21届华杯赛试题及答案
- 格式:doc
- 大小:354.50 KB
- 文档页数:4
华杯赛决赛试题及答案题一:现代通信技术的发展与应用一、背景介绍随着科技的飞速发展,现代通信技术已经成为人们生活中不可或缺的一部分。
它的高效便捷为社会经济的发展带来了许多积极影响,同时也带来了新的挑战。
本文将讨论现代通信技术的发展和应用,并探讨其在不同领域中的影响和前景。
二、通信技术的发展历程1. 传统通信技术的发展2. 数字通信技术的兴起3. 移动通信技术的突破三、通信技术在商业领域中的应用1. 电子商务的兴起与发展2. 移动支付的普及3. 大数据和云计算的应用四、通信技术在交通领域中的应用1. 智能交通系统的建设2. 自动驾驶技术的推广3. 无人机在物流领域中的应用五、通信技术在医疗领域中的应用1. 远程医疗的实现2. 人工智能在医疗诊断中的应用3. 医疗信息化的普及六、通信技术的发展前景与挑战1. 5G时代的到来2. 物联网的快速发展3. 数据安全和隐私保护的考量七、总结与展望现代通信技术的发展和应用为人们的生活带来了巨大的便利,也为社会经济发展带来了新的活力。
然而,在享受其便利的同时,我们也要注意数据安全和个人隐私的保护。
未来,随着5G时代和物联网的广泛应用,通信技术将会走向更高的发展峰值,给各个行业带来更多可能性。
题二:人工智能在教育领域的应用及影响一、背景介绍随着人工智能技术的迅猛发展,它在各个领域中的应用已经取得了长足进步。
其中,教育领域也不例外。
人工智能技术在教育中的应用不仅提供了更加个性化的学习方式,还改变了传统教学模式,为教育事业带来了巨大的变革。
本文将重点讨论人工智能技术在教育领域中的应用及其带来的影响。
二、人工智能在教育领域中的应用1. 个性化学习的实现2. 智能辅助教学工具的发展3. 智能评估和反馈系统的应用三、人工智能对传统教学模式的改变1. 传统教学模式的弊端2. 人工智能技术对教师角色的改变3. 学生学习能力的提升四、人工智能在高等教育中的应用1. 虚拟教室和在线学位的兴起2. MOOC课程的普及3. AI辅助科研和论文撰写五、人工智能教育的挑战与发展1. 数据隐私和安全保护2. 教师素质和技能的提升3. 教育公平和普惠性的保障六、总结与展望人工智能技术的应用为教育领域带来了许多新的机遇和挑战。
21届华杯赛试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = x^2 - 4x + c,若f(x)在x=2时取得最小值,则c的值为多少?A. 0B. 4C. 8D. 12答案:C2. 一个等差数列的前三项分别为2, 5, 8,那么这个数列的第10项是多少?A. 23B. 24C. 25D. 26答案:A3. 已知一个圆的直径为10cm,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:B4. 一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A二、填空题(每题5分,共20分)5. 已知一个等比数列的前三项分别为1, 2, 4,那么它的第5项是______。
答案:86. 一个长方体的长、宽、高分别为2cm、3cm和4cm,那么它的体积是______立方厘米。
答案:247. 已知一个二次函数的顶点为(-1, 2),且经过点(2, 3),那么它的解析式是______。
答案:y = (x + 1)^2 + 28. 一个圆的周长为62.8cm,那么它的半径是______厘米。
答案:10三、解答题(每题10分,共20分)9. 已知一个直角三角形的两条直角边长分别为6cm和8cm,求这个三角形的斜边长。
答案:斜边长为10cm。
10. 已知一个等差数列的前三项分别为3, 7, 11,求这个数列的第20项。
答案:第20项为83。
四、证明题(每题10分,共20分)11. 证明:对于任意正整数n,等式(1+1/n)^n < e < (1+1/(n-1))^n 成立。
答案:略。
12. 证明:对于任意实数x,y,有|x+y| ≤ |x| + |y|。
答案:略。
五、综合题(每题20分,共20分)13. 已知一个圆心在原点,半径为5的圆,以及一个点A(7,0)。
求通过点A且与圆相切的直线方程。
18~22届“华杯赛”【初一组】决赛试题及参考答案目录计算 (1)计数 (3)几何 (6)数论 (13)应用题、行程 (16)组合 (18)第一章计算1.【第18届华杯赛决赛A 卷第1题】计算:______90030010093186293140020010042)1(8424211=⨯⨯+⋅⋅⋅+⨯⨯+⋅⋅⋅+⨯⨯+⨯⨯⨯⨯-⋅⋅⋅+⨯⨯-+⋅⋅⋅+⨯⨯-⨯⨯-n n n n n n n .2.【第18届华杯赛决赛A 卷第7题】设d cx bx ax x P +++=23)(,若4,3,2,1,1)(==k k k P ,那么______=+-ba d c .3.【第18届华杯赛决赛A 卷第10题】解关于x 的方程:259]15[]2[-=+++x x x ,其中][x 表示不超过x 的最大整数4.【第18届华杯赛决赛A 卷第12题】整数d c b a 、、、满足105,183,82+=-=+=d c c b b a ,求a d 7+的最小值5.【第18届华杯赛决赛B 卷第1题】已知18=+b a ,17=ab ,求______=-b a .6.【第18届华杯赛决赛B 卷第10题】已知3128))(331(4)(332730+-⋅⋅⋅+--+⋅⋅⋅+-=a a n a a a f n ,求)(a f 被12-a 除的余式7.【第19届华杯赛决赛卷第1题】计算:______]6)8()3[(12)3()]27(0[625.38554)2(16)5(3233=÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-.8.【第19届华杯赛决赛卷第4题】正整数c b a 、、满足三个等式:68,943,3222=+=⎪⎭⎫ ⎝⎛++=b a c b a c b a ,则c 等于______.9.【第20届华杯赛决赛卷第1题】计算:______)1024110813412211(2048=+⋅⋅⋅+++⨯.10.【第20届华杯赛决赛卷第3题】正整数d c b a 、、、满足4332<<<d c b a ,当d c b a +++最小时,______=c ,______=d .11.【第20届华杯赛决赛卷第11题】已知,23,43111=++=-+ab c ac b bc a a c b 0)2(4222=---c b b c c b ,b 与c 同号,且c b 2≠,求444c b a ++.12.【第21届华杯赛决赛卷第1题】已知n 个数n x x x ,,,21⋅⋅⋅,每个数只能取0,1,-1中的一个.若201621=+⋅⋅⋅++n x x x ,则20152015220151n x x x +⋅⋅⋅++的值为______.13.【第21届华杯赛决赛卷第4题】设正整数y x 、满足2099=--y x xy ,则______22=+y x .14.【第21届华杯赛决赛卷第6题】已知5=++z y x ,5111=++zy x ,1=xyz ,则______222=++z y x .15.【第21届华杯赛决赛卷第7题】关于y x 、的方程组⎪⎩⎪⎨⎧=-=+121y x a y x 只有唯一的一组解,那么a 的取值为______.16.【第22届华杯赛决赛卷第1题】数轴上10个点所表示的数分别为1a ,2a ,…10a ,且当i 为奇数时,21=-+i i a a ,当i 为偶数时,11=-+i i a a ,那么______610=-a a .17.【第22届华杯赛决赛卷第3题】如下的代数和10071010)12016()1(2015220161⨯+⋅⋅⋅++-⨯-+⋅⋅⋅-⨯+⨯-m m m 的个位数字是______,其中m 是正整数.第二章计数1.【第18届华杯赛决赛A 卷第8题】【第18届华杯赛决赛B 卷第6题】见右图,长宽比例是2:1的长方形镶有黑色宽边且一端带有1:1正方形对角线的图案,用8个这种长方形拼成一个正方形图案,要求其中4个水平放置,4个竖直放置,若一个这样拼成的正方形图案经过旋转与另一个拼成的正方形图案相同,则认为两个拼成的正方形图案相同,那么有对称轴的不同的图形有______种2.【第18届华杯赛决赛B 卷第4题】如图,一只青蛙开始在正六边形ABCDEF 顶点A 处,它每次可随意地跳到相邻的两个顶点之一,在D 点处有只飞虫,若青蛙在5次之内跳到D 点,则可以捕捉到飞虫,否则飞虫会逃走,那么青蛙从开始到抓住飞虫,有______种不同跳法解析:【知识点】计数青蛙跳三次即可到达D 点,第一种情况,青蛙按D C B A →→→的路线到达D 点,中间不折回,只有一种跳法,青蛙也可以选择在C B A 、、三点处折回,往回跳一个点再继续前进,总共有3种跳法,那么按D C B A →→→的路线到达D 点总共4种跳法;3.【第18届华杯赛决赛B 卷第8题】设c b a 、、是9~0中的数字且至少有两个不相等,将循环小数...0c b a 化成最简分数后,分子有______种不同的值4.【第19届华杯赛决赛卷第7题】方程023=+++C Bx Ax x 的系数,C B A 、、为整数,10,10,10<<<C B A ,且1是方程的根,那么这种方程总共有______个5.【第20届华杯赛决赛卷第10题】(1)右图有几个四边形?(2)在右图的每个顶点处分别标上1和-1,共有4个1和4个-1,将每个四边形4个顶点处的数相乘,再将所得的所有的积相加,问:至多有多少个不同的和?6.【第21届华杯赛决赛卷第3题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 为“好点”.那么在这张格子纸上共有______个“好点”.7.【第21届华杯赛决赛卷第8题】右图是一个骰子的展开图,每个面是一个单位正方形.用四个骰子粘成一个2×2×1的长方体放到桌面上,要求每两个粘在一起的面上的“点数”相同.长方体放到桌面上的六个面分别记为上、下、左、右、前、后六个面,两个长方体不同是指对应六个面的“点”的拼图不同.不考虑长方体的旋转,共可以粘出______种不同的长方体.8.【第22届华杯赛决赛卷第7题】右图是A,B,C,D,E五个防区和连接这些防区的条公路的示意图.已知每一个防区驻有一支部队.现在这五支部队都要换防,且换防时,每一支部队只能经过一条公路,换防后每一个防区仍然只驻有一支部队,则共有______种不同的换防方式.第三章几何1.【第18届华杯赛决赛A 卷第2题】将ABC ∆沿DE 、HG 、EF 翻折后压平,ABC ∆的三个顶点C B A 、、均落在点O 处,若o 512=∠,则1∠的度数为______.2.【第18届华杯赛决赛A 卷第4题】将长为8,宽为6的长方形ABCD 纸片一组对角的顶点D B 、重合,压平,折出右面的图形D AEFC ',则三角形AED 的面积为______.3.【第18届华杯赛决赛A 卷第11题】若用一张斜边长为15厘米的红色直角三角形纸片,一张斜边长为20厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,如右图恰拼成一个直角三角形,则黄色正方形纸片的面积是多少平方厘米4.【第18届华杯赛决赛A 卷第13题】如图所示,两个等腰三角形ABC和ECD的底边在一条直线BD上,AD交EC于5和cm10,若三角形COD的面∠且它们的腰成分别为cm=O,顶角CEDBAC∠8cm,求四边形ABDE的面积积为25.【第18届华杯赛决赛B卷第3题】将的长方形ABCD纸片一组对角的顶点DB、重合,压平,折出右面的图形DAEFC',如果bAB==,,则三角形AED的面积与长方形ABCD的面积之aAD比为______.6.【第18届华杯赛决赛A卷第13题】如图所示,两个等腰三角形ABC和ECD的底边在一条直线BD上,AD交EC于∠且它们的腰成分别为cm10,若三角形COD的面5和cm=BAC∠O,顶角CED8cm,求四边形ABDE的面积积为27.【第18届华杯赛决赛B卷第5题】若F E 、分别为三角形ABC 中边AC AB 、上的点,CE 和BF 相交于P ,已知三角形EBP 与三角形EPC 以及四边形AEPF 的面积都是4,则三角形PBC 的面积为______.7.【第18届华杯赛决赛B 卷第13题】如图所示,两个等腰三角形ABC 和ECD 的底边在一条直线BD 上,AD 交EC 于O ,顶角CED BAC ∠=∠且它们的腰成分别为cm 5和cm 10,若四边形ABDE 的面积为25.52cm ,求三角形COD 的面积9.【第19届华杯赛决赛卷第2题】如图,由单位正方形组成的网格中,每个小正方形的顶点称为格点,以格点为顶点做一个三角形,记L 为三角形边上的格点数目,N 为三角形内部的格点数目,三角形的面积可以用下面的式子求出来:顶点在格点的三角形的面积121-+=N L 如果三角形的边上和内部共有20个点,则三角形面积最大等于______,最小等于______.10.【第19届华杯赛决赛卷第3题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,EB CE DC AD ==,,则线段DE 的长度最小为______.11.【第19届华杯赛决赛卷第5题】如图,直角三角形ABC 中,F 为AB 上的点,且FB AF 2=,四边形EBCD 为平行四边形,那么______=EFFD .12.【第19届华杯赛决赛卷第10题】如右图,在ABC ∆中,D 为BC 的中点,AE CE FB AF 3,2==,连接CF 交DE 于P 点,求DPEP 的值13.【第20届华杯赛决赛卷第7题】如右图,正六边形中两个等边三角形的面积都是30平方厘米,那么正六边形的面积是______平方厘米14.【第20届华杯赛决赛卷第13题】如图,ABC ∆中,D 为BC 上一点,E DB CD ,3:2:=是AB 上一点,且F EB AE ,1:2:=是CA 的延长线上的一点,且3:4:=FA CA 若DFE ∆的面积是1209,求ABC ∆的面积15.【第21届华杯赛决赛卷第9题】在恰有三条边相等的四边形中,有两条等长的边所夹的内角为直角.若从该直角顶点引出的对角线恰好把这个四边形分成两个等腰三角形,求该直角所对的角的度数.16.【第21届华杯赛决赛卷第11题】两张8×12的长方形纸片重叠地放置,有一个顶点重合,尺寸如右图所示.问图中阴影部分的面积是多少?17.【第21届华杯赛决赛卷第13题】如右图,ABCD是正方形,F是其两条对角线的交点,E在BC边上,DE2:1BE与对角线AC的交点为G,三角形DFG的面积等于2.求正方:EC形ABCD的面积.18.【第22届华杯赛决赛卷第2题】如右图,三角形ABC,三角形AEF和三角形BDF均为正三角形,且三角形ABC,三角形AEF的边长分别为3和4,则线段DF长度的最大值等于______.19.【第22届华杯赛决赛卷第10题】如右图,已知正方形ABDF的边长为6厘米,三角形EBC的面积为6平方厘米,点C在线段FD的延长线上,点E为线段BD和线段AC的交点.求线段DC的长度.20.【第22届华杯赛决赛卷第11题】如右图,先将一个菱形纸片沿对角线AC折叠,使顶点B和D重合.再沿过A、和C其中一点的直线剪开折叠后的纸片,然后将纸片展开.这些纸片中)B(D菱形最多有几个?请说明理由.第四章数论1.【第18届华杯赛决赛A 卷第5题】设c b a 、、是9~0中的数字且至少有两个不相等,将循环小数...0c b a 化成最简分数后,分子有______种不同的值2.【第18届华杯赛决赛B 卷第11题】一个三位数,将它的三个数字、三个数字两两乘积、三个数字的乘积相加,其和恰好等于它本身,这样的三位数中最小的是多少?3.【第18届华杯赛决赛B 卷第12题】将2613表示为不少于5个非零连续自然数n a a a ,,,21⋅⋅⋅之和,即5,261321≥=+⋅⋅⋅++n a a a n ,则第一项(最小的数)1a 可以取的最大值与最小值分别是多少?4.【第18届华杯赛决赛B 卷第14题】某些不为0的自然数是2010个数码和相同的自然数之和,也是2012个数码和相同的自然数之和,还是2013个数码和相同的自然数之和,求其中最小的那个自然数5.【第19届华杯赛决赛卷第8题】如果c b a 、、为不同的正整数,且222c b a =+,那么乘积abc 最接近2014的值是______.6.【第19届华杯赛决赛卷第12题】将一个四位数中的四个数字之和的两倍与这个四位数相加得2379,求这个四位数7.【第19届华杯赛决赛卷第13题】求质数c b a 、、,使得abc bc ab a =++715.8.【第20届华杯赛决赛卷第6题】设c b a 、、为1到9中的三个不同整数,则cb a abc ++的最大值是______,最小值是______.(abc 是个三位数)9.【第20届华杯赛决赛卷第9题】算式:20146422013531⨯⋅⋅⋅⨯⨯⨯+⨯⋅⋅⋅⨯⨯⨯的值被2015除的余数是多少?10.【第20届华杯赛决赛卷第14题】求使得n n 22+是完全平方数的自然数n .11.【第21届华杯赛决赛卷第12题】证明:对任何非零自然数12123,23-++n n n n 都是整数,并且用3除余2.12.【第22届华杯赛决赛卷第4题】已知20162015<<x ,设][x 表示不大于x 的最大整数,定义{}][x x x -=,如果{}][x x ⨯是整数,则满足条件的所有x 的和等于______.13.【第22届华杯赛决赛卷第5题】设z y x 、、是自然数,则满足36222=+++xy z y x 的z y x 、、有______组.14.【第22届华杯赛决赛卷第6题】设pq q p q p 113--、、、都是正整数,则22q p +的最大值等于______.15.【第22届华杯赛决赛卷第8题】下面两串单项式各有2017个单项式:100831008210078100772535131287326050604960476046132387542,,,,,,,)2(;,,,,,,,)1(y x y x y x y x y x y x y x y x y x y x y x xy m m n n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----其中m n 、为正整数,则这两串单项式中共有______对同类项.16.【第22届华杯赛决赛卷第9题】是否存在长方体,其十二条棱的长度之和、体积、表面积的数值均相等?如果存在,请给出一个例子;如果不存在,请说明理由.17.【第22届华杯赛决赛卷第12题】证明:任意5个整数中,至少有两个整数的平方差7是的倍数.18.【第22届华杯赛决赛卷第14题】已知关于y x 、的方程201722=+-k y x 有且只有六组正整数解,且y x ≥,求k 的最大值.第五章应用题、行程1.【第18届华杯赛决赛A 卷第3题】【第18届华杯赛决赛B 卷第2题】若干人完成了植树2013棵的任务,每人植树的数目相同,如果有5人不参加植树,则剩余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务,那么共有______参加植树.2.【第18届华杯赛决赛A 卷第6题】【第18届华杯赛决赛B 卷第7题】甲、乙两车分别从A、B 地同时出发相向而行,甲车每小时行40千米,乙车每小时行50千米,两车分别到达B 地和A 地后,立即返回,返回时甲车的速度增加二分之一,乙车的速度增加五分之一,已知两车两次相遇处的距离是50千米,则A、B 两地的距离为______千米.3.【第19届华杯赛决赛卷第6题】一辆公交快车和一辆公交慢车沿某环路顺时针运行,它们的起点分别在A 站和B 站,快车每次回到A 站休息4分钟,慢车每次回到B 站休息5分钟,两车在其他车站停留的时间不计,已知沿顺时针方向A 站到B 站的路程是环路全程的52,两车环形一次各需45分钟和51分钟(不包括休息时间),那么,它们从早上6时同时出发,连续运行到晚上10时,两车同在B 站______次.4.【第20届华杯赛决赛卷第4题】圆形跑道上等距插着2015面旗子,甲与乙同时同向从某面旗子的位置出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈,不算起始点旗子位置,则中间有______次甲正好在旗子位置追上乙.5.【第21届华杯赛决赛卷第2题】某停车场白天和夜间两个不同时段的停车费用的单价不同.张明2月份白天的停车时间比夜间要多40%,3月份白天的停车时间比夜间要少40%.若3月份的总停车时间比2月份多20%,但停车费用却少了20%,那么该停车场白天时段与夜间时段停车费用的单价之比是______.6.【第21届华杯赛决赛卷第5题】甲、乙两队修建一条水渠.甲先完成工程的三分之一,乙后完成工程的三分之二,两队所用的天数为A;甲先完成工程的三分之二,乙后完成工程的三分之一,两队所用天数为B;甲、乙两队同时工作完成的天数为C.已知A比B多5,A是C的2倍多4.那么甲单独完成此项工程需要天______.第六章组合1.【第18届华杯赛决赛A 卷第9题】恰用4个数码4和一些加、乘、幂运算、负号、分数线和括号,写出5个值都等于5的不同算式2.【第18届华杯赛决赛A 卷第14题】若干红,黄,蓝三种颜色的球放在155个盒子中,现将这些盒子分类:第一种分类方法是将红色球数目相同的盒子归为一类,第二种方法是将黄色球数目相同的盒子归为一类,第三种方法是将蓝色球数目相同的盒子归为一类,结果发现从1到30之间所有整数都是某种方法分类中的某一类的盒子数那么,(1)三种分类的类数之和是多少?(2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同3.【第18届华杯赛决赛B 卷第9题】在直线上依次排列有D C B A 、、、四点,请证明:BDAC AD BC CD AB ⨯=⨯+⨯4.【第19届华杯赛决赛卷第9题】有三个农场在一条公路边,如图A、B、C 处,A 处农场年产小麦50吨,B 处农场年产小麦10吨,C 处农场年产小麦60吨,要在这条公路上修建一个仓库收买这些小麦,假设运费从A 到C 方向是1.5元/吨千米,从C 到A 方向是1元/吨千米,那么仓库应建在何处才能使运费最低?5.【第19届华杯赛决赛卷第11题】某地参加华杯赛决赛的104名小选手来自14所学校,请证明:一定有选手人数相同的两所学校.6.【第19届华杯赛决赛卷第14题】如果有理数10321,,,,a a a a ⋅⋅⋅满足条件:10,10,0109432110321≤++⋅⋅⋅++≤+≥≥⋅⋅⋅≥≥≥a a a a a a a a a a ,那么210232221a a a a +⋅⋅⋅+++的最大值是多少?7.【第20届华杯赛决赛卷第2题】一堆彩球只有红、黄两色,先数出的50个球有49个红球,此后,每数出8个球中都有7个红球,恰好数完,已数出的球中红球不少于90%,这堆彩球最多有______个.8.【第20届华杯赛决赛卷第5题】现有2015张卡片,每张上写有数字+1或-1,如果每次指着其中的三张卡片问:“这三张卡片所写的数字的乘积是多少?”并得到正确回答,那么,至少问______次才能确定这2015张卡片所写的数字的乘积.9.【第20届华杯赛决赛卷第8题】从一副扑克牌中抽走一些牌,在剩下的牌中至少要数出20张,才能确保数出的牌中有两张同花色的牌的点数和为15,那么最多抽走______张牌,最少抽走______张牌(K Q J 、、的点数为11,12,13,大小王的点数为0,一副扑克牌有54张牌,其中52张正牌,另两张是副牌(大王和小王),52张正牌又均分为13张一组,并以黑桃、红桃、草花、方块四种花色表示各组,每组花色的牌包括1至10(1通常表示为A ),以及K Q J 、、标示的13张牌).10.【第20届华杯赛决赛卷第12题】加工十个同样的木制玩具,需用260毫米和370毫米的标准木方分别为30根和40根,仓库里有长度分别为900毫米,745毫米,1385毫米的三种标准木方,用着三种标准木方锯出所需长度的木方,每锯一次要损耗5毫米的长木方,问是否可以用三种木方,每种木方选一些,恰好锯出十个玩具所需的木方?如果可以,锯的次数最少,那么三种木方各选多少根?(说明:一根木方被锯一次要得到两个长度大于0的木方,即不能从一端锯).11.【第21届华杯赛决赛卷第10题】围着一张可以转动的圆桌,均匀地放着8把椅子,在桌子上对着椅子放有8个人的名片.这8个人入座后,将圆桌顺时针转动,第一次转45°,从第二次开始,每次转动比上一次多转45°.每转动一次,当某人对着自己的名片时,取走自己的名片.如果入座时谁都没有对着自己的名片,那么桌子至少转多少度才能保证所有入座可能的情况下8个人都拿到了自己的名片?12.【第21届华杯赛决赛卷第14题】排成一行的学生,从左到右1至3报数,最后一个人报2.从右到左1至m 报数,最后一个人报1,这里m 与3互质.现凡报过1的学生出列,其余原地不动,共留下62名,其中只有21对学生原来相邻.问原来有多少名学生?m 的值是多少?13.【第22届华杯赛决赛卷第13题】直线a 平行于直线b ,a 上有10个点1021,,,A A A ⋅⋅⋅,b 上有11个点1021,,,B B B ⋅⋅⋅,用线段连接i A 和j B (11,,1,10,,1⋅⋅⋅=⋅⋅⋅=j i ),所得到的图形中一条边在a 上或者在b 上的三角形有多少个?目录计算 (21)计数 (27)几何 (32)数论 (39)应用题、行程 (46)组合 (49)第一章计算1.【第18届华杯赛决赛A 卷第1题】解析:【知识点】计算原式275427162410127820310193)102101(4210110041931)515041*********(421)100994321(931)10042(2)100994321[(421)100994321(931)100994321(42122222222422333333333333333333333333333-=⨯⨯-=⨯⨯-⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯⨯=++⋅⋅⋅++++⨯⨯⨯+⋅⋅⋅++⨯-++⋅⋅⋅++++⨯⨯⨯=++⋅⋅⋅++++⨯⨯⨯-+⋅⋅⋅+-+-⨯⨯⨯=2.【第18届华杯赛决赛A 卷第7题】解析:【知识点】计算将4,3,2,1=k 代入d cx bx ax x P +++=23)(,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=+++2450243524102414141664313927212481d c b a d c b a d c b a d c b a d c b a 则9851015035-=+---=+-b a d c 3.【第18届华杯赛决赛A 卷第10题】解析:【知识点】计算][x 表示不超过x 的最大整数,则15]15[115,2]2[12+≤+<-++≤+<-+x x x x x x即36259]15[]2[16+≤-=+++<+x x x x ,化简得61167≤<x ,则142598≤-<x ,259-x 为整数,其取值只能是9,10,11,12,13,14,分别解方程,得到:(1)9259=-x ,解得1823=x ,代入验算:1073=+=左,92523=-=右,右左≠,则1823=x 不是解;(2)10259=-x ,解得1825=x ,代入验算:1073=+=左,102525=-=右,右左=,则1825=x 是解;(3)11259=-x ,解得1827=x ,代入验算:1183=+=左,112527=-=右,右左=,则1827=x 是解;(4)12259=-x ,解得1829=x ,代入验算:1293=+=左,122529=-=右,右左=,则1829=x 是解;(5)13259=-x ,解得1831=x ,代入验算:1293=+=左,132531=-=右,右左≠,则1831=x 不是解;(6)14259=-x ,解得1833=x ,代入验算:13103=+=左,142533=-=右,右左≠,则1833=x 不是解;所以,原方程的解为1829,1827,1825=x .4.【第18届华杯赛决赛A 卷第12题】解析:【知识点】最值将105+=d c 代入183-=c b ,得到121518)105(3+=-+=d d b ,代入到82+=b a ,得32308)1215(2+=++=d d a ,所以224211)3230(77+=++=+d d d a d ,由于d 是整数,所以当1-=d 时a d 7+可以取到最小值1313=-.5.【第18届华杯赛决赛B 卷第1题】解析:【知识点】计算22)(4)(b a ab b a -=-+,即25617418)(22=⨯-=-b a ,则16±=-b a .6.【第18届华杯赛决赛B 卷第10题】解析:【知识点】计算,多项式312825221916131074)(36912151821242730+-+-+-+-+-=a a a a a a a a a a a f ,当k n 2=,即n 为偶数时,k n a a 2=,1122=-=k k a a ,12-k a 可以被12-a 整除,则k a 2除以12-a ,余式为1;当12+=k n ,即n 为奇数时,12+=k n a a ,a a a a k k +-=+)1(212,)1(2-k a a 可以被12-a 整除,则12+k a 除以12-a ,余式为a ;则)(a f 除以12-a 的余式为:96803128252219161310741+-=+-+-+-+-+-a a a a a a .7.【第19届华杯赛决赛卷第1题】解析:【知识点】计算原式2611225299202135]6)8()3[(12)3()]27(0[625.38554)2(16)5(3233-=-=--+--=÷-+-⨯+-÷--⎪⎭⎫ ⎝⎛-+⨯---÷+-⨯-=8.【第19届华杯赛决赛卷第4题】解析:【知识点】计算b ac c b a 33=⇒=,c b a 、、是正整数,则3239432=++⇒=⎪⎭⎫ ⎝⎛++c b a c b a ,则3233-+=b a c ,则有)2()2(33233a b a a b b a a -=-⇒=⎪⎭⎫ ⎝⎛-+⋅,b a -=显然不符合条件,则只能是02=-a ,即2=a ,解得12,8,2===c b a .9.【第20届华杯赛决赛卷第1题】解析:【知识点】计算原式1146862046552048)1024102355(20481024141211021(2048=+⨯=+⨯=+⋅⋅⋅++++⋅⋅⋅++⨯=10.【第20届华杯赛决赛卷第3题】解析:【知识点】计算通分,统一分子,可以得到acac ad ac cb ac ac ac 86666696<<<,分子相同,分母越大,分数值越小,则c d c dc d c ac ad ad ac 233434238669<<⇒⎩⎨⎧<>⇒⎩⎨⎧>>,要使得d c b a +++最小,则d c b a 、、、的取值尽可能小,1=c 时,2334<<d ,无解;2=c 时,338<<d ,无解;3=c 时,294<<d ,无解;4=c 时,6316<<d ,无解;5=c 时,215320<<d ,7=d ;则7,5==d c .11.【第20届华杯赛决赛卷第11题】解析:【知识点】计算23222=++abc c b a ,b 与c 同号,则0>a ,a c b 14311+=+,所以b 和c 也是正数,0)4)(2()2(42)2(422222=--=---=---bc c b c b b c c b c b b c c b ,c b 2≠,则4=bc ,代入a c b 14311+=+,得ac b 43+=+,222222262323a a a abc c b abc c b a -=-=+⇒=++,2222243243)(⎪⎭⎫ ⎝⎛+=++⇒⎪⎭⎫ ⎝⎛+=+a bc c b a c b ,226843a a a -=-⎪⎭⎫ ⎝⎛+,解得4=a ,则4443=+=+c b ,且4=bc ,解得2==c b ,则288224444444=++=++c b a 12.【第21届华杯赛决赛卷第1题】解析:【知识点】计算令2016=n ,且12016321==⋅⋅⋅===x x x x ,满足201621=+⋅⋅⋅++n x x x ,则2016201520162015220151=+⋅⋅⋅++x x x .13.【第21届华杯赛决赛卷第4题】解析:【知识点】计算20818199=-+--y x xy ,则101)9)(9(=--y x ,101是质数,则只有两种情况,1019,19=-=-y x 或19,1019=-=-y x ,则110,10==y x 或10,110==x y ,则1220012100100110102222=+=+=+y x .14.【第21届华杯赛决赛卷第6题】解析:【知识点】计算25222)(2222=+++++=++yz xz xy z y x z y x ,5111=++=++xyzyz xz xy z y x ,则5=++yz xz xy ,152525222=⨯-=++z y x .15.【第21届华杯赛决赛卷第7题】解析:【知识点】方程组根据x 的取值,分类讨论,当0≥x 时,⎪⎪⎩⎪⎪⎨⎧-=+=⇒⎪⎩⎪⎨⎧=-=+31323232121a y a x y x a y x 当0<x 时,⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=--=+a y a x y x a y x 222121只有一组解,则1223232-=⇒--=+a a a .16.【第22届华杯赛决赛卷第1题】解析:【知识点】计算,2,9,1,8,2,7,1,6,2,5,1,4,2,3,1,2,2,19108978675645342312=-==-==-==-==-==-==-==-==-=a a i a a i a a i a a i a a i a a i a a i a a i a a i 14,811016+=+=a a a a ,则6610=-a a .17.【第22届华杯赛决赛卷第3题】解析:【知识点】计算50803050510065052100915052100720151009100752011320131201510071010)12016()1(2015220161=⨯=⨯+-⨯+=-+⋅⋅⋅+-+-+-=⨯+⋅⋅⋅++-⨯-+⋅⋅⋅-⨯+⨯-m m m 则个位数字为0.第三章计数1.【第18届华杯赛决赛A卷第8题】【第18届华杯赛决赛B卷第6题】解析:【知识点】计数分两种情况考虑,第一种以对边中点的连线为对称轴,由于竖直方向旋转90度与水平方向重合,所以只考虑竖直方向即可,如下图,总共有24种情况;第二种以对角线为对称轴,由于一条对角线旋转90度与另一条对角线重合,所以只考虑一条对角线即可,没有符合题意的拼法;2.【第18届华杯赛决赛B卷第4题】解析:【知识点】计数青蛙跳三次即可到达D 点,第一种情况,青蛙按D C B A →→→的路线到达D 点,中间不折回,只有一种跳法,青蛙也可以选择在C B A 、、三点处折回,往回跳一个点再继续前进,总共有3种跳法,那么按D C B A →→→的路线到达D 点总共4种跳法;同理,青蛙按D E F A →→→的路线到达D 点,也是4种跳法;那么青蛙从开始到抓住飞虫总共有8种跳法。
华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 中国数学华罗庚杯竞赛C. 中国数学华杯赛D. 全国青少年数学华罗庚杯竞赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的试题难度级别是?A. 初级B. 中级C. 高级D. 专家级答案:C二、填空题(每题5分,共20分)1. 华杯赛的全称是________。
答案:全国青少年数学华罗庚杯竞赛2. 华杯赛的举办周期是________。
答案:每年一次3. 华杯赛的参赛对象是________。
答案:初中生4. 华杯赛的试题难度级别是________。
答案:高级三、解答题(每题10分,共30分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的第10项。
答案:该等差数列的公差为3,所以第10项为2 + 3 * (10 - 1) = 31。
2. 一个圆的半径为5,求该圆的面积。
答案:圆的面积公式为πr²,所以面积为π * 5² = 25π。
3. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = 5。
四、证明题(每题10分,共30分)1. 证明:如果一个三角形的两边相等,则这个三角形是等腰三角形。
答案:设三角形ABC中,AB = AC,根据等腰三角形的定义,如果一个三角形有两边相等,则这个三角形是等腰三角形,所以三角形ABC是等腰三角形。
2. 证明:如果一个四边形的对角线互相垂直平分,则这个四边形是菱形。
答案:设四边形ABCD中,对角线AC和BD互相垂直平分,根据菱形的定义,如果一个四边形的对角线互相垂直平分,则这个四边形是菱形,所以四边形ABCD是菱形。
第二十一届华罗庚金杯少年数学邀请赛决赛试题参考答案 (初一组)一、填空题(每小题 10 分, 共80分)二、解答下列各题(每小题 10 分, 共40分, 要求写出简要过程)9. 【答案】︒135, ︒45【解答】在恰有三条边相等的四边形中, 三条相等的边相邻, 不妨设为AD BC AB ==. 若直角顶点引出的对角线恰好把四边形分成两个等腰三角形,则有两种情况.图9-1 图9-2(1) 如图9-1所示, 直角顶点A 引出的对角线AC 分成的两个等腰三角形中,BC AB =, AC AD =.在等腰三角形ABC 中, 因为AC BC AB ==, 所以三角形ABC 为等边三角形. 进而︒=∠=∠60CAB BCA , ︒=∠30DAC .在等腰三角形ACD 中,()︒=∠-︒=∠7518021DAC ACD , 所以︒=∠135BCD .(2) 如图9-2所示, 直角顶点A 引出的对角线AC 分成的两个等腰三角形中,BC AB =, CD AC =.取AD 的中点E , 连接CE , 则AD CE ⊥. 所以CE AB //.过B 作CE BF ⊥于F , 则四边形ABFE 为矩形. 所以BC AD BF 2121==. 在直角三角形BCF 中, 因为BF BC 2=, 所以︒=∠30BCE . 因为BC AB =, 所以ACE BCA ∠=∠. 得︒=∠=∠15ACE BCA . 最终, ︒=∠45BCD .10. 【答案】1260【解答】按照题目的设定, 第一次转︒45, 从第二次开始, 每次转动比上一次多转︒45, 所以从第1次到第k 次共转了︒⨯+⨯45)1(21k k . 要想保证每个人都拿到自己的名片, 则需要每个人至少与桌子上的卡片位置对上一次.从某个人名片开始顺时针记每张名片对应的椅子位置为第0, 1, 2, 3, 4, 5, 6, 7号. 第k 次转动后, 0位置的名片对应的椅子位置的号数为)1(214545)1(21+⨯=⨯+⨯k k k k除以8的余数.可以看出, 前7次旋转, 第0号名片所处的位置各不相同, 并且都不在0卡片的起始位置, 因此由抽屉原则, 0卡片的主人一定可以拿到自己的卡片.由对称性,旋转七次, 所有的人都拿到了卡片.当旋转次数小于7时, 第0号名片在第4号位置上没有停留过, 如果第0号的名片上的人正好坐在第4号位置上, 则这个人就拿不到自己的名片.所以旋转的度数为12604528=⨯.11. 【答案】54【解答】如右图将重叠部分标上字母, 连接AC . 由于12=AD , 178=-=CD , 所以ACD ∆的面积6=, 145112222=+=AC .又8=AB , 所以81641458222=-=-=AC BC , 9=BC .因此ABC ∆的面积369821=⨯⨯.所以四边形ABCD 的面积42366=+=.因此阴影部分面积5442128=-⨯.12. 【证明】首先,有().1)12)(1(2111)1(2211)132(211)32(211212322323-++=-+++=-++=-++=-++n n n n n n n n n n n n n n n n 因为 )1(+n n 是偶数, 所以1212323-++n n n 是整数. 又 238)22)(12(218)22)(12(21)12)(1(21+-++=-++=-++n n n n n n n n n ,而)22)(12(2++n n n 是三个相继的整数的乘积, 是3的倍数, 是3和8的公倍数. 所以, 1212323-++n n n 被3除余2. 三、解答下列各题(每小题 15分, 共30分, 要求写出详细过程)13. 【答案】40【解答】设正方形ABCD 的面积是a , 连接EF, 见右图, 则三角形BCF 的面积=三角形DFC 的面积4a =, 三角形BEF 的面积12214aa =⨯=, 三角形ECF 的面积6a =, 三角形BED 的面积6a =, 三角形FED 面积=三角形BED 的面积-三角形BEF 的面积12a =. 由共边定理,GF CFDFG DFC EGF ECF =∆∆=∆∆的面积的面积的面积的面积, 242126aa a =-, 得到: 40=a . 14. 【答案】125, 4【解答】设原来有N 人, 原来的队伍从左到右编号, 1, 2, , N , 则第一次报1的有132+-N 人, 他们的编号是, 132,,2,1,0,13+-=+N k k ; 第二次报1的有11+-mN 人, 他们的编号是 11,,2,1,0,1+-=+mN l ml .两次都报1的人满足条件: 113+=+ml k .因为1),3(=m , 所以t l 3=, ⎥⎦⎤⎢⎣⎡-=m N t 31,,2,1,0 . 两次都报1的人的编号是 ⎥⎦⎤⎢⎣⎡-=+m N t mt 31,,2,1,0,13 , 共计有131+⎥⎦⎤⎢⎣⎡-m N 人. 首先让第一次报1的人出列, 出列132+-N 人, 留下的人成2人相邻一组共有32-N 组和最右边一个一人组; 让第二次报1而第一次不报1的人出列, 出来 ⎥⎦⎤⎢⎣⎡---=-⎥⎦⎤⎢⎣⎡--+-m N m N m N m N 31113111 (人). 另一方面, 第二次出列的除了最右边一人外, 都是由一部分第一次留下的二人组中出来一人, 所以, 最后留下的一人组数就是第二次出列的人数减1, 即1311-⎥⎦⎤⎢⎣⎡---m N m N . 由题设得201311=-⎥⎦⎤⎢⎣⎡---m N m N . ① 第一次留下的32-N 个二人组中有⎥⎦⎤⎢⎣⎡---m N m N 311个组在第二次每组出列一人变成了一人组, 所以留下二人组的个数212032=--N , 即125=N .代入①得213124124=⎥⎦⎤⎢⎣⎡-m m . 所以213124324831243124124=⎭⎬⎫⎩⎨⎧+=⎭⎬⎫⎩⎨⎧+-m m m m m . 因为21324820≤<m, 所以134.49.3>≤m .所以4=m .。
第二十一届华杯赛决赛小高组模拟试题B 答案1、637【解答】原式=910891078910678910106372!3!4!5!⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++=。
2、32【解答】她爷爷正常是60岁退休,应该是1939年出生的兔,1945年是鸡年,1957年又是鸡年,这一年她爷爷才18岁,不到结婚年龄,因而1969年的鸡年,应该是她爸爸的出生年,否则,下一个鸡年是1981年,到2000年才19岁,也不能当父亲,故2001年,小琴的爸爸32岁。
3、23【解答】乙已经开了9小时,甲再开9小时,此时15-9=6小时,两个一起放水还需要6小时注满。
由已知,要达到乙开6小时的注水量,甲还需要开6×43=8小时,故甲还需要9+6+8=23小时注满水池。
4、51【解答】10个数中有5个奇数,5个偶数,从5个偶数中取出3个,共有10种不同的取法;从5个偶数中取1个,从5个奇数中取2个,共有50种不同的取法,所以和为偶数的不同取法共有60种,其中{}0,1,3,{}0,1,5,{}0,1,7,{}0,2,4,{}0,2,6,{}0,3,5,{}1,2,3,{}1,2,5,{}1,3,49种取法的和小于10.综上,满足条件的不同取法共有51种。
5、2【解答】将棋子放中间行的白色方格中,就可以唯一地确定一种放法,其中棋子放左边方格和右边方格是相同放法,故不同放法只有2种。
6、201【解答】连接EF ,三角形BCF 的面积=41,三角形BEF 的面积=41×31=121,三角形ECF 的面积=61,三角形BED 的面积=61,三角形FED 的面积=三角形BED 的面积-三角形BEF 的面积=121。
由共边定理,面积面积EGF ECF ∆∆=面积面积DFG DFC ∆∆=GF CF ,面积DFG -12161∆=面积DFG 41∆=GF CF ,解得DFG ∆的面积=201。
7、14从表中可以看出,满足这样条件的(m,n )数对有14个。
2021年“华杯赛”复赛小学组试题及详解1. 原式=(2+4+6+8)-(1/2+1/4+1/6+1/8)=20-(1+1/24)=18+23/24。
2. 8个人用30天完成了工程的1/3,那么8个人完成剩余工程(2/3)应该用60天,增加4个人变成12个,应该用60÷12×8=40天,共用70天。
3. 甲乙的速度比为6:5,乙提速后的速度为5×1.6=8份。
假设乙耽误的时间也在以5的速度前进,则乙总共可以前进全程的7/6。
也就是说相当于乙在用甲的速度的5/6和8/6两种速度来骑甲的7/6的路程,根据十字相乘法,两种速度所用的时间之比为1:2。
也就是说,乙用5/6的速度行驶了5/6×1/3=5/18的路程,那么全程的5/18-1/6=1/9就是5千米,全程45千米。
5. △FAB是等边三角形,所以弧AF是六分之一圆,同理弧GC也是六分之一圆,则弧GF是1/6+1/6-1/4=1/12圆,四条弧是1/3圆,长度为2×π×1÷3=2.094。
6. 每种先都减去1本,剩余40-2-5-11=22元。
如果再买2本11元的,恰好用完,1种方法;如果再买1本11元的,剩余11元,可以买1本5元和3本2元,1种方法;如果不再买11元的,22元最多买4本5元的,5元的本数可以是4,2,0,3种方法。
共有1+1+3=5种方法。
7. 该几何体是一个四棱锥,底面积为20×20=400,高为20,所以体积为400×20÷3=8000/3(立方厘米)。
8. 大于11的质数13,17,19都只能作为分母为1的数的分母,如果它们作为同一个分数的分子和分母,则剩余的10个可以都是整数。
下面举例说明可以只有一个不是整数:13/1 22/11 20/10 18/9 16/8 14/7 15/5 21/3 4/2 12/6 19/17共9个是整数。
2021华杯赛试题及答案2.问:(a)1995年全年有几个星期日?全年有几个月有五个星期日?(b)1996年全年有几个星期日?全年有几个月有五个星期日?3.甲、乙、丙三个班人数相同,在班之间举行象棋比赛,将各班同学都按1,2,3,,编号.当两个班比赛时,具有相同编号的同学在同一台对垒,在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙两班比赛时,有9台是男、女生对垒.试说明在甲、丙两班比赛时,男、女生对垒的台数不会超过24.什么情况下,正好是24?4.用0,1,2,3,4五个数字,组成四位数,每个四位数中的数字不同(如1023,2341),求全体这样的四位数之和.5.某幼儿园的小班人数最少,中班有27人,大班比小班多6人,春节分橘子25箱,每箱橘子不超过60个,不少于50个,橘子总数的个位数是7,若每人分19 个,则橘子数不够,现在大班每人比中班每人多分一个,中班每人比小班每人多分一个,刚好分完,问这时大班每人分多少橘子?小班有多少人?6.一个圆周上有12个点,,,,.以它们为顶点连三角形,使每个点恰是一个三角形的顶点,且各个三角形的边都不相交.问有多少种连法?参考答案1.A,B两市相距600千米 2.(a)1995年共有53个星期日,全年有五个月有五个星期日,(b)1996年共有52个星期日,全年只有四个月有五个星期日. 3.略 4.259980 5.大班每人分得18个橘子;小班有25人. 6.共有55种不同的连法1.【解】如图所示.设小镇为D点,傍晚到达E点,F为AB中点.AD是AC的三分之一,即DC=2×AD,EB是CE的二分之一,即CE=2×EB,所以DE=DC+CE=2×(AD十EB)已知DE=400,所以AD+EB=400÷2=200,从而AB=400+200=600(千米)答:A、B两市相距600千米【注】本题中,“计划上午比下午多走100千米”这一条件是多余的2.【解】(a)1995年1月1日是星期日,1995年全年有365天,每7天有且仅有一个星期日7×52=364,因此,从1995年1 11 2日到1995年12月31日.这364天中有52个星期日,加上1995年1月1日这个星期日,共是53个星期日.最小的月有28天,最大的月有31天,因此无论哪个月都最少有4个星期日,最多有5个星期日.53=12×4+5,因此,1995年中有五个月有五个星期日.(b)1995年1月1日是星期日,经过364天后,1995年12月31日也是星期日.所以1996年1月1日是星期一.1996年是闰年,2月有29天,经过364天后,1996年12月30日是星期一,所以1996年全年共有52个星期日,全年只有四个月有五个星期日.3.【解】我们可以把乙班同学分成三部分,第一部分为与甲班相同编号的同学异性者(由题设可知这部分乙班同学为15人),第二部分为与丙班相同编号的同学异性者(由题设可知这部分乙班同学为9人),其余为第三部分.设A同学属于第三部分,他与甲班相同编号的同学通性,与丙班相同编号的同学也为同性,所以,与A相同编号的甲班和丙班同学必为同性.由此可知,甲、丙两班比赛时,男、女生对垒的台数不会超过24.只有当与乙班第一部分相同编号的丙班同学均与乙班同学同性,并且与乙班第二部分相同编号的甲班同学也均与乙班同学同性时,甲、丙两班比赛中,男、女生对垒的台数正好是24.4.【解】千位数字是1的有4×3×2=24个(因为百位数字可从0、2、3、4中选择,有4种,百位确定后,十位有3种选择,百位,十位确定后,个位有2种选择).千位数字是2、3、4的也有24种。
第二十一届华杯赛答案【篇一:第二十一届华杯赛周周练(一—三)】=txt>周周练(一)一、填空题1、从2012年12月21日冬至起,每九天分为一段,依次称之为一九、二九、三九??九九,冬至那一天是一九的第一天,2013年2月10日是()九的第()天。
2、有一箱苹果,甲班分每人3个余10个,乙班分每人4个余11个,丙班分每人5个余12个,这箱苹果至少有()个。
3、用学和习代表不同的数字,四位数学学学学与习习习习的积是一个七位数,且个位与百万位数字与学代表的数字相同,那么学习所代表的两位数共有()个。
4、若干人完成了植树2013棵的任务,每人植树的棵数相同,如果有5人不参加植树,其余的人每人多植2棵完不成任务,而每人多植3棵超额完成任务,参加植树共有()人。
5、一个四位数,各位数字互不相同,所有数字之和等于6,并且这个数时11的倍数,则满足这种要求的四位数有()个。
二、解答题1、一只青蛙8点从深为12米的井底向上爬,它每向上爬3米,因井壁打滑,就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一,8点17分时,青蛙第二次爬至离井口3米之处,那么青蛙爬到井口时所花的时间为多少分钟?2、钟面上3点多少分时,时针和分针在这2的两边,并且到2的距离相等。
3、某人参加了10场比赛,第6、7、8、9场比赛得分分别为23,20,11,14,已知前9场的平均分比前5场的平均分高,他第10场比赛至少得多少分,10场的平均分才能超过18分?4、一个棱长是10厘米的正方体,从侧面打通两个底面边长是4厘米的洞,从上面打通一个直径是4厘米的圆柱形洞,剩下图形的表面积和体积各是多少?5、由455个棱长1厘米的小正方体无缝隙组成一个长方体,从每条棱上去掉一行后,剩下图形的体积是371,原图形的长、宽、高各是多少?参考答案一、填空题(1)六九第七天(2)67 (3)3 (4)61 (5)6二、解答题8(1)22分钟(2)4 (3)29 (4)表面积785.12平方厘米,体积668.64立13方厘米(5)长13 宽7 高5周周练(二)一、填空题1、a、b两校的男女生人数比分别是8︰7和30︰31,两校合并后男女生人数比是27︰26,两校合并前人数比是()。
21年华为杯数学建模竞赛题目近年来,数学建模竞赛在全球范围内逐渐兴起,成为了学生们展示自己数学能力和解决实际问题的平台。
其中,华为杯数学建模竞赛作为中国最具影响力的数学建模竞赛之一,备受关注。
今年的华为杯数学建模竞赛题目也备受期待,让我们一起来看看吧。
题目:城市交通拥堵问题的优化研究背景:随着城市化进程的加快,城市交通拥堵问题日益突出。
交通拥堵不仅浪费了大量的时间和资源,还给人们的生活带来了很多不便。
因此,如何优化城市交通,提高交通效率成为了亟待解决的问题。
要求:请选取一个城市作为研究对象,通过收集相关数据和调查问卷等方式,分析该城市的交通拥堵问题,并提出相应的优化方案。
具体要求如下:1. 收集数据:收集该城市的交通流量、道路网络、公共交通线路、人口分布等相关数据,并进行整理和分析。
2. 调查问卷:设计并发放调查问卷,了解居民对于城市交通拥堵问题的看法和建议。
3. 问题分析:根据收集到的数据和调查问卷结果,分析该城市的交通拥堵问题,包括交通瓶颈、交通流量高峰时段、交通事故频发地点等。
4. 优化方案:基于问题分析的结果,提出相应的优化方案,包括但不限于道路改造、公共交通优化、交通管理措施等。
5. 模型建立:建立数学模型,对优化方案进行评估和验证,分析其可行性和效果。
6. 结果展示:撰写一份完整的研究报告,包括问题分析、优化方案、模型建立和结果分析等内容,并准备一份简洁明了的演示文稿,用于竞赛展示。
参考要点:以下是一些可能的参考要点,供参赛者参考:- 交通拥堵问题的影响:时间浪费、能源浪费、环境污染等。
- 交通拥堵问题的原因:道路狭窄、交通信号不畅、交通事故频发等。
- 优化方案的可行性:经济成本、社会影响、政策支持等。
- 模型建立的方法:图论、优化算法、统计分析等。
- 结果分析的指标:交通效率、出行时间、交通事故率等。
- 可能的创新点:智能交通系统、共享出行模式、交通数据分析等。
总结:通过参加华为杯数学建模竞赛,学生们将有机会深入研究城市交通拥堵问题,并提出创新的优化方案。
华杯赛决赛试题及答案一、选择题1. 下列哪个选项是正确的?A. 2 + 3 = 5B. 3 + 4 = 7C. 5 - 2 = 2D. 4 - 3 = 2答案:A2. 如果一个数的平方根是正数,那么这个数是:A. 负数B. 零C. 正数D. 任意实数答案:C二、填空题1. 圆的周长公式是 ________ 。
答案:2πr2. 一个直角三角形的两个直角边长分别为3和4,斜边长为________ 。
答案:5三、简答题1. 请解释什么是质数,并给出一个质数的例子。
答案:质数是指在大于1的自然数中,除了1和它本身以外,不能被其他自然数整除的数。
例如,2是一个质数,因为它只能被1和2整除。
2. 什么是勾股定理,并给出一个应用的例子。
答案:勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。
例如,如果一个直角三角形的两个直角边长分别为3和4,根据勾股定理,斜边的长度应该是√(3² + 4²) = 5。
四、计算题1. 计算下列表达式的值:(3 + 4) × (8 - 2) ÷ 2答案:352. 一个数的平方是36,求这个数的值。
答案:±6五、证明题1. 证明:对于任意正整数n,n² - 1总是能被8整除。
答案:对于任意正整数n,可以表示为n = 8k + r,其中k是整数,r是0到7之间的整数。
那么n² - 1 = (8k + r)² - 1 = 64k² +16kr + r² - 1 = 8(8k² + 2kr) + (r² - 1)。
由于r² - 1是8的倍数或者-1,所以n² - 1能被8整除。
2. 证明:在一个直角三角形中,如果斜边是直角边的两倍,那么这个三角形是等腰直角三角形。
答案:设直角三角形的直角边长分别为a和b,斜边为c。
根据题意,c = 2a。
华杯赛试题及答案解析一、选择题1. 下列哪个选项是正确的?A. 2+2=5B. 3+3=6C. 4+4=8D. 5+5=10答案:C2. 哪个国家是联合国的创始会员国之一?A. 中国B. 巴西C. 印度D. 德国答案:A二、填空题3. 请填写下列算式的空白处:2×3×______=24。
答案:44. 请填写下列单词的中文意思:_________(environment)。
答案:环境三、简答题5. 请简述牛顿的三大定律。
答案:牛顿的三大定律包括:- 第一定律:惯性定律,即物体在没有外力作用时,将保持静止或匀速直线运动。
- 第二定律:加速度定律,即物体的加速度与作用在其上的力成正比,与物体的质量成反比。
- 第三定律:作用与反作用定律,即对于每一个作用力,总有一个大小相等、方向相反的反作用力。
四、计算题6. 计算下列表达式的值:(3x^2 + 2x - 5) / (x + 1),其中x=2。
答案:将x=2代入表达式,得到(3*2^2 + 2*2 - 5) / (2 + 1) = (12 + 4 - 5) / 3 = 11 / 3。
五、论述题7. 请论述光的波粒二象性。
答案:光的波粒二象性是指光既表现出波动性,又表现出粒子性。
波动性表现在光的干涉、衍射等现象中,而粒子性则表现在光电效应等现象中。
这一理论是量子力学的基础之一。
六、实验题8. 请设计一个实验来验证阿基米德原理。
答案:实验步骤如下:- 准备一个弹簧秤、一个金属块和水。
- 首先,在空气中测量金属块的重量。
- 然后,将金属块完全浸入水中,再次测量其重量。
- 观察到在水中测量的重量小于空气中的重量,这是因为金属块受到水的浮力作用,从而验证了阿基米德原理。
七、案例分析题9. 阅读以下案例,并分析其原因:案例:小明在跑步时突然感到呼吸困难,心跳加速。
答案:小明可能由于剧烈运动导致身体氧气供应不足,心跳加速是为了加快血液循环,以更快地将氧气输送到身体各部位。
21届华杯赛试题及答案解析一、选择题1. 下列哪个选项是正确的?A. 3 + 4 = 6B. 2 × 5 = 10C. 7 - 3 = 5D. 8 ÷ 2 = 4答案:C2. 一个数的平方是9,这个数是?A. 3B. -3C. 3或-3D. 9答案:C二、填空题1. 计算:(3x - 2) - (x + 5) = __________答案:2x - 72. 已知一个等差数列的前三项分别为2,5,8,求第四项。
答案:11三、解答题1. 一个长方形的长是宽的两倍,如果宽增加5厘米,长减少5厘米,面积不变,求原来的长和宽。
答案:设原来宽为x厘米,则长为2x厘米。
根据题意,我们有方程:x * 2x = (x + 5) * (2x - 5)。
解这个方程得到x = 10厘米,所以原来的宽是10厘米,长是20厘米。
2. 一个数列的前四项是1,2,3,5,求第五项。
答案:这是一个斐波那契数列,每一项都是前两项的和。
所以第五项是3 + 5 = 8。
四、证明题1. 证明:对于任意正整数n,n^2 - 1总是偶数。
答案:设n为任意正整数,n可以表示为2k或2k+1(k为整数)。
则n^2 - 1 = (2k)^2 - 1 = 4k^2 - 1 = 2(2k^2 - 1/2),或者n^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4k(k+1),两者都是偶数,因此n^2 - 1总是偶数。
五、应用题1. 一个班级有40名学生,其中有20%的学生喜欢数学,30%的学生喜欢英语,10%的学生既喜欢数学又喜欢英语。
求至少喜欢一门学科的学生比例。
答案:设喜欢数学的学生人数为M,喜欢英语的学生人数为E,既喜欢数学又喜欢英语的学生人数为B。
根据题意,我们有:M = 40 * 20% = 8E = 40 * 30% = 12B = 40 * 10% = 4至少喜欢一门学科的学生人数为M + E - B = 8 + 12 - 4 = 16,所以至少喜欢一门学科的学生比例为16/40 = 40%。
小学第21届华杯赛试卷一、选择题(每题2分,共10分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数可能是:A. 4B. -4C. 3D. 23. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?A. 20B. 25C. 30D. 354. 一个数的3倍加上4等于23,这个数是多少?A. 5B. 6C. 7D. 85. 一个班级有40名学生,其中1/5的学生是班长,那么班长有多少人?A. 8B. 10C. 12D. 15二、填空题(每题2分,共10分)6. 一个数的平方根是4,这个数是______。
7. 如果一个三角形的底边长是6厘米,高是4厘米,那么它的面积是______平方厘米。
8. 一个数除以5的商是20,余数是3,这个数是______。
9. 一个圆的半径是3厘米,它的周长是______厘米。
10. 如果一个数的1/4加上5等于10,那么这个数是______。
三、判断题(每题1分,共5分)11. 所有的质数都是奇数。
()12. 两个连续的自然数的和一定是奇数。
()13. 如果一个数的平方是25,那么这个数只能是5。
()14. 一个数的最小公倍数是它自己。
()15. 一个数的最小公倍数是它自己,这个数是1。
()四、简答题(每题5分,共10分)16. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求这个长方体的体积。
17. 如果一个圆的直径是14厘米,求这个圆的面积。
五、应用题(每题15分,共30分)18. 一个班级有45名学生,其中1/3的学生参加了数学竞赛,1/4的学生参加了英语竞赛。
如果参加数学竞赛的学生中有1/2也参加了英语竞赛,求没有参加任何竞赛的学生人数。
19. 一个水果店有苹果和橘子两种水果,苹果每斤5元,橘子每斤3元。
如果小明买了3斤苹果和2斤橘子,总共花费了多少钱?六、附加题(每题10分,共10分)20. 一个数列的前三项是1、2、3,从第四项开始,每一项都是前三项的和。