高中数学-集合的基本运算(一)
- 格式:ppt
- 大小:270.50 KB
- 文档页数:30
第一章 1.3 集合的基本运算1一、单选题1.已知集合{}220,A x x x x R =--<∈,{}2|log 0.5B x x =<,则( ) A .A B φ⋂= B .A B B ⋂= C .()U A B R ⋃= D .A B B ⋃= 2.已知集合{}|10A x ax =+=,集合{}2|210B x x x =--=,则所有满足A B ⋂≠∅的实数a 组成的集合为( )A .{}1,2-B .{}1,2-C .{}0,1,2-D .{}0,1,2-3.已知全集U =R ,集合{|(4)0}A x x x =-<,{}2|log (1)1B x x =->,图中阴影部分所表示的集合为( )A .{|12}x x <<B .{|23}x x <<C .{|03}x x <D .{|04}x x << 4.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =( ) A .{}04x x <≤ B .{}02x x <≤ C .{}2x x ≥ D .{}4x x ≤ 5.已知20,()1(0),{|()},{|(())()}a f x ax x x A x f x x B x f f x f x x >=-+>=≤=≤≤,若A B φ=≠则实数a 的取值范围是( )A .(0,1]B .3(0,]4 C .3[,1]4 D .[1,)+∞6.设全集{}4U x N x *=∈≤,集合{}1,4A =,{}2,4B =,则()U A B =( )A .{}1,2,3B .{}1,2,4C .{}1,3,4D .{}2,3,47.已知集合2{|90}A x N x =∈-<,{}3,0,1B =-,则( )A .AB =∅ B .B A ⊆C .{0,1}A B =D .A B ⊆8.已知集合()1222M x y x x ⎧⎫==-⎨⎬⎩⎭,{}11N x x =-<<,则M N =( )A .[)0,1B .()0,1C .(]1,0-D .()1,0-9.已知全集U Z =,集合{}{}21,0,1,2,|A B x x x =-==,则()U A B ∩等于( )A .{}1,2B .{}1,0-C .{}0,1D .{}1,2-10.已知集合{2A x Z x =∈≤-或}3x ≥,则Z C A =( )A .1,0,1,2B .{}1-C .{}1,0-D .{}0,1,211.设集合A ={−1,0,1},B ={sin0,cosπ},则A ∩B = ( )A .{0}B .{1}C .{0,1}D .{0,−1}12.若集合M ={y|y =2x −1},N ={x|y =√|x|−1},则M ∩N =( )A .B .C .D .13.已知全集U =R ,集合A ={x|−2<x <2},B ={x|(x +1)(x −3)≤0},则A ∩(C R B)等于( )A .(−1,2)B .(−2,−1]C .(−2,−1)D .(2,3)14.已知A ={x ∈Z|2x 2+x –1=0},B ={x |4x 2+1=0}.则A ∪B =A .{–12,12,–1}B .{12}C .{–1}D .{12,–1} 15.已知集合{}1,3,5,6A =,{}8|0B x N x =∈<<,则图中阴影部分表示的集合的元素个数为( )A .4B .3C .2D .116.已知全集U =R ,集合A ={x |﹣2<x <3},B ={x ≤2},则()U B A ⋂( )A .[2,3]B .(﹣∞,﹣2]∪[2,+∞)C .(3,4]D .[3,4]二、填空题17.函数2()lg(1)f x x =-,集合{|()}A x y f x ==,{|()}B y y f x ==,则图中阴影部分表示的集合为________18.已知集合A ={1,2,4},B ={a,4},若A ∪B ={1,2,3,4},则A ∩B = .19.设常数a∈R,集合A ={x|(x -1)·(x-a)≥0},B ={x|x≥a-1},若A∪B=R ,则a 的取值范围为________.20.某校高一某班共有40人,摸底测验数学成绩23人得优,语文成绩20人得优,两门都不得优者有6人,则两门都得优者有__________人.21.已知集合{}{}2|log (1)2,|21A x x B x x m =+<=-<<-,若AB A =,则实数m 的取值范围为_______.22.已知集合1=1,22A ⎧⎫⎨⎬⎩⎭,,集合{}2=|,B y y x x A =∈,则A B =________.23.某学校举办运动会时,高一(1)班共有26名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,则同时参加球类比赛和田径比赛的学生有__人.24.如图,若集合{}12345A =,,,,,{}246810B =,,,,,则图中阴影部分表示的集合为___.三、解答题25.设2{|60},{|10}M x x x N x ax =+-==+=,若M N ⊇,求实数a 的值的集合.26.设全集U =R ,集合{22A x m x m =-<<+,R}m ∈,集合{44}B x x =-<<. (1)当3m =时,求A B ,A B ; (2)若U A B ⊆,求实数m 的取值范围.27.已知集合2{|20},{|2123}A x x x B x a x a =--≤=-<<+(1)若A B =∅,求a 的取值范围;(2)若A B B ⋃=,求a 的取值范围。
第一章集合与常用逻辑用语1.3集合的基本运算第1课时交集与并集【课程标准】1.理解两个集合的并集与交集的含义,能求两个集合的交集与并集。
2.能使用Venn图表示集合的并集、交集运算结果.3.掌握有关的术语和符号,并会用它们正确进行集合的并集与交集运算.【知识要点归纳】1. 并集(1)文字语言:由所有属于集合A属于集合B的元素组成的集合,称为集合A与B的 .(2)符号语言:A∪B=.(3)图形语言:如图所示.2. 交集(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B的.(2)符号语言:A∩B=.(3)图形语言:如图所示..____________._______.________________A A A A A A A B A B A B ∅∅⊆性质汇总(1)=,=,=,=(2)若,则=,=(3)A B A,A B B,A A B,(A B )(A B ).【经典例题】例1 求下列两个集合的并集和交集.(1)A ={1,2,3,4,5},B ={-1,0,1,2,3};(2)A ={x |x <-2},B ={x |x >-5}.{}{}{}{}(3)14,0 5.(4)(,)46,(,)53,A x x B x x A x y y x B x y y x A B =-<≤=≤<==-+==-求例2 设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的值;(2)若A ∪B =B ,求a 的值.{}{}例3 已知集合若,求实数的取值范围-≤≤+≤≤-A x xB x m x m A B A m=25,=121,={}{}例4 已知集合若,则实数的取值范围_______-<<<≠Φ=12,=,A x xB x x a A B a{}{}例5 已知集合若,则实数的取值范围_______ <<+-<<=Φ=6,=12,A x m x mB x x A B m【当堂检测】一.选择题(共4小题)1.设集合A={x|x2﹣6x<0},B={y|y>3},则A∪B=()A.∅B.(0,+∞)C.(3,6)D.(6,+∞)2.已知集合A={x|x2﹣4x﹣5<0},B={x||x|>},则A∩B=()A.(5,+∞)B.(1,)C.(﹣,5)D.(,5)3.已知集合M={(x,y)|x+y=0},N={(x,y)|(x﹣1)2+y2=1}.则M∩N中元素个数为()A.0B.1C.2D.34.设集合A={﹣1,0,1,2,3},集合B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{﹣1,0,2}二.填空题(共2小题)5.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=.6.已知集合A={1,2,3,4},B={2,4,6,8},则A∪B=.三.解答题(共2小题)7.已知集合A=[﹣5,6],B=[2m﹣1,m+1].(1)当m=﹣3时、求A∩B,A∪B;(2)若A∪B=A,求实数m的取值范围.8.已知集合A={x|x2﹣5x+6<0},B={x|(x﹣a)(x﹣3a)<0}.(1)若x∈A是x∈B的充分条件,求a的取值范围;(2)若A∩B=∅,求a的取值范围.当堂检测答案一.选择题(共4小题)1.设集合A={x|x2﹣6x<0},B={y|y>3},则A∪B=()A.∅B.(0,+∞)C.(3,6)D.(6,+∞)【分析】解出集合A,结合集合并集运算的定义可得答案.【解答】解:集合A={x|x2﹣6x<0}={x|0<x<6}=(0,6),B={y|y>3}=(3,+∞),则A∪B=(0,+∞),故选:B.【点评】本题考查的知识是集合的运算,不等式的解法,难度不大,属于基础题.2.已知集合A={x|x2﹣4x﹣5<0},B={x||x|>},则A∩B=()A.(5,+∞)B.(1,)C.(﹣,5)D.(,5)【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵,∴.故选:D.【点评】本题考查了描述法、区间的定义,一元二次不等式和绝对值不等式的解法,交集的定义及运算,考查了计算能力,属于基础题.3.已知集合M={(x,y)|x+y=0},N={(x,y)|(x﹣1)2+y2=1}.则M∩N中元素个数为()A.0B.1C.2D.3【分析】可解出,然后即可得出M∩N,从而得出M∩N中元素的个数.【解答】解:解得或,∴M∩N={(0,0),(1,﹣1)},∴M∩N中元素个数为:2.故选:C.【点评】本题考查了交集的定义及运算,集合、元素的定义,交集的运算,考查了计算能力,属于基础题.4.设集合A={﹣1,0,1,2,3},集合B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{﹣1,0,2}【分析】利用交集定义直接求解.【解答】解:∵集合A={﹣1,0,1,2,3},集合B={﹣2,﹣1,0,1,2},∴A∩B={﹣1,0,1,2}.故选:B.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.二.填空题(共2小题)5.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B={x|﹣2<x<3}..【分析】利用并集定义直接求解.【解答】解:∵集合A={x|﹣2<x<1},B={x|﹣1<x<3},∴A∪B={x|﹣2<x<3}.故答案为:{x|﹣2<x<3}.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.6.已知集合A={1,2,3,4},B={2,4,6,8},则A∪B={1,2,3,4,6,8}.【分析】利用并集定义直接求解.【解答】解:∵集合A={1,2,3,4},B={2,4,6,8},∴A∪B={1,2,3,4,6,8}.故答案为:{1,2,3,4,6,8}.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.三.解答题(共2小题)7.已知集合A=[﹣5,6],B=[2m﹣1,m+1].(1)当m=﹣3时、求A∩B,A∪B;(2)若A∪B=A,求实数m的取值范围.【分析】(1)利用集合的交集和并集的定义求解.(2)由题意可知B⊆A,根据集合间的包含关系列出不等式组解出m的取值范围即可.【解答】解:(1)当m=﹣3时,集合A=[﹣5,6],集合B=[﹣7,﹣2],∴A∩B=[﹣5,﹣2],A∪B=[﹣7,6];(2)∵A∪B=A,∴B⊆A,由题意可得,解得﹣2≤m<2,综上所述:实数m的取值范围为[﹣2,2).【点评】本题主要考查了集合的基本运算,是基础题.8.已知集合A={x|x2﹣5x+6<0},B={x|(x﹣a)(x﹣3a)<0}.(1)若x∈A是x∈B的充分条件,求a的取值范围;(2)若A∩B=∅,求a的取值范围.【分析】(1)求出集合A={x|2<x<3},由x∈A是x∈B的充分条件,得A⊆B,当a=0时,B=∅,当a>0时,B={x|a<x<3a},当a<0时,B={x|3a<x<a},由此能求出a 的取值范围.(2)当a=0时,B=∅,A∩B=∅,当a>0时,B={x|a<x<3a},由A∩B=∅,得3a ≤2或a≥3.当a<0时,B={x|3a<x<a},A∩B=∅,由此能求出a的取值范围.【解答】解:(1)集合A={x|x2﹣5x+6<0}={x|2<x<3},B={x|(x﹣a)(x﹣3a)<0}.∵x∈A是x∈B的充分条件,∴A⊆B,当a=0时,B=∅,不合题意,当a>0时,B={x|a<x<3a},则,解得1≤a≤2.当a<0时,B={x|3a<x<a},不合题意.综上,a的取值范围是[1,2].(2)当a=0时,B=∅,A∩B=∅,符合题意;当a>0时,B={x|a<x<3a},由A∩B=∅,得3a≤2或a≥3.解得0<a≤或a≥3.当a<0时,B={x|3a<x<a},A∩B=∅,符合题意.综上,a的取值范围是(0,]∪[3,+∞).【点评】本题考查实数的取值范围的求法,考查子集、交集定义等基础知识,考查运算求解能力,是基础题.。
1.3集合的基本运算(第1课时)(人教A版普通高中教科书数学必修第一册第一章)一、教学目标1.数学抽象:理解两个集合的并集与交集的含义;2.数学运算:会求两个简单集合的并集与交集;3.直观想象:能使用Venn图、数轴表示集合的关系及运算。
二、教学重难点1.【重点】理解并集与交集的概念,求两个简单集合的并集与交集;2.【难点】理解并集与交集的概念。
三、教学过程1.创设情境,引发思考问题1:请同学们观察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5,7},B={2,4,6,7},C={1,2,3,4,5,6,7}.(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.【答案】集合C是由所有属于集合A或属于B的所有元素组成的.【设计意图】通过实例,让学生感知、了解并集的含义,提高学生用数学抽象的思维方式思考并解决问题的能力。
1.2 新知初探2.1.1并集的概念【设计意图】用图形来表示并集,提高学生用数形结合法解决问题的能力。
回到问题1:请同学们观察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5,7},B={2,4,6,7},C={1,2,3,4,5,6,7}.(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.【答案】因为集合C是由所有属于集合A或属于B的所有元素组成的,所以集合C是集合A与B的并集.【设计意图】学以致用,既巩固了新知,又提高了学生运用所学知识解决问题的意识和能力。
2.1.2对并集概念的理解(1)运算结果:A∪B仍是一个集合,由所有属于A或属于B的元素组成,公共元素只能算一次(元素的互异性).(2)并集概念中的“或”指的是只要满足其中一个条件即可,符号语言“x∈A,或x∈B”包含三种情况:“x∈A,但x∉B”;“x∈B,但x∉A”;“x∈A,且x∈B”.【设计意图】加深学生对并集的理解。