2013年全国初中数学竞赛
- 格式:doc
- 大小:206.50 KB
- 文档页数:2
2013年全国初中数学联合竞赛试题及详解第一试、选择题(本题满分 42分,每小题7分) 1•计算 4,3 2 :2 41 24 2( )(A ) .2 1( B )1( C )2( D )2【答案】(B )【解析】原式=42+1)2 3 ,(4 2 3)2 4(、.2 1) (4.2 3) 1,故选(B )一 - m 2 m 22•满足等式 2 m 1的所有实数m 的和为()(A ) 3( B )4( C )5( D )6【答案】(A )【解析】分三种情况进行讨论:(1) 若 2m 1,即m1时,满足已知等式;21,即m 3时, m 2 m 2(2) 若 m2 m( 1)41满足已知等式;2 m 0一口 1(3) 若 2m1,即m1且m 3时,由已知,得2解得,mm m 2m 2 m 2故j 足等2 m 1的所'实数m 的和1 3(1)=3,故选(A ).24•不定方程 3x 7xy 2x 5y 17CAB 15o , ABC 的平分线交圆O 于点D ,若CD3,则 AB =() (A ) 2 (B ) 6 (C ) 2.2 (D ) 3 【答案】(A )【解析】连接 OC ,过点0作ON CD 于点N ,贝V 3•已知AB 是圆O 的直径, C 为圆O 上一点, CN DN OA ,从而 OCA CAB 15o ,由AB 是圆O 的直径, ACB 90°,因 CD 平分 ACB ,故 ACD45°, OCN ACD OCA 30°,在 Rt ONC 中,••• cosOCNCN OC2OC 2,故选(A )0的全部正整数解(x, y)的组数为((A) 1(B) 2(C) 3 (D) 4(A) 33 【答案】(B ) 34 (B )因1既不是质数, (C ) 2013( D ) 2014设不超过n 的正整数中, n13 57911U 152 34 49G 6 b.(1 __Ii w2468【答案】(B )3x 2x 17【解析】由3x 2 7xy 2x 5y 170,得y —— -------- ,因x, y 为正整数,7x 5故 x 1,y 1,从而 7x 5 0,于是 3x 2 2x 17 7x 5 , 3x 2 5x 22 0 ,即卩 (x 2)(3x 11) 0,由 x 1,知 3x 11 0,故x 2 0, x 2,故 x 1 或 x 2 当x 1时,y 8 ;当x 2时,y 1.故原不定方程的全部正整数解 (x, y)有两组:(1,8),(2,1),故选(B ). 5.矩形ABCD 的边长AD 3, AB 2 , E 为AB 的中点,F 在线段BC 1:2 , AF 分别与DE , DB 交于点M , N ,则MN =(―、3、、5 5 .59、、511,5(A ) (B )(C )( D )—714 28 28【答案】(C )BF 1【解析】因,故FC 2BF BF 11FN BF 1,BF - AD 1,因 BF // AD ,故 BNF s DNA ,故,故DA BC 33AN DA 31 FN -AN 1 3AF -AF . 延长DE,CB 交于点G ,则由E 为AB 的中点,知3 34 4ADE 也 BGE ,故 BG AD 3 , FG BF BG1 3 4 ,因 FG // AD , 故AM AD 3 亠 33AMD s FMG ,故,故 AM FM AF ,于是FM FG 4 47上,BF : FC )考虑n 为奇数的情况):质数的个数为 a n ,合数的个数为b n ,当n 15时,列表如下(只 也不是合数,故“好数”一定是奇MN AF AM FN AF 3AF 1AF —AF 9.AB2 BF29.57 4 28 28 28 故选(C).6•设n为正整数,若不超过那么,所有“好数”之和为( n的正整数中质数的个数等于合数的个数,则称 )n为“好数”由上表可知,1,9,11,13都是“好数”因05印5 2,当n 16时,在n 15的基础上,每增加2个数,其中必有一个为偶 数,当然也是合数,即增加的合数的个数不会少于增加的质数的个数, 故一定有b n a n 2,故当n 16时,n 不可能是“好数”.因此,所有的“好数”之和为 1 9 11 13 34,故选(B ).二、填空题(本题满分 28分,每小题7分)1.已知实数 x,y,z 满足 x y 4, z 1 xy 2y 9,则 x 2y 3z _________________ .【答案】 4【解析】由x y 4,得x 4 y ,代入z 1 xy 2y 9,得 z 12(4 y)y 2y 9 y 6y 92 2(y 3)0,故(y 3)20,又(y 3)20,故(y 3)20,故 y 3,z 1,x 1,于是 x 2y 3z 42•将一个正方体的表面都染成红色,再切割成n 3(n 2)个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= _____ .【答案】8、 2【解析】只有一个面染成红色的小正方体的总数为 6(n 2)个,任何面都不是红色的 小正方体的总数为(n 2)3个,依题意有6(n2)23.在 ABC 中, A 60o , C 75o , AB 10, D,E,F 分别在 AB, BC,CA 上,则DEF 的周长最小值为 _______ .【答案】5.6【解析】分别作点 E 关于AB, AC 的对称的P,Q . 则 DE PD,EF FQ .连接 AE, AP, AQ, DP,FQ,PQ , 则 PAQ 120°,且 AP AE AQ ,从而 APQ 30°, AH AB sinB 10 sin 45° 5、、2,于是 DEF 的周长为l DE DF EF PD DF FQ PQ 、、3AP 、3AE 3AH 5、6(n 2)3,解得 n 8( n 2舍去).APcos30°, PQ-3AP ,过点A 作AH BC 于点H ,则当且仅当点 E 与点H 重合,且P,D,F,Q 四点共线时取得等号,即DEF 的周长1 min5 6・2 2 2 ,__,4•若实数 x, y,z 满足 x y z xy yz zx 8,用 A 表示 x y,y z,z x 的最大值,贝U A 的最大值为 ______ .4苗【答案】——3【解析】由已知,得(x y)2 (y z)2 (z x)2 16 ,不妨设A |x y ,贝UA 2 x y 2 (y x)2 (y z) (z x) 22 (y z)2 (z x)2 2 16 (x y)22(16 A 2)解得A 还.当且仅当x y也,y z z x时取等号.333故A 的最大值力.3第二试(A )、(本题满分20分)已知实数a,b,c,d 满足2a 2 3c 2 2b 2 3d 2求a 2 b 2 c 2 d 2的值.又因为6.即 a 2 b 2 c 2 d 2由①,②可得mnmn a 2 b 2b 2c 2ac 2bd ad 2bc故 mn ad2bcac bd 0(1)2a 2 2b 2 3c 23d 2(2) ab a由(1)得一令—2a 2 3c 2 2b 23d 26(3)d cd(ad bc)2 6(4)注:符合条件的实数 a, b, c, d 存在且不唯一,应满足2ad bc 6,解:设m a 2 b 2, n2 2c d ,贝U 2m 3n(2a 22 23c ) (2 b3d 2)12.因 2m 3n 22m 23n 24mn 24mn ,即12224mn ,故 mn因为OA OC ,所以 OCA OAC ,因为 COB所以 2 POB 2 OAC ,所以 POB OAC ,所以 OP // AC连接BC ,因AB 为圆O 的直径,PB 为圆O 的切线,故 ACB OBP 90°_22解:因为t 是一元二次方程X x 1 0的一个根,显然t 是无理数,且t a dt,b Ct ,代入(2)得t .6于是 a —d,b 2 討a 于d ,bC ,代入(3)或(4),得 c 2 d 22 , 故符合条件的实数 a, b, c, d 存在且不唯一,如 a 1,c 迈,d3 又如a f,b T ,c 1,d 1也是一组,当然还有很多组二、(本题满分25分)已知点C 在以AB 为直径的圆O 上,过点B,C 9PB作圆O 的切线,交于点 P ,连接AC ,若OP 9AC ,求—— 的值.2 AC解:连接OC ,因为PC,PB 为圆O 的切线,所以 POC POB二就是3 组.OCA OAC ,又 POBOAC ,所以 BAC s POB ,所以AC OBAB OP9又OP AC , AB 2r ,OB r ( r 为圆O 的半径),代入,得OP23r, AC在Rt POB 中,由勾股定理,得PB 、.OP 2 OB 22為,所以空碧3门.AC 2r3、(本题满分25分)已知t 是一兀二次方程x 2 X 10的一个根,若正整数a,b, m使得等式 at m bt m31m 成立,求ab 的值.1 t .由 at m bt m31m ,得 abt 2m a b t2 2m 31m0,将 t1 t 代入,得ab 1 t ma b t m 31m 0,即 卩 ma b因为a,b,m 是正整数,t 是无理数,所以m a bab 0a b 31 mab m 2于是可得31m m 231m 0ab因此a, b 是关于x 的一元二次方程 x 2m 31 x 31m m ab tab m 31m 0.20的两个正整数根,该方程第二试(B)立,求ab的值.解:因为t 、 2 1,所以t2 3 2.2.由at m bt m 17m,得abt2m a b t m217m 20 ,将t 3 2 2代入,得ab 3 2.2m a b ,2 1 m217m 0 ,整理得m a b 2ab 2 3ab m a b m217m 0a 于是可得ab b 2 17 m17m m2因为a,b,m是正整数,.2是无理数, 所以m(a3abb)m(a2abb)m217m 0因此a,b是关于x的一元二次方程x22(m 17)x 17m m20的两个正整数根,该方程的判别式24 m 17 4 17m4 17 m 17 2m 0.又因为a, b,m是正整数,所以a b 2 17 又因为判别式是一个完全平方数,验证可知,17m 0,从而可得0 m -2m 8符合要求.只有把m 8代入,得ab 17m m272.二、(本题满分25分)在ABC的外心和内心,且满足(1)OI // BC;ABC 中,AB ACAB2OIAC,,求证:0、I分别是(2) S AOC S AOB2S AOI证明:(1)过点O作OM BC于M ,过点I作IN的判别式 2 2m 31 4 31m m 31 m 31 5m 0.又因为a,b是正整数,所以a b31 m 0,从而可得又因为判别式是一个完全平方数, 验证可知,只有m c 310 m -5 6符合要求.把m 6代入,得ab31m m2150.、(本题满分20分)已知t ,2 1,若正整数a,b,m,使at m bt m 17m 成则OM //IN,设BC a,AC b, AB c,由0、I分别是ABC的外心和内心,得1 1 1 CM -a,CN -(a b c ),所以 MN CM CN - (c b ) 01 ,又MN 恰好是两条平行线 0M ,IN 之间的垂线段,所以01也是两条平行线 OM ,IN 之间的 垂线段,所以01 // MN ,所以01 // BC . 半径),则 S A0C SAOB S AOI S COI S AIC 2S A0I S BOI S COI S AIC S AIB 2S AOI 2S A0I r OI +(b c) 2S AOI r ^(c 22 (2)由(1 )知0MNI 是矩形,连接BI ,CI ,设0M b 2 2 三、(本题满分25分)若正数a,b,c 满足 一- S AIB S A OI S BOI 1 OI r 1 OI r 1 AC r 1 -AB r 2 2 22 b) 1 (b c) 2S AOI -2 2 2 2 . 2 22 .2 2 2 a c a b a b c3 2ca 2ab 3 IN r (即为 ABC 的内切圆 的值.求代数式 b 2 c 2a 2 c 2 a 2b 2 a 2 2bc 2cab 2c 22ab解:由于a,b,c 具有轮换对称性,不妨设0 a b c.(1) b ,则c 0, c bb 2c 2 2bc 2bc 1,$2ca c a $ b 22ca1,2 . 2 2 a b c 2ab b $ c 2 这与已知条件矛盾 (2)若 c b c 2 2bc 2 2b c 2ab.2 2故3-2bc2ab1,故b 2c 22bcc 2 a 2 b 2 2caa 2b 2c 2 2ab3,b,0从而,得2bc 1,02a 2cab 2 b 2 2ca1,b $c 2 2ab1,02 2 2a b c 2ab2ab1,2 2c a 2cab 222 . 2 2a b c2ab这与已知条件矛盾.综合(1)( 2)可知,一定有cab..2 2 2.2 2 2 于是可得bc ab —(a b) abc2b(a b)2 2 2 2 2 2 同理可得E —a ―L 1, ―b —L 2ca 12ab,2 2 2 2 2,2 2,2 2.,b c a cababc*故1.2bc2ca2ab2b 2 2b 2 ab i, 2ab。
6 74 51 2 3第2题图1. 解:因为a 、b都是有理数,且(1))0a a b ++=,所以10a +=,且0a b +=,得1,1a b =-=,所以1ab =-.故选A.2. 解:若将图中标有1的面去掉,则标有2、3、4、5、6、7的六个面恰好是正方体的一种展开图,其中标有3和6的面是对面;只看题图最下面一行,标有3和1的面应是对面,所以重叠的两个面是标有1和6的面,应选B .3. 解:(1)∵AD ∥BC ,∴∠DAE=111222DAC ACB β∠=∠=,∴①正确;(2)∵AD ∥BC ,∴△AOD ∽△COB ,∴AD AOCB CO=,∴②正确; (3)∠AEB =∠DAE +∠ADB =∠DAE +∠CBD =1()2αβ+,∴③正确;(4)∵∠BAC =180()αβ︒-+,只有当AB ∥DC 时,∠ACD =180()αβ︒-+才能成立.∴④不正确. 综上,应选B.4. 解:由图象可知当12y y >时,3<x , 当01>y 时,1>x ,所以当012>>y y 时,13x <<. 故应选C .5. 解:如右图,解:由33ax a x +>+,得(1)(3)0a x -+>,由不等式的解集为3x <-,知30x +<,所以10a -<,得1a <.故应选B .6. 解:从点A 出发,每次向上或向右走一步,到达每一点的最短路径条数如图中所标数字,如: 到达点P 、Q 的最短路径条数分别为2和3. 以此类推, 到达点B 的最短路径条数为35条. 选D.7. 解:原式1 8. 解:由图象可知1k 为负数,2k 、3k 为正数,不妨取x =1,代入解析式,显然点2(1,)A k 在点3(1,)B k 的正下方,所以320k k >>,又1k 为负数,所以123k k k >>.9. 解:摸出的2个球都是黑球的概率是2116515⨯=,所以摸出的球颜色一样的概率是113155⨯=.10. 解:在Rt △ADC 中,∠A =30°,得AC DC 21=,同理BC EC 21=,所以4212121==+=+AB BC AC EC DC ( cm).11. 解:由题意得2272m m m +=-+,解得120,8m m ==,当10m =时,原方程无实数根,当28m =时,原方程有两个不相等的实数根,所以4==. 12解:令1111456670a +++⋅⋅⋅+=,则原式=1671a ⎛⎫+ ⎪⎝⎭13a ⎛⎫+ ⎪⎝⎭113671a ⎛⎫-++ ⎪⎝⎭×a =211132013671a a a +++2113671a a a ---=12013.13.【答案】设这个单位参加健身操比赛的职工有y 人,6人、5人、4人一列分别可以整排a 、b 、c 列,则62524y a b c =-=+=.(a 、b 、c 是正整数)∴ 6252,624.a b a c-=+⎧⎨-=⎩①②································································4分由②,得 62312(1).422a a a a c --+-=== 因为c 为正整数,可令12,a m -= 所以21,a m =+(m 是正整数) ③ 将③代入①,得6(21)25 2.m b +-=+ ∴ 122102(1).55m m m b +++==··································································7分 因为b 为正整数,可令15,m n += 所以51,m n =-(n 是正整数) ④ 将④代入③,得 2(51)110 1.a n n =-+=- ················································ 11分∴ 626(101)260y a n n =-=--=- (n 是正整数). 当n =1时,y 有最小值52. 即参加比赛列队的至少有52人. ···········14分 14.【答案】(1)∵ E 、B 、C 、H 、F 在同 一圆上,且∠EBC =90°,∴ ∠EHC =90°,∠EFC =90°. ·································································2分又 ∠FBC =∠HBC =45°,∴ CF = CH . ···················································4分 ∵ ∠HBF +∠HCF =180°,∴∠HCF =90°. ·········································6分 ∴ 四边形EFCH 是正方形. ···································································8分 (2)∵ ∠GHB +∠GCB =180°,图③E∴ ∠GHB =90°,由(1)知∠CHE =90°, ∴ ∠CHG +∠CHB =∠EHB+∠CHB . ∴ ∠CHG =∠EHB .∴ CG =BE =x , ∴DG =1DC CG x -=-. ·········································12分∴ △CGH 中,CG 边上是高为11(1).22DG x =-∴ 211111(1).224216y x x x ⎛⎫=⋅-=--+ ⎪⎝⎭ ·················································15分当x =12时,y 有最大值116. ··································································16分 15.【答案】(1)当∠ACB 为直角时,△ABC 为直角三角形,b =0,AD=AC=BD =a . ································································································2分(2)当∠ACB 为锐角时,如图③,作∠DAE =45°,AE 和BC 的延长线相交于点E ,过点C 作CF ⊥AE 于点F .则△CEF 和△ADE 都是等腰直角三角形.设AD DE x ==,CF EF m==. 则AE=. ∴AF m =-. ···4分 ∵ ∠F AC +∠CAD =45°,∠DAB +∠CAD =45°, ∴ ∠F AC =∠DAB .又 ∵∠AFC =∠ADB =90°,∴△F AC ∽△DAB . ……………………6分∴.FA FC DA DB =即.m mx a-=解得m =∴2axCE x a===+.·····························8分 ∵CE CD DE AD +==, ∴2axb x x a+=+. ·····································10分 整理得 2()0x a b x ab -+-=.解得1x=2x =(舍去). ····················································································································12分(3)当∠ACB 为钝角时,如图④,作∠DAE =45°,AE 和BC 的延长线相交于点E ,过点C 作CF ⊥AE 于点F .与(1)中的求法类似,可设AD DE x ==,CF EF m==,则A F =-.同(1)中的理由,得△F AC ∽△DAB ,2axCE x a=+.∵AD DE CE CD ==-, ∴2axx b x a =-+. ··········································16分 整理,得 2()0x a b x a b --+=,解得2a b x -±=…17分综上,AD 的长为a 或2a b ++或2a b -或. ···················································································18分。
2013年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
C(第2题图)2013年全国初中数学竞赛九年级预赛试题(本卷满分120分,考试时间120 分钟)一、选择题(本大题共6个小题,每小题5分,共30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分.1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( )A .41B .31C .21D .12.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN于N ,且AB =10,BC =15,MN =3,则△ABC 的周长为( ) A .38 B .39 C .40 D . 41 3.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则yx的值等于( )A .95 B .59C .52011-D .2011- 4.已知直角三角形的一直角边长是4为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴 影图形)的面积之和是10,那么以下四个整数中,最接近图 中两个弓形(带点的阴影图形)面积之和的是( ) A .6 B . 7 C .8 D .95.设a ,b ,c 是△ABC 的三边长,二次函数22(2a cx x b a y ----=在1=x 时取最小值b 58-,则△ABC 是( )A .等腰三角形B .锐角三角形C .钝角三角形D .直角三角形 6.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出按照“先进后出”的原则,如图,堆栈(1)中的2个连续存储单元 已依次存入数据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3个 连续存储单元已依次存入数据e ,d ,c ,取出数据的顺序是c ,d ,e ,现在要从这两个堆栈中取出5个数据(每次取出1个数据),则不同顺序的取法的种数有( )A .5种B .6种C .10种D .12种(1) (2)(第5题图)二、填空题(本大题共6个小题,每小题5分,共30分)7.若04122=---x x ,则满足该方程的所有根之和为 .8.(人教版考生做)如图A中,过A ,B ,C 三点的圆交AD 于E ,且与CD 相切,若AB =4,BE =5,则DE 的长为 . 8.(北师大版考生做)如图B ,等边三角形ABC 中,D,E 分别为AB ,BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF= . 9.已知012=--a a ,且3222322324-=-++-axa a xa a ,则=x . 10.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有 件.11.如图,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成o 45,∠A =o 60,CD =4m ,BC =)2264(-m ,则电线杆AB 的长为 m .12.实数x 与y ,使得y x +,y x -,xy ,yx四个数中的三个有相同的数值,则所有具有这样性质的数对),(y x 为 .三、解答题(本大题共3个小题,每小题20分,共60分) 13.(本题满分20分)已知:))(())(())((a x c x c x b x b x a x ++++++++是完全平方式. 求证: c b a ==.14.(本题满分20分)如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M ,N 以每秒1个单位的速度分别从点A ,C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP . (1)点B 的坐标为 ;用含t 的式子表示点P 的坐标为 ; (2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最大值?(第11题图)ABCD(第8题图A )GFECBA(第8题图B )D(3)试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC 面积的31?若存在,求出点T15.(本题满分20分)对于给定的抛物线b ax x y ++=2,使实数p ,q 适合于)(2q b ap +=. (1)证明:抛物线q px x y ++=2通过定点;(2)证明:下列两个二次方程,02=++b ax x 与02=++q px x 中至少有一个方程有实数根.2013年九年级试卷参考答案一、选择题(每小题5分,共30分)1—6 C D B A D C 二、填空题(每小题5分,共30分): 7. 62-; 8. A :516;B :12; 9. 4; 10. 12; 11. 26; 12. )1,21(-)1,21(--. 三、解答题:(每题20分,共60分)13. 证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a +b +c )x +ab +ac +bc ∵它是完全平方式, ∴△=0.即4(a +b +c )2-12(ab +ac +bc )=0. ∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca =0,(a -b )2+(b -c )2+(c -a )2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得c b a ==.14. 解:(1)(6,4);(2,3t t ).(其中写对B 点得1分) ··· ………………………………3分(2)∵S △OMP =12×OM ×23t , (备用图)(第14题图)。
2013年全国初中数学联赛北京赛区获奖名单一等奖(60名)姓名性别学校姓名性别学校李昀之男三帆中学赵文川男清华附中黄巍男北师大实验中学王宪盟男人大附中张梓航男北师大实验中学李靖阳男北京一零一中王雪莹女人大附中王与常男北京四中朱怡洁女北师大实验中学陈柯辛女北师大实验中学方景和女人大附中分校彭宇辰男北师大实验中学张家华男北京四中郭江濛女北京四中刘丹妮女北师大实验中学代家麟男北京四中段祺灏男人大附中胡丁丁男北师大实验中学黄京磊男北师大实验中学贾纪元男人大附中李岚晴女北师大实验中学孙景波男人大附中崔婧宜女北师大实验中学阙子烝男北京四中崔旭萌女人大附中曾翔钰男北京五中分校宁小芾女北京四中于雨辰女人大附中卢丹葳女北师大实验中学黄鹤扬男北师大实验中学钟岩青男人大附中赵浩宇男清华附中蒋易悰男北京四中包雨轩男人大附中徐中恕男北师大实验中学潘洪涛男北京一零一中周展平男人大附中夏晨曦男三帆中学赵宇瑄女北师大实验中学刘杨洁女北师大实验中学杨靖云男人大附中卢江天男人大附中易泽吉男北京四中那天行男北师大实验中学周天宇男北师大实验中学季北辰男人大附中舒惠泽男北师大实验中学王昊然男北师大实验中学彭彬男人大附中武建宇男北师大实验中学赵嘉熹男人大附中刘静远男北师大实验中学冯韫禛男人大附中王竞先男人大附中李书恒男北京一零一中付裕超男人大附中刘旻轩男北京四中蒋笑寒女人大附中谭嘉斌男北师大实验中学赵婧瑶女北师大实验中学姓名性别学校姓名性别学校王子杰男北师大实验中学林一衡男人大附中韩天翼男北师大实验中学王天洋男人大附中何章恺男三帆中学李屹康男人大附中王启涵男人大附中王嘉文男人大附中徐呈寅男人大附中冯曦林男北京八中邱厚德男人大附中孙殿咏男北京四中关艾女北京八中郑博晨男北京五中分校郭健庭男北京八中王昊男北师大实验中学文天琪女北京一零一中席翔男清华附中贾屿男北师大实验中学吴浛男清华附中程名锐男北师大实验中学章钊男人大附中徐浩天男北师大实验中学张峰玮男人大附中刘佳熙男北师大实验中学张璟华女人大附中王子涵男北京五中分校蒋励男人大附中张潞璐女人大附中余江晖男北京五中分校贺文迪男人大附中刘睿男北师大实验中学张远宁男人大附中吉哲男北师大实验中学张子禾男人大附中王若凡男北师大实验中学贾旺东男北京四中湛东辰男清华附中陈肇盟男北京一零一中王璐女人大附中王羽超男北师大实验中学王世因女北京五中分校王啸辰男清华附中陈忱女北师大实验中学贾泽宇男人大附中杨韫加男北师大实验中学程佳文男人大附中马逸婷女景山学校田佳懿女北京二中郜沁馨女三帆中学丁如仪女人大附中高昊阳男北达资源中学陈子威男人大附中王弋尘男北大附中王寅飞男三帆中学王嘉曦男北京十二中鲁子初男十一学校陈心怡女北京四中李冬煜男北大附中许鹤凡男北京四中马英浩男北京二中分校牛家赫女人大附中李瀚祎男北京四中陈淼男人大附中金泽宇女北师大实验中学王维曦男北师大实验中学顾子毅男清华附中邱言哲男人大附中黄宇昊男人大附中彭俊尧男人大附中陈炤桦男人大附中崔曼修男三帆中学姓名性别学校姓名性别学校王永骜男北京二中李维瑄女北师大实验中学魏雪晴女北京四中毕成男人大附中杨承霖男北师大实验中学严子昂男人大附中孙雨然女北师大实验中学张嘉宸男十一学校王润昕女人大附中张瑞轩男清华附中马思浩男北京八中王垂宇男北京二中崔若鹏男清华附中邓祺男北京四中周子褀男人大附中刘启航男北京五中分校刘嘉程男人大附中彭正阳男北京一零一中裴元男人大附中郝睿男北京一零一中宋东泽男人大附中朱敏佳女北京一零一中苏涵女北大附中张庭轩男北师大实验中学李桐男北京一零一中何青岩男北师大实验中学王烜男景山学校董舰桥男景山学校汪泓毅男人大附中曹旻男景山学校熊朝晖男人大附中谢易男清华附中汪子骐女人大附中李子俊男清华附中宫雨祺男人大附中王天冶男人大附中邢洺赫男三帆中学周英博男人大附中陆凝男十一学校王阳昇男三帆中学王序欣男北大附中肖子豪男十一学校王睿煊女北京一零一中王星瀚男北师大实验中学黄清扬女北师大实验中学冯济尘男北师大实验中学冯致铭男清华附中李冠达男清华附中齐典男人大附中汪一帆男人大附中彭蕴豪男人大附中张云柯男人大附中孟庆霖男北京一零一中马子麒女人大附中孙司宇男北师大实验中学李耀实男人大附中谭智泉男北师大实验中学薛竟一男十一学校崔浚鸥男北师大实验中学王德宸男北京二中杨育璋男北师大实验中学刘恺闻男北师大实验中学王小涵女北京八中于世兴男清华附中杜嘉涵男北京五中分校耿琮凯男人大附中阎涵女北师大实验中学何舒扬男人大附中。
中国教育学会中学数学教学专业委员会“《数学周报》杯”2013年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B )(C )(D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x ==,21122y --+==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x x y y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点(第3题)E可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A)2 (B )1 (C )2(D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,(第4题)(第8题)与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,, 解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,(第9题答案)D 所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以a r ah a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故 879168793DE ⨯+==++().另解: ABC S rp∆===(这里2a bcp ++=)所以12r == 2ABC a S ha ===△由△ADE ∽△ABC,得23a a h r DE BC h -===,即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6;当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
2013年全国初中数学联赛(四川决赛)解答一、选择题(本题满分42分,每小题7分)1、若反比例函数xk y =的图像与直线14-=x y 的一个交点P 的横坐标为1, 则=k ( )A 、3-B 、1-C 、1D 、3解:由条件知)3,1(P ,于是13k =,即3=k .故答案选D . 2、方程22012||20130x x -+=的所有实数解之和是( )A 、2012-B 、0C 、2012D 、2013 解:若0x 是方程22012||20130x x -+=的实数解,则0x -也是该方程的实数解. 所以,该方程的所有实数解之和是0.故答案选B3、已知正方形ABCD 的边长为1,E 、F 分别为BC 、CD 上的点,且满足CF BE =. 则AEF ∆面积的最小值是( )A 、8BC 、14D 、38 解:设x BE =,则x DF CE -==1,x CF =,)1(21)1(21211x x x x S AEF -----=∆=83]43)21[(212≥+-x ,当21=x 时等号成立。
所以,AEF ∆面积的最小值是83.故答案选D .4、已知实数,a b 满足2|1||1|a b a -+=,则b a 的值为( )A 、14B 、12C 、1D 、2 解:若2b =,则|1|5a a -+=,没有符合条件的实数a ;若2b ≠,则2(2)0b ->,则20a -≥,于是2|1||1|a b -+ 101a a ≥-++=,等号成立220,11a b -=+=,即2,0a b ==.所以1b a =. 故答案选C .5、在四边形ABCD 中,1AB BC ==,100ABC ∠=,130CDA ∠=,则BD 的长为( )A B 、1 C D解:如图,延长AB 至E ,使得BE BC =, 则1502AEC BCE ABC ∠=∠=∠=, 于是180AEC ADC ∠+∠=,故,,,A E C D 四点共圆,且圆心为B .所以,1BD BA ==.故答案选B .6、对于平面直角坐标系中的任意两点),(111y x P ,),(222y x P ,我们称||||2121y y x x -+-叫做21,P P 两点的直角距离,记作),(21P P d .若),(000y x P是一定点,),(y x Q 是直线b kx y +=上的动点,我们把),(0Q P d 的最小值叫做点0P 到直线b kx y +=的直角距离.则)1,1(M 到直线52+=x y 的直角距离是( )A 、3B 、72C 、4D 、92解:由条件知,设)1,1(M 到直线52+=x y 的直角距离是d ,则d 为|1||251|S x x =-++-的最小值.又|(2)||1||(2)|S x x x =--+-+-- 3|(2)|303x ≥+--≥+=,等号当且仅当2x =-处取得.所以S 的最小值为3. 即3d =.故答案选A .二、填空题(本大题满分28分,每小题7分)1、若x 是整数,且满足不等式组10214x x ->⎧⎨-<⎩,则x = .解:解不等式组10214x x ->⎧⎨-<⎩得512x <<.因此符合条件的整数2x =.故答案填2. 2、在等边ABC ∆中,D 、E 分别是边AB 、AC 上的点,且满足AD CE =,BE 与CD 相交于点F ,则BFC ∠的大小是 .解:由条件知ADC ∆≌CEB ∆(SAS ),故ACD CBE ∠=∠,于是60EFC FBC FCB ECF FCB ∠=∠+∠=∠+∠=所以120BFC =.故答案填120.2013年初中数学联赛初三决赛解答 第3页;共5页3、实数,,x y z 满足22227x y z xy yz zx ++---=,则||y z -的最大值是 . 解:法一:视原方程为关于x 的一元二次方程222()270x y z x y z yz -+++--=,其判别式222()4(27)0y z y z yz ∆=+-+--≥,即2()36y z -≤,故||6y z -≤. 当||6y z -=,且2y z x +=时等号成立.所以||y z -的最大值是6.故答案填6. 法二:因为22222327[()]()24y z x y z xy yz zx x y z +=++---=-+- 23()4y z ≥-,从而||6y z -≤.当||6y z -=,且2y z x +=时等号成立. 所以||y z -的最大值是6.故答案填6.4、已知1231415,,,,,x x x x x 取值为1或者为1-.记1223341415151S x x x x x x x x x x =+++++, 则S 能取到的最小正整数是 .解:令1(1,2,,15)i i i y x x i +==,约定161x x =.则1i y =或者1-. 在1215,,,y y y 中,设有a 个取1,b 个取1-.则15a b +=.又因为2121512151(1)()1a b y y y x x x ⨯-===,所以b 为偶数. 又由S 为正整数,则1523S a b b =-=-≥,此时6b =.另一方面,在1215,,,x x x 中,2581x x x ===-,其余全取1有3S =.所以,S 能取到的最小正整数是3.故答案填3.三、解答题(本题共三小题,第1题20分,第2、3题各25分)1、抛物线22y x x m =++与x 轴交于12(,0),(,0)A x B x 两点,其中12x x >,且221210x x +=. (1)求实数m 的值;(2)设0(2,)M y 抛物线22y x x m =++上的一点,在该抛物线的对称轴上找一点P ,使得PA PM +的值最小,并求出P 的坐标.解:(1)由条件知122x x +=-,12x x m =.于是22212121210()242x x x x x x m =+=+-=-,解得3m =-.经验证3m =-满足条件.所以所求实数m 的值是3-. ……5分(2)由(1)知抛物线的方程为223y x x =+-,则对称轴l 的方程为1x =-,(1,0),(3,0)A B -. ……10分 显然A 关于对称轴l 的对称点为B ,所以当PA PM +的值最小时,P 为直线MB 与对称轴l 的交点.又2022235y =+⨯-=,即(2,5)M . 设直线MB 的方程为y kx b =+,由条件知5203k b k b =+⎧⎨=-+⎩,解得13k b =⎧⎨=⎩, 即直线MB 的方程为3y x =+. ……15分 令1x =-,得2y =,即(1,2)P -.所以,使得PA PM +的值最小的点P 的坐标为(1,2)-. ……20分2、如图,已知E 是正方形ABCD 的边AB 上一点,点A 关于DE 的对称点为F ,90BFC ∠=,求AB的值.解:延长EF 交BC 于M ,连DM 交CF 于G ,则Rt DFM ∆≌Rt DCM ∆(HL). ……5分 于是FDM MDC ∠=∠,FM CM =,从而M 为BC 的中点. ……10分 又114522EDM EDF FDM ADF FDC ∠=∠+∠=∠+∠= ……15分 将MDC ∆以D 为旋转中心,按逆时针方向旋转90,得到HDA ∆,则MDE ∆≌HDA ∆,于是EM HE AE MC ==+.设正方形边长为1,AE x ,则由222EB BM EM知22211(1)()()22x x ……20分 解得13x.所以3AB AE=. ……25分2013年初中数学联赛初三决赛解答 第5页;共5页 3、在一个圆周上按顺时针方向放有n 个不同的正整数12,,,n a a a ,如果对于1,2,3,,10这10个正整数中的任意一个数b ,都能找到一个正整数i ,使得i a b =,或者1i i a a b ++=.约定11n a a +=.求正整数n 的最小值.解:由条件知,1212231,,,,,,,n n a a a a a a a a a +++这2n 个数应该包含1,2,3,,10这10个正整数.所以210n ≥,即5n ≥. ……5分 当5n =时,则1212231,,,,,,,n n a a a a a a a a a +++这10个数互不相等,取值于1~10. 不妨设11a =.显然2345,,,a a a a 中也包含2.下面按照从1~10这10个数从小到大的方式来表示:(1)当2345,,,a a a a 中不包含3,则不妨设22a =.若54a =,则436,7a a ==;或者346,7a a ==,矛盾.若44a =,则535,6a a ==;或者355,6a a ==,矛盾.若34a =,则45a =,57a =,矛盾.(2)当2345,,,a a a a 中包含3,则不妨设32a =.若23a =,则546,8a a ==;或者456,7a a ==,矛盾.若43a =,则24a =或者54a =,矛盾.若53a =,则245,8a a ==;或者435,6a a ==,矛盾.所以当5n =时,不存在符合条件的5个正整数125,,,a a a . ……15分 当6n =时,构造:1234561,10,2,6,3,4a a a a a a ======,易验证这6个数符合条件. ……20分 综上所述,正整数n 的最小值为6. ……25分。
2013年全国初中数学竞赛(海南赛区)数 学 试 卷(本试卷共4页,满分120分,考试时间:3月10日8:30——10:30)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1、3-x 的相反数是-6,那么x 的值为A .-3B .3C .6D .92、从甲、乙两名男生和A 、B 两名女生中随机选出一名男生和一名女生,则恰好选中甲男生和A 女生的概率是 A .21 B .43 C .81 D . 413、如图1,∠AOB =180°,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线, 则下列各角中与∠COD 的互补的是 A .∠COEB .∠AOCC .∠AOD D .∠BOD4、如图2,在Rt △ADB 中,∠D =90°,C 为AD 上一点,∠ACB =6x ,则x 值可以是A .10°B .20°C .30°D .40°5、已知a 是质数,b 是奇数,且20132=+b a ,则a +b +2的值为A .2009B .2011C .2013D .20156、有这样的数列:3、7、12、18、25……,则第10个数是A .65B .70C .75D .807、轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大 (水流的速度总小于船在静水中的速度) 时,船往返一次所用的时间将图1ACBDEO图2CA .增多B .减少C .不变D .以上都有可能8、如图3,矩形AOBC 的面积为8,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 8=B .x y 2=C .x y 4=D .x y 1=9、 图4是由大小一样的小正方形组成的网格,△ABC 的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC 成轴对称的三角形共有 A .5个 B .4个C .3个D .2个10、如图5是半径为2的圆,圆心A 坐标为(1,-1),点M 是圆上的动点,则点M 的坐标不可能为 A .(2,0)B .(0,-2)C .(2,-2)D .(1,-2)二、填空题(本大题满分40分,每小题5分)11、分解因式:9x 2-12xy +4y 2=_________________. 12、 计算:5252552---=__________.13、若128421=⋅+x x ,则x 的值为__________.14、已知关于x 的方程x 2-4x +a =0的两个实数根x 1、x 2满足3 x 1-x 2=0,则a =________. 15、在△ABC 中,AB =5,AC =9,则BC 边上的中线AD 的长的取值范围是__________. 16、如图6,在平面直角坐标系中,直线AB 由直线y =3x 沿x 轴向左平移3个单位长度所得,则直线AB 与坐标轴所围成的三角形的面积为__________. 17、如图7,已知正方形ABCD 中,点M 在边CD 上,且DM =3, MC =1,把线段AM 绕点A 顺时针旋转,使点M 落在BC 所在 的直线上的点N 处,则N 、C 两点的距离为__________. 18、如图8,在△ABC 中,AB =10, ∠BAC 的平分线图4C图7 ACBD M 图8ACBDEAD交BD于点D,且BD⊥AD,DE∥AC交AB于E,则DE的长是__________.三、解答题(本大题满分30分,每小题15分)19、海南省某种植园收获香蕉20000千克,其中香牙蕉12000千克、黄帝蕉8000千克,准.备.运往海口与文昌销售;根据市场供需,海口需要香蕉15000千克,文昌需要香蕉5000千克,海口与文昌两地的香蕉售价如下表所示:(1)若该种植园供应海口市的香牙蕉与黄帝蕉的比是2:1,请问该种植园供应文昌市的香牙蕉与黄帝蕉各是多少千克?(2)若海口与文昌的香蕉都能在保质期内销售完,请你设计一种销售方案,使销售的收入最大,并估算出获得的最大销售收入.20、如图9,在平面直角坐标系xoy内,正方形AOBC的顶点A、O、B、C的坐标分别为(0,1)、(0,0)、(1,0)、(1、1),过点B的直线MN与OC平行,AC的延长线交MN于点D,点P是直线MN上的一个动点,CQ∥OP交MN于点Q.(1)求直线MN的函数解析式;猜想:若点P运动到x轴的下方时,△OBP与△CDQ是否依然全等?((3)当四边形OPQC为菱形时,①请求出点P的坐标;②请求出∠POC的度数.海南省2013初中数学竞赛初赛试题参考答案一、选择题(本大题满分50分,每小题5分)答案提示:4、由三角形外角大于任何一个不相邻的内角与∠ACB 小于180°可知90°<6x <180°,由此可得15°<x <30°,故选择B .5、a 是质数,b 是奇数,且20132=+b a ,所以a 、b 必是一奇一偶,所以可求得a =2,b=2009,所以a +b +2=2013.6、由数列3、7、12、18、25……可判断存在的规律为:第①个数为3,第②个数为3+4,第③个数为3+4+5,第④个数为3+4+5+6,第⑤个数为3+4+5+6+7……如此可断定第⑩个数为3+4+5+……+12=75,故选择C .7、设两码头之间的航程为S ,船在静水中的速度为a ,水流的速度为b ,则船顺水所需的时间为b aS +船逆水所需的时间为b a S-,则船往返一次所需的时间为b a S ++b a S -=222ba aS-由此可判断船在静水中的速度不变与水流的速度总小于船在静水中的速度的条件下,水流的速度b 越大,a 2-b 2越小,船往返一次所需的时间为222b a aS-就越大,故选择A .8、由矩形AOBC 的面积为8,可求矩形PEOF 的面积为2, 又点P 在第一象限,所以K =2, 故选择B .9、 如图,分别以大的正方形中间”十”字所在的直线为对称轴可画出2、3两图,分别以正方形对角线所在直线为对称轴可画出4、5两图,再加上第1幅图,总共有5个符合条件的三角形,故选择A .10、若点M 在圆上,点M 与圆心A 的距离等于圆的半径2,容易判断点(2,0)是圆A 与X 轴正半轴的交点、点(0,-2)是圆A 与y 轴负半轴的交点,另外,可以通过构造直角三角形判断点(2,-2)与圆心A 的距离等于2,也可以用两点公式求出点(2,-2)与圆心A 的距离等于2,因此A 、B 、C 三个选项中的点均在圆上,而点(1,-2)与圆心A 的距离等于1,小于圆A 的半径,点(1,-2)不在圆上,故选择D .二、填空题(本大题满分40分,每小题5分)11、(3x -2y )212、5- 13、2 14、3 15、2<x <716、13.5 17、1或7 18、5 答案提示:12、55255252)52(55252552-=-=---=---13、由 128421=⋅+x x 得 721222=⋅+x x 所以有 72)1(=++x x 所以 x 的值为2.因为关于x 的方程x 2-4x +a =0的两个实数根为x 1、x 2,由根与系数的关系得x 1+x 2=4,所以⎩⎨⎧=+=-4032121x x x x ,解得⎩⎨⎧==3121x x ,所以a =3.15、构造右图,延长中线AD 到A ’,使AD =A ’D , 可证△ABD ≌△A ’CD ,设AD =x ,AA ’=2 x ,由三角形三边不等关系可得 9-5<2x <9+5,从而有2<x <7.16、设直线AB 的解释式为y =3x+b , 由题意可知直线AB 过点(-3、0),故b =9,所以直线AB 与y 轴的交点为(0,9),则直线AB 与坐标轴所围成的三角形的面积为3×9÷2=13.5平方单位.17、如图7,把线段AM 绕点A 画弧,可见N 、C 两点的距离存在两种情况:①点N 在边BCA CBDA ’上,②点N 在边CB 的延长线上;可以证明△ADM ≌△ABN ≌△ABN ’,所以有BN =BN ’=DM =3,所以N 、C 两点的距离是:1或7.18、提示:可证AE =DE ,BE =DE ,由此得到DE 的长是5.三、解答题(本大题满分30分,每小题15分) 19、解:(1)设种植园应向海口供应的黄帝蕉有x 千克,则向海口供应的香牙蕉有2x 千克,根据题意列方程得:2x +x =15000,解得:x =5000,则2x =10000所以种植园供应文昌市的香牙蕉应为12000-10000=2000千克,植园供应文昌市的黄帝蕉应为5000-2000=3000千克.(2)设应安排m 千克香牙蕉在海口市销售,则在海口市销售的黄帝蕉为(15000-m )千克;在文昌市销售的香牙蕉与黄帝蕉分别为(12000-m )千克、(m -7000)千克,则这批香蕉的销售收入y 与m 的函数关系式为:y =4.8m +5(15000-m )+3.6(12000-m )+4.2(m -7000) 即y =0.4m +88800 (7000≤m ≤12000)从函数关系式看m 的值越大,销售收入y 就越大,即香牙蕉应尽可能多地安排在海口市销售,所以若要使销售收入最大,需安排12000千克香牙蕉与3000千克黄帝蕉在海口市卖,安排5000千克黄帝蕉在文昌市卖,最大销售收入为y =0.4×12000+88800=93600(元) . 20、解:(1)设直线OC 的解析式为y =kx ,∵直线OC 过点C (1、1),∴k =1, ∴直线OC 的解析式为y =x ∵直线MN 与OC 平行,∴可设直线MN 的解析式为y =x +b , ∵直线y =x +b 过点B (1,0),∴b =-1,∴直线MN 的函数解析式为y =x -1(此题也可以通过求点B 、D 的坐标,再利用待定系数法求直线MN 的解析式) (2)当点P 在x 轴的上方时 ∵四边形AOBC 是正方形∴OB =BC ,∠BCD =∠ACB =90°,∠BCO =45°图7ACBDN N ’ M又MN 与OC 平行∴∠CBD = ∠BCO =∠BDC = 45°,∴BC =OB =CD 由AC ∥OB 知AD ∥OB ∴∠OBP = ∠CDQ ∵CQ ∥OP ∴∠OPB = ∠CQD ∴△OBP ≌△CDQ同理可知,若点P 运动到x 轴的下方,△OBP 与△CDQ 依然全等 (3)①设点P 的横坐标为(a ,b )因为点P 在直线y =x -1上,则点P 的坐标可表示为(a ,a -1) 若四边形OPQC 为菱形,则有OP =OC =2 作PF ⊥x 轴于点F ,在Rt △OPF 中有 OF 2+PF 2=OP 2即2)1(22=-+a a解得:2311+=a ,2312-=a 则2131-=b ,2132+-=b 即当四边形OPQC 为菱形时,点P 的坐标为(231+,213-)或(231-,213+-) ②由①知点P 存在两种情况使四边形OPQC 为菱形,即点P 在第一象限与第三象限 ⅰ)当点P 在第一象限时(如点P 1), 方法一(如图9A ):过点C 作CH ⊥MN 于点H , 则△CHQ 是直角三角形,由(2)的证明可知△BCD 是等腰直角三角形,且 BC =OB =CD =1 ∴CH =22,若四边形OPQC 为菱形,则有CQ =OC =2, ∴CH =21OC ∴∠CQH =30° ∴∠P 1OC = 30° 方法二(如图9B ):连接AB 交OC 于点G ,过点P 1作P 1H ⊥OC 于点H 则△OP 1H 是直角三角形,在正方形AOBC 中有AB ⊥OC ,又MN ∥OC ,∴∠BGH = ∠P 1HG =∠GB P 1= 90° ∴四边形P 1BGH 是矩形,又四边形OPQC 为菱形∴P 1H =BG =21AB =21OC =21O P 1∴∠P 1OC = 30°ⅱ)当点P 在第三象限时(如点P 2),令x =0,则y =x -1=-1,即直线MN 与y 轴的交点E 的坐标为(0,-1) 则OE =OB ,则∠OEB =∠OBE = 45°则∠OEP 2=∠OBP 1= 135° 又四边形OPQC 为菱形∴O P 2=O P 1 =OC ∴∠O P 2E =∠O P 1B ∴△O P 2E ≌△O P 1B (AAS ) ∴∠E O P 2=∠B O P 1∵∠B O P 1=∠B O C -∠P 1 OC =45°-30°=15° ∴∠E O P 2=15°,∴∠P 2OC =150°综合以上论述可知,当四边形OPQC为菱形时,∠POC的度数为30°或150°。
2013年全国初中数学竞赛试题及参考答案一.选择题(5×7'=35')1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ).A .0B .1C .3D .5【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( ).2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2116.-≤≤-t D 【分析】2023235352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .注意到15=x 时,只有4个整数解.所以2116152314-≤<-⇒<-≤t t ,本题选C3.已知关于x 的方程xx x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个.A .1B .2C .3D .4 【分析】422222222+-=⇒--=-+-x x a xx x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍); 再考虑等根:ⅲ)对04222=-+-a x x ,270)4(84=→=--=∆a a ,当21,272,1==x a .故27,8,4=a ,21,1,1-=x 共3个.本题选C .4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ).A .3B .4C .5D .6 【分析】设ABC ∆底边BC 上的高为h ,则DE CF CF BC h 121244848====,)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=+∆∆ 本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE5.在分别标有号码2,3,4,...,10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ).41.A 92.B 185.C 367.D 【分析】9236811291214==+++=C C C P 本题选B .二.填空题(5×7'=35')6.设33=a ,b 是a 2的小数部分,则3)2+b (的值为 . 【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b (7.一个质地均匀的正方体的六个面上分别标有数1、2、3、4、5、6.掷这个正方体三次,则其朝上的面的数的和为3的倍数的概率是 .【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为31666612=⨯⨯⨯=P .8.已知正整数a 、b 、c 满足a +b 2-2c -2=0,3a 2-8b +c=0,则abc 的最大值为 . 【分析】先消去c ,再配方估算.24166)8()121(621662222+=-++⇒=-++b a b b a a 观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113m ax =⨯⨯=abc .9. 实数a 、b 、c 、d 满足:一元二次方程x 2+cx +d=0的两根为a 、b ,一元二次方程x 2+ax +b=0的两根为c 、d ,则所有满足条件的数组(a 、b 、c 、d )为 . 【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得 (a 、b 、c 、d )=(1,-2,1,-2)本题在化简过程中,总感觉还有,此处仅给出一组,好像不严谨,期待官方答案.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,园珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔.【分析】设4元的卖x 支,7元的卖y 支,则350,201374<+=+y x y x4125031820124201374++-=⇒++-=⇒=+y y x y y x y x令1441-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523151350147505≥−−→−≥⇒≤-+-∈k k k k Nk ,207152414=-⨯≥-=k y即他至少卖了207支圆珠笔. 三.解答题(4×20'=80')11.如图,抛物线y =ax 2+bx -3,顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OB=OC=3OA .直线131+-=x y 与y 轴交于点D ,求∠DBC -∠CBE .【分析】易知4)1(3222--=--=x x x y ,)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥C O 于F ,连CE ,易知△OBC 、△CEF 都是等腰直角三角形,则△CBE 是直角三角形.分别在Rt △OBD 、Rt △BCE 中运用正切定义,即有31232tan 31tan =====BC CE ,OB OD βα,则βα= 从而可得∠DBC -∠CBE=45º.12.如图,已知AB 为圆O 的直径,C 为圆周上一点,D为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,E 为垂足,若CE =10,且AD 与DB 的长均为正整数,求线段AD 的长.【分析】设圆O 半径为r ,则由相似或三角函数或射影定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又r r DE CE CD 10)10(10102222=-+=+=由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知r CD BD AD 102==⋅①,而r BD AD 2=+②令y BD x AD ==,,①/②即155210-=⇒==+y x y r r y x xy ,显然有x y <<0,则10<<x y ,即1051150<<⇒<-<y y,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD .13.设a 、b 、c 是素数,记c b a z b a c y a c b x -+=-+=-+=,,,当2,2=-=y x y z 时,a 、b 、c 能否构成三角形的三边长?证明你的结论.【分析】281102222a z a z z yz a z y c b a z b a c y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+=a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有a k k 2)1(=+⎩⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数 2,332811-=−−→−=+±-=z a a zⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,c b a b =<=+=+=1720173,17不能围成三角形;ⅱ)是合数9,16,4,2====b x y z 综上所述,以a 、b 、c 不能围成三角形.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数) .求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,...,a n ,满足对任意一个正整数m ,在a 1,a 2,...,a n 中都至少有一个为m 的“魔术数”.【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a ki +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而ki a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而ki a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,ki a 10⋅与m 二者余数的和至少有一个是7,此时m a k i +⋅10被7整除,即n =7.。
2013年全国初中数学竞赛试题考试时间 2013年 3 月 17 日 9: 30- 11: 30 满分 150分题号 -一- -二二 三 总分1~56~1011121314得分评卷人复查人1. 用圆珠笔或钢笔作答;2. 2•解答书写时不要超过装订线;3. 3草稿纸不上交。
一、选择题(共5个小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的, 的括号里,不填、多填或错填都得是( )0分)a 1.设非零实数a 、b 、c 满足2a 2b 3cab bc ca 3b 4c a 2 b 2 c 2 的值为()1(A) -2 (B) 0 1 (C)2 (D) 1 2.已知a 、b 、 c 是实常数,关于x 的 2 元二次方程 ax bx0有两个非零实 根,则下列关于x 的一元二次方程 ax 2 bx c0中,以 12X 11 2X2为两个实根的请将正确选项的代号填入题后 2 2(A) c x(b 2 2ac)x a 2 (B)c 2x 2 (b 2 2ac)x a 2 2 2(C) c x(b 2 2ac)x a 2(D)(b 22ac)x Rt A ABC 中,已知 O 是斜边AB 的中点,CD 丄AB,垂足为D , 3,如图,在 DE 丄OC,垂足为E ,若AD , DB , CD 的长度都是有理数,则线段OE 、DE , AC 的长度中,不一定 是有理数的为( (A) OD(B) OE (C) DE OD 、 (D) AC0 C2 a OB4、如图,已知△ ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 上,且BC=4AF , DCFE 是平行四边形,则图阴影部分 (△ BDE+ △ ADE)的面积为( )。
则a b c 的最大值为二次方程x 2 ax b 0的两根为c , d ,则所有满足条件的数组 (a , b , c , d ) 为 _________________ 。
2013年全国初中数学竞赛试题参考答案
1
2013年全国初中数学竞赛试题参考答案
一、选择题
1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222
ab bc ca
a b c ++++的值为( ). (A )12- (B )0 (C )1
2
(D )1
2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,
2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--=
(D )2222(2)0c x b ac x a ---=
3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).
(A )OD (B )OE (C )DE
(D )AC
4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).
(A )3 (B )4 (C )6
(D )8
5.对于任意实数x ,y ,z ,定义运算“*”为:
()()
322333
3345
1160
x y x y xy x y x y +++*=
+++-,
且()x y z x y z **=**,则2013201232**** 的值为( ).
(A )
607
967
(B )1821
967
(C )
5463
967
(D )
16389
967
二、填空题
6
.设a =b 是2a 的小数部分,则3(2)b +的值为 .
(第3题)
(第4题)
2013年全国初中数学竞赛试题参考答案 2
7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3
,
4,5,则四边形AEFD 的面积是
.
8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,
则abc 的最大值为 .
9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根
为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,
a b c d 为 .
10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.
三、解答题
11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴
交于点C ,且OB =OC =3OA .直线1
13
y x =-+与y 轴交于点D .
求∠DBC -∠CBE .
12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,
,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.
13
.
设
a ,
b ,
c 是素数,记
x b c a y c a b z a b c =+-=+-=+-,,,当2,
2z y ==时,
a ,
b ,
c 能否构成三角形的三边长?证明你的结论.
14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.
(第7题)
(第11题)。