平面BB 1D 1D =OO 1,O 为底面ABCD 的中心,O 1为底面A 1B 1C 1D 1的中心, ∴OO 1∥CC 1.又AC∥A 1C 1,A 1C 1⊂平面BA 1C 1,AC 面BA 1C 1, ∴AC∥面BA 1C 1.15.[答案]M 在线段FH 上移动[解析] 此时HN∥BD,MH∥DD 1, ∴平面MNH∥平面BDD 1B 1, ∴MN∥平面B 1BDD 1. 三、解答题:16.思路分析:欲证线线平行,往往先证线面平行,再由线面平行的性质定理证得线线平行.证明:连接AC 交BD 于O ,连接MO , ∵四边形ABCD 是平行四边形, ∴O 是AC 的中点. 又M 是PC 的中点, ∴AP ∥OM.又OM ⊂平面BMD ,AP 平面BMD , ∴AP ∥平面BMD.∵平面PAHG∩平面BMD =GH ,AP ⊂平面PAHG , ∴AP∥GH.17.[解析](1)结论:BC∥l .证明:∵AD∥BC,BC⊄平面PAD ,AD ⊂平面PAD ,∴BC∥平面PAD.又∵BC ⊂平面PBC ,平面PAD∩平面PBC =l,∴BC∥l.(2)结论:MN∥平面PAD.证明:设Q为CD的中点,连结NQ,MQ,则NQ∥PD,MQ∥AD,又∵NQ∩MQ=Q,PD∩AD=D,∴平面MNQ∥平面PAD.又∵MN⊂平面MNQ,∴MN∥平面PAD.18.[解析]作PM∥AB交BE于点M,作QN∥AB交BC于点N,则PM∥QN.∴PMAB=EPEA,QNCD=BQBD.∵AP=DQ,∴EP=BQ.又∵AB=CD,EA=BD,∴PM=QN.故四边形PMNQ是平行四边形.∴PQ∥MN.∵PQ平面CBE,MN⊂平面CBE,∴PQ∥平面CBE.19.[解析](1)如图所示,连结CM、CN并延长分别交AB、AD于G、H,连结GH、MN.∵M、N分别为△ABC、△ACD的重心,∴CMCG=CNCH. ∴MN∥GH.又GH⊂面ABD,MN面ABD,∴MN∥面ABD.(2)连结AM、AN并延长分别交BC、CD于E、F,连结EF.同理MN∥EF,又E、F分别为BC、CD的中点,∴BD∥EF.∴BD∥MN.又MN⊂面CMN,BD 面CMN,∴BD∥面CMN.20.思路分析:在平面MNQ内找到两条相交直线与平面PBC平行,条件中给出了线段比相等,故可利用平行线截线段成比例的性质证得线线平行,再转化为线面平行,然后根据面面平行的判定定理证明.证明:在△PAD中,∵PM∶MA=PQ∶QD,∴MQ∥AD.又∵AD∥BC,∴MQ∥BC.∵MQ平面PBC,BC⊂平面PBC,∴MQ∥平面PBC.在△PBD中,∵BN∶ND=PQ∶QD,∴NQ∥PB. ∵NQ平面PBC,PB⊂平面PBC,∴NQ∥平面PBC.∵MQ∩NQ=Q,∴平面MNQ∥平面PBC.21.[解析](1)∵AB∥平面MNPQ,平面ABC∩平面MNPQ=MN,且AB⊂平面ABC,∴AB∥MN,同理可得PQ∥AB.∴由平行公理可知,MN∥PQ.同理可得MQ∥NP.∴截面四边形MNPQ为平行四边形.(2)∵由(1)可知,MN∥AB,∴MNAB=MCAC,∴AB-MNAB=AC-MCAC=AMAC.又MQ∥CD,∴AMAC=MQCD,∴AB-MNAB=MQCD.又AB=CD=a,∴MN+MQ=a,∴平行四边形MNPQ的周长为2(MN+MQ)=2a,∴四边形MNPQ的周长为定值.。
平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。
2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同旁内角互补。
3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。
4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。
5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。
6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。
7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:内错角相等。
8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。
9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。
10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。
11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。
12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同位角相等。
13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。
14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。
15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。
16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。
第五单元《平行四边形和梯形》第1课时《平行与垂直》一.选择题1.(2017秋•端州区期末)过直线外一点可以画()条直线与这条直线平行.A.1 B.2 C.3 D.无数条2.(2018秋•单县期末)在同一平面内,若把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()A.互相平行B.互相垂直C.相交3.(2018秋•博兴县期末)下面各组直线中,互相平行的有()A.1 B.2 C.3二.填空题4.(2017秋•巴东县期末)从直线外一点到这条直线所画的最短,它的叫做这点到直线的.5.(2016秋•南安市期中)在图中与AE平行的边有;在图中与BC垂直的边有.6.(2012秋•织金县期末)同一平面内,两条直线相交成直角时,这两条直线.其中一条直线是另一条直线的,这两条直线的交点叫.7.图中有组平行线,有组线互相垂直.8.图中有组平行线,有组线互相垂直.9.数一数,填一填.图中有组平行线,有组线互相垂直.10.如图中哪些线段互相平行,哪些线段互相垂直,线段和线段互相平行;线段和线段互相平行;线段和线段互相垂直;线段和线段互相垂直.三.判断题11.(2019秋•东莞市期末)从直线外一点到这条直线所画的线段中,垂直线段最短.(判断对错)12.(2019秋•郓城县期末)在同一平面内,两条直线不是平行就是垂直..(判断对错)13.过直线外一点,可以作无数条直线与已知直线平行.(判断对错)14.过直线AB外一点P,可以画无数条直线与AB平行.(判断对错)四.操作题15.下面各组线中,哪组线是互相垂直的?(用“”标出来)16.找出位置关系.(填互相平行、互相垂直、相交)17.下面的各组直线中是互相平行的在括号里打“△”,是互相垂直的画“○”.18.(2019秋•绿园区期末)在图中画出和AB平行的线段,和DC垂直的线段.19.(2014秋•库尔勒市校级期末)在图形的每组平行线下面画“△”,在每组垂线下面画“□”20.拿两根小棒,在桌上任意摆放,你能摆放出几种不同的情况?画出来.五.解答题21.(2015秋•南安市期末)在下面方格纸上画一组平行线.22.(2014秋•西畴县校级期中)按要求在右边四个点画线段、射线和直线.(1)画线段AC、BD.(2)画射线BA、CD.(3)画直线BC、AD.23.(2013秋•颍上县月考)下面是平行线的画○,不是的画□.24.(2013秋•楚州区校级期中)用三角尺和直尺检验图1图2中各有几组平行线和垂线.25.(2014秋•涟水县期末)如图是一组平行线,利用这组平行线画出一个最大的正方形.26.(2015秋•榆林期中)火眼金睛辨图形.垂直的有:平行的有:.27.数一数,下图中各有几组直线互相垂直?28.生活中有很多平行和垂直现象,比如铁路两条铁轨可以看作是互相平行的.你能分别举出生活中两个平行和垂直的例子吗?29.图中直线m和直线n互相垂直吗?为什么?参考答案第五单元《平行四边形和梯形》第1课时《平行与垂直》一.选择题1.(2017秋•端州区期末)过直线外一点可以画()条直线与这条直线平行.A.1 B.2 C.3 D.无数条【解答】解:根据平行的性质可知:过直线外一点可以画一条直线与已知直线平行,故选:A.2.(2018秋•单县期末)在同一平面内,若把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()A.互相平行B.互相垂直C.相交【解答】解:如图所示,,a和b都垂直于c,则a和b平行;故选:A.3.(2018秋•博兴县期末)下面各组直线中,互相平行的有()A.1 B.2 C.3【解答】解:根据平行的含义可知:中的两条直线互相平行;故选:A.二.填空题4.(2017秋•巴东县期末)从直线外一点到这条直线所画的垂线段最短,它的长度叫做这点到直线的距离.【解答】解:从直线外一点到这条直线所画的垂线段最短,它的长度叫做这点到直线的距离;故答案为:垂线,长度,距离.5.(2016秋•南安市期中)在图中与AE平行的边有BF、DH、CG;在图中与BC垂直的边有BF、DC、CG.【解答】解:在图中与AE平行的边有BF、DH、CG;在图中与BC垂直的边有BF、DC、CG;故答案为:BF、DH、CG,BF、DC、CG.6.(2012秋•织金县期末)同一平面内,两条直线相交成直角时,这两条直线互相垂直.其中一条直线是另一条直线的垂线,这两条直线的交点叫垂足.【解答】解:同一平面内,两条直线相交成直角时,这两条直线互相垂直.其中一条直线是另一条直线的垂线,这两条直线的交点叫垂足;故答案为:互相垂直,垂线,垂足.7.图中有1组平行线,有2组线互相垂直.【解答】解:根据垂直和平行的性质可知:图中有1组平行线,有2组线互相垂直.故答案为:1;2.8.图中有一组平行线,有两组线互相垂直.【解答】解:根据垂直和平行的性质可知:a∥b,a⊥c,b⊥c.图中有一组平行线,有两组线互相垂直.故答案为:一;两.9.数一数,填一填.图中有2组平行线,有5组线互相垂直.【解答】解:正方形有两组对边互相平行;所以一共有2组线段互相平行,(2)因为正方形有4组邻边和一组对角线互相垂直;所以图中一共有5组线段互相垂直.故答案为:2,5.10.如图中哪些线段互相平行,哪些线段互相垂直,线段AD和线段GF互相平行;线段AB和线段CD互相平行;线段AE和线段AB互相垂直;线段EF和线段BF互相垂直.【解答】解:线段AD和线段GF互相平行;线段AB和线段CD互相平行;线段AE和线段AB互相垂直;线段EF和线段BF互相垂直.故答案为:AD,GF,AB,CD,WE,AB,EF,BF.三.判断题11.(2019秋•东莞市期末)从直线外一点到这条直线所画的线段中,垂直线段最短.√(判断对错)【解答】解:从直线外一点到这条直线所画的线段中,垂直线段最短,说法正确;故答案为:√.12.(2019秋•郓城县期末)在同一平面内,两条直线不是平行就是垂直.×.(判断对错)【解答】解:同一平面内两条直线的位置关系只有两种,即平行和相交,垂直只是相交中的一种特殊情况;故答案为:×.13.过直线外一点,可以作无数条直线与已知直线平行.×(判断对错)【解答】解:根据平行的性质可知:过直线外一点可以画一条直线与已知直线平行,所以本题说法错误;故答案为:×.14.过直线AB外一点P,可以画无数条直线与AB平行.×(判断对错)【解答】解:根据平行的性质可知:过直线AB外一点P,可以画一条直线与AB平行.所以本题说法错误;故答案为:×.四.操作题15.下面各组线中,哪组线是互相垂直的?(用“”标出来)【解答】解:16.找出位置关系.(填互相平行、互相垂直、相交)【解答】解:如图:17.下面的各组直线中是互相平行的在括号里打“△”,是互相垂直的画“○”.【解答】解:18.(2019秋•绿园区期末)在图中画出和AB平行的线段,和DC垂直的线段.【解答】解:19.(2014秋•库尔勒市校级期末)在图形的每组平行线下面画“△”,在每组垂线下面画“□”【解答】解:根据分析解答如下:20.拿两根小棒,在桌上任意摆放,你能摆放出几种不同的情况?画出来.【解答】解:答案不唯一.五.解答题21.(2015秋•南安市期末)在下面方格纸上画一组平行线.【解答】解:根据根据平行线的含义画图如下:22.(2014秋•西畴县校级期中)按要求在右边四个点画线段、射线和直线.(1)画线段AC、BD.(2)画射线BA、CD.(3)画直线BC、AD.【解答】解:23.(2013秋•颍上县月考)下面是平行线的画○,不是的画□.【解答】解:如图:24.(2013秋•楚州区校级期中)用三角尺和直尺检验图1图2中各有几组平行线和垂线.【解答】解:根据通过三角尺和直尺检验平行线和垂线的方法可知,图1中:AE⊥BC,AF⊥CD;AB∥CD,BC∥AD;图2中:HJ⊥GM,OK⊥GN,LK⊥HJ,OK⊥LK,GH⊥HI,HI⊥JI,JI⊥GJ,GJ⊥GH;GH∥JI,GJ∥HI,HJ∥OK,GN∥LK.25.(2014秋•涟水县期末)如图是一组平行线,利用这组平行线画出一个最大的正方形.【解答】解:由分析作图为:26.(2015秋•榆林期中)火眼金睛辨图形.垂直的有:(1)(3)平行的有:(2)(6).【解答】解:根据平行线和垂线的定义可知:相互垂直的有(1),(3);互相平行的有(2)(6).故答案为:(1)(3);(2)(6).27.数一数,下图中各有几组直线互相垂直?【解答】解:故答案为:4,6.28.生活中有很多平行和垂直现象,比如铁路两条铁轨可以看作是互相平行的.你能分别举出生活中两个平行和垂直的例子吗?【解答】解:互相平行:电动伸缩门、推拉窗、书桌的对边;互相垂直:墙角、书桌角相邻的边;29.图中直线m和直线n互相垂直吗?为什么?【解答】解:根据图形可知:∠1=∠2=60°,∠1+∠3=30°+60°=90°,所以直线m与直线n互相垂直.。
1、3 平行关系1、下列命题中①若直线l 上有无数点不在平面α内,则//l α②若直线l 与平面α平行,则l 与平面α内任意一条直线平行③若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点④若直线l 平行于α内无数条直线,则//l α⑤如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行其中正确的个数是 ( )A 、0B 、1C 、2D 、32、已知直线a 、b ,平面α、β,以下条件中能推出α∥β的是 ( )①a ⊂α,b ⊂β,a ∥b ; ②a ⊂α,b ⊂α,a ∥β,b ∥β; ③a ∥b ,a ⊥α,b ⊥β.A.①B.②C. ③D.均不能 3、已知直线b a ,,平面α,则以下三个命题:⑴若α⊂b b a ,//,则α//a ; ⑵若α//,//a b a ,则α//b ;⑶若αα//,//b a ,则b a //,其中正确的个数是( ) A 、0 B 、1 C 、2 D 、34、如图,若Ω是长方体1111D C B A ABCD -被平面EFGH 截去几何体11C EFGHB 后得到的几何体,其中E 为线段11B A 上异于1B 的点,F 为线段1BB 上异于1B 的点,且11//D A EH ,则下列结论不正确的是( )A 、EH//FGB 、四边形EFGH 是矩形C 、Ω是棱柱D 、Ω是棱台 5、已知两条直线n m ,,两个平面βα,。
给出下面四个命题: ①αα⊥⇒⊥n m n m ,//;②n m n m //,,//⇒⊂⊂βαβα; ③αα////,//n m n m ⇒;④βαβα⊥⇒⊥n m n m ,//,//, 则正确命题的序号为( )A 、①③B 、②④C 、①④D 、②③6、已知α∥β,a α,B∈β,则在β内过点B 的所有直线中( )A 、不一定存在与a 平行的直线B 、只有两条与a 平行的直线C 、存在无数条与a 平行的直线D 、存在唯一一条与a 平行的直线7、考察下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l ,m 为不同的直线,α、β为不重合的平面),则此条件为________.①⎭⎪⎬⎪⎫m l∥m⇒l∥α ②⎭⎪⎬⎪⎫l∥mm∥α⇒l∥α③⎭⎪⎬⎪⎫l⊥βα⊥β⇒l∥α 8、已知平面α∥平面β,P 是α 、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且PA =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .209、已知如图:E 、F 、G 、H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC 、CC 1、C1D 1、AA 1的中点.求证:⑴EG ∥平面BB 1D 1D ;⑵BDF H D B 平面//平面1110、如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .11、已知有公共边AB 的两个全等的矩形ABCD 和ABEF 不在同一个平面内,P 、Q 分别是对角线AE 、BD 上的点,且AP=DQ ,如图。
1.2.1平面的基本性质与推论链接高考1.(2015辽宁大连第二十中期末,★★☆)如图所示,已知空间四边形ABCD,E,H分别是边AB,AD的中点,F,G分别是边BC,CD上的点,且==.求证:直线EF,GH,AC交于一点.2.(2014四川成都七中高二期中,★★☆)(1)如图,ABC在平面α外,AB∩α=P,BC∩α=Q,AC∩α=R,求证:P,Q,R三点共线.(2)如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH与FG相交于点K.求证:EH,BD,FG三条直线相交于同一点.3.(2013辽宁锦州中学月考,★★☆)如图,在四面体ABCD中作截面PQR,若QP,BC的延长线交于M;RQ,DB的延长线交于N;RP,DC的延长线交于K,求证:M、N、K三点共线.三年模拟1.(2016广西陆川中学周测,★★☆)下列说法正确的是()A.三点确定一个平面B.不重合的两个平面α和β可以有不在同一条直线上的三个公共点C.四边形一定是平面图形D.梯形一定是平面图形2.(2016广西钦州高二期末,★☆☆)在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如图,如果EF、GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外3.(2015山西康杰中学期中,★★☆)三个平面将空间最多能分成()A.6部分B.7部分C.8部分D.9部分4.(2015浙江重点中学协作体适应性训练,★★☆)给定下列两个关于异面直线的命题,那么()命题(1):若平面α上的直线a与平面β上的直线b为异面直线,直线c是α与β的交线,那么c至多与a,b中的一条相交;命题(2):不存在这样的无穷多条直线,它们中的任意两条都是异面直线.A.命题(1)正确,命题(2)不正确B.命题(2)正确,命题(1)不正确C.两个命题都正确D.两个命题都不正确。
空间向量与立体几何综合练习题一、选择题:1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=,11D A =,A A 1=.则下列向量中与M B 1相等的向量是( )A .1122a b c -++B .1122a b c ++C .1122a b c -+D .1122a b c --+2.在下列条件中,使M与A 、B 、C一定共面的是( )A .--=2B .111532OM OA OB OC =++C .=++MC MB MA 0D .=+++OC OB OA OM 03.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85 BC. D .504.与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31,1,1)B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( )A .0B .2πC .πD .32π 6.已知空间四边形ABCD 中,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则=( )A .c b a 213221+-B .c b a 212132++-C .212121-+D .213232-+7.设A 、B 、C 、D 是空间不共面的四点,且满000=∙=∙=∙AD AB ,AD AC ,AC AB ,则∆BCD 是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定8.空间四边形OABC 中,OB=OC ,∠AOB=∠AOC=600,则= ()A .21B .22 C .-21 D .09.已知A (1,1,1)、B (2,2,2)、C (3,2,4),则∆ABC 的面积为( )A .3B .32C .6D .2610. 已知),,2(),,1,1(t t t t t =--=,则||-的最小值为( )A .55 B .555 C .553 D .511 二、填空题:11.若)1,3,2(-=a ,)3,1,2(-=b ,则b a ,为邻边的平行四边形的面积为 .12.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC的中点,点G 在线段MN 上,且2=,现用基组{},,表示向量,有=x z y ++,则x 、y 、z 的值分别为 .13.已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 .14.已知向量)0,3,2(-=,)3,0,(k =,若,成1200的角,则k= . 三、解答题:解答应写出文字说明、证明过程或演算步骤15.如图,在梯形ABCD 中,AB//CD ,AD=DC=CB=a ,60ABC ∠=,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=a.(1)求证:BC ⊥平面ACFE ;(2)求二面角B —EF —D 的平面角的余弦值.16.如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(1)证明:PA ⊥BD ;(2)若PD=AD ,求二面角A-PB-C 的余弦值。