非高炉炼铁技术与工艺 黄柱成
- 格式:pdf
- 大小:5.49 MB
- 文档页数:89
非高炉炼铁法简介非高炉炼铁法以不用焦煤为主要特征,按其工艺特征、产品类型及用途分为直接还原法和熔融还原法两大类。
直接还原法以气体、液体燃料及非焦煤为能源,在铁矿石或含铁团块呈固态的软化温度下进行还原获得直接还原铁(DRI)或海绵铁,其产品低密度多孔呈海绵状结构,含碳低,未排除脉石杂质。
熔融还原法则以非焦煤为能源,产品类似高炉的铁水。
目前,非高炉炼铁法以直接还原工艺为主,该方法对铁原料要求高,TFe>66%,酸性脉石含量(SiO2+Al23)<5.5%(但不宜过低),一般S含量<0.03%,P<0.02%,其它有害元素尽可能低,各种工艺对原料粒度要求不一。
铁原料和煤灰分的软化温度决定了直接还原工艺的作业温度。
在燃料方面,当前各种工艺中,以使用天然气为主,能量利用率高、生产率高,但我国天然气资源缺乏。
国内直接还原厂以使用非焦煤(褐煤、烟煤、无烟煤)为主,现在世界各国也以发展煤基直接还原为主。
直接还原工艺的主要方法有:1. 回转窑直接还原法:回转窑结构是一个可转动的筒形高温反应器。
含铁原料与还原煤从窑尾连续加入,排料端设置主燃烧喷嘴和还原煤喷入装置,沿窑身长度方向装有若干供风管或燃料喷嘴,随窑体转动,固体物料在翻滚移动过程中,被高温气流加热,进行物料的干燥、预热、碳酸盐的分解、铁氧化物还原及渗碳反应从而得到DRI。
比较有代表的是SL-RN 法、DRC法、Krupp-Codir法等。
2. 竖炉直接还原法:竖炉法目前占直接还原铁产量的90%左右,其中以Midrex和MYL为主,工艺成熟,占直接还原工艺的主导地位。
竖炉的反应条件与高炉上部间接还原区相似,不出现熔化现象的还原冶炼过程,使用单一矿石料,没有造渣过程。
以前竖炉的燃料和还原剂是天然气,近年出现了煤制气以及使用焦炉煤气竖炉直接还原工艺,这扩大了竖炉工艺的使用范围,但目前煤基竖炉工艺还不成熟,生产成本偏高,工艺还需进一步完善。
3. 罐式直接还原法:以HYL为代表,用H2、CO或其混合气将装于移动或固定容器内的铁团还原成DRI的方法。
非高炉炼铁一、非高炉炼铁的发展高炉炼铁是炼铁生产的主题,经过长期的发展,它的技术已经非常成熟。
但它也存在固有的不足,即对冶金焦的强烈依赖。
但随着焦煤资源的日渐贫乏,冶金焦价格越来越高。
因此,使炼铁生产摆脱对冶金焦的依赖是开发非高炉炼铁的原动力。
经过数百年的发展,至今已形成了以直接还原和熔融还原为主的现代化非高炉炼铁工业体系。
现代化钢铁工艺流程主体由四部分构成,焦炉、造块设备(例如烧结机)、高炉和转炉。
高炉使用冶金焦为主题能源,他是由焦煤经炼焦得到。
高炉的产品是液态生铁,它经转炉冶炼成转炉钢。
熔融还原的产品相当于高炉铁水。
高炉使用冶金焦,熔融反应则使用非焦煤。
这样就使炼铁摆脱了对冶金焦的依赖。
直接还原的产品是在熔点以下还原得到固态金属铁,称为直接还原铁(DRI),又称海绵铁。
直接还原的流程可分为煤基直接还原、气基直接还原和电热直接还原三大类。
煤基直接还原以煤为主要能源,主要是使用回转炉为主体设备的流程。
气基直接还原以天然气为主题能源。
包括竖炉、反应罐和流化床流程。
电热直接还原以电力为主要能源,是使用电热竖炉直接还原流程。
熔融还原的主体能源主要分为三种:非焦煤,焦炭和电力。
熔炼设备是熔融还原流程的精华。
还原设备决定了适用原料的性质。
例如流化床可直接处理粉料,竖炉则适用于处理块状炉料。
二、重点设备分析直接还原的核心装置是一个还原单元。
占有重要地位的还原设备有竖炉,反应罐,回转炉和流化床。
熔融还原的核心装置时一个还。
原单元和一个熔炼造气单元。
最受重视的还原设备是竖炉和流化床,最重要的熔炼造气设备是煤炭流化床和铁浴炉。
竖炉是一种成熟的还原设备。
除了产量在海绵铁工业中高居榜首外,熔融还原也将它作为还原单元最实际的选择。
目前唯一的工业化二步法熔融还原流程COREX即使用竖炉还原单元。
作为还原设备,流化床的地位非常微妙。
海绵铁工业中流化床的生产能力并不大。
但他具有一个竖炉无法比拟的优点:可直接使用粉矿。
这个特点使流化床成为熔融还原中最受青睐的还原设备。
非高炉炼铁技术概述摘要:随着焦煤资源日益减少,高炉炼铁技术发展受到限制,非高炉炼铁成为了日益关注的冶炼技术。
文章阐述了非高炉炼铁技术的发展现状、分类,工艺流程及特点,同时展望了其未来的发展前景。
关键词:非高炉炼铁直接还原熔融还原非焦煤一、引言目前,生铁主要来源于高炉冶炼产品,高炉炼铁技术成熟,具有工艺简单,产量高,生产效率大等优点。
但其必须依赖焦煤,而且其流程长,污染大,设备复杂。
因此,世界各国学者逐渐着手研究和改进非高炉炼铁技术。
二、非高炉炼铁工艺非高炉炼铁是指以铁矿石为原料并使用高炉以外的冶炼技术生产铁产品的方法。
在当今焦煤资源缺乏,非焦煤资源丰富的情况下,非高炉炼铁以非焦煤为能源,不但环保,而且省去了烧结、球团等工序,缩短了流程。
因此非高炉炼铁一直被认为是一种环保节能、投资小、生产成本低的生产工艺。
非高炉炼铁可分为直接还原炼铁工艺和熔融还原炼铁工艺两种。
1.直接还原炼铁工艺直接还原炼铁工艺是一种以天然气、煤气、非焦煤粉为能源和还原剂,在铁矿石软化温度下,将铁矿石中铁氧化物还原成铁的生产工艺。
据统计直接还原冶炼工艺多达40余种,大部分已经实现了大规模工业化生产[1]。
目前,直接还原炼铁工艺主要有气基直接还原、煤基直接还原两大类。
1.1气基直接还原气基直接还原是指用CO或H2等还原气体作还原剂还原铁矿石的炼铁方法。
具有生产效率高、容积利用率高、热效率高、能耗低、操作容易等优点,是DRI(directly reduced iron)生产最主要的方法,约占DRI总产量的90%以上[2]。
气基直接还原代表工艺有HYL反应罐法、Midrex-竖炉法、流化床法等[3]。
HYL反应罐法是由墨西哥希尔萨(HojalataYLamina,HYLSA)公司于20世纪50年代初开发的,其工业化标志着现代化直接还原的开始。
HYL反应罐法具有作业稳定,设备可靠等优点,但其作业不连续,还原气利用差,能耗高及产品质量不均匀。
四种新型非高炉炼铁技术非高炉炼铁技术作为一种能消除块矿、焦煤和废钢三大资源不足的危机,减四种新型非高炉炼铁技术轻钢铁业的资源、能源和环境压力的炼铁技术,长期以来都受到人们的关注和研究,以下四种比较新颖的有:1 .Hi-QIP工艺Hi-QIP工艺由日本JFE公司开发的,主要特点是转底炉炼铁。
相比于旧有的转底炉工艺,Hi-QIP转底炉首次使用含碳料层,同时另一特点是经还原熔化的铁在炉内生成。
Hi-QIP工艺中,铁矿石(或块矿)是铁源,煤是还原剂,石灰石是熔剂。
这些原料经混匀后并装入碳质原料床,然后用烧嘴加热。
铁矿石被还原和熔化,而在料层中煤的混合料被气化,并如同还原剂一起进入到炉料中起反应。
石灰石熔化并同混合料中的灰分和脉石成分生成渣。
熔化的铁和渣流入坑中,冷却凝固,生成粒铁。
粒铁和渣粒用螺旋装置从炉中排出,此工艺可以连续生产粒铁。
2 . Fastmet工艺Fastmet工艺由日本神户制钢开发的,主要特点是使用煤基转底炉还原钢铁厂产生的烟尘或矿粉。
原料:80%的铁矿石、20%煤和来自球团的有机粘含剂1.5%,经加工干燥到170℃装入煤基转底炉,生产出DRI产品,后续DRI产品在氮氧保护下送压块机造块。
Fastmet工艺的DRI热压块,含0.08%S高硫,被作为高炉原料,而不直接用于炼钢。
3 . Finex工艺Finex工艺由韩国浦项和西门子的MT共同开发的,由炉底的熔化器-气化器构成。
Finex工艺是将磨制煤粉和氧气喷吹到炉子,炉子上部有四个流化床反应器,铁矿粉或工厂的烟尘由反应器下降与气化器上升的煤气相遇,产生反应,还原出铁。
Finex工艺环境友好特性十分显著,SO2排放是传统高炉3%,氮氧化物是1%,粉尘是28%。
4.Tecnored工艺Tecnored工艺炼铁工艺是在巴西经过20多年发展而成,由模块结构的反应器组成。
铁矿粉或铁性粉尘和氧化铁皮同碳基的还原剂(如石油焦)和有机粘合剂精心紧密混匀生成球团,在炉身1.5m的长方形反应器中反应,燃料煤是沿反应器的两个边长装入,保持燃料资源总是来自还原区,抑制球团自身还原,同时抑制了CO2到CO的还原反应,较节能。
浅析ITMK3非高炉炼铁新技术作者:王辉单位:吉林省机电研究设计院路立娜单位:吉林建筑工程学院建筑装饰学院摘要ITMK3非高炉炼铁新技术是以粉矿、粉煤为原料直接生产出将渣分离的“粒铁”的工艺。
关键词ITMK3、非高炉炼铁一、ITMK3法由来目前国际上熔炼方法和工艺十分繁多,但大体分为高炉炼铁和非高炉炼铁两大类。
·高炉炼铁法该工艺历史悠久且现仍为我国炼铁主流工艺方法,但其流程复杂、能耗高、环境污染严重、投资大。
有统计资料数据表明高炉熔炼就其炼焦和烧结两部分附属工艺产生的粉尘:1.2g/t;SO2:1.4g/t;NOX:1.1g/t。
废水排放污染物成分中耗氧:29.98 g/t;酚:602g/t;氰:120g/t;氨:15g/t。
一台50万吨产量的高炉其总能耗达20.81GJ,CO2排放量达2208kg。
·非高炉炼铁法指高炉炼铁法之外的炼铁方法。
包括直接还原炼铁,熔融还原炼铁,粒铁法,电炉炼铁等。
非高炉炼铁法都具有以下优点:不用焦炭,可取消焦炉、烧结等传统高炉炼铁工序,能大大减少环境污染;节能效果好;还原铁中含硫、磷少,可直接入电炉精炼。
·ITMK3非高炉炼铁新技术上世纪九十年代中后期,日本神户制钢公司与美国米德兰(Midrex)公司[2]联合开发转底炉直接还原工艺(Fastmet)并取得突破性进展,使金属化球团(直接还原铁,DRI,海绵铁)在转底炉中还原时熔化,生成铁块(Nuggets),同时脉石也熔化,形成渣铁分离。
此法解脱了DRI对原料品位的苛求,能用铁矿为电炉提供优质铁料。
此法因意义重大,被命名为“第三代炼铁法”(Iron Technology Mark III,简称ITMK3)。
高炉炼铁法被称为第一代炼铁法,产品属高碳液态铁水;直接还原法被称为第二代炼铁法,产品属低碳固态铁;第三代炼铁法的产品介于二者之间,属中碳准熔化(或半熔)状态。
二、技术核心·ITMK3炼铁法工艺原理在1350~1450℃下,将含炭复合球团矿加热后在10分钟内完成以下反应,并使渣铁完全分离:FexOy + yCO = xFe + yCO2(1)CO2+C=2CO (2)C(s)=C(渗炭)(3)Fe(s)=Fe(l)(熔融)(4)·ITMK3炼铁法工艺流程图·ITMK3炼铁法生产流程图三、比较优势目前较成功并已投入或即将投入工业化生产的有COREX法、Hismelt法和ITMK3法等。
比较分析高炉炼铁与非高炉炼铁技术摘要:就目前而言,我国钢铁主要通过高炉进行生产和冶炼,从客观角度理解,这种高炉炼铁的形式还要持续相当长的一段时间。
对比来讲,非高炉炼铁技术实际上比高炉炼铁技术更具优势性和时代性。
在工艺优势方面,非高炉炼铁技术可以促使燃料燃烧完全,使得主焦煤的使用量大幅度降低,从根本意义上减少烧结、球团、焦化等作业工序中产生和排放各种污染物的现象。
整体而言,虽然非高炉炼铁技术优势显著,但由于该技术在我国还处于进步阶段,还具有一系列的问题和不足。
所以,对该技术进行更加深入研究,并比较其与传统炼铁技术的能耗,是本文即将研究和分析的主要内容。
关键词:高炉炼铁技术;非高炉炼铁技术;直接还原技术;熔融还原技术随着钢铁行业的不景气,与之对应的高炉炼铁技术发展呈现出停滞状态。
但在目前,其仍是全世界范围内,进行钢铁生产主要技术内容,这就意味着其利用焦炭生产造成的污染环境问题仍处在不断深化状态。
针对这一问题,相关人员应加大非高炉炼铁技术的研究应用,从而改进我国钢铁行业发展的产业结构。
然而,非高炉炼铁技术的研究成果存在一定局限,因而,相关建设人员应从能耗、技术应用现状以及未来发展角度,对高炉炼铁与非高炉炼铁两种技术进行对比,以找出优化控制的节点,进而提高非高炉炼铁技术的应用研究效率。
1高炉炼铁与非高炉炼铁技术分析比较就目前的市场环境来说,生铁的生产大多是以高炉炼铁的方式存在的,而非高炉炼铁与高炉炼铁不同,其在能耗方面具有一定优势。
具体来说,非高炉炼铁能够大幅度降低焦煤的使用量,这就降低了球团、烧结以及焦化工序等高炉炼铁流程生成的污染物排放量。
非高炉炼铁所需的原燃料条件较高,使其仅作用于生产指标较好的生铁生产企业。
这就意味着非高炉炼铁需要在特定的环境下才能进行组织生产,这是全世界范围内,非高炉炼铁技术始终没有得到普及的原因所在。
但随着市场经济发展进程的不断加快,人们对各行各业发展建设可持续性的要求越来越高,非高炉炼铁技术是实现降低生态环境污染目标的重要组成部分。
非高炉炼铁技术重点是以煤代焦 DRI最佳装备是煤基竖炉陈守明我国粗钢产量连续高速增长,2011年达6.995亿吨,占全球粗钢产量45%;但产业结构不合理,工艺以高炉炼铁-转炉炼钢长流程为主,铁钢比高、电炉钢比例小,能源资源消耗大、生产成本高,经济效益一路下滑,优化结构、节能增效势在必行。
直接还原铁(DRI)不仅是一种重要的冶金原料,由于不以焦炭为主要能源,称非高炉炼铁,是一种节能增效的冶金新工艺。
发展DRI产业不仅可以为电炉炼钢、转炉炼钢、高炉炼铁、铸造等产业提供大量优质冶金炉料,有助于这些企业节能增效,而且节省大量焦炭,对于缓减高炉炼铁焦炭供应紧张局面、降低成本有利。
同时,国内中小铁矿和非炼焦煤的综合利用、提高附加值,可促进中西部地区经济发展。
国家工信部2011年底颁发的《钢铁工业“十二五”发展规划》中,“重点领域和任务”的技术创新重点第一项即非高炉炼铁技术。
中国DRI多年来产量始终在几十万吨徘徊,主要因为工艺、装备未根据国情自主创新,未显示节能减排优势,工程投资大、生产成本高,经济效益不理想。
DRI工艺按还原剂分为气基法和煤基法,按主体设备分有竖炉法、隧道窑法、回转窑法、转底炉法等。
根据冶金原理和中国能源资源结构、经济技术条件,煤基法比较适宜;按机械和热工原理,这几类工业炉窑虽然都能生产DRI,但竖炉是其优选优化成果,性能更好。
炼铁理论和生产实践均可证明,煤基竖炉DRI能耗低、工程投资少,可取的更好效益。
1 煤基竖炉DRI工艺节能的理论根据1.1 DRI流程短炼铁是钢铁冶金上游工序。
考察钢铁生产流程,如图1所示,流程最短、能耗最低路线是从铁矿石直接炼钢的虚线ideal Route。
但这一路线很难实现,因为还原与升温同时进行,高温下金属铁融化后,还原剂中的碳即渗入铁中,铁水含碳量大于钢的标准。
为了得到含碳量较低的钢,不得不增加炼钢工序,将铁水中的碳再氧化脱去。
现代钢铁生产的高炉-转炉炼钢流程就是这样,称作二步法炼钢。