第四章-热电式-热电阻-集成温度传感器2013
- 格式:ppt
- 大小:1.52 MB
- 文档页数:40
接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。
利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。
温度传感器这些呈现规律性变化的物理性质主要有体。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
按照温度传感器输出信号的模式,可大致划分为三大类:数字式温度传感器、逻辑输出温度传感器、模拟式温度传感器。
进入21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。
智能温度传感器的总线技术也实现了标准化、可作为从机可通过专用总线接口与主机进行通信。
温度传感器-接触式温度传感器温度计。
1201030?0 TO •卫2080 H温度计接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计通过传导或对流达到热平衡, 从而使温度计的示值能直接表示被测对象的温度。
一般测量精度较高。
在一定的测温范围内,温度计也可测量物体内部的温度分布。
但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。
它们广泛应用于工业、农业、商业等部门。
在日常生活中人们也常常使用这些温度计。
随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。
低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。
利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6〜300K范围内的温度。
温度传感器-非接触式温度传感器它的敏感元件与被测对象互不接触,又称非接触式测温仪表。
04电数字式体温计电阻式温度传感器的测试项目描述•数字式体温计是利用电阻式温度传感器将温度转换成数字信号,然后通过显示器(如液晶、数码管、LED矩阵等)以数字形式显示温度,能快速准确地测量人体温度。
与传统的水银体温计相比,具有读数字方便,测量时间短,测量精度高,能记忆并有提示音等优点,尤其是数字体温计不含水银,对人体及周围环境无害特别适合于医院,家庭使用,如图4-1所示。
•通过本项目的学习,主要给•大家介绍电阻式温度传感器•(也称为热电阻传感器)的•工作原理及常见的热电阻传•感器。
一、温度测量的基本概念温度标志着物质内部大量分子无规则运动的剧烈程度。
温度越高,表示物体内部分子热运动越剧烈。
模拟图:在一个密闭的空间里,气体分子在高温时的运动速度比低温时快!二、温标1、温度的数值表示方法称为温标。
它规定了温度的读数的起点(即零点)以及温度的单位。
各类温度计的刻度均由温标确定。
2、国际上规定的温标有:摄氏温标、华氏温标、热力学温标等。
几种温标的对比正常体温为37 C,相当于华氏温度多少度?知识准备•一、热电阻传感器•热电阻传感器可分为金属热电阻和半导体热电阻两大类,前者通常简称为热电阻,后者称为热敏电阻。
下面介绍金属热电阻传感器。
•(一)金属热电阻的工作原理•金属热电阻是利用电阻与温度成一定函数关系的特性,由金属材料制成的感温元件。
当被测温度变化时,导体的电阻随温度变化而变化,通过测量电阻值变化的大小而得出温度变化的情况及数值大小,这就是热电阻测温的基本工作原理。
取一只100W/220V 灯泡,用万用表测量其电阻值,可以发现其冷态阻值只有几十欧姆,而计算得到的额定热态电阻值应为484。
•(二)常用热电阻及特性•常用热电阻材料有铂、铜、铁和镍等,它们的电阻温度系数在(3~6)×10−3/℃范围内,下面分别介绍它们的使用特性。
•1.铂电阻•又称白金,是目前公认的制造热电阻的最好材料。
它的优点是性能稳定,重复性好,测量精度高,其电阻值与温度之间有很近似的线性关系。
常用温度传感器比较一.接触式温度传感器1. 热电偶:(1)测温原理:两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。
(2)测温范围:常用的热电偶从-50~+1600C均可连续测量,某些特殊热电偶最低可测到-269 C(如金铁镍铬),最高可达+2800 C(如钨-铼)。
(3)常用热电偶型号:(4)实例:T型热电偶,测温范围-40~350C,详细信息见T型热电偶实例。
2. 热电阻:(1)测温原理:热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。
因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。
目前主要有金属热电阻和半导体热敏电阻两类。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即:R=R o[1+ a (t-t 0)]式中,R为温度t时的阻值;R o为温度t0 (通常t o=0C )时对应电阻值;a为温度系数。
半导体热敏电阻的阻值和温度关系为:R =Ae B/t式中R为温度为t时的阻值;A B取决于半导体材料的结构的常数。
(2)测温范围:金属热电阻一般适用于-200~500C范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。
半导体热敏电阻测温范围只有-50~300C左右,且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。
(3)常用热电阻:目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150C 易被氧化。