并网光伏发电系统共24页
- 格式:ppt
- 大小:2.04 MB
- 文档页数:24
并网光伏发电系统并网太阳能光伏发电系统是由光伏电池方阵并网逆变器组成,不经过蓄电池储能,通过并网逆变器直接将电能输入公共电网。
并网太阳能光伏发电系统相比离网太阳能光伏发电系统省掉了蓄电池储能和释放的过程,减少了其中的能量消耗,节约了占地空间,还降低了配置成本。
值得申明的是,并网太阳能光伏发电系统很大一部分用于政府电网和发达国家节能的案件中。
并网太阳能发电是太阳能光伏发电的发展方向,是21世纪极具潜力的能源利用技术。
并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。
但这种电站投资大、建设周期长、占地面积大,因而没有太大发展。
而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。
概述太阳能发电是传统发电的有益补充,鉴于其对环保与经济发展的重要性,各发达国家无不全力推动太阳能发电工作,如今中小规模的太阳能发电已形成了产业。
太阳能发电有光伏发电和太阳能热发电 2 种方式,其中光伏发电具有维护简单、功率可大可小等突出优点,作为中、小型并网电源得到较广泛应用。
并网光伏发电系统比离网型光伏发电系统投资减少25 %。
将光伏发电系统以微网的形式接入到大电网并网运行,与大电网互为支撑,是提高光伏发电规模的重要技术出路,并网光伏发电系统的运行也是今后技术发展的主要方向,通过并网能够扩张太阳能使用的范围和灵活性。
特点及必要条件在微网中运行,通过中低压配电网接入互联特/超高压大电网,是并网光伏发电系统的重要特点。
并网光伏发电系统的基本必要条件是,逆变器输出之正弦波电流的频率和相位与电网电压的频率和相位相同。
并网光伏发电系统分类1、有逆流并网光伏发电系统有逆流并网光伏发电系统:当太阳能光伏系统发出的电能充裕时,可将剩余电能馈入公共电网,向电网供电(卖电);当太阳能光伏系统提供的电力不足时,由电能向负载供电(买电)。
第2章单相光伏并网发电系统结构与工作原理2.1单相光伏并网发电系统基本原理薔电池组图2-1典型光伏发电系统框图单相光伏并网发电系统由四部分组成,即太阳能电池方阵、蓄电池组、逆变器和控制器,其典型的系统框图如图2-1所示。
并网光伏发电系统的主要特点是,与公用电网发生紧密的电联系。
光伏发电系统多余的电力向电网供电,不足的电力由电网补。
其工作的基本原理是,太阳能电池方阵受到太阳辐照,通过太阳能电池的光生伏打效应,将太阳光能直接转换为直流电能,太阳能电池方阵的输出端经防反充二极管接至控制器。
控制器的一对输出端接至蓄电池组,对其进行充、放电保护控制;控制器的另一对输出端通过开关接至逆变器,将直流电逆变为交流电,可以向交流负载供电,也可以通过锁相环节向电网输出与电网电压同频、同相的交流电。
这样就构成了一个完整的发电、输电和供电系统。
对于光伏并网系统而言,将太阳能经光伏电池阵列转化成电能馈送给交流电网,其间能量的传递与转换可以有很多种方式,并网逆变器的结构也因而有所不同,可以是直接从太阳能电池到电网的单级DC-AC变换结构,也可以是DC-DC和DC-AC的两级变换结构。
对于小功率光伏并网发电系统,由于光伏电池阵列的输出电压比较低,因而更多的采用了先通过一级DC-DC变换器升压,然后再通过一级DC-AC逆变器的两级变换并网结构。
太阳能并网逆变器的控制目标是控制并网逆变器的输出电流为稳定的高质量的正弦波电流,同时还要求并网逆变器输出的电流与电网电压同频、同相,因此需要采用合适的控制策略以达到上述的控制目标。
2.2光伏发电系统逆变器的拓扑结构由于太阳能电池,燃料电池每个单元的输出电压较低,所以在串联数量很少的情况下,并网逆变器的输入电压较低,这样并网逆变器就需要具有直流电压的提升和逆变的功能。
通常并网逆变器依照级数可以划分为单级式逆变器和多级式逆变器。
单级指直流电压的提升和产生正弦波的输出电流或者输出电压在同一级电路中完成。
光伏并网发电系统的分类及其结构一.可调度式与不可调度式目前常见的光伏并网发电系统,根据其系统功能可以分为两类:一种为不含蓄电池的“不可调度式光伏并网发电系统”;另一种为系统包括蓄电池组作为储能环节的“可调度式光伏并网发电系统”。
两者的系统配置示意图如图1和图2所示。
可调度式并网光伏系统设置有储能装置,兼有不间断电源和有源滤波的功能,而且有益于电网调峰。
但是,其储能环节通常存在寿命短、造价高、体积笨重以及集成度低的缺点,因此,目前这种形式的应用较少。
可调度式光伏并网发电系统与不可调度式相比,最大的不同是系统中配有储能环节,通常采用铅酸蓄电池组,其容量可根据实际需要进行配置。
在功能上,可调度式系统有一定扩展和提高,主要包括:(1)系统控制器中除了并网逆变器部分外,还包括蓄电池充放电控制器,根据系统功能要求进行蓄电池组能量管理。
(2)在交流电网断电时,可调度式系统可以实现不间断电源(Uninterruptible Power Supply,UPS)的功能,为本地重要交流负载供电。
(3)较大容量的可调度式光伏并网发电系统还可以根据运行需要控制并网输出功率,实现一定的电网调峰功能。
图.1 不可调度式光伏并网发电系统配置示意图图.2调度式光伏并网发电系统配置示意图虽然在功能上优于不可调度式光伏并网系统,但由于增加了储能环节,可调度式光伏并网系统存在着明显的缺点。
这些缺点是目前限制可调度式光伏并网系统广泛应用的主要原因,包括:(1)增加蓄电池组导致系统成本增加。
(2)蓄电池的寿命较短,远低于系统其他部件寿命:目前免维护铅酸蓄电池在合理使用下寿命通常为 3 到 5 年,而光伏阵列一般可以稳定工作 20 年以上。
(3)废弃的铅酸蓄电池必须进行回收处理,否则将造成严重的环境污染。
二.集中式发电与分布式发电根据光伏并网发电系统的规模和集中程度,可以将其分为集中式发电系统和分布式发电系统。
集中式发电系统可以看作一个太阳能发电站,其峰值功率可以达到上兆瓦,输出电压等级也较高,可以直接连入中压或高压输电网。
光伏发电并网系统设计介绍一、一般规定1.1 光伏系统接入方案应结合电网规划、分布式电源规划,按照就近分散接入与就地平衡消纳的原则进行设计。
1.2 光伏系统宜采用10kV及以下电压等级接入电网。
1.3 光伏系统模式可采用自发自用/余量上网和全额上网两种模式。
1.4 自发自用/余量上网模式的光伏系统并网容量不应超过所接入变压器容量。
1.5 光伏系统接入电压等级应根据装机容量选取,并满足下列要求:1 单个并网点容量为8kWp及以下宜接入220V;2 单个并网点容量为8kWp~400kWp宜接入380V;3 单个并网点容量为400kWp~6MWp宜接入10kV;4 自发自用/余量上网模式总装机容量超过1MWp,宜接入10kV;5 最终并网电压等级应综合参考有关标准和电网实际条件,通过技术经济比选论证后确定。
1.6 光伏系统在变电站低压并网时,单台变压器的并网点不应超过1个,项目规划审批范围内总并网点数量不应超过4个。
1.7 光伏系统在并网处应设置并网专用开关柜(箱),并应设置专用标识和“警告”、“双电源”等提示性文字和符号。
二、10kV并网2.1 10kV光伏系统的并网点应按如下进行选择:1 自发自用/余量上网模式的并网点可为用户开关站、配电室或箱变的10kV母线,如图2.1所示;2 全额上网模式的并网点可为公共电网10kV母线或线路,如图2.2 所示。
图2.1 10kV自发自用/余量上网模式一次系统接线示意图图2.210kV全额上网模式一次系统接线示意图2.2 10kV光伏系统的并网系统一般由光伏进线柜、压变柜、计量柜、并网柜、隔离柜、无功补偿柜及站用电等设备组成。
如图2.3所示。
图2.3 10kV并网系统方案示意图2.3 10kV自发自用/余电上网模式光伏系统的保护及计量配置应符合下列规定:1 光伏并网柜继电保护装置应具有过压、失压(欠压)保护功能,失压保护的电压信号应采集自光伏配电房隔离柜的电压互感器;2 光伏并网柜继电保护装置应具有过频率和低频率保护,保护装置的频率信号应采集自光伏配电房隔离柜的电压互感器;3 光伏并网柜继电保护装置应具有速断、过流保护等功能,保护定值选取应与用户配电房中光伏接入柜继电保护定值相配合;4 用户配电房中的计量柜应设置双向电表,光伏配电房中的计量柜应设置单向电表;5 光伏配电房计量柜的电压互感器宜采用移动小车式安装,电流互感器宜采用固定式安装;6 计量柜应设置三相电压指示仪;7 光伏进线柜宜按一台变压器对应一个光伏接入柜进行设置;8 光伏进线柜应具有变压器的温度保护和瓦斯保护等保护跳闸功能;9 光伏进线柜继电保护装置应具有速断、过流保护等功能,保护定值选取应与光伏配电房光伏并网柜继电保护定值相配合;10 光伏进线柜不应具有检有压合闸功能;11 变压器室和光伏进线柜不在同一箱变内的,变压器室内应设置变压器出线柜;12 容量超过800kVA的变压器出线柜内应设置断路器。
并网光伏发电系统概述能源是社会发展进步的重要物质基础,对人类的生存发展有决定意义。
由于技术条件限制,风能发电存在不稳定、成本高、难维护等特点。
光伏发电作为一种可再生能源,拥有独特的优势,其应用前景广阔,开展光伏发电应用推广具有巨大的经济价值和现实意义。
一、并网光伏发电系统概述并网光伏系统是一种分布式发电方式,工作时先将太阳能电池组件产生的直流电转换成满足电网要求的交流电,然后并入公共电网。
并网光伏系统的核心部件是并网逆变器,包含了电网信号检测、输出电流控制、最大功率点跟踪、抗孤岛等,是集检测、控制、并网和保护为一体的装置。
并网光伏发电的方式不同于常规发电,并网光伏发电的能量密度低、稳定性和调节能力差,发电量容易受天气及地域的影响,因此并网发电后会对电网产生一定的影响。
对于不同容量、不同并网方式和系统配置的光伏发电系统,应根据实际情况按要求接入不同的输电网或配电网。
由于国内还没有比较全面可操作的管理标准和技术规范,因此对于并网光伏系统的评估尚不完善,从而影响了并网光伏技术的发展。
造成这种情况的主要原因是目前国内对并网光伏发电系统的特性还不熟悉,包括光伏系统本身以及光伏对电网的影响等,因此进一步研究并网光伏发电系统的特点,对推动光伏并网技术的发展、加快能源结构调整、提高清洁能源利用率都有十分重要的意义。
二、并网光伏电站的发电特性分析1、光伏发电具有间歇性、随机性的特点,这些规律难以预测,因此光伏发电还无法参与电力平衡的计划,光伏发电只能依据《可再生能源法》,并网后由电网公司收购,不能单独运行。
2、光伏发电需要太阳辐射能作支持,因此只能在白天发电,夜晚不能发电,并且雨雪天的发电率较低。
光伏发电的能力随太阳辐射的增强而增强,中午时发电能力达到最大。
3、光伏发电站工作时,需要调整电网中其他电源的出力,提供一定的负荷保证光伏发电供电。
当光伏发电收天气等因素影响时,又需要其他电源提供补偿,从而保证光伏发电的稳定性和可靠性。