加氢与脱氢
- 格式:ppt
- 大小:6.53 MB
- 文档页数:135
化工工艺加氢与脱氢过程化工工艺是为了提高产品质量和生产效率而进行的一系列生产过程。
其中,加氢和脱氢是常见的化工反应过程,主要用于原料的转化和产品的改性。
以下将对加氢和脱氢过程进行详细介绍。
一、加氢过程加氢是指在反应中向化合物中加入氢气的过程。
该过程通常涉及氢气与有机物之间的反应,目的是将有机物中的不饱和键加氢饱和,或是将有机物中的官能团与氢气反应生成其他目标化合物。
1.加氢工艺的原理加氢工艺主要依靠催化剂来实现。
通常使用的催化剂是金属催化剂,如铜、镍、铱等。
这些催化剂能够吸附氢气分子,并为氢气分子提供吸附位点,从而促使氢气与有机物发生反应。
在反应中,催化剂可以提供活化能,使加氢反应得以进行。
2.加氢反应的应用加氢反应在化工工艺中具有广泛的应用。
常见的应用有:加氢脱气、重整反应、加氢裂化和加氢脱硫等。
(1)加氢脱气:将氢气加入原料中,去除其中的气体成分,从而降低气体浓度,达到控制反应环境的目的。
(2)重整反应:通过加氢反应,将低碳烃转化为高碳烃,从而提高产物的价值。
(3)加氢裂化:将高碳烃加氢后进行裂化,得到较小分子量的产物。
这样做不仅能提高燃料的质量,也能减少环境污染。
(4)加氢脱硫:将含硫化合物加氢后,使其转化为易于处理和回收的化合物,从而达到脱除硫化物的目的。
二、脱氢过程脱氢是指在化学反应中去除化合物中的氢原子的过程。
通常涉及碳氢化合物与氧化剂反应,形成不饱和化合物或氧化产物。
1.脱氢工艺的原理脱氢工艺主要依靠高温、高压和催化剂来实现。
脱氢反应需要高温和高压来提供足够的能量,以克服反应的活化能。
同时,催化剂的存在可以加速反应速率,降低反应温度和压力等条件。
2.脱氢反应的应用脱氢反应在化工工艺中也具有广泛的应用。
常见的应用有:脱氢加氢反应、脱氢氧化反应和脱氢重排等。
(1)脱氢加氢反应:通过去除部分氢原子,将饱和化合物转化为不饱和化合物,从而改变产物的性质和用途。
(2)脱氢氧化反应:通过去除氢原子和加入氧原子,使得有机物部分氧化为醛、酮或羧酸,从而提高产品的氧化潜能。
第六章加氢与脱氢6.2 加氢、脱氢反应的一般规律6.2.1 催化加氢反应的一般规律6.2.1.1热力学分析1.加氢反应的热效应加氢反应是可逆放热反应,某些烃类气相加氢的热效应见P257表6-12.影响加氢反应平衡的因素(1)温度的影响绝大多数加氢反应在反应温度低于100℃时,平衡常数均很大,可看作为不可逆反应.由于加氢反应是放热反应,K p随温度的升高而减小.有三种不同的类型:第一种:在热力学上是有利的,既使是在高温下平衡常数仍很大.第二种: K p随温度的变化较大,当低温时,平衡常数很大,温度较高时,平衡常数降低,但K p仍很大.为达到较高转化率,需一定的压力和氢过量的办法.第三种:在热力学上不利,低温时K p较大,温度升高, K p变得很小,需采用高压提高平衡转化率.如一氧化碳加氢合成甲醇见P258表6-2.(2)压力的影响由于加氢反应是体积缩小的反应,提高压力,有利于平衡向生成物方向移动.(3)氢用量提高氢气用量有利于平衡向生成物方向移动.但氢用量不能太大,以免造成产物浓度太低,大量氢气循环,既消耗动力,又增加产物分离的困难.6.2.1.2加氢反应动力学分析由于对于加氢反应的机理有不同的观点,建立的反应速率方程也不同,具体见P258.1.影响反应速率的因素(1)温度的影响有一个最佳的温度.对于热力学有利的反应,可视为不可逆反应.温度升高,平衡常数升高,提高温度,反应速率也提高,但会影响氢的选择性.对于可逆加氢反应,温度升高,尽管反应速率提高,但平衡常数可能降低.因此有一个最佳反应温度.(2)压力的影响对于气相反应,提高氢和被加氢物的分压,均有利于反应速率的提高.但当被加氢物级数是负数时,反应速率反而下降.对于液相反应,提高氢的的分压,有利于反应进行.(3)氢用量的影响一般采用适当的氢过量.氢过量可以提高被加氢物的转化率和加快反应速率,提高传热系数和导出反应热,能延长催化剂壽命.但氢过量太多也会到至产物浓度低,分离难度大. (4)加氢物质结构的影响主要影响因素包括加氢物质在催化剂表面的吸附能力和活化难易程度、空间阻碍作用等<1>烯烃加氢:取代基增加,反应速率下降.R R R’’’| | |R-CH=CH3 > R-CH=CH2-R’或R’-C=CH-R’’> R’-C=C-R’’对非共双键的二烯烃加氢,无取代基双键首先加氢.而共双烯烃则先加一分子氢子后,双烯烃变成单烯,再加一分子氢转化为相应的烷烃.| | ╲| | ╲| | ╱> C=C-C=C< +H2-C-C-C=C< - C-C-C-C-╱| | ╱| | ╲二烯烃一烯烃烷烃<2>芳烃加氢.苯环上取代烃越多,加氢反应速率越慢.C6H6 > C6H5R > C6H4(R1R2) > C6H3(R1R2R3)<3> 不同烃类加氢速率快慢比较.r烯烃> r 决烃; r烯烃> r芳烃; r二烯烃> r烯烃<4> 含氢化合物的加氢.醛、酮、酸、酯得加氢生成醇。
第六章加氢与脱氢过程6.1概述通常催化加氢系指有机化合物中一个或几个不炮和的官能团在催化剂的作用下与氢气加成。
H2和N2反应生成合成氨以及CO和H2反应合成甲醇及烃类亦为加氢反应。
而在催化剂作用下,烃类脱氢生成两种或两种以上的新物质称为催化脱氢。
催化加氢和催化脱氢在有机化工生产中得到广泛应用。
如合成氨、合成甲醇、丁二烯的制取,苯乙烯的制取等都是极为重要的化工产品。
催化加氢反应分为多相催化加氢和均相催化加氢两种,相比之下,多相催化加氢的选择性较低,反应方向不易控制,而均相催化加氢采用可溶性催化剂,选择性较高,反应条件较温和。
催化加氢除了合成有机产品外,还用于许多化工产品的精制过程,如烃类裂解制得乙烯和丙烯产物中,含有少量的乙炔、丙炔和丙二烯等杂物,可采用催化加氢的方法进行选择加氢,将炔类和二烯烃类转化为相应的烯烃而除去。
再如氢气的精制,氢气中含有极少量的一氧化碳、二氧化碳,这些杂质对后工序的催化剂有中毒作用,通过催化加氢生成甲烷而得到了精制。
此外,还有苯的精制、裂解汽油的加氢精制等。
利用催化脱氢反应,可将低级烷烃、烯烃及烷基芳烃转化为相应的烯烃、二烯烃及烯基芳烃,这些都是高分子材料的重要单体,而苯乙烯和丁二烯是最重要的两个化工产品,且产量大、用途广。
6.1.1加氢反应的类型(1)不饱和炔烃、烯烃重键的加氢如乙炔催化加氢生成乙烯,乙烯加氢生成乙烷等。
(2)芳烃加氢可以同时对苯核直接加氢,也可以对苯核外的双键进行加氢,或两者兼有,即所谓选择加氢,不同的催化剂有不同的选择。
如苯加氢生成环己烷,苯乙烯在Ni 催化剂下生成乙基环己烷,而在Cu催化剂下则生成乙苯。
(3)含氧化合物加氢对带有C=O双键的化合物经催化加氢后可转化为相应的醇类。
如一氧化碳加氢在铜催化剂作用下生成甲醇,丙酮在铜催化剂下加氢生成异丙醇,羧酸加氢生成伯醇。
(4)含氮化合物的加氢N2加H2合成氨是当前产量最大的化工产品之一。
对于含有-CN、-NO2等官能团的化合物加氢后得到相应的胺类。
氢气在无催化煤液化中的反应机理氢气在无催化煤液化中的反应机理煤是一种重要的化石燃料,但其能源价值和利用效率都较低。
为了提高煤的利用率和降低环境污染,煤液化技术逐渐兴起。
煤液化是将煤转化为液态燃料或化工原料的过程,其中氢气是重要的反应物和能源来源。
本文将探讨氢气在无催化煤液化中的反应机理。
煤液化的主要反应路径是裂解和重组。
裂解是指将煤分子断裂成较小的分子,重组是指通过分子间交换反应使分子组成变得更复杂。
氢气在煤液化中的作用主要是加氢和脱氢反应。
加氢反应是指将煤分子中的C-C、C-O、C=N等化学键与氢气反应生成C-H键,使其分子量减小;脱氢反应是指将煤分子中的C-H键或其他键与氢气反应,生成C-C、C-O、C=N等新的键,使其分子量增加。
在无催化煤液化中,氢气的加氢作用是较为重要的反应途径。
煤的液化是一个复杂的过程,涉及到多种反应和中间体的产生与消失。
其中,氢气在煤液化中的反应机理受到了广泛的研究。
下面将从分子层面和宏观层面探讨氢气在煤液化中的反应机理。
1. 分子层面煤分子主要由三个元素构成,即C、H、O,其中C-H 键是煤分子中最常见的键。
氢气在煤液化中的反应机理主要是加氢反应和脱氢反应。
加氢反应煤分子中的C-C、C-O、C=N等化学键可以与氢气反应生成C-H键。
这种反应需要高温高压和催化剂的作用,但在无催化反应中也可以通过氢气和煤分子的动力学作用实现。
例如,煤中的苯环可以被氢气加氢生成环丙烷等烷基化合物。
反应速率与煤分子结构、反应条件和氢气浓度等因素有关。
脱氢反应脱氢反应是将煤分子中的C-H键或其他键与氢气反应,生成C-C、C-O、C=N等新的键,使其分子量增加。
这种反应主要发生在高温高压下,需要一定的催化剂。
例如,煤中的芳香烃可以被氢气脱氢生成芳香烃酮和芳香烃醇等化合物。
反应速率与反应条件和催化剂的种类和浓度等因素有关。
2. 宏观层面除了分子层面的反应机理外,氢气还对煤液化的宏观过程产生影响。