北师大版七年级数学上册教案《探索与表达规律》
- 格式:docx
- 大小:48.40 KB
- 文档页数:5
北师大版数学七年级上册3.5《探索与表达规律》(第1课时)教学设计一. 教材分析《探索与表达规律》是北师大版数学七年级上册3.5的内容,本节课主要让学生通过观察、实验、猜测、推理等方法,探索并表达一些简单的数学规律。
教材内容由浅入深,环环相扣,符合学生的认知规律。
教学内容主要包括:探索数列的规律、探索图形的规律、探索事件的规律等。
二. 学情分析学生在之前的学习中已经接触过一些规律性的知识,如数的规律、图形的规律等,具备一定的观察、实验、推理能力。
但七年级学生思维仍以形象思维为主,对于一些抽象的规律还需要通过具体的实例来理解。
此外,学生的学习习惯、学习兴趣等方面也需要考虑到。
三. 教学目标1.理解探索与表达规律的意义,掌握探索简单数学规律的方法。
2.能通过观察、实验、猜测、推理等方法,探索并表达一些简单的数学规律。
3.培养学生的观察能力、实验能力、推理能力,提高学生解决实际问题的能力。
4.激发学生学习数学的兴趣,培养学生的合作意识。
四. 教学重难点1.探索简单数学规律的方法。
2.如何将探索得到的规律进行表达。
五. 教学方法1.情境教学法:通过设置具体的情境,让学生在实际问题中感受到规律的存在。
2.探究式教学法:引导学生通过观察、实验、猜测、推理等方法,主动探索数学规律。
3.小组合作教学法:鼓励学生分组讨论,培养学生的合作意识。
4.反馈评价教学法:及时给予学生反馈,提高学生的学习效果。
六. 教学准备1.教学课件:制作课件,展示探索与表达规律的过程。
2.教学素材:准备一些具体的实例,用于引导学生探索规律。
3.学生活动材料:为学生提供一些实验器材,如卡片、小球等。
4.教学评价工具:设计相关的问题,用于检验学生对知识掌握的程度。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的规律现象,如日历中的星期循环、四季更替等,引导学生对规律产生好奇。
2.呈现(10分钟)呈现教材中的例1,让学生观察并尝试找出数列的规律。
3.5.1 探索与表达规律【学习目标】1.探索数量关系,运用数学符号表示规律。
2.会用代数式表示简单问题中的数量关系。
3.用合并同类项、去括号等法则验证所探索的规律。
【学习重难点】探索数量关系,运用代数式表示规律。
【学习方法】自主探究与合作交流相结合. 【学习过程】 模块一 预习反馈 一.学习准备1、探索规律是从具体的、特殊的、简单的问题出发,观察各个数量的特点以及相互之间的变化规律。
2、探索规律一般要经历以下的一些过程:(1).观察它前后几项的和、差、积、商和乘方等特点,注意数的大小、结构的变化、图形位置的变换,进行多角度的观察与调整;(2).从已知的有限个数据或图形中去寻找数量关系和图形之间的关系,并进行归纳;(3).从归纳出的数量关系或图形关系进行大胆的猜测,得出他们共同的规律;(4).列举符合条件的数据和图形,验证猜想的规律的正确性,得出结论。
3、阅读教材:第五节《探索规律与表达规律》 二、教材精读4、日历中的数字有什么规律?(1)、试一试:你能找出日历中的相邻三个数字 之间有哪些规律?横行中的相邻三个数字之间的规律是_ __ 竖行中的相邻三个数字之间的规律是_____ 右对角线上相邻三个数字之间的规律是___ 左对角线上相邻三个数字之间的规律是________(2)、问题1: 日历的彩色方框中的9个数之和与该方框正中间的数有什么关系?问题2: 这个关系对其他这样的方框成立吗? 问题3: 这个关系对任何一个月的日历都成立吗?问题4: 你能用代数式表示本节日历 “3×3”框图中的9个数吗? 提示:表中撗行相邻两数相差1,竖行相邻两数相差7.解答此题时,可设中间的数字为a.实践练习:观察以下日历12619125星期六2518114星期五312417103星期四30231692星期三2922158星期二2821147星期一2720136星期日问题1:在 + 字形区域内,五个数之和与正中心何关系? 能用字母表示并验证这个关系吗?问题2:在 H 形区域内,七个数之和与正中心的数有关系? 能用字母表示吗?5、做游戏:你在心里想好一个两位数,将十位数字乘2,然后加3,再将所得新数乘5,最后将得到的数加个位数字。
北师大版数学七年级上册3.5《探索与表达规律》教案1一. 教材分析《探索与表达规律》是北师大版数学七年级上册第三章第五节的内容。
本节课主要让学生通过探索实际问题,发现并表达其内在的数学规律。
教材通过引入生活中的实例,引导学生利用数学知识去分析和解决问题,培养学生的数学应用能力。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和简单的数学逻辑思维能力。
他们对数学知识有一定的认识,但还需要通过具体的实例来培养他们将数学知识应用到实际生活中的能力。
此外,由于这是一个新的知识点,学生可能需要一定的时间来理解和掌握。
三. 教学目标1.知识与技能:使学生能够通过探索实际问题,发现并表达其内在的数学规律。
2.过程与方法:培养学生利用数学知识分析和解决实际问题的能力。
3.情感态度与价值观:激发学生对数学知识的兴趣,培养他们积极探究的学习态度。
四. 教学重难点1.重点:引导学生发现并表达实际问题中的数学规律。
2.难点:培养学生利用数学知识分析和解决实际问题的能力。
五. 教学方法采用问题驱动法、案例教学法和小组讨论法。
通过提出问题,引导学生主动探究;通过分析具体案例,让学生理解并掌握数学规律的表达方法;通过小组讨论,培养学生的合作能力和口头表达能力。
六. 教学准备1.准备相关案例和问题,以便在课堂上进行教学。
2.准备黑板和粉笔,以便在课堂上进行板书。
七. 教学过程1.导入(5分钟)通过提出一个实际问题,引导学生进入学习状态。
例如:“某商店举行打折活动,原价100元的商品打8折,请问打折后的价格是多少?”2.呈现(10分钟)呈现相关案例,让学生了解实际问题中的数学规律。
例如,呈现一系列的购物场景,让学生观察并分析其中的数学规律。
3.操练(15分钟)让学生通过计算和分析,表达实际问题中的数学规律。
例如,给出一些购物场景,让学生计算打折后的价格,并表达出其中的数学规律。
4.巩固(10分钟)通过一些练习题,让学生巩固所学知识。
七年级数学上册第三章《探索与表达规律》教案一、教学目标:1、经历探索数量关系、运用符号表示规律、通过运算验证规律的过程,拥有一定的问题解决、课题研究、社会调查的经验。
2、会用代数式表示简单问题中的数量关系,培养学生面对挑战勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功体验,激发学生的学习热情。
二、教学重点:从实际情境中探索并发现规律、能够利用字母表示规律。
三、教学难点:利用“合并同类项”、“去括号”等法则验证探索得到的规律,发展抽象思维能力。
四、教学工具:三角板、小黑板。
五、教学方法:探索法、引导法、讲授法、练习法、提问法等。
六、教学过程:1、复习:(1)、复习代数的相关知识。
(2)、整式加减的两个方面:去括号与合并同类项。
2、创设情境,引出规律。
1)、一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙,1张嘴,2只眼睛,4条腿,1声扑通跳下水。
2只青蛙,2张嘴,4只眼睛,8条腿,2声扑通跳下水。
3只青蛙,3张嘴,6只眼睛,12条腿,3声扑通跳下水。
……n只青蛙,张嘴,只眼睛,条腿,声扑通跳下水。
2)、1 个细胞经过n 次分裂,由1个能分裂成多少个?分裂次数 1 2 3 4 …n细胞个数 2 4 8 16 …2n3、课文分析:寻找日历的规律。
1)、结合日历图,提出开放性问间有什么关系吗?提示学生主要从以下四个方面思考:(1)横排相邻的日期;(2)竖排相邻的日期;(3)“左上——右下”相邻的日期;(4)“左下——右上”相邻的日期。
2)、思考问题:在日历 H 形区域中,找出7个数的和等于正中心数的7倍.解:若设中心数为a, 则这七个数之和为:(a-8)+(a-1)+(a+6)+a+(a- 6)+(a+1)+(a+8)=7a4、课堂练习:1)、在日历十字形的区域中,找出五个数字之和的规律。
解:若设中心数为a, 则这五个数之和为:(a-7)+(a+7)+(a-1)+(a+1)+a=5a在十字形的区域中,五个数字的和等于正中心数的5倍。
北师大版数学七年级上册3.5《探索与表达规律》(第1课时)教案一. 教材分析《探索与表达规律》是北师大版数学七年级上册3.5的内容,本节课主要让学生通过观察、分析、归纳等方法探索数学规律,进一步培养学生的逻辑思维能力和抽象概括能力。
教材内容主要包括探索数字变化的规律、图形的规律和字母表示的规律等,通过这些探索活动,让学生体会数学的趣味性和魅力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于简单的规律探索和归纳总结已经有了一定的能力。
但学生在探索复杂规律时,可能还会存在一定的困难,需要教师在教学中给予引导和帮助。
此外,学生可能对数学规律的探究兴趣不够浓厚,教师需要通过设计有趣的教学活动,激发学生的学习兴趣。
三. 教学目标1.知识与技能目标:让学生通过观察、分析、归纳等方法探索数学规律,提高学生的逻辑思维能力和抽象概括能力。
2.过程与方法目标:培养学生独立思考、合作交流的能力,提高学生的解决问题的能力。
3.情感态度与价值观目标:让学生体验数学的趣味性,培养学生的学习兴趣,增强学生对数学的热爱。
四. 教学重难点1.教学重点:让学生掌握探索数学规律的方法,提高学生的逻辑思维能力和抽象概括能力。
2.教学难点:如何引导学生发现并表达复杂的数学规律,以及如何运用规律解决实际问题。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、分析、归纳,发现数学规律。
2.合作交流法:学生分组讨论,分享各自的发现和思考,共同探索数学规律。
3.实践操作法:学生通过动手操作,验证规律的正确性,加深对规律的理解。
六. 教学准备1.教师准备:教师需要准备相关的教学素材,如数字变化规律的图片、图形变化规律的例子等。
2.学生准备:学生需要提前预习本节课的内容,了解探索数学规律的基本方法。
七. 教学过程1.导入(5分钟)教师通过提出一个简单的数字变化规律问题,激发学生的学习兴趣,引导学生进入本节课的主题。
2.呈现(15分钟)教师展示相关的数字变化规律的图片和图形变化规律的例子,让学生观察、分析,尝试归纳出规律。
3.3探索与表达规律1.探索数量关系,运用数学符号表示规律;2.通过运算验证规律;3.培养学生自主探究与合作交流的能力.重点探究数量关系,运用代数式表示规律的能力.难点用代数式表示实际问题中的规律.一、导入新课课件出示杨辉三角图,提出问题:你能猜想中间的数字是几吗?两边的呢?你能尝试写出下一层的数字吗?你是如何得到的?学生独立完成,教师点评.教师:这节课我们将一起探究数学中的规律.二、探究新知1.探索图形中的规律课件出示教材第96页第1个日历图.教师引导学生观察日历图,通过观察找到日历中每一行、每一列、每一条对角线上相邻两个数之间的关系,并提出问题:(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?学生独立思考后举手回答,教师点评.(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?学生小组讨论完毕后,派代表回答,教师引导学生验证结论的正确性并点评.(3)这个关系对任何一个月的日历都成立吗?为什么?学生小组讨论,并进行验证,找出一般性规律,派代表汇报讨论结果,教师点评.(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.学生独立思考,总结关系,然后小组内分享交流结果并汇报,最后由教师进行总评.课件出示教材第97页第2个日历图,提出问题:(1)如果将方框改为十字框,你能发现哪些规律?如果改为H形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?学生小组讨论交流,教师点评.2.探究数字中的规律小亮和小丽在玩个小游戏.你在心里想好一个两位数,将这个两位数的十位数字乘2,然后加3,再将所得的和乘5,最后将得到的数加你想的那个两位数的个位数字.把你的结果告诉我,我就知道你心里想的两位数.学生讨论交流,共同探究其中的规律,从而激发起学生的学习兴趣.让学生以小组为单位,设计类似的数字游戏,并解释其中的道理.(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除.你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由.三、课堂练习1.教材第98页“随堂练习”.四、课堂小结通过本节课的学习,你有什么收获?找规律的一般步骤和方法:面对具体问题,首先对它的特例进行分析,然后猜想其规律,再用适当的代数式进行表示,最后检验得出结论.五、课后作业教材第98~99页第1,2题.课堂上,通过对日历的观察与分析,从不同角度进行思考,去探索日历中数与数之间的变化规律,用本章学习过的代数式表示规律;再以玩游戏的方式,让学生进一步巩固发现规律、用代数式表示规律的方法,并运用发现的规律来解决一些简单的问题,使学生体会数学就是一个发现规律、运用规律的过程,以此来激发学生的学习兴趣.本节课让学生通过动手实践与合作交流来完成对规律的探索、表达和验证过程,让学生充分展示自我、表现自我,在学习的过程中学会竞争与合作,增强团队互助合作的精神,提高学生的整体数学水平.☆问题解决策略:归纳1.能够利用从特殊到一般的归纳方法,从而发现数学结论、解决数学问题;2.体验从特殊到一般,再到特殊的数学思想.重点学会从特殊到一般的归纳方法.难点利用从特殊到一般的归纳方法解决问题.一、导入新课走近游乐园(1)一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水.2只青蛙2张嘴,4只眼睛8条腿.扑通一声跳下水,3只青蛙3张嘴,6只眼睛12条腿,扑通1声跳下水……(2)联欢会上,小明按照4个红球、3个黄球、2个绿球、1个白球的顺序把气球串起来装饰会场,第52个气球是什么颜色?教师提出问题引导学生进行解决,初步感受探索规律.二、探究新知1.提出问题“低多边形风格”是一种数字艺术设计风格.它将整个区域分割为若干三角形,通过把相邻三角形涂上不同颜色,产生立体及光影的效果,随着三角形数量增加,效果更为斑斓绚丽.将长方形区域分割成三角形的过程是:在长方形内取一定数量的点,连同长方形的4个顶点,逐步连接这些点,保证所有连线不再相交产生新的点,直到长方形内所有区域都变成三角形.如图3-10,当长方形内有1个点时,可分得4个三角形;当长方形内有2个点时,可分得6个三角形(不计被分割的三角形).问题:当长方形内有35个点时,可分得多少个三角形?2.理解问题(1)先引导学生动手画一画,感受分割得到三角形的过程.(2)已知条件是什么?目标是什么?3.拟订计划(1)直接研究“长方形内有35个点”的情形,你遇到了什么困难?(2)哪些情形容易研究?从中你能发现什么规律?(3)你发现的规律正确吗?你能给出合理的解释吗?4.实施计划(1)先研究长方形内有三个点、四个点的情形,点数较少,易操作.(2)通过几种简单情形的数据,发现规律:长方形内点的个数每增加1,三角形的个数增加2.(3)得出结论:当长方形内有35个点的时候,分得的三角形个数是:4+2×34=725.回顾反思(1)从特殊到一般,当长方形内有n个点时,分得的三角形个数是多少?用含n的代数式来表示.归纳:4+2×(n-1)=2n+2(2)从一般再到特殊,当长方形内有100、1000、10000个点时,分得的三角形个数是多少?总结:在运用归纳策略寻找规律时,要先在若干简单情形中寻找相应的规律.初步发现规律后,可以通过更多的情形验证,再考虑一般情况.最后,试着给出合理的解释,并用数学语言简洁地表达规律.三、课堂练习教材P102~P103第1~4题.四、课堂小结本节课你有哪些收获呢?五、课后作业教材P107~P108第17,18,19题.本节课的教学过程中,教师通过设计不同的情景活动,引导学生去猜测,发现其中的规律,并尝试用代数式解释这个规律,让同学们体验从特殊到一般的教学思想.整个课堂同学们积极参与,合作交流,提高了他们探索、发现和归纳的能力.。
七年级数学上《探索与表达规律》教学设计教学目标知识与能力会用代数式表示简单问题中的数量关系修改栏过程与方法经历探索数量关系、运用符号表示规律、通过运算验证规律的过程情感态度价值观学生自己动手操作,以积极热情的态度去面对学习教学重点根据问题的起始情况,总结规律,探索出问题的一般性结论教学难点感悟出问题的规律第一课时教学过程一、自主学习(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?(4)你还能发现这样的方框中9个数之间的其他关系吗?试用代数式表示。
二、尝试训练1、将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线)。
继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕。
如果对折n次,可以得到条折痕。
2、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是()日一二三四五六12345121110987613 14 15 16 17 18 192625242322212027 28 29 30 31教学过程3、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.4、计算20082007654321-++-+-+- 的结果是()三、梳理小结四、达标检测1、填空.观察下列各数,按规律在横线上填上适当的数.(1)1,1,2,3,5,_____,13,21,34,_____,_____.(2)1,-2,4,-8,16,_____,_____.(3).观察下列数据,按某种规律在横线上填上适当的数:1,43-,95,167-,,…(4)、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为.(5).观察下列各数之间的关系,在空中填上适当的数:1,1,2,3,5,8,______.2、为庆祝“六·一”儿童节,某幼儿园决定举行用火柴棒摆“金鱼”比赛.如图所示,按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()五、变式训练1、先观察321211⨯+⨯=)3121()2111(-+-=1-31=32431321211⨯+⨯+⨯=)4131()3121()2111(-+-+-=1-41=43再计算)1(1431321211+++⨯+⨯+⨯nn的值修改栏板书设计教学反思本节课通过探究日历表中的数字规律,学习探讨寻找规律,并会用代数式表达规律,逐步熟悉探究规律的一般方法、步骤。
北师大版数学七年级上册3.5《探索与表达规律》(第2课时)教案一. 教材分析《探索与表达规律》是北师大版数学七年级上册3.5的内容,本节课主要让学生学会探索数学规律,并能用数学语言表达出来。
教材通过具体的例子引导学生发现规律,并用字母表示数,进一步理解数学规律的表达方式。
二. 学情分析七年级的学生已经具备了一定的数学基础,能够理解简单的数学概念和运算。
但他们在探索规律和用字母表示数方面可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,及时给予引导和帮助。
三. 教学目标1.让学生通过具体例子探索并发现数学规律,培养学生的观察能力和思考能力。
2.让学生学会用字母表示数,提高学生的数学表达能力。
3.培养学生合作学习的精神,提高学生的团队协作能力。
四. 教学重难点1.探索并发现数学规律2.用字母表示数五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
教师通过提出问题,引导学生观察、思考和探索,激发学生的学习兴趣。
同时,鼓励学生进行小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备相关例子的教学材料2.准备投影仪等教学设备3.准备学生的学习资料七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如2, 4, 6, 8, 10,引导学生观察数列的规律。
提问:这个数列有什么规律?学生思考后回答,教师总结规律:这个数列是连续的偶数。
2.呈现(15分钟)教师呈现更多的例子,如3, 6, 9, 12, 15,引导学生继续观察规律。
提问:这个数列有什么规律?学生思考后回答,教师总结规律:这个数列是连续的奇数。
3.操练(10分钟)教师给出一个数列,如1, 4, 7, 10, 13,让学生分组讨论,找出数列的规律,并用字母表示数。
学生分组讨论后,各组汇报结果,教师点评并总结。
4.巩固(10分钟)教师给出一个复杂的数列,如2, 5, 8, 11, 14,让学生独立观察并找出规律,用字母表示数。
《探索与表达规律》精品教案●教学目标:一、知识与技能目标:1. 探索数量关系,应用符号表示规律,通过验算证明规律。
2. 数的变化规律。
二、过程与方法目标:1. 通过探索数量关系,运用符号表示规律,运算验证规律的过程,使学生进一步理解掌握探索规律的步骤。
2.会用代数式表示简单问题中的数量关系.在探究知识的过程中培养学生的创新能力。
三、情感态度与价值观目标:通过活动,为学生创设生动活泼的探究知识的情境,从而调动学生学习数学知识的积极性,使学生有自主地发现知识,创造性地解决问题。
●重点:学会探索数量关系,运用符号表示规律。
●难点学会从不同角度探索数量关系表示规律。
●教学流程:一、情景导入观察下面的日历,回答问题。
(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
解:(1)9个数的和为中间数的9倍;(2)任意框9个数,设中间的数为a,则左右两边数为a-1,a+1,上行邻数为(a-7),下行邻数为(a+7),左右上角邻数为(a-8),(a-6),左右下角邻数为(a+6),(a+8),之和为a+a-1+a+1+a-7+a+7+a-8+a-6+a+6+a+8=9a;(3)这个关系对任何一个月的日历都成立,理由为任何一个日历表都具有这种排列规律.(4)设方框正中间的数为n,其余各数为n-8,n-7,n-6,n-1,n+1,n+6,n+7.n+8.第二行3个数的和=(n-1)+n+(n+1)=3n.第二列3个数的和=(n-7)+n+(n+7)=3n.对角线上3个数的和分别为(n-6)+n+(n+6)=3n,(n-8)+n+(n+8)=3n.由此可以发现:方框“十”字位上的3个数的和,对角线上3个数的和相等,且都等于正中间数的3倍.想一想(1)如果将方框改为十字形框,你能发现哪些规律?如果改为“H”形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?(1)“十”字形:5个数的和是中间这个数的5倍“H”形:7个数的和是中间这个数的7倍。
北师大版数学七年级上册3.5《探索与表达规律》(第2课时)说课稿一. 教材分析北师大版数学七年级上册3.5《探索与表达规律》(第2课时)是本册教材中的一个重要内容。
这部分内容主要让学生掌握探索与表达规律的方法,培养学生观察、思考、归纳的能力。
教材通过具体的例子引导学生发现规律,并用代数式表示出来。
本节课的内容与实际生活紧密相连,有利于激发学生的学习兴趣,提高学生运用数学知识解决实际问题的能力。
二. 学情分析面对七年级的学生,他们在之前的学习中已经初步接触了代数知识,对于如何用字母表示数,以及简单的代数式运算已经有了一定的了解。
但是,如何通过观察找到规律,并用代数式表示出来,对于一部分学生来说还是一个新的挑战。
因此,在教学过程中,我需要关注这部分学生的学习需求,通过引导他们积极参与课堂活动,提高他们的学习兴趣和自信心。
三. 说教学目标根据教材内容和学情分析,我制定了以下教学目标:1.让学生掌握探索与表达规律的方法,培养观察、思考、归纳的能力。
2.让学生能够通过具体的例子发现规律,并用代数式表示出来。
3.提高学生运用数学知识解决实际问题的能力。
4.激发学生的学习兴趣,增强学生对数学学科的认同感。
四. 说教学重难点1.教学重点:让学生掌握探索与表达规律的方法,能够发现规律并用代数式表示出来。
2.教学难点:如何引导学生发现规律,并用代数式准确地表示出来。
五. 说教学方法与手段为了实现教学目标,突破教学重难点,我采用了以下教学方法与手段:1.引导发现法:通过具体的例子引导学生观察、思考,发现规律。
2.小组合作学习:让学生在小组内共同探讨,互相启发,共同提高。
3.激励评价法:在教学过程中,对学生的每一次进步都给予积极的评价,提高学生的自信心。
六. 说教学过程1.导入新课:通过一个具体的生活例子,引导学生发现其中的规律,激发学生的学习兴趣。
2.探索规律:让学生通过小组合作学习,共同探讨如何发现规律,并用代数式表示出来。
3.5 探索与表达规律学习目标:1、知识与技能(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。
(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。
2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。
(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。
3、情感、态度与价值观通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。
学习重点:探索实际问题中蕴涵的关系和规律。
学习难点:用字母、运算符号表示一般规律。
学习过程:一、创景引入活动:出示一张月历,学生任意选出3×3方格框出的9个数,并计算出这9个数的和,告诉老师,老师就可以说出你所选的是哪9个数。
目的:激发学生的求知欲,引入新课二、探究新知1、探索日历中的数字规律在日历中一般我们可以从横行、竖列、斜列三个方向去寻找规律,当然也可以从其他角度去探索.①横行:相邻两数相差1.如左下图所示:②竖列:相邻两数相差7.如右上图所示.③斜列:从左上到右下的斜列相邻两数相差8;从右上到左下的斜列相邻两数相差6.④日历中的3×3方框内的规律:在这9个方格中的数的和是中间方框中的数的9倍.若将中间数设为a,则其余8个数可按规律如上图所示,则这9个数的和即为(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8)=9a,正好是中间数a的9倍.学生活动:(1)给出几个图形,如“十”字形、“H ”形,“M ”形,学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,并分小组展示.;(2)你还能设计其他形状的包含数字规律的数框吗?分小组讨论交流。
2:图形问题中的规律活动1:用棋子按如图方式摆正方形:(1)照这样的规律摆下去,摆第8个正方形需要____颗棋子?摆第10个正方形需要____颗棋子?(2)探究:摆第n 个正方形需要多少________颗棋子?活动2.用棋子摆成以下图案,并填写表格: ① 填写下表:② 摆第n 个图案需要 颗棋子.三、课堂练习1、折叠中的规律 将一张纸折叠,每折叠一次就会得到纸的层数、折痕数,将这些数记录下来,找出规律,就可预测当折叠n 次后,相应的层数与折痕数.2、餐桌摆放问题中的规律:课本P99页问题解决1(1)、(2)。
3.5.2探索和表达规律(2)授课时间【学习目标】师生特色笔记(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。
(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。
【学习重点】探索实际问题中蕴涵的关系和规律。
【学习难点】用字母、符号表示一般规律。
【预习导学、新课导入】1、我校师生大联欢共聚餐,按下图方式摆放餐桌和椅子,你能计算出可坐下的人数吗?(1)1张餐桌可坐6人,2张餐桌可坐人。
(2)按照这种方式继续排列餐桌,完成下表:餐桌数 3 4 5 6 ……n可坐人数(3)你能用不同的方法解释你所表示的规律吗?(4)一家餐厅有这样的长方形桌子30张,按照上图方式每5张拼成一张大桌子,共可坐多少人?若按照上图方式每6张拼成一张大桌子,共可坐多少人?若现在有师生131人去吃饭,那该如何拼摆桌子?2、若按照下图摆放餐桌和椅子呢?(1)1张餐桌可坐6人,2张餐桌可坐 人。
(2)按照这种方式继续排列餐桌,完成下表:(3)一家餐厅有40张这样的长方形桌子,按照上图方式每5张拼成 一张大桌子,则40张桌子可拼成 张大桌子,共可坐 人。
(4)在(3)中,若改成每8张桌子拼成1张大桌子,则共可坐 人板块一【新知识一】 1、 (1)计算并填表:x0.25 0.5 1 10 100 1000 10000 100000(2)观察上表,描述所求得的这一列数的变化规律。
(3)当x 取(1)中表格里的数时,代数式 的值分别是多少?x 0.25 0.5 1 10 100 1000 10000 100000(4)当x 非常大时, 的值接近于什么数?2、当n 非常大时, 的值接近于什么数( )。
A. B. 0 C. D.3、探索规律下列每个图是由若干盆花组成的“△”图案,每条边有n (n>1)盆花,餐桌数 3 4 5 6 …… n 可坐人数师生特色笔记xx 2121--xx 21-xx 21-xx 21-nn 413-41-4334每个图案花盆的总数是S,按此规律推断,S 与n 关系式为:4、拓展练习1、用棋子摆出下列一组图形:(1)(2)(3)图形编号 1 2 3 4 5 6 图形中棋子的枚数(2)照这样的方式摆下去,写出摆第n 个图形棋子的枚数; (3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?★2、观察下列式子:…… ……若把 看作第一项, 看作第二项, 看作第三项…….(1)按此规律,请写出第六项; (2)请写出第n 项;(3)计算给出的式子的结果.板块二【达标检测】1、观察图1至图4中小黑点的摆放规律,并按照这样的规律继续摆放.记第n 个图中小黑点的个数为y 。
探索与表达规律北师大版数学初一上册教案《探索与表达规律》是连南县民族初级中学提供的微课课程,会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的日历中的规律。
以下是整理的探索与表达规律北师大版数学初一上册教案,欢迎大家借鉴与参考!3.5《探索与表达规律》学案学习目标:1.探索数量关系、运用符号表示规律,通过运算验证规律。
2.会用代数式表示简单问题中的数学规律。
学习重点:渗透有序思考的教学方法,提高学生的概括能力和推理能力。
学习难点:探索发现数学规律并能正确验证。
一、自主预习:预习内容:(自学课本P98-99,并完成以下题目)预习检测:1.仔细观察下列各组数,按你发现的规律填空:(1)1,2,3,4,,______,第n个数是______ .(2) 2,4,6,8,,______,第n个数是______ .《3.5探索与表达规律》同步练习2.(题型二)用菱形纸片按规律依次拼成如图3-5-1的图案.第1个图案中有5张菱形纸片;第2个图案中有9张菱形纸片;第3个图案中有13张菱形纸片.按此规律,第6个图案中的菱形纸片的张数为( )A.21B.23C.25D.29《3.5第2课时借助运算解释规律和现象》测试1.列出部分图形中星星的颗数,根据变化找出每个图形中星星的数量变化规律,然后根据数量变化规律计算结果(1).③如图3-5-8,它们是按一定规律排列的,依照此规律,第9个图形中共有________个,第n个图形中共有________个.2.观察下列一组数:1,4,9,…,则第4个数是________,第n 个数是________.3.在日历中画一个正方形,使它圈起3行3列的9个日期,如果左上角的日期设为n,那么第一行的三个日期依次为n、________、________;第二行的三个日期依次为________、________、________;第三行的三个日期依次为________、________、________.探索与表达规律北师大版数学初一上册教案。
《探索与表达规律》教学设计学习目标1.能分析日历和图形问题中的简单数量关系,并会用代数式表示.2.通过观察日历和图形、交流分析数量关系的过程,提高学生分析问题和解决问题的能力.重点分析实际问题中的数量关系.难点用代数式表示实际问题中的数量关系.第一环节情境引入课题请同学们随便想一个自然数,将这个数乘5减7,再把结果乘2加14,老师一定知道你的结果的个位数字是几?你知道为什么吗?(设计意图:使学生体会到数学中的规律性以及用代数式表示规律的可行性与应用性,预计3分钟)教师:这节课我们将一起探究日历和图形中的规律.第二环节合作探究日历中的规律探究活动1 请同学们认真观察日历表,回答下列问题:(1)请找出同一横线上三个相邻数之间的关系;(2)请找一找竖列三个相邻数的关系;(3)请找一找左上、右下对角线上三个相邻数的关系;(4)请找一找左下、右上对角线上三个相邻数的关系.你能用字母表示这些关系吗?(设计意图:用问题引导学生的思考,从特殊入手,发现规律。
让学生体会用字母表示规律的思维过程,5分钟)探究活动2(1)日历红色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?(4)你还能发现这样的方框中的9个数之间的其他关系吗?用代数式表示.(设计意图:教师示范验证过程,规范学生的数学推理的书写过程.预计8分钟)探究活动3(1)如果将方框改为十字形框,你能发现哪些规律?(2)你还能设计其他形状的包含数字规律的数框吗?(3)如果有一个如第1问的十字形框中的5个数的和为110,则其中最小的数是多少?这5个数的和能为121吗?为什么?(4)你能根据这个十字形数框提出问题解答吗?(设计意图:教师讲解后让学生及时练习,有助于对知识的掌握与巩固,第2问给学生表达的机会,锻炼其提出问题解决问题的能力,预计7分钟)小结:从日历中的数这个具体问题入手,通过观察、分析、比较、猜想得出规律,表示出规律,并利用规律解决了简单问题.第三环节探究图形中的规律探究活动4创新1 班要上一节主题班会,需要重新摆放桌椅,按照班委会要求准备了充足的桌子(一张桌子坐6人),根据以下问题探究规律.1.按图(1)的方式摆放餐桌和椅子,完成下表桌子张数12345…n可坐人数(设计意图:由贴近生活的情景问题开始,由学生自主探索,经历观察、比较、归纳、猜想、验证,了解探索规律的过程)2.若按图2 的方式摆放餐桌和椅子,完成下表:(设计意图:巩固加深学生对探索规律的过程和方法的理解):3.能力提升:问题1:班委提出利用8张这样的桌子想要坐更多的人,应选择哪种方法摆放?问题2:现在有40张这样的桌子,若按照第一种摆放方式,每8张拼成1张大桌子,一共可以坐______人.问题3:如果有8n张桌子,仍然按第一种规律8张拼成一张大桌子,此时桌子周围可以坐多少人?你是怎么想的?你能根据这个图形提出问题并解答吗?(设计意图:通过这几个问题,加大了题目的开放性,不仅在探索过程中培养了学生的创造能力,也使学生在对数学的生活化和生活的数学化都有较好的体验,预计15分钟)第四环节学生总结收获探索规律的方法和步骤是什么呢?(教师分析)通过本节课的学习,你有什么收获?(设计意图:给学生表达的机会,培养学生及时归纳总结知识的方法的好习惯,3分钟)第五环节学以致用mm的黑白两种颜色的大理石地砖,按如图的方1.某展览馆选用规格为600600式铺设通向展厅的走廊地面,依据上图规律,第4个图形需要黑色大理石地砖________块,第n个图形中需要黑色大理石地砖________块.2.下面是用棋子摆成的“小房子” ,摆第10个这样的“小房子” 需要多少枚棋子?摆第n个这样的“小房子”呢?你是如何得到的?3.将连续的奇数1,3,5,7,9…排成如图所示的数表.(1)十字形框中的五个数之和与中间数17有什么关系?(2)设十字框中间的奇数为a,用含a的代数式表示框中五个奇数之和为______.(3)若将十字形框上下左右移动,可框住另外五个数,这五个数的和还有上述规律吗?(4)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是______.(5)被十字框框中的五个奇数之和能等于2019吗?能等于2015吗?说说你的理由.结语:同学们,把你的年龄的两位数的十位与个位对调,然后相减,得到一个数,记下这个数,我知道你得到的数一定能被9整除. 同学们试一试,想知道为什么吗?下节课我们将探索其中的规律.。
北师大版数学七年级上册3.5《探索与表达规律》教学设计2一. 教材分析《北师大版数学七年级上册3.5》这一节内容是在学生已经学习了有理数的混合运算、函数的性质等知识的基础上进行授课的。
本节课的主要内容是让学生掌握探索和表达规律的方法,通过观察、分析、归纳等步骤,找出数学问题中的规律,并用数学语言进行表达。
教材中给出了大量的例子,让学生在实践中掌握方法,提高解决问题的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的混合运算、函数的性质等知识有一定的了解。
但是,学生在解决实际问题时,往往缺乏观察、分析和归纳的能力,不能找到问题的规律。
因此,在教学过程中,教师需要引导学生观察、分析、归纳,培养学生解决问题的能力。
三. 教学目标1.理解探索与表达规律的方法,能够运用观察、分析、归纳等步骤找出数学问题中的规律。
2.能够用数学语言表达规律,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.探索与表达规律的方法。
2.如何引导学生观察、分析、归纳,找出问题的规律。
五. 教学方法1.讲授法:教师讲解探索与表达规律的方法,引导学生观察、分析、归纳。
2.案例分析法:通过分析具体的例子,让学生理解并掌握探索与表达规律的方法。
3.小组讨论法:学生分组讨论,培养团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的案例,用于讲解和分析。
2.准备教学PPT,展示案例和引导学生思考的问题。
七. 教学过程1.导入(5分钟)教师通过一个简单的案例,引导学生思考如何找出问题的规律。
例如,给出一些数字序列,让学生观察并找出规律。
2.呈现(10分钟)教师呈现PPT,展示更多的案例,让学生观察并分析其中的规律。
教师引导学生运用观察、分析、归纳等步骤,找出问题的规律。
3.操练(10分钟)教师给出一些实际问题,让学生分组讨论,尝试找出问题的规律,并用数学语言进行表达。
教师在这个过程中给予学生指导,帮助学生理解和掌握探索与表达规律的方法。
北师大版数学七年级上册3.5《探索与表达规律》(第1课时)说课稿一. 教材分析《探索与表达规律》是北师大版数学七年级上册3.5的内容,本节课的主要内容是让学生通过观察、归纳、推理等方法探索数学规律,培养学生逻辑思维能力和创新能力。
教材通过生活中的实例引入,让学生感受数学与生活的紧密联系,激发学生学习兴趣。
教材内容由浅入深,逐步引导学生探索规律,并在探索过程中培养学生合作交流的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学有一定的认识。
但学生的数学思维能力参差不齐,有的学生可能还停留在死记硬背的阶段,缺乏独立思考和创新能力。
因此,在教学过程中,教师要关注学生的个体差异,引导学生主动参与,激发学生的学习兴趣。
三. 说教学目标1.知识与技能目标:让学生掌握探索数学规律的基本方法,能够运用规律解决实际问题。
2.过程与方法目标:通过观察、归纳、推理等方法,培养学生逻辑思维能力和创新能力。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,培养学生对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:让学生掌握探索数学规律的基本方法。
2.教学难点:如何引导学生发现并表达规律,培养学生的创新能力。
五. 说教学方法与手段1.教学方法:采用启发式教学法、讨论法、实践操作法等,引导学生主动参与,培养学生的动手操作能力和思维能力。
2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过生活中的实例引入,让学生感受数学与生活的紧密联系,激发学生学习兴趣。
2.探索规律:引导学生观察、分析、归纳,发现规律,并能够用语言、字母、图形等表达出来。
3.实践应用:让学生运用规律解决实际问题,巩固所学知识。
4.总结提升:总结本节课的学习内容,强调探索规律的方法和步骤。
5.课堂练习:布置一些相关的练习题,让学生巩固所学知识。
七. 说板书设计板书设计要简洁明了,突出本节课的主要内容,包括探索规律的方法、步骤以及规律的表达方式等。
《探索与表达规律》教学设计
教材分析:
探索规律是北师大版七年级数学上册第三章第五节,探索规律本身是数学课中比较抽象的一部分内容,学生需要积累一定的经验和基本的探索方法才可以找到题目的规律,本章学习的整式及其加减正好用来表示这种规律,所以表达规律是整式应用很好的范例,教材在本章安排了几种简单的规律探索问题,其目的主要是让学生掌握解决这类问题的基本方法即:探索分析——归纳表示——验证结论,体会解决问题的基本思想即:从特殊到一般的思想。
教学目标:
1.知识目标:会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
2.能力目标:培养学生的观察能力、动手能力、创新能力以及交往协作能力,并提高其分析问题和解决问题的能力。
3.情感目标:让学生体会数学就在身边,激发学生的探究热情,体验数学活动的探索性及创造性,培养学生实事求是的科学态度。
教学重难点:
【教学重点】
探索实际问题中蕴涵的关系和规律。
【教学难点】
用字母、运算符号表示一般规律。
课前准备:
见PPT
教学过程:
一、问题引入
这是2016年3 月的日历,你能填空吗?
【设计意图】通过简单的问题,学生快速回答从而获得对数字规律的直观体验,为用字母表示规律埋下伏笔。
二、合作探究
1.学生探究活动项目单:
(1)说一说日历中的数字排列有什么规律?(同一排或同一列)
(2)若用一个方框任意框出九个数,这九个数字之间有什么数量关系?
(3)用字母表示这种数量关系。
(4)这九个数的和与中间数有什么关系?
(5)尝试使用较为简练的语言和同桌说一说你发现的规律。
学生思考、猜想、交流,个别学生展示。
应鼓励学生大胆探索,积极发言。
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = __9a____
可得到:蓝色方框中九个数之和=9×正中间的数。
进一步挑战:
给出几个图形,如“十”字形、“H”形,“W”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,并分小组展示。
在十字形的区域中,五个数字的和等于正中心数的_5__倍
在H 形区域中,7个数的和等于正中心数的__7__倍.
在w形区域中,七个数的和等于中心数的__7__倍。
我们发现前面的图案都有一个中心数哦,而且都是对称图形。
你有什么猜想?能不能设计更多的图形,发现更多日历中的规律呢?猜一猜、试一试吧!
2.数字规律
(1)任意写出一个两位数;
(2)交换这个两位数的十位数字和个位数字,又得到一个数;
(3)求这两个数的和。
这些和有什么规律?
你们组能发现并验证这个规律吗?
可设这个两位数的十位数字为x,个位数字为y
则原两位数为10x+y
交换后的两位数为10y+x
它们的和是11x+11y
所以,它们的和一定能被11整除。
【设计意图】教学中用屏幕显示日历图中的套色方框,让学生自主探究问题串,然后生生之间、师生之间相互交流,目的在于通过学生自主探究和合作交流的学习方式,让师生共同经历探索数量关系、运用符号表示规律、通过计算验证规律的过程,进一步发展其符号感;让学生经历从特殊到一般再到特殊的认识过程,发展其辩证唯物主义观点。
鼓励学生用不同的思维方式,可以有不同设法,分别尝试比较,得出最佳方案,培养学生发散思维能力。
通过探讨、归纳来总结规律是这一环节的主要目的。
三、随堂练习(根据课堂时间和效果而定)
1.小明:你在心里想好一个两位数,将十位数字乘以2,然后加上3,再把所得新数乘
以5,最后把得到的新数加上个位数字,把你的结果告诉我,我就知道你心里想的两位数.
小明是怎么知道的?
2.用火柴棒按下图的方式搭三角形
(1)填写下表:
(2)照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?
搭n个这样的三角形需要(2n+1)根火柴棒。
四、课堂小结
1.探索规律的主要过程:
特殊——一般——特殊
2、探索规律的一般方法:
(1)寻找数量关系;
(2)用代数式表示规律;
(3)验证规律。
五、作业布置
习题3.8第1题,习题3.9第2题
教学反思:
1.灵活处理教材,不断生成新的学习内容。
教材中只提供了一个探索规律的例子,这就要求教师要自己挖掘和开发新的课程资源。
这正是《数学课程标准》的要求,也是北师大版教材给教师留下的自由空间。
教师一开始就设计了一个探索规律的游戏活动,不仅使学生提高了学习兴趣,而且把学生置于一种探究的欲望之中,还使他们体验到数学就在我们的生活中的感受。
二是教师就地取材,让学生充分挖掘日历中的各种图案中数的规律生成新的探究内容。
三是补充了图形的变化规律的探究。
这样既巩固了所学内容,也让学生明确了数形结合的数学思想为我们解决问题提供了便利的道理。
2.突出以生为本,让学生自主建构新的知识。
课堂上教学活动开放,体现了民主的教学意识,教师放手让学生自主探究、自由探究、独立作业、归纳小结,学生参与面广,较好地落实了学生的主体地位。
从游戏引入开始、到归纳小结结束,做到了问题力求让学生自己解决,规律力求让学生自己总结,作业力争让学生独立完成。
学生自始至终参与观察、分析、思考、归纳、猜想、判断、验证数学规律的全过程,这一教学过程实质上就是学生自主建构知识的过程。
3.注重学生之间的合作与交流,不断开阔学生视野。
课中安排了大量学生合作探究和交流的活动,让学生之间相互学习,取长补短,相互激发灵感,相互开拓思维,相互拓展视野。
如在对日历中其它规律的探索时,通过合作交流,学生就想到了各种各样的图案,探索出了各种图案中的数学规律。
同时,合作与交流还可以让后进的学生通过学习起到插漏补缺的作用。