换元法分部积分法
- 格式:pptx
- 大小:542.89 KB
- 文档页数:34
定积分的换元法和分部积分法文章标题:深入探讨定积分的换元法和分部积分法在高等数学中,定积分的换元法和分部积分法是两种重要的积分求解方法,它们在求解复杂积分问题时起着至关重要的作用。
通过这篇文章,我们将从简到繁,由浅入深地探讨定积分的换元法和分部积分法,以便读者能更加全面、深刻地理解这两种方法。
1. 定积分的换元法在定积分的换元法中,我们通过引入一个新的变量来简化被积函数,从而更容易求解定积分。
在求解具体的定积分时,我们常常会遇到被积函数与变量之间的复杂关系,利用换元法可以将原积分转化为一个简单的形式,然后通过简单的积分求解方法来得到最终的结果。
举例来说,当被积函数为sin(x^2)时,我们可以通过令u=x^2来进行换元,将原积分化为sin(u)的形式,从而更容易求解出积分的结果。
2. 定积分的分部积分法与换元法类似,分部积分法也是在求解定积分时经常使用的方法之一。
通过分部积分法,我们可以将原积分中的乘积形式进行分解,然后转化为一个更容易求解的形式。
在分部积分法中,我们通常选择一个函数作为u,选择另一个函数的微分作为dv,然后通过积分公式将原积分转化为u*v的形式,最终求解出积分的结果。
举例来说,当被积函数为x*cos(x)时,我们可以通过选择u=x和dv=cos(x)dx来进行分部积分,将原积分化为x*sin(x)-∫(sin(x))dx的形式,从而更容易求解出积分的结果。
通过以上简单的介绍,我们可以看到定积分的换元法和分部积分法在简化复杂积分问题时起着至关重要的作用。
通过这两种方法,我们可以将原积分转化为更容易求解的形式,从而更加灵活地解决数学中的积分难题。
总结回顾:在本文中,我们从简到繁,由浅入深地探讨了定积分的换元法和分部积分法。
通过具体的例子,我们展示了这两种方法在求解复杂积分问题时的重要作用。
我们希望读者通过本文的介绍,能更加全面、深刻地理解定积分的换元法和分部积分法,并在实际的数学问题中灵活运用这两种方法。
积分的换元法与分部积分法积分作为微积分中重要的概念和工具,被广泛应用于数学、物理、工程等领域。
积分可以通过不同的方法来求解,其中换元法和分部积分法是常见且重要的两种方法。
本文将介绍积分的换元法和分部积分法,并对其原理和应用进行详细讨论。
一、换元法换元法又被称为变量代换法,其核心思想是通过引入新的变量来简化被积函数的形式。
具体步骤如下:1. 选择合适的变量代换。
2. 计算新变量关于原变量的导数,确定微元的变换关系。
3. 将被积函数和微元用新变量表示,进行积分计算。
4. 将结果用原变量表示,得到最终的积分结果。
举例来说,如果要计算∫(2x+1)^2 dx,可以选择变量代换u = 2x + 1。
根据导数的链式法则,有du/dx = 2,从而dx = du/2。
将被积函数和微元用新变量表示,得到∫u^2 (du/2)。
对该表达式进行积分计算,并将结果用原变量表示,即可得到∫(2x+1)^2 dx的积分结果。
换元法在解决一些形式复杂的积分问题时非常有用,可以将原函数变换为更简单的形式,进而实现积分的计算。
二、分部积分法分部积分法是对求导和求积分的相互关系的一种应用。
其基本原理是根据乘积的求导法则,将被积函数分解为两个函数的乘积的导数形式,从而利用求导法进行积分的计算。
具体步骤如下:1. 选择合适的分解形式。
2. 对乘积中的一个函数求导。
3. 对另一个函数进行积分。
4. 将结果用原变量表示,得到最终的积分结果。
举例来说,如果要计算∫x*sin(x) dx,可以将被积函数分解为两个函数的乘积形式,即f(x) = x和g(x) = sin(x)。
根据导数的乘法法则,有(fg)' = f'g + fg',其中f'和g'分别表示f(x)和g(x)的导数。
将该等式与积分的相互关系结合,得到∫f(x)g'(x)dx = fg - ∫f'(x)g(x)dx。
利用该等式进行计算,即可得到∫x*sin(x) dx的积分结果。
§2 分部积分法与换元积分法(一) 教学目的:掌握分部积分法与第一、二换元积分法. (二) 教学内容:分部积分法,第一、二换元积分法;.基本要求:熟练掌握分部积分法和换元积分法. (三) 教学建议:(1) 讲解足量的有关换元积分法与分部积分法的计算题. (2) 总结分部积分法的几种形式:升幂法,降幂法和循环法.一、分部积分法我们讲导数时,知道)()()()(])()([x v x u x v x u x v x u '+'='从而有⎰⎰'+'=dx x v x u dx x v x u x v x u )()()()()()(移项得⎰⎰'-='dx x v x u x v x u dx x v x u )()()()()()(或 ⎰⎰-=)()()()()()(x du x v x v x u x dv x u 我们称这个公式为分部积分公式。
当 ⎰'dx x v x u )()( 不容易积分,但⎰'dx x v x u )()( 容易积分时,我们就可以用分部积分把不容易积分的 ⎰'dx x v x u )()( 计算出来。
例1 求⎰xdx x cos解:若令 x v x v x u sin cos ,=⇒='= , 代入分部积分公式⎰⎰++=-=C x x x xdx x x xdx x cos sin sin sin cos但若令 2/,cos 2x v x v x u =⇒='= , 代入分部积分公式dx x x x x xdx x ⎰⎰+=sin 21cos 2cos 22 比原积分还复杂由此可知,在用分部积分公式时,u, v 的选择不是随意的,那个作u , 那个作 v ,应适当选取,否则有可能计算很复杂甚至计算不出来。
分析分不积分公式,我们可总结出下面一个原则:一般应把(相比之下)容易积分,积分后比较简单的函数作为 v ',积分较难或积分后比较复杂的函数作为u例2 求⎰xdx ln⎰xdx ln ⎰⎰+-=⋅-=-=C x x x dx x x x x x xd x x ln 1ln ln ln或解:令t e x t x ==,ln原式C x x x C e te dt e te tde tt t t t +-=+-=-==⎰⎰ln例3 求 ⎰xdx x ln解:⎰⎰=2ln 21ln xdx xdx x [][]C x x x C x x x xdx x x x d x x x +-=+⎥⎦⎤⎢⎣⎡-=-=-=⎰⎰222222241ln 2121ln 21ln 21ln ln 21例4 求 ⎰xdx x arctan解:⎰⎰=2arctan 21arctan xdx xdx x[][]C x x x x dx x x x dx x x x x x d x x x ++-=⎥⎦⎤⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡+-=-=⎰⎰⎰arctan arctan 21)111(arctan 211arctan 21arctan arctan 2122222222分部积分公式也可以连续用多次例5 求 ⎰dx e x x 2解:xx de x dx e x ⎰⎰=22Ce xe e x dx e xe e x dx xe e x dx e e x x x x x x x x x x x ++-=--=-=-=⎰⎰⎰22)(2222222例6 求⎰bxdx e axcos解: dx bx e a b bx e abxdx e ax x ax ⎰⎰+=sin cos 1cos 再分部积分一次]cos sin 1[cos 1dx bx e a b bx e aa b bx e a ax ax x ⎰-+= 出现循环将上式最后一项移到左端合并整理,得C ba bx a bxb e bxdx e bx a b x a e dx bx e a b ax ax ax ax +++⋅=+=+⎰⎰22222cos sin cos )sin cos 1(cos )1(分部积分使用的类型:一般说下面类型的不定积分dx arctgbx xaxdx xbxdx xdx e xdx x xkkkax km k⎰⎰⎰⎰⎰,cos ,sin ,,log等常用分部积分来计算。
定积分的换元法与分部积分法摘要:定积分是微积分中的一个重要概念,它表示函数在某个区间上的累积效应。
在计算定积分时,换元法和分部积分法是常用的两种方法。
本文将对定积分的换元法和分部积分法进行介绍,并通过案例演示其具体应用。
1. 定积分简介定积分是微积分中的基本概念之一,它用于计算函数在某个区间上的累积效应。
定积分的符号表示为∫,其中∫f(x)dx表示函数f(x)在区间[a, b]上的定积分。
它的几何意义是函数f(x)与x轴所夹的面积。
2. 换元法换元法是一种常用的计算定积分的方法,它通过引入新的变量,将原函数转化为更易积分的形式。
换元法的基本思想是对函数进行代换,将原函数转化为一个新的函数,并对新函数进行积分。
换元法的公式可以表示为:∫f(g(x))g’(x)dx = ∫f(u)du其中,g(x)是一个可导函数,u=g(x)是其反函数,g’(x)是g(x)的导数。
换元法的具体步骤如下:1.选择适当的换元变量,使得被积函数的形式变得简单;2.计算变量的微分,求出关于新变量的微分表达式;3.将被积函数中原变量用新变量表示,得到新的被积函数;4.计算新的被积函数的积分。
3. 分部积分法分部积分法是另一种常用的计算定积分的方法,它将一个复杂的积分问题转化为两个简单的积分问题。
分部积分法的基本思想是使用差乘法则,将定积分的求解转化为导数和乘积的关系。
分部积分法的公式可以表示为:∫u(x)v’(x)dx = u(x)v(x) - ∫v(x)u’(x)dx其中,u(x)和v(x)是可导的函数。
分部积分法的具体步骤如下:1.选择一对函数作为u(x)和v’(x);2.计算u’(x)和v(x)的导数;3.将u(x)v’(x)代入分部积分公式中,并进行计算。
4. 换元法与分部积分法的比较换元法和分部积分法都是计算定积分的有效方法,它们在不同的情况下有不同的应用。
换元法适用于被积函数可以通过代换变量为简单形式的情况。
通过引入新的变量,将原函数转化为更易积分的形式,从而简化计算过程。
§8.2 换元积分法与分部积分法教学目标:掌握第一、二换元积分法与分部积分法. 教学内容:第一、二换元积分法;分部积分法.基本要求:熟练掌握第一、二换元积分法与分部积分法. 教学建议:(1) 布置足量的有关换元积分法与分部积分法的计算题. (2) 总结分部积分法的几种形式:升幂法,降幂法和循环法. 教学过程:一、第一类换元法 ——凑微分法:有一些不定积分,将积分变量进行适当的变换后,就可利用基本积分表求出积分。
例如,求不定积分cos 2xdx⎰,如果凑上一个常数因子2,使成为()11cos 2cos 2cos 2222xdx x xdx xd x =∙=⎰⎰⎰令2x u =则上述右端积分()111cos 22cos sin 222xd x udu u C ==+⎰⎰然后再代回原来的积分变量x ,就求得原不定积分1cos 2sin 22xdx x C =+⎰更一般的,若函数()F x 是函数()f x 的一个原函数,()x μϕ=是可微函数,并且复合运算()F x ϕ⎡⎤⎣⎦有意义,根据复合函数求导法则(){}()()()()F x F x x f x x ϕϕϕϕϕ''''==⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 及不定积分的定义,有()()()f x x dx F x C ϕϕϕ'=+⎡⎤⎡⎤⎣⎦⎣⎦⎰ 由于 ()()f u du F u C=+⎰从而 ()()()()()u x f x x dx f u du ϕϕϕ='=⎡⎤⎣⎦⎰⎰(1)综上所述,可得如下结论 定理8.4:(第一换元积分法) 设()f u 是连续函数,()F u 是()f u 的一个原函数。
又若()u x ϕ=连续可微,并且复合运算()f x ϕ⎡⎤⎣⎦有意义,则 ()()()()()()u x f x x dx f u du F x Cϕϕϕϕ='==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰ (2)第一换元积分公式(2)说明如果一个不定积分()g x dx⎰的被积表达式()g x dx能够写成()()f x x dx ϕϕ'⎡⎤⎣⎦的形式,可通过变量代换()u x ϕ=把被积表达式等同于()f u du ,若不定积分()()f u du F u C =+⎰容易求得,那么再将()u x ϕ=代入()F u ,便求出原不定积分()()g x dx F x C ϕ=+⎡⎤⎣⎦⎰ 由于第一换元积分法的基本手段就是将被积表达式()g x dx变为()()()()f x x dx f x d x ϕϕϕϕ'=⎡⎤⎡⎤⎣⎦⎣⎦的形式。