二次根式的讲义
- 格式:docx
- 大小:86.98 KB
- 文档页数:11
二次根式【知识要点】 必杀技:要注意二次根式中字母的取值范围: 被开方数必须是非负数.1. 二次根式的主要性质: ①⎩⎨⎧<-≥==002a a a a a a ; ②()a a =2(),0≥a ; ③()0,0≥≥⋅=b a b a ab ④()0,0>≥==b a b ab ba b a ; ⑤()()b a b a b a b a ba b a --=-+-=+1; ⑥b a b a ba -+=-1. A 、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式,像这样的二次根式成为最简二次根式最简二次根式的条件:①根号内不含有开的尽方的因数或因式②根号内不含有分母③分母不含有根号B 、同类二次根式:被开方数相同的最简二次根式叫做同类二次根式C 、乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a abD 、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a E 、合并同类二次根式:__________________;=-=+a n a m a n a m【典型例题】例1.x 是怎样的实数时,下列二次根式有意义?(1)1+x ; (2)23-x ; (3)123+x ; (4)x231-.例2.若a a ---33有意义,则a 的值为______________.例3.若22)2()2(-=-x x ,则x 的取值范围是________________.例4.已知2<x <3,化简:3)2(2-+-x x .例5.数a 、b 在数轴上的位置如图所示,化简222)()1()1(b a b a ---++.例1、乘法运算(1))169()25(-⨯- (2)1527⨯ (3)228n m (4)a a 122532⋅-例2:除法运算(1)354- (2)531513÷ (3)921.15004.0⨯⨯ (4)2294a b例3:加减混合运算(1)4832315311312--+(2)xx x x 1246932-+二次根式加减时,可以先将二次根式化简成最简二次根式,再合并同类二次根式,一般步骤为: 化简→分类→合并例1、计算:(1)ab ab ab b a ÷+-)3(33,其中0,0>>b a(2)312)22(28++-(3)32)2145051183(÷-+(4)20)21()23(3632918-+-++--【变式练习】计算:6、27348612421-+-; (2))312218(21812-+--(3)a ab a b ab a 4322763232+-,其中0>ab(4)33)2321418(÷---【课堂练习】1.如果03332=⎪⎪⎭⎫ ⎝⎛-++y x ,那么()=2005xy . 2.已知y x ,的实数,214422-+-+-=x x x y ,则y x 43+的值为 . 3.化简下列各式:(1)()()()44322>---a a a(2)()()233522-+---4.已知23-=a ,求121232---++a a a a a 的值.【贴近中考】1. (2011 江苏省南京市)计算)(12-=___________.2. (2011 江苏省扬州市)=_______________.3. (2011 内蒙古包头市)_________4. (2011 青海省)___________.5. (2011 山东省菏泽市) 实数a在数轴上的位置如图所示,则)A. 7B. -7C. 2a-15D. 无法确定6. (2011 山东省济宁市) 下列各式计算正确的是()A=B.2=C.=D.2=-7. (2011 山东省聊城市)=_____________.8. (2011 山东省临沂市)计算)A.B.5-C.5D.。
《二次根式》讲义一、二次根式的定义形如\(\sqrt{a}(a\geq 0)\)的式子叫做二次根式。
其中,\(\sqrt{}\)称为二次根号,\(a\)叫做被开方数。
需要特别注意的是,二次根式有两个非常重要的限制条件:一是根指数为 2;二是被开方数必须是非负数。
例如,\(\sqrt{5}\),\(\sqrt{16}\),\(\sqrt{x^2 +1}\)(其中\(x\)为任意实数)等都是二次根式;而\(\sqrt{-5}\)就不是二次根式,因为被开方数\(-5\)是负数。
二、二次根式的性质1、\(\sqrt{a^2} =|a|\)当\(a \geq 0\)时,\(\sqrt{a^2} = a\);当\(a < 0\)时,\(\sqrt{a^2} = a\)。
例如,\(\sqrt{3^2} = 3\),\(\sqrt{(-5)^2} = 5\)。
2、\((\sqrt{a})^2 = a\)(\(a\geq 0\))例如,\((\sqrt{7})^2 = 7\)。
3、\(\sqrt{ab} =\sqrt{a} \cdot \sqrt{b}\)(\(a\geq 0\),\(b\geq 0\))例如,\(\sqrt{12} =\sqrt{4\times 3} =\sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}\)。
4、\(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\)(\(a\geq 0\),\(b > 0\))例如,\(\sqrt{\dfrac{18}{2}}=\dfrac{\sqrt{18}}{\sqrt{2}}=\dfrac{3\sqrt{2}}{\sqrt{2}}= 3\)。
三、二次根式的化简化简二次根式是二次根式运算中的重要环节,其目的是将二次根式化为最简二次根式。
最简二次根式需要满足以下两个条件:1、被开方数不含分母;2、被开方数中不含能开得尽方的因数或因式。
二次根式一、知识梳理1、二次根式的概念和性质二次根式的定义:形如a (0a ≥)的式子叫做二次根式.注意点:(1)被开方数是正数或0;(2)二次根式a (0a ≥)表示非负数a 的算术平方根.二次根式的性质:(1)二次根式的非负性:0a ≥;(2)2()(0)a a a =≥;(3)2(0)(0)(0)a a a a a a a a >⎧⎪===⎨⎪-<⎩;(4)当0a ≥时,22()a a =.2、最简二次根式最简二次根式最简二次根式的定义:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开 得尽方的因数或因式.这样的二次根式叫做最简二次根式.最简二次根式的满足条件:(1)被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式);(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含二次根式.说明:二次根式的计算结果要写成最简根式的形式.3、二次根式的加减同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式.二次根式的加减同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次 根式.合并同类二次根式:()a x b x a b x +=+,同类二次根式才可加减合并.分母有理化分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.a b+与a b-互为有理化因式;分式有理化时,一定要保证有理化因式不为0.4、二次根式综合运算二次根式的综合运算法则:先算乘除法,再算加减法,有括号的先算括号里面的,最终结果二次根式部分要化为最简二次根式.注意:在二次根式的计算题中,如果题目中没有明确说明字母的取值范围,按照字母使二次根式有意义计算.5、二次根式化简求值二次根式的化简求值:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,化为较为简单的一个式子(或直接得出结果),最后代入未知数的值求解,有时候也会存在整体代入的情况.注意:对于二次根式的化简求值如果字母没有明确说明取值范围,必须要进行分类讨论.6、根式的大小比较比较大小的方法1.作差法:比较a、b的大小,0,0,0,a b a b a ba b>>⎧⎪-==⎨⎪<<⎩2.作商法:比较a、b的大小,当0,0a b>>时,可以采用作商法,1,1,1,a b aa b ba b>>⎧⎪==⎨⎪<<⎩二次根式比较大小的方法(1)0a b a b>>⇔>(2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比较.(3)估算法(4)分子有理化(5)倒数法7、二次根式的乘除二次根式的乘除法二次根式的乘法法则:a b ab⋅=(0a≥,0b≥).二次根式的除法法则:a abb=(0a≥,0b>).说明:利用乘除法则时注意a、b的取值范围,对于ab a b=⋅,a、b都非负,否则不成立.二、典型例题题型一、二次根式的概念和性质例1: 函数1x y x =-中自变量x 的取值范围是( ) A .1x ≥B .1x <且0x ≠C .1x >D .1x ≥且0x ≠【答案】C【解析】该题考查的是函数的定义域.根式下的式子在非负条件下有意义,分数在分母不为0的条件下有意义,综上所述,10x -≥,且10x -≠,∴1x >,故本题答案为C .例2: 若320-+-=x y ,则xy 的值为____.A .8B .6C .5D .9【答案】A【解析】该题考查的是的非负性.根据题意得:3020x y -=⎧⎨-=⎩解得:32x y =⎧⎨=⎩∴32x y =,故选A .变式: 已知:()322512012x x y x -+-=+--,求x y 的值. 【答案】25【解析】该题考查的是二次根式的性质.∵()322512012x xy x -+-=+--有意义∴()32020120120x x x ⎧-≥⎪⎪-≥⎨⎪--≠⎪⎩所以2x =,055y =+=∴2525x y ==题型二、最简二次根式例1、下列二次根式中,最简二次根式是( )A .22xB .0.5C .22x y +D .1x 【答案】C【解析】该题考查最简二次根式.A 、x x 222=被开方数含能开得尽方的因数,不是最简二次根式;故本选项错误; B 、120.522==,被开方数含分母,不是最简二次根式;故本选项错误; C 、22x y +满足最简二次根式的定义,是最简二次根式;D 、1x x x=,被开方数含能开得尽方的因数,不是最简二次根式. 故选C .例2、若最简二次根式2342a +与22613a -是同类二次根式,则a =_________【答案】1±【解析】该题考查的是二次根式.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 根据题意可列:22461a a +=-解得:1a =±变式、若2,m ,4为三角形三边,化简:()()2226m m -+-=____________.【答案】4【解析】该题考查的是根式的化简求值.∵2,m ,4为三角形三边,可知包括如下关系:①24m +>,即6m <②24m +>,即2m >∴原式264m m =-+-=题型三、二次根式的加减例1、计算124183-⨯=__________.【答案】6【解析】该题考查的是二次根式的计算.原式346923=⨯-⨯⨯326323=-⨯ 2666=-=例2、111115533131317+++=++++____.【答案】1714-【解析】该题考查根式的分母有理化.11115135133171317144444155********-----+++=+++=++++ 故答案为1714-. 变式、已知32x =+,32y =-,则33_________x y xy +=.【答案】10【解析】因为32x =+,32y =-,所以()()32321xy =+-=,()()323223x y +=++-=,所以()()()22332221232110x y xy xy x y xy x y xy ⎡⎤⎡⎤+=+=+-=⨯-⨯=⎢⎥⎣⎦⎣⎦题型四、二次根式综合运算例1、化简:2244112a a a a -+--+(112a ≤≤)【答案】32a -【解析】()()222244112211211a a a a a a a a -+--+---=---,因为112a ≤≤,所以原式21121132a a a a a =---=-+-=-例2、若352x y +=-,325x y -=-,求xy .【答案】52-【解析】2()352x y +=-;2()325x y -=-∴22()()352(325)5244x y x y xy +-----===-变式、化简22691025a a a a +++-+【答案】当3a <-时,原式=22a -+;当35a -≤<时,原式=8;当5a ≥时,原式=22a -;【解析】()()22226910253535a a a a a a a a +++-+=++-=++-,当3a <-时,原式353522a a a a a =++-=---+=-+;当35a -≤<时,原式35358a a a a =++-=+-+=;当5a ≥时,原式353522a a a a a =++-=++-=-题型五、二次根式化简求值例1、化简:()221269x x x -+-+=____【答案】43x -【解析】该题考查根式的化简.()()2221269123x x x x x -+-+=-+-∵由题得120x -≥,12x ≤∴()2333x x x -=-=-.∴原式12343x x x =-+-=-.故答案为43x -.例2、化简:108322++.【答案】42+【解析】22108322108(12)108(12)1882(42)42++=++=++=+=+=+变式、化简:(1)412-(2)415+【答案】(1)31-(2)1062+【解析】(1)()24124233131-=-=-=- (2)221064158215(53)222++=+=+=题型六、根式的大小比较例1、比较大小:512-_______12.(填“>”、“<”或“=”). 【答案】>【解析】该题考查的是二次根式比大小.5115115254022222------===>,即511022-->, 即51122->. 例2、设120082006,2007A B =-=,比较大小:A ____B .【答案】A B >【解析】222008200620082006A ==+-,22220072007B ==;2008200622007+< ∴22A B< ∴A B >变式、已知21a =-,226b =-,62c =-,那么a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c b a >>D .c b a <<【答案】B【解析】()()221,223,2322a b c ⎛⎫=-=-=- ⎪ ⎪⎝⎭2222(231)2(13)(2223)0222b a -=--+=-+=+->,b a > 2222(132)2(13)(2223)0222a c -=--+=-+=+->,a c >b ac >>题型七、二次根式的乘除例1、下列计算正确的是( )A .235⋅=B .236⋅=C .84=D .2(3)3-=-【答案】B【解析】根据二次根式的乘法运算法则,可得236⋅=,故答案为B 选项.例2、下列计算结果正确的是( )A .257+=B .2510⨯=C .3223-=D .25105=【答案】B【解析】该题考查的是二次根式计算.A 选项2与5不是同类项,不能合并,故本选项错误;B 选项252510⨯=⨯=,故本选项正确;C 选项32222-=,故本选项错误;D 选项21055=,故本选项错误. 故答案是B .变式、已知:4322232b a a =-+-+,求11a b +的平方根.【答案】2±【解析】该题考查的是二次根式.4322232b a a =-+-+,根据被开方数的非负性我们知道320230a a -≥⎧⎨-≥⎩,所以23a =, 代入得43222322b a a =-+-+=,所以1131222a b +=+=,平方根为2±三、课堂巩固1、函数11y x =-中自变量的取值范围是( B )A .1x ≠B .1x >C .1x ≥D .1x ≥-2、对于所有实数,a b ,下列等式总能成立的是( C )A .()2a b a b +=+B .22a b a b +=+C .()22222a b a b +=+ D .()2a b a b +=+ 3、函数12y x =+中,自变量x 的取值范围是2->x 4、实数P 在数轴上的位置如图所示,化简()()2223p p -+-=15、计算:=⨯121726,=--)84)(213(24, =⨯-03.027.02-0.18,=÷-327348-5.6、化简:()221269x x x -+-+=x 34-.7、设120082006,2007A B =-=,比较大小:A >B . 8、已知: 21x =-,求223x x +-的值.()()()()2222231322-=-+=+-=-+x x x x 9、已知:,x y 为实数,且113y x x <-+-+,化简:23816y y y ---+. 1=x 3<y 原式=()1-4343=---=---y y y y1 2 3 4 p课后作业1、函数2x y x-=中,自变量x 的取值范围是( A ) A .2x ≤且0x ≠B .2x ≤C .2x <且0x ≠D .0x ≠2、若()424A a =+,则A =( A ) A .24a +B .22a +C .()222a + D .()224a + 3、若2(2)10m n ++-= 则m n -= -3 .4、在下列二次根式22211025312232322a a a a b m x a b x a b +-++,,,,,,,,,,中,最简二次根式有6个.5、若最简二次根式35a -与3a +是同类二次根式,则a =___4___.6、若231604b a a +-+=-,则3223a b a b +=-___-18___.7、比较大小:512-___>___12.(填“>”、“<”或“=”). 8、计算:01186(121)221+---- 原式=01232212=--++9、化简:(1)412-原式=()13132-=- (2)415+221064158215(53)222++=+=+=。
二次根式【知识要点】 必杀技:要注意二次根式中字母的取值范围: 被开方数必须是非负数.1. 二次根式的主要性质: ①⎩⎨⎧<-≥==002a a a a a a ; ②()a a =2(),0≥a ; ③()0,0≥≥⋅=b a b a ab ④()0,0>≥==b a b ab ba b a ; ⑤()()b a b a b a b a ba b a --=-+-=+1; ⑥b a b a ba -+=-1. A 、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式,像这样的二次根式成为最简二次根式最简二次根式的条件:①根号内不含有开的尽方的因数或因式②根号内不含有分母③分母不含有根号B 、同类二次根式:被开方数相同的最简二次根式叫做同类二次根式C 、乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a abD 、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a E 、合并同类二次根式:__________________;=-=+a n a m a n a m【典型例题】例1.x 是怎样的实数时,下列二次根式有意义?(1)1+x ; (2)23-x ; (3)123+x ; (4)x231-. 例2.若a a ---33有意义,则a 的值为______________.例3.若22)2()2(-=-x x ,则x 的取值范围是________________.例4.已知2<x <3,化简:3)2(2-+-x x . 例5.数a 、b 在数轴上的位置如图所示,化简222)()1()1(b a b a ---++.例1、乘法运算(1))169()25(-⨯- (2)1527⨯ (3)228n m (4)a a 122532⋅- 例2:除法运算(1)354- (2)531513÷ (3)921.15004.0⨯⨯ (4)2294a b 例3:加减混合运算二次根式加减时,可以先将二次根式化简成最简二次根式,再合并同类二次根式,一般步骤为: 化简→分类→合并例1、计算:(1)ab ab ab b a ÷+-)3(33,其中0,0>>b a(4)20)21()23(3632918-+-++-- 【变式练习】 计算:6、27348612421-+-; (2))312218(21812-+-- (3)a ab a b ab a 4322763232+-,其中0>ab (4)33)2321418(÷--- 【课堂练习】 1.如果03332=⎪⎪⎭⎫ ⎝⎛-++y x ,那么()=2005xy .2.已知y x ,的实数,214422-+-+-=x x x y ,则y x 43+的值为 . 3.化简下列各式:(1)()()()44322>---a a a (2)()()233522-+---4.已知23-=a ,求121232---++a aa a a 的值. 【贴近中考】1. (2011江苏省南京市)计算)(12=___________. 2. (2011江苏省扬州市)=_______________.3. (2011内蒙古包头市)_________ 4. (2011青海省)___________.5. (2011 山东省菏泽市) 实数a 在数轴上的位置如图所示,则化简后为( )A. 7B. -7C. 2a -15D. 无法确定 6. (2011 山东省济宁市) 下列各式计算正确的是( )A=B.2=C.=D.2=7. (2011山东省聊城市)=_____________.8. (2011 山东省临沂市)计算的结果是( )A.B.5C .5D .0 5 a 10。
二次根式辅导讲义同步知识梳理一:二次根式得概念二次根式得定义形如得式子叫二次根式,其中叫被开方数,只有当就是一个非负数时,才有意义.二:二次根式得性质1、非负性:a a()≥0就是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2、()() a aa20=≥.注意:此性质既可正用,也可反用,反用得意义在于,可以把任意一个非负数或非负代数式写成完全平方得形式:a a a=≥()()203、a aa aa a20 ==≥-<⎧⎨⎩||()()注意:(1)字母不一定就是正数.(2)能开得尽方得因式移到根号外时,必须用它得算术平方根代替.(3)可移到根号内得因式,必须就是非负因式,如果因式得值就是负得,应把负号留在根号外.4、公式a aa aa a2==≥-<⎧⎨⎩||()()与()()a aa20=≥得区别与联系(1)a2表示求一个数得平方得算术根,a得范围就是一切实数.(2)()a2表示一个数得算术平方根得平方,a得范围就是非负数.(3)a2与()a 2得运算结果都就是非负得.三:最简二次根式与同类二次根式2a B、1--3<0,则化简(1)148 (2)4337- (3)11212 (4)13550-【例14】把下列各式分母有理化(1)328x x y(2)38xx【例15】把下列各式分母有理化:(1)221- (2)5353+- (3)333223- 举一反三:1、已知2323x -=+,2323y +=-,求下列各式得值:(1)x y x y +-(2)223x xy y -+专题五:二次根式计算——二次根式得乘除【例16】化简(1)916⨯ (2)1525⋅ (3)229x y (0,0≥≥y x ) (4)12×632⨯ 【例17】计算(1)(2) (3) (4)(5) (6) (7) (8)【例18】化简:(1)364 (2)22649b a )0,0(≥>b a (2)2964xy )0,0(>≥y x (4)25169x y )0,0(>≥y x【例19】计算:(1)123 (2)3128÷ (3)11416÷(4)648【例20】能使等式22xxx x =--成立得得x 得取值范围就是( )A 、2x >B 、0x ≥C 、02x ≤≤D 、无解专题六:二次根式计算——二次根式得加减【例20】计算(1)11327520.53227--+-; (2)12543102024553457⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 【例21】(1)224344x y x y x y x y --+--+ (2)a b a ba b a b--+-+ 专题七:二次根式计算——二次根式得混合计算与求值1、ab b a ab b 3)23(235÷-⋅ 2、 22 (212 +418-348 ) 3、132x y ·(-42y x)÷162x y 4、673)32272(-⋅++5、62332)(62332(+--+)6、1110)562()562(+-【例21】 1.已知:,求得值.2.已知,求得值。
二次根式讲义 一、知识点梳理 1.二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
2.定义重点①式子有意义:)0(≥a a 中必须,否则,式子没有意义②隐含条件:)0(≥a a ,则,即也为非负数4. 二次根式的乘除运算b a ab ⋅=(00≥≥b a ,))0,0(≥≥=b a b ab a根式中分母不能含有根号,且要变为最简。
6.最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
三、典型例题讲解 例11、用代数式表示:(1)面积为S 的正方形的边长为______.(2)•面积为10•的直角三角形的两直角边的比为1:•2,•则这两条直角边分别为______.2、在二次根式1a -中,字母a 的取值范围是( )A .1<aB .1≤aC .1≥aD .1>a 3、下列式子中,是二次根式的有( )①22x +,②3x ,③32,④2()x -A .1个B .2个C .3个D .4个 4、(1)若0≥a ,则a _____0.(2)若021=++-x y ,则=x _____,=y ______. 5、求使式子有意义的实数x 的取值范围.(1)2x - (2)11x - 例21、计算:(1)=2)3(______;(2)=-2)52(_____. 2、下列式子正确的个数是( )①2)4(4±=;②3)3(2-=--;③1)2()3(22=-;④2)7(7=.A .1个B .2个C .3个D .4个3、在实数范围内分解因式792-a .解:=-=-222)7()3(79a a ( )·( )4、计算:(1)22=______.(2)2(5)-=_____; (3)2211010-==______.5、计算: (1)2(2)x -(2≤x ) (2)2(32)- (3)-2(3.14)π-例31、计算:(1)2×7=______.(2)12×8=______; (3)0.1×100=_______.2、下列运算不正确的是( )A .0.40.6⨯=0.2×0.6=1.2B .4×36=2×6=12C .0.4 3.60.4 3.6 1.44⨯=⨯===1.2D .a ·3=3a (0≥a ) 3、计算:(1)3×(-212) (2)2×6×13(3)2ab ·1b (4)-12xy ·(-4y )4、计算:(1)812=______;(2)126=_____.5、计算:(1)318÷2=_____;(2)293x y xy ÷=______. 例41、化简:(1)8=______;(2)1327=____.2、化简:(1)3a =_____;(2)2316x y =_____.3、化简:(1)56=______; (2)-125015⨯=______; (3)2332ab c=______;4、下列计算正确的是( )A .-1210×2=-1220B .y x xy x xy x 31313313=⋅=⋅C .112882887272⨯=⨯=4=2 D .534=5435、把38化为最简二次根式为_______.6、下列二次根式中,不是最简二次根式的是( )A .aB .31C .1x D .21a +四、举一反三 1.(2012义乌)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间2.(2012杭州)已知)212()33(-⨯-=m ,则有( )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 3.(2012泰安)下列运算正确的是( )A .2(5)5-=- B .21()164--= C .632x x x ÷= D .325()x x =4.(2012德阳)使代数式12-x x有意义的x 的取值范围是( )A . 0≥xB .21≠x C .0≥x 且21≠x D .一切实数5.(2011山东菏泽)实数a 在数轴上的位置如图所示,则22(4)(11)a a -+- 化简后为( )A . 7B . -7C .152-aD . 无法确定6.(2011山东济宁)若0)3(12=++-+y y x ,则y x -的值为 ( )A .1B .-1C .7D .-77.(2011山东烟台)如果aa 21)12(2-=-,则( )A .21<a B. 21≤a C. 21>a D. 21≥a8.(2011山东日照)已知x ,y 为实数,且满足x +1y y ---1)1(=0,那么20112011y x -= .9. (2011山东枣庄)对于任意不相等的两个实数a 、b ,定义运算※如下:a※b =b a b a -+,如3※2=32532+=-.那么8※12= .10.已知a ,b ,c 为△ABC 的三边长,化简22()()a b c b a c +-+---a b c --.a 105第2题图第4题图 五、过关测试二次根式的定义 1、二次根式11x --有意义,则实数x 的取值范围为_____. 2、矩形面积为12cm 2,矩形的长与宽之比为3:2,则矩形长为_____cm ,宽为____cm . 3、无论实数x 取何值下列式子总有意义为( )A .2(1)x -- B .21x -+ C .21x + D .1x -4、如图所示,方格图中小正方形的边长为1,将方格图中阴影部分剪下来,再把剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) A .3 B .2 C .5 D .65、如图所示,在平面直角坐标系中,A (-2,3),B (-4,0),C (-2,0)是三角形的三个顶点,求三角形各边的长.6、已知1433b a --与114+-b a 互为相反数,试求a ,b 的值.7、已知x ,y 为实数,且y =1122x x -+-+12,求x ,y 的值.二次根式的性质1、计算:(1)=2)75(____________; (2)=-2)2(x ______.2、(1)当0≥x 时,=-2x ______________;(2)当0≤x 时,2x =______. 3、下列式子计算不正确的是( )A .3)3(2=B .a a =-2)((0≥a )C .2(32)-=3-2D .15)53(2-=- 4、计算:(1)22)3553()54(- (2)22(6)(8)-+-(3)2)52(494-⋅+ (4)2230.6--5、已知实数x 在数轴上的位置如图所示,化简2222(1)(2)x x x --+-.6、(改错题)计算:(2x -)2+2(3)x - 解:(2x -)2+2(3)x -=2-x +x -3 ① =-1 ②你认为上述解答过程是错在第_____步,为什么?并求出正确的结果.二次根式的乘法 1、计算:(1)-122×3=_____; (2)18×(-32)=_____. 2、计算:(1)110×110=______; (2)131x·3xy =______. 3、化简:(1)3a -=_____;(2)34m n (0<m )=______. 4、若)2)(1(21--=-⋅-x x x x .则x 的取值范围是( )A .1>xB .2≥xC .2>xD .1≥x 5、定义运算“@”运算法则,x@y@z =xyz ,则2@3@6值为( )A .3B .2C .6D .126、下列各等式成立的是( )A .45×25=85B .53×42=205C .43×32=75D ,53×42=20 7、已知2=a ,则200的值为( )A .a 2B .a 3C .a 10D .a 8 8、下列计算正确的是( )A .(121)(9)1219-⨯-=-⨯-=33B .23x =x 3C .(16)(25)1625-⨯-=⨯=20D .249x -=32-x 9、阅读解答题:因为23=223⨯=12 ①-23=2(2)3-⨯=12 ②所以23=-23 ③ 即2=-2导致以上出现错误的结果错因在第几步( ) A .① B .② C .③ D .④ 10、化简:(1)2000 (2)250a b (0<a ,0>b )(3)18×3220×(-1315) (4)627×(-23)(5)2xy ×12x (6)115×23×(-1210)11、计算(1)5xy ×(-323x y )×361y (2)32ab b ·(-323a b )·3ab(0<a ,0>b )(3))))((abx ax x a b x ab --- (0>a ,0>b ,0>x )12、将aa 1-括号外的因式a 移到括号内部.二次根式的除法及最简二次根式 1、计算:(1)49=_____________;(2)2764=______.2、计算:(1)0.680.17=__________;(2)328=______. 3、计算:(1)0.48=______;(2)512=_____. 4、若2211x xx x--=++,则x 取值范围为_______. 5、下列各式是最简二次根式为( ) A .15B .24C .28D .7326、如图所示,小芳想在墙壁上钉一个三角形架,•其中两直角边的长度之比为3:2,斜边长为520,则较短直角边的长度为( ) A .40 B .210 C .410 D .426 7、化去下列各式中根号内的分母正确的是( ) A .2225555== B .22151535=⨯ C .3333n n mn m m m ==(0>m ,0>n ) D .11aa a a===a 8、下列各式计算正确的是( )A .442939---==---=23B .238499==2132C .3163727÷= D .825=58 9、把下列二次根式化为最简二次根式: (1)338=_______; (2)712=_______;(3)2.11.0⋅=_______;(4)3273x =_______; 10、计算:(1)48÷(32·3)(2)43623x x ÷(3)3520÷(-136)(4)8243311、计算:(1)3223×(-1815)÷1225(2)-4318÷(28×1354)。
二次根式及其运算概述:二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法。
知识盘点:1、二次根式的性质:2、二次根式的运算法则:(5)3、设a,b,c,d,m是有理数,且m不是完全平方数,则当且仅4、当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.典典例精析:例1 化简:点评:若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简.例2 化简:点评:两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.解法1 配方法.配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则解法2 待定系数法.例4 化简:点评:(1)将被开方数的化成分母是2的分数就可以按例3的方法解决了,还要注意开方时考虑符号;(2)这是多重复合二次根式,可从里往外逐步化简。
例5:(2010湖北省荆门市)已知a =2b =2a b -的值. 点评:由于a+b 和ab 都是有理数,所以整体代人较为简便。
点评:考虑到被开方数的平方差特点待定系数法设原式为x ,两边平方可以使原式简化。
例7:化简441296222+--+-+++x x x x x x点评:本题的解法叫零点法,也叫分段讨论法,是解决绝对值题型的基本方法。
例8:设154-=a ,试求a a a 4223--的值。
点评:原式=a(a 2-2a-4)=a(a 2-2a+1)-5a ….通过配方巧妙解答,流畅自然。
例9:计算10121011101144++-++点评:设10,10,10424===a a a 则达到化繁为简之妙。
例10:已知a 、b 都是有理数,且347-是方程02=++b ax x 的解,求a+b 。
2024年中考数学复习专题讲义:二次根式知识点讲解1、二次根式的定义 一般地,形如a (a ≥0)的式子叫做二次根式。
2、二次根式的基本性质①2a =(a ≥0); a = (a ≥0); a = (a 取全体实数)。
3、二次根式的乘除(1)二次根式的乘法:①ab b a =⋅; ②b a ab ⋅= (a ≥0, b ≥0)。
(2)二次根式的除法:= = (a ≥0, b >0)。
4、最简二次根式 最简二次根式满足的条件:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式。
5、二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
专题练习一、选择题1.下列二次根式中,是最简二次根式的是( )A .√12B .√8C .√13D .√0.22.若二次根式√x +2有意义,则x 的取值范围是( ).A .x >−2B .x ≥−2C .x <−2D .x ≥23.化简√(−3)2的结果是( )A .−3B .±3C .3D .94.估计(√27−√6)÷√3的值应在( )A .0到1之间B .1到2之间C .2到3之间D .3到4之间5.下列计算错误的是( )A .3√2−√2=3B .√60÷√5=2√3C .√25a +√9a =8√aD .√14×√7=7√26.若 x =√m −√n,y =√m +√n ,则 xy 的值是( ).A .2√mB .m −nC .m +nD .2√n 7.计算:√12×√13−√8÷√2的结果是( ) A .2 B .0 C .-2 D .−√28.用四张大小一样的长方形纸片拼成一个正方形 ABCD (如图),它的面积是 48, 已知长方形的一边长 AE =3√3, 图中空白部分是一个正方形,则这个小正方形的周长为( )A .2√3B .4√3C .8√3D .16√3二、填空题9.化简√3= 10.若√a +√3=3√3,则a = . 11.计算(2√2+1)(2√2−1)的结果等于 .12.若二次根式√x+3x 有意义,则x 的取值范围为 .13.当m = 时,二次根式√m −2取到最小值.三、解答题14.计算 (1)√16÷√2−√13×√6; (2)32√4x +2√x 9−x √1x +4√x4.15.已知2x =+2y =(1)试求22x y +的值; (2)试求x y y x-的值. 16.某居民小区有一块形状为长方形ABCD 的绿地,长方形绿地的长BC 为√162m ,宽AB 为√128m (即图中阴影部分),长方形花坛的长为(√13+1)m ,宽为(√13−1)m ,(1)长方形ABCD 的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?17.已知x=2−√3,y=2+√3.(1)求x2+y2−xy的值;(2)若x的小数部分是a,y的整数部分是b,求ax−by的值.参考答案1.C2.B3.C4.B5.A6.B7.B8.C9.√33 10.1211.712.x ≥−3且x ≠013.214.解:(1)原式=√16÷2−√13×6=2√2−√2=√2;(2)原式=3√x +23√x −√x +2√x=143√x .15.(1)解:∵2x =, 2y =∴x+y=22+,xy=(22+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵2x =+,2y =-∴x+y=22+,x-y=((2222--=+=xy=(22=1∴()()22x y x yx y x yy x xy xy+---====16.(1)解:长方形ABCD的周长=2(√162+√128)=2(9√2+8√2)=34√2(m),答:长方形ABCD的周长是34√2m;(2)解:购买地砖需要花费=50[9√2×8√2−(√13+1)(√13−1)]=50(144−13+1)=50×132=6600(元)答:购买地砖需要花费6600元.17.(1)解:∵x=2−√3,y=2+√3,∴xy=(2−√3)(2+√3)=4−3=1,(x−y)2=(2−√3−2−√3)2=(−2√3)2=12,∴x2+y2−xy=(x−y)2+xy=12+1=13;(2)解:∵1<3<4,∴1<√3<2,∴3<2+√3<4,∴2+√3的整数部分是3,∴b=3,∵1<√3<2,∴−2<−√3<−1,∴0<2−√3<1,∴2−√3的整数部分是0,小数部分=2−√3−0=2−√3,∴a=2−√3,∴ax−by=(2−√3)(2−√3)−3(2+√3)=7−4√3+6−3√3=13−7√3,∴ax−by的值为13−7√3.)解:①(30x -2)x -②0020x x -22))(2)x -,又232x -+30x -+代数式当2x =时,代数式。
第一章 二次根式知识点一: 二次根式的概念 知识点二:取值范围:二次根式()的双重非负性PS;单项式和多项式统称整式。
单项式:由数字与字母或字母与字母的相乘组成的代数式叫做单项式(单独的一个数字或字母也是单项式)形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
例1下列各式13)-其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x知识点三:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同:当被开方数是非负数,即时,=;时,无意义,而.例3、(1)-2)3(; (2)2)32(; (3) 2)(b a + (a+b ≥0)知识点四 .最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
例4、(1__ __;(2=___ __;(3=____;(40,0)x y≥≥=___ _;(5)_______420=-。
例5、在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)知识点五.二次根式的运算:PS把多项式中同类项合成一项,叫做合并同类项1同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式底数幂相乘,底数不变,指数相加。
即:a m﹒a n=a m+n。
幂的乘方,底数不变,指数相乘。
(a m)n =a m n积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
二次根式复习讲义(MS )一、基础知识(一)二次根式的概念:(1)二次根式:式子a (a ≥0)叫做二次根式.(2)最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.把满足这两个条件的二次根式,叫做最简二次根式。
(3)同类二次根式:化成最简二次根式后,如果被开方数相同。
,这几个二次根式就叫做同类二次根式.(4)分母有理化:把分母中的根号化去,叫做分母有理化。
(5)有理化因式:两个含有二次根式的代数式相乘,如果它们的积为有理式,我们说这两个代数式互为有理化因式.(6)代数式:用基本运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子叫代数式。
(二).同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
(三)二次根式的性质.20)(0);,(0)0,(0),(0)0,0)____(0,0);a a a a a a a a a a b a b ≥=≥>⎧⎪===⎨⎪-<⎩=≥≥=≥>是一个非负数;(*)(三)二次根式的运算:(1)二次根式的加减:先将二次根式化成最简二次根式,然后合并同类二次根式。
(20,0,0)a b a b =≥≥=≥>注意:做乘法时要灵活运用乘法分式;做除法时,有时要写为分数形式,然后分母有理化; 化简时要注意a 的正负性,尤其是隐含的正负性.二、分类考点 二次根式的定义例: ) A 、6个 B 、5个 C 、4个 D 、3个练习:下列各式中,哪些是二次根式,哪些不是二次根式?1.求a 为何值时,下列各式有意义. (1)a a 212-+ (2)32-+a a (4)215.0-a练习1、 53+-x 的取值范围是 _________________练习2有意义的x 的取值范围是 _________________ 练习3、x x --+315的取值范围是 _________________练习4、若31-+a 在实数范围内有意义, 则a 满足的条件是( )A.2=aB. 2≥a C .4-≤a D. 2≥a 或4-≤a例1: 在根式1) ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例2.在二次根式45, 2x 3, 11, 54, x 4中,最简二次根式个数是( ) A .1个 B.2个 C.3个 D.4个例1.把下列各式中根号外的因式适当改变后移到根号里面(1)53- (2)3.010 (3)1832 (4)616 (5)2142-例2、将根号外的数移到根号内(1)33 (2)717(3)x 2 (4)x x 2练习1.计算化简(1)226061- (2)84252.0b a (3)b b 42-(4)b a 325(0<b ) (5)2211b a -(b a <)练习3.求值(1)当211=x 时,求2244x x x +--的值;(2)当3-=a 时,求4152+-⋅-a a a 的值.练习4.求值22)2()1(+--b a ,其中3,14==b a .练习5、10)21()2006(312-+---+;练习5、已知AB,试比较A 与B 的大小。
二次根式一:二次根式的概念二次根式的概念:一般地,我们把形如√a(a≥0)的式子叫做二次根式.注意:①“√”称为二次根号;②a(a≥0)是一个非负数.例题:1.下列各式中:①√y+2;②√(−2)4;③√a2+3;④√x2+6x+9;⑤√x2−3,一定是二次根式的个数是()A.1B.2C.3D.4练习:1.式子是二次根式的条件是.2.当x=﹣1时,二次根式的值是.二:二次根式有意义的条件二次根式有意义的条件判断二次根式有意义的条件:(1)二次根式的概念.形如√a(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.√a(a≥0)是一个非负数.例题:有意义,则x满足的条件是.1.若代数式√x−23练习:1.如果代数式有意义,那么字母x的取值范围是.2.使y=有意义的x的取值范围是.3.使代数式+有意义的x的取值范围是三:二次根式的性质与化简二次根式的性质与化简(1)二次根式的基本性质:①√a≥0;a≥0(双重非负性).②(√a)²=a(a≥0).③√a2=|a|={a(a≥0)−a(a<0)(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.√ab=√a•√b(a≥0,b≥0),√ab =√a √b(a≥0,b>0)(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.例题:1.实践与探索(1)填空:√32= ;√(−5)2= ;(2)观察第(1)的结果填空:当a≥0时√a2= ;当a<0时,√a2= ;(3)利用你总结的规律计算:√(x−2)2+√(x−3)2,其中2<x<3.练习:1.把a中根号外面的因式移到根号内的结果是.2.若要化简我们可以如下做:∵3+2∴=+1仿照上例化简下列各式:(1)=(2)=3.一个三角形的三边长分别为5,,.(1)求它的周长(要求结果化简);(2)请你给出一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.四: 二次根式的乘除法1.最简二次根式最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含有根号.我们把满足上述三个条件的二次根式,叫做最简二次根式.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;含有可化为平方数或平方式的因数或因式的有4、9、a²、(x+y)²、x²+2xy+y²等.2.二次根式的乘除法(1)积的算术平方根性质:√a⋅b=√a•√b(a≥0,b≥0)(2)二次根式的乘法法则:√a•√b=√a⋅b(a≥0,b≥0)(3)商的算术平方根的性质:√ab =√a√b(a≥0,b>0)(4)二次根式的除法法则:√ab =√ab(a≥0,b>0)规律方法总结:在使用性质√a•√b=√a⋅b(a≥0,b≥0)时一定要注意a≥0,b≥0的条件限制,如果a<0,b<0,使用该性质会使二次根式无意义,如(√−4)×(√−9)≠√(﹣4)×(﹣9);同样的在使用二次根式的乘法法则,商的算术平方根和二次根式的除法运算也是如此.3.分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化,分子、分母常常是同时乘二次根式本身(分母只有一项)或与原分母组成平方差公式.例如:①√a =√a×√a√a=√aa;②√a+√b=√a−√b(√a+√b)∙(√a+√b)=√a−√ba−b.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.例如:2﹣√3的有理化因式可以是2+√3,也可以是a(2+√3),这里的a 可以是任意有理数. 例题 :1.下列二次根式中,为最简二次根式的是( )A.√45B.√a 2+b 2C.√12 D.√3.62.计算(1)√2a •√8a (a≥0)= ; (2)√12÷√6= .3.已知:a=2−√3,b=2+√3,则a 与b 的关系是( )A. ab=1B. a+b=0C. a ﹣b=0D.a 2=b 2练习: 1.计算: (1)×; (2)×.2.计算3÷×.五: 二次根式的加减法 1.同类二次根式 同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变.【知识拓展】同类二次根式(1)同类二次根式类似于整式中的同类项.(2)几个同类二次根式在没有化简之前,被开方数完全可以互不相同.(3)判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.2.二次根式的加减法(1)法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.(2)步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.3.二次根式的混合运算(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.(2)二次根式的运算结果要化为最简二次根式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 例题:1.下列各式中,与√3是同类二次根式的是( ) A.√9 B.√27 C.√18 D.√242.计算2√12﹣6√13+√8的结果是( )A.3√2﹣2√3B.5﹣√2C.5﹣√3D.2√23.计算(1)√18a ⋅√2a(a ≥0) (2)√412÷√214(3)√12+√18−√8−√32 (4)(3+√10)(√2−√5). 练习 1.计算: (1)÷+2×﹣(2+)2(2)(﹣)﹣2﹣(﹣1)2012×﹣+2.计算:(1)5.(2).3.(1)计算(﹣2+3)×(2)已知a=+2,b=﹣2.求a2b+ab2的值六:二次根式化简求值二次根式的化简求值二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.例题:1.已知x=3+2√2,y=3﹣2√2,求下列各式的值:(1)x2y+xy2;(2)xy +yx.练习:1.(1)计算:3﹣×+(2)已知:x=+1,求x2﹣2x的值.2.已知x=(+),y=(﹣),求下列各式的值:(1)x2﹣xy+y2;(2)+.3.已知a=,b=,求a2+3ab+b2﹣a+b的值综合练习:1.计算:√2xy •√8y = ,√12×√27= ;√53÷√554= .2.化简√27的结果是____________.3.已知x=3+2√2,y=3﹣2√2,则式子x 2y ﹣xy 2的值为____________.4.求下列式子有意义的x 的取值范围 (1)√4−3x; (2)√3−xx−2; (3)√x−3x−2; (4)√−x 2; (5)√2x 2+1; (6)√2x −3+√3−2x .5.计算:3√5+2√12−√20−12√32.6.计算:①(3﹣√7)(3+√7)+√2(2﹣√2) ②√48÷√3﹣√12×√12+√247.已知x=√3+√2,y=√3﹣√2. 求(1)x 3y+xy 3; (2)3x 2﹣5xy+3y 2的值.。
第三讲 二次根式一、课标下复习指南 (一)二次根式的有关概念 1.二次根式形如)0(≥a a 的式子叫做二次根式.2.最简二次根式(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.满足上述两个条件的二次根式叫做最简二次根式. (二)二次根式的主要性质1.)0(≥a a 是一个非负数; 2.);0()(2≥=a a a 3.⎩⎨⎧<-≥==);0(),0(||2a a a a a a4.);0,0(≥≥⋅=b a b a ab5.);0,0(>≥=b a ba ba6.若a >b ≥0,则.b a >(三)二次根式的运算 1.二次根式的加减二次根式加减时,先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. *3.分母有理化把分母中的根号化去,分式值不变,叫做分母有理化. 常用的二次根式的有理化因式:(1)a 与a 互为有理化因式;(2)b a +与b a -,一般的,b c a +与b c a -互为有理化因式;(3)b a +与b a -,一般的,b d a c +与b d a c -互为有理化因式. 二、例题分析例1 当x 为何值时,下列代数式有意义?.1)2(;322)1(232x x x x x -+----解 (1)欲使3222---x x x 有意义,只要使⎩⎨⎧=/--≥-.032,022x x x 即⎩⎨⎧≠-=/≥.31,2x x x 且 解得x ≥2且x ≠3. ∴当x ≥2且x ≠3时,3222---x x x 有意义.(2)欲使231x x -+-有意义,只要使-x 2≥0,解得x =0. ∴当x =0时,231x x -+-有意义.说明 代数式有意义的条件:分式有意义的条件是分式的分母不为零;二次根式有意义的条件是被开方数为非负数;由实际意义得到的代数式还要符合实际意义.例2 化简:(1);14962123xx x x x -+ *(2)已知1<x <2,化简122+-x x .442x x +-+ 解 (1)原式x x x x x x 4221-+=x x 23-=(2)∵1<x <2,∴x -1>0,2-x >0.224412x x x x +-++-∴22)2()1(x x -+-==|x -1|+|2-x |=(x -1)+(2-x )=1.说明 (1)二次根式的化简要考虑最简二次根式的两个条件,根号内是多项式时,要考虑是否是完全平方式;(2)化简2a 时,要考虑字母a 的取值范围;(3)在二次根式运算中,根号外的因式可以平方后作为被开方数的因式移进根号内,从而使运算简化.例3 计算:(1);22)8321464(÷+- (2)+⋅-+-5()625()2332(202.)6219 解 (1)原式22)262264(÷+-= .232+=(2)原式=5)(625[()1861212(-++-62561230)625()]6219-+-=-⋅+.61435-=说明 整式和分式的运算性质在二次根式的运算中同样适用,乘法公式、分配律、约分等都有可能简化运算过程,要根据式子的结构特征灵活使用.例4 已知xy =3,求yxyx y x+的值. 分析 因为xy =3,所以x ,y 同正或同负,要分情况讨论.解 当x >0,y >0时, 原式.322==+=xy xy xy 当x <0,y <0时,原式.322-=-=--=xy xy xy 综上可知,原式.32±= 三、课标下新题展示例5 若n 20是整数,则满足条件的最小正数n 为( ). A .2 B .3C .4D .5解 D .说明 对于二次根式的性质:||);0()(22a a a a a =≥=,会有多种形式进行考查,要熟练掌握.例6 对正实数a ,b ,定义,*b a ab b a +-=若4*x =44,则x 的值是______. 解 依题意,得.4444=+-x x 整理,得.484=+x x 变形,得.4912)(2=++x x.49)1(2=+∴x71=+∴x 或,71-=+x 6=x 或8-=x (舍).∴x =36.经检验,x =36是原方程的解. ∴x 的值是36.说明 此题考查了阅读理解能力、完全平方公式、二次根式的性质、配方法解方程,是一道代数综合题,要求每个基本知识点都熟练掌握. 四、课标考试达标题(一)选择题1.在根式⑤④③②①;2;15;;5223a b a a -2;12aa ⑥中,最简二次根式是( ). A .②③⑤ B .②③⑥C .②③④⑥D .①③⑤⑥2.如果最简根式a b b -3和22+-a b 是同类二次根式,那么a 、b 的值分别是( ).A .a =0,b =2B .a =2,b =0C .a =-1,b =1D .a =1,b =-23.下列各式中,运算正确的是( ). A .553322=+ B .236=÷ C .632=D .12233=-(二)填空题4.当x 满足______条件时,32++-x x在实数范围内有意义. 5.若式子|2|)1(2-+-x x 化简的结果为2x -3,则x 的取值范围是______. 6.已知x 为整数,且满足32≤≤-x ,则x =______.7.观察下列各式:=+=+412,312311514513,413=+…请你将发现的规律用含自然数n 的等式表示出来______.(n ≥1)(三)解答题 8.计算:.)2(xy yxxyxy ⋅+-9.化简:.)23(36329180-++--10.先化简,再求值:423)225(--÷---a a a a ,其中.33-=a*11.观察下列分母有理化的运算:-=+2121=+-=+321,23231,1,32-251+.,25 -= 从计算结果中找出规律,并利用这一规律计算:+++++++ 321231121().12010()200920101+⋅+参考答案第三讲 二次根式1.B . 2.A . 3.B . 4.-3≤x <0. 5.x ≥2. 6.-1,0,1. 7.21)1(21++=++n n n n . 8.xy -2y +x . 9.⋅2210.-2(a +3),.32- 11.2009.。
专题一 二次根式【知识点1】二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式。
二次根式的实质是一个非负数数a 的算数平方根。
【注】二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
例1 以下各式1〕22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________〔填序号〕. 例2 使x +1x-2有意义的x 的取值范围是〔 〕 A .x ≥0 B .x ≠2 C .x>2 D .x ≥0且x ≠2. 例3 假设y=5-x +x -5+2021,那么x+y=练习1使代数式43--x x 有意义的x 的取值范围是〔 〕 A 、x>3 B 、x ≥3 C 、 x>4D 、x ≥3且x ≠4练习2假设11x x ---2()x y =+,那么x -y 的值为〔 〕A .-1B .1C .2D .3例4 假设230a b -+-=,那么 2a b -= 。
例5 在实数的范围内分解因式:X 4 - 4X 2+ 4= ________ 例6 假设a 、b 为正实数,以下等式中一定成立的是〔 〕: A 、a 2 +b 2 =a 2+b 2 ; B 、〔a 2+b 2〕2 =a 2+b 2; C 、〔 a + b 〕2= a 2+b 2; D 、〔a —b 〕2 =a —b ;【知识点2】二次根式的性质:〔1〕二次根式的非负性,)0(0≥≥a a 的最小值是0;也就是说〔〕是一个非负数,即0〔〕。
注:因为二次根式〔〕表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数〔〕的算术平方根是非负数,即0〔〕,这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如假设,那么a=0,b=0;假设,那么a=0,b=0;假设,那么a=0,b=0。
专题一 二次根式【知识点 1】二次根式的概念:一般地,我们把形如a 0(a 0) 的式子叫做二次根式。
二次根式的实质是一个非负数数 a 的算数平方根。
【注】二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被 开方数的取值范围有限制:被开方数 a 必须是非负数。
例 1 下列各式 1) 1,2) 5,3) x 2 2,4) 4,5) ( 1)2,6) 1 a,7) a 2 2a 1 , 其中是二次根式的是 ____________________ (填序号).例2 使 x + x 1-2 有意义的 x 的取值范围是()A .x ≥0B .x ≠2C .x>2D .x ≥0且 x ≠2.[来源:学*科*网 Z*X*X*K]例 3 若 y= x 5 + 5 x +2009 ,则 x+y=练习 1 使代数式 x 3 有意义的 x 的取值范围是( ) x4A 、x>3B 、x ≥ 3C 、 x>4D 、x ≥3 且 x ≠4练习 2 若 x 1 1 x (x y ) ,则 x -y 的值为()A .- 1B .1C .2D .3例 4 若 a 2 b 3 0,则 a 2 b = 。
例 5 在实数的范围内分解因式: X 4 - 4X 2 + 4= ___________ 例 6 若 a 、 b 为正实数,下列等式中一定成立的是( ):A 、a 2 +b 2 = a 2+b 2 ;B 、 (a 2+b 2) 2 =a 2+b 2; C 、( a + b )2= a 2+b 2; D 、 (a —b ) 2 =a —b ;【知识点 2】二次根式的性质:(1)二次根式的非负性, a 0(a 0) 的最小值 是 0 ;也就是说 ( )是一个非负数,即0( )。
注:因为二次根式 ( )表示 a 的算术平方根,而正数的算术平方根是正 数,0 的算术平方根是 0,所以非负数 ()的算术平方根是非负数, 即0( ),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0 ;若,则a=0,b=0 ;若,则a=0,b=0 。
(2)()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
3)注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a 的相反数-a,即;2、中的a 的取值范围可以是任意实数,即不论a 取何值,3、化简时,先将它化成,再根据绝对值的意义来进行化简。
(4)与的异同点不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0 ,负实数。
但与都是非负数,即例 17 若, 。
因而它的运算的结果是有差别的, ,相同点:当被开方数都是非负数, 即 时, = ; 时, 无意义,而 a 、 b 、c 为三角形的三条边,则 (a b c) 2 b a cA 、把 (2-x) 1的根号外的( x22 x B 、 x 22-x )适当变形后移入根号内,得( )C 、2xD 、若二次根式 2x 6有意义,化简│ x-4 │-│7-x │。
10 11 121314 15 16已知 x 、y 是实数,且满足 y= x —6 + 6—x +1 试求 9x —2y 的值 若实数 a 满足 a 2 +a=0, 则有 ( A . a>0 B . a ≥ 0列命题中,正确的是( A .若 a>b ,则 a > b C .若 |a|=( b ) ,则 a=b24n 是整数,则正整数 nA 、4; 实数a 、B 、 5; )C)B D 的最小值是a<0 D. a ≤0.若 .若a >a ,则 a>0 a 2=b ,则a 是b 的平方根 b 在数轴上的位置如图所示,那么、6; a b a 2 的结果是什么?D 、 7.11a 1 7 ,则a 1aa≥0 时, a 2 、 ( a )2 、- a 2 ,比较它们的结果, 下面四个选项中正确的是( ).已知已知 . a 2 = ( a)2 ≥ - a 2 B . a 2 > ( a)2 >- a 2 . a 2 < ( a)2 <- a 2D. - a 2 > a 2 = ( a)20<x <1,则 (x 1)2 4 -x A )2xxB )- 2x(x 1)2 4 等于C )- 2xD )2x1 1 1 1【提示】(x-)+4=(x+),(x+)-4=(x-).又∵ 0<x< 1,x x x x11∴ x+ >0,x- <0.【答案】D.xx【点评】本题考查完全平方公式和二次根式的性质.(A)不正确是因为用性质时没有注1意当0<x<1 时,x- <0.x练习 3 若|1-x|-x2-8x+16 =2x-5,则x的取值范围是()A.x>1 B.x<4 C .1≤x≤4 D .以上都不对练习 4 若x 0 时,则|1 x| x2 ______________练习 5 若y 3x 6 6 3x x 3,则10x+2y 的平方根为______________________练习 6 若x 3 ,则1 1 x 2等于()A.1 ; B 、1; C 、3; D 、3练习7 已知x 5,化简x 2 x 4 的结果是.练习8 若x2 3 3 x2 2 y 试求x y的值。
练习9 已知2x 1 1 2x 2a 4,求a 的值。
练习10 若x y y2 4y 4 0 ,求xy的值专题二二次根式的乘除【知识点1】二次根式的乘法法则: a b ab(a 0,b 0)。
得出:二次根式相乘,把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:ab a b(a 0,b 0)积的算术平方根,等于积中各因式的算术平方根的积。
例1 化简:(1)64x2 y3(x ≥0,y ≥0)=__ ;(2)a2b4 a4b2(a≥0,b≥0)=_________ .(3)练习 1 化简二次根式 ( 5)2 3 得( )知识点 2 】二次根式的除法: ( 1)一般地,对于二次根式的除法规定a(a 0,b 0). 商的算术平方根等于被除式的算术平方根除以除式 baa的算术平方根即 a b(a 0,b 0). b注】分母有理化二次根式的除法运算, 通常是采用化去分母中的根号的方法来进行的。
分母有理化:1)定义:把分母中的根号化去,叫做分母有理化 2)关键:4) (a 1)a1A. 5 3B. 5 3例 2 下列各式中不成立的是( )A. ( 4)( x 2) 2 xC.5 25 4 C.1 19 99练习 2 下列各式中化简正确的是(A. ab 2 abC. 941 x 2y 321x y 例 3 计算:C. 5 3 D. 30B. 402 242 64 16 32D. ( 6 2)( 6 2) 4 )B.14x 1 x 24D. 5ab 4 b 4 b 2 5a 1例 4 若 b>0, x<0,化简:x 3b练习 4 如果 x ( y>0)是二次根式,化为最简二次根式是().把分子、分母都乘以一个适当的式子,化去分母中的根号例 5 2+ 3 的有理化因式是 ____________ ; x- y 的有理化因式是 __________- x 1- x 1 的有理化因式是 _________________ .例 6 若 6 4 2 的整数部分为 a ,小数部分为 b 。
求 a 2 的值 b练习 3 已知 11 1 的整数部分为 a ,小数部分为 b ,试求 11 a b 1 的值【知识点 3】同类二次根式:( 1)被开放数不含分母; (2)被开放数中不含开得 尽方的因数或因式。
例 8 下列二次根式中,最简二次根式是( )(A ) 12(B ) xy ( C ) 3 ( D ) 4a 3b 2例 9 已知 xy 0,化简二次根式 x 2y 的正确结果为 ___________ .例 10 设 a= 3 2,b=2 3,c= 5 2,则 a 、b 、c 的大小关系是-1m3)3m23n 22a 2例7)÷ m>0, n>0)32 m a 2na>0)x专题三 二次根式的加减知识点 1】同类二次根式:几个二次根式化成最简二次根式后,如果被 开方数相同,这样的二次根式叫做同类二次根式。
同类二次根式与同类项的异同: 一 . 相同点:1. 两者都是两个代数式间的一种关系。
同类项是两个单项间的关系, 字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关 系,指化成最简二次根式后被开方数相同的二次根式。
2. 两者都能合并,而且合并法则相同。
我们如果把最简二次根式的根 号部分看做是同类项的字母及指数部分, 把根号外的因式看做是同类项的系 数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类 二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。
二 . 不同点:1. 判断准则不同。
判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否 相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是 否对应相同”,练习 5 练习 6 A..(y>0) B . xy ( y>0) Cy化简二次根式 aa2 a 22的结果是 aa2列二次根式中,最简二次根式是(a1 2B. a 2 1C.xy(y>0) D .以上都不对 ya24abD. a 2b与系数无关2. 合并形式不同例 1 在8 、1 75a 、2 9a 、125 、2 3a3、3 0.2 、-2 1中,与3a 是同类3 3 a 8 次根式的有例 2 若最简根式3a b4a 3b与根式2ab2 b3 6b2是同类二次根式,求a、b的值.练习 1 下列二次根式中与2 是同类二次根式的是( ).A.12 B .3C .2D .182322练习2若最简二次根式3m2 2 与n 14m2 10 是同类二次根式,求m、n的值.3【知识点2】二次根式的加减:二次根式加减时,可以先将二次根式化为最简的二次根式,再将被开放数相同的根式进行合并。
例 3 ( 1) 4 ( 48 6) 27 ( 2 ) 3 90+ - 4(3) 2x 8x3 2 2xy2(x 0,y 0)例 4 已知4x2+y2-4x-6y+10=0 ,求( 2x 9x +y2 x3)- (x2 1-5x y)的值.知识点3】二次根式的混合运算二次根式的混合运算顺序与整式的混合运算顺序一样:先乘方,再乘除,最后加减,有括号的先算括号里面的x y y x y x x y x y y x y x x y若 x ,y 为实数, 且 y = 1 4 x + 4x 1+ I .求 II2 y -x2 y 的值.2 y x y x1 4 x 0 提示】要使 y 有意义,必须满足什么条件? [ ] 你能求出 x ,y 的值吗?4x 1 0.y =3 2 ,求 x4 y 2x 3y 2 x 2y 3 的值.提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.Iy211= | y x y x | -| y x x y | ∵ x = 14 ,y = 21解】要使 y 有意义,必须 [1 4x 0 ,即4x 1 0x 14∴ x 41.∴4x = 1 .当 4 x = 1 时,4y =又∵( x yy x )2<y原式=1 ,y = 41时,原式= 22 .【点评】解本题的关键是利用二次根式的意义求出x 的值,例 5 计算 ( 1) a b a b 2 ab 2)a b a b3)例6例 7 已知 x =解】∵ x = 3 2 = ( 3 2) = 5+ 2 6 ,32y = 3 2 = ( 3 2) = 5-2 6 . 32∴ x +y =10,x -y = 4 6 ,xy = 52- (2 6 ) 2=1.2 x 9x 2x2 13 6x x ,其中x 4。