九年级数学专题复习(图形的全等)
- 格式:ppt
- 大小:489.00 KB
- 文档页数:16
2021 中考数学专题训练:全等三角形一、选择题1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙2. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能..判定△ABE△△ACD()A. ∠B=△CB. AD=AEC. BD=CED. BE=CD3. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a-b+cD.a+b-c4. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC△△DEC,不能添加的一组条件是()A.BC=EC,△B=△E B.BC=EC,AC=DCC .BC =DC ,△A =△D D .△B =△E ,△A =△D5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .26. 如图,已知点A ,B ,C ,D 在同一条直线上,△AEC ≌△DFB.如果AD=37 cm ,BC=15 cm ,那么AB 的长为 ( )A .10 cmB .11 cmC .12 cmD .13 cm7. 如图,AB ⊥BC ,BE ⊥AC ,垂足分别为B ,E ,∠1=∠2,AD=AB ,则下列结论正确的是( )A .∠1=∠EFDB .BE=EC C .BF=CD D .FD ∥BC8. 如图为6个边长相等的正方形的组合图形,则△1+△2+△3等于( )A .90°B .120C .135°D .150°9. 如图,点G 在AB 的延长线上,△GBC ,△BAC 的平分线相交于点F ,BE △CF于点H .若△AFB =40°,则△BCF 的度数为( )A .40°B .50°C .55°D .60°10. 如图,∠AOB =120°,OP平分△AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( ) A . 1个 B . 2个 C . 3个 D . 3个以上二、填空题11. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,请你添加一个适当条件:________,使△AEH△△CEB.12. 如图,已知点B ,C ,F ,E 在同一直线上,△1=△2,△A =△D ,要使△ABC△△DEF ,还需添加一个条件,这个条件可以是____________(只需写出一个).13. 如图,在△ABC中,△C =90°,△CAB =50°,按以下步骤作图:△以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E ,F ;△分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;△作射线AG ,交BC 边于点D ,则△ADC 的度数为________.14. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC△△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).15. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.16. 如图,在△ABC中,△C=90°,AC=BC,AD是△BAC的平分线,DE△AB,垂足为E.若△DBE的周长为20,则AB=________.17. 如图所示,已知AD△BC,则△1=△2,理由是________________;又知AD =CB,AC为公共边,则△ADC△△CBA,理由是______,则△DCA=△BAC,理由是__________________,则AB△DC,理由是________________________________.18. 如图,P是△ABC外的一点,PD△AB交BA的延长线于点D,PE△AC于点E,PF△BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,△BAC=64°,则△BPC的度数为________.三、解答题19. 如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.20. 如图,AD△BC,AB△BC于点B,连接AC,过点D作DE△AC于点E,过点B作BF△AC于点F.(1)若△ABF=63°,求△ADE的度数;DE=BF+EF.21. 如图△,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,△1=△2=△BAC.若△ABC的面积为15,求△ABE与△CDF 的面积之和.2021 中考数学 专题训练:全等三角形-答案一、选择题1. 【答案】B [解析]依据SAS 全等判定可得乙三角形与△ABC 全等;依据AAS 全等判定可得丙三角形与△ABC 全等,不能判定甲三角形与△ABC 全等.故选B .2. 【答案】D【解析】A.当∠B =∠C 时,在△ABE 与△ACD 中,⎩⎨⎧∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD (ASA);B.当AD =AE 时,在△ABE 与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);C.当BD =CE 时,∵AB =AC ,∴AD =AE ,在△ABE与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);D.当BE =CD 时,在△ABE与△ACD 中,有AB =AC ,BE =BD ,∠A =∠A ,只满足两边及一对角对应相等的两个三角形不一定全等.故选D.3. 【答案】D [解析]∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD , ∴∠CED=∠AFB=90°,∠A=∠C , 又∵AB=CD ,∴△CED ≌△AFB,∴AF=CE=a ,DE=BF=b ,DF=DE -EF=b -c , ∴AD=AF +DF=a +b -c ,故选D .4. 【答案】C5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】B[解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC -BC=DB -BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm , ∴AB==11(cm).7. 【答案】D[解析] 在△AFD 和△AFB 中,∴△AFD ≌△AFB. ∴∠ADF=∠ABF . ∵AB ⊥BC ,BE ⊥AC , ∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.8. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.9. 【答案】B[解析] 如图,过点F 分别作FZ△AE 于点Z ,FY△CB 于点Y ,FW△AB于点W.△AF平分△BAC,FZ△AE,FW△AB,△FZ=FW.同理FW=FY.△FZ=FY.又△FZ△AE,FY△CB,△△FCZ=△FCY.由△AFB=40°,易得△ACB=80°.△△ZCY=100°.△△BCF=50°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题11. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.12. 【答案】AB=DE(答案不唯一)13. 【答案】65°14. 【答案】答案不唯一,如∠C=∠E或AB=FD等15. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.16. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB=AE+EB =AB.17. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行18. 【答案】32°[解析] △PD=PE=PF,PD△AB交BA的延长线于点D,PE△AC 于点E,PF△BC交BC的延长线于点F,△CP平分△ACF,BP平分△ABC.△△PCF=12△ACF,△PBF=12△ABC.△△BPC=△PCF-△PBF=12(△ACF-△ABC)=12△BAC=32°.三、解答题19. 【答案】证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,即AC平分∠BAD.(2)由(1)知∠BAE=∠DAE.在△BAE与△DAE中,∴△BAE≌△DAE(SAS),∴BE=DE.20. 【答案】解:(1)△AD△BC,AB△BC,△△ABC=△BAD=90°.△DE△AC,BF△AC,△△BFA=△AED=90°.△△ABF+△BAF=△BAF+△DAE=90°.△△DAE =△ABF =63°.△△ADE =27°.(2)证明:由(1)得△DAE =△ABF ,△AED =△BFA =90°.在△DAE 和△ABF 中,⎩⎨⎧△DAE =△ABF ,△AED =△BFA ,AD =BA ,△△DAE△△ABF(AAS). △AE =BF ,DE =AF.△DE =AF =AE +EF =BF +EF.21. 【答案】△△1=△2=△BAC ,且△1=△BAE +△ABE ,△2=△CAF +△ACF ,△BAC =△BAE +△CAF ,△△BAE =△ACF ,△ABE =△CAF.在△ABE 和△CAF 中,⎩⎨⎧△BAE =△ACF ,AB =CA ,△ABE =△CAF ,△△ABE△△CAF(ASA). △S △ABE =S △CAF .△S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . △CD =2BD ,△ABC 的面积为15, △S △ACD =10. △S △ABE +S △CDF =10.。
全等三角形一、选择题 1. (新疆建设兵团,4,5分)如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF【答案】D【逐步提示】本题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形常见判定方法.注意到题目中给出一组角相等,一组边相等,分别结合四个选项,找到不符号常见判定方法的那个选项.【详细解答】解:选项A 可采用“ASA ”来判定三角形全等,选项B 可采用“SAS ”来判定三角形全等,选项C 可采用“AAS ”来判定三角形全等,选项D 为两边和其中一边的对角不能判定三角形全等,故选择D . 【解后反思】此类问题容易出错的地方是由SSA 就判定三角形全等,从而错选D 选项.三角形全等的判定方法有:SAS ,ASA ,AAS ,SSS ,HL (直角三角形). 【关键词】 三角形全等的判定;(浙江金华,6,3分)如图,已知=ABC BAD ∠∠,添加下列条件还不能判定△ABC ≌△BAD 的是( )A. AC=BDB.∠CAB =∠DBAC.∠C =∠DD.BC=AD 【答案】A【逐步提示】将题目中的条件表示到图形中,再结合图形条件判断已有哪些条件,然后根据三角形全等的判定方法确定正确的选项.【解析】题目中已给出一角相等,图形中有一条公共边,即已有一边及一角对应相等,再需要一边或一角相等即可,A 选项与两已知条件构成SSA 不能确定两个三角形全等;B 选项与两已知条件构成ASA 能确定两个三角形全等;C 选项与两已知条件构成AAS 能确定两个三角形全等;D 选项与两已知条件构成SAS 能确定两个三角形全等,故选择A.【解后反思】对于添加条件从而判断两个全等三角形全等类问题的解题策略:首先理解题目中已存在的条件(包括已知条件及图形条件),再根据三角形全等的五种判定方法[(1)三边对应相等的两个三角形全等SSS ;(2)两边和它们的夹角对应相等的两个三角形全等SAS ;(3)两角和它们的夹边对应相等的两个三角形全等ASA ;(4)两个角和其中一角的对边对应相等的两个三角形全等AAS ;(5)斜边和一条直角边对应相等的两个直角三角形全等HL]进行综合评判,从而确定需要添加的条件. 【关键词】三角形全等的识别 2.3. ( 四川省广安市,8,3分)下列说法: ①三角形的三条高一定都在三角形内;AB(第6题图)DC②有一个角是直角的四边形是矩形;③有一组邻边相等的平行四边形是菱形;④两边及一角对应相等的两个三角形全等;⑤一组对边平行,另一组对边相等的四边形是平行四边形.其中正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】A【逐步提示】本题考查了三角形的中线、高线、角平分线的概念,矩形的判定,菱形的判定,全等三角形的判定,平行四边形的判定等,解题的关键是掌握这些概念、定理等.因为直角三角形与钝角三角形的三条高不都在三角形内,故①错;至少有三个角是直角的四边形是才是矩形,故②错;③是菱形的定义,正确;满足④的条件时有可能形成“边边角”的情况,故错误;等腰梯形满足“一组对边平行,另一组对边相等”,但它不是平行四边形,故⑤错误.【详细解答】解:只有③正确,故选择A.【解后反思】要理解三角形“三线”的概念,掌握三角形、平行四边形、矩形、菱形的判定方法,这是正确解题的基础.能画图举反例,以排除不符合条件情形,也是解这类题的基本功,要多思考,勤积累.类似的问题还有:判断下列说法是否正确:(1)一组对边相等且一组对角相等的四边形是平行四边形.解:错误.如图1,作△ABC,使AB=AC,在BC上取一点D(D点不与B、C重合且BD≠CD),连接AD.再以A为顶点,AD为一边,作∠EAD,使∠EAD=∠ADC,且AE=DC,连接DE.由上述画图方法,可知△ADC≌△DAE(SAS).所以DE=AC=AB,∠AED=∠C=∠B.即四边形ABCD有一组对边相等(DE=AB)、一组对角相等(∠AED=∠B),但却不是平行四边形(另一组对边AE 和BD不平行也不相等).(2)一组对边相等,且一条对角线平分另一条对角线的四边形是平行四边形.解:错误.如图2,画两条相交直线,交点为O,在其中一条直线上截取OA=OC,分别过A、C两点向另一条直线作垂线,垂足分别为E、F.在线段OF上取一点D(D点不与O、F重合),连接CD.再在线段OE的延长线上取一点B,使EB=FD,连接AB.由上述画图方法,易知△COF≌△AOE(AAS),则CF=AE,由“SAS”可判定△CFD≌△AEB,则CD=AB.连接AD、BC,则四边形ABCD满足条件,却不是平行四边形.(3)一组对角相等,且连接这一组对角的顶点的对角线被另一条对角线平分的四边形是平行四边形.解:错误.如图,画一个“筝形”ABCD,其中AB=AD,BC=DC且AO≠OC,则该“筝形”满足条件,但它不是平行四边形.【关键词】 中线、高线、角平分线;矩形的判定;菱形的判定;全等三角形的判定;平行四边形的判定二、填空题1. ( 山东省枣庄市,17,4分)如图,在△ABC 中,∠C =90°,AC =BC 2ABC 绕点A 顺时针方向旋转60°到△A ´B ´C ´的位置,连接C ´B ,则C ´B = .31【逐步提示】本题考查了旋转、全等三角形、解直角三角形,解题的关键是通过旋转的性质及角度得出△ABB ´为等边三角形.连接BB ´,延长BC ´交AB ´于点H ,根据旋转的性质,对应点到旋转中心的距离相等,可知△ABB ´为等边三角形,然后再证明△ABC ´≌△B ´BC ´,再利用等腰三角形三线合一,证明BH ⊥AB ´,然后分别求HC ´与BH 即可求C ´B .【详细解答】解:连接BB ´,延长BC ´交AB ´于点H ,∵∠C =90°,AC =BC 2,∴AB 22AC BC +2,由题意可知:AB ´=AB =2,且∠BAB ´=60°,∴△ABB ´为等边三角形,∴BB ´=AB ,∠ABB ´=60°,又∵BC ´=BC ´,B´C ´=AC ´,∴△ABC ´≌△B ´B C ´,∴∠ABC ´=∠B ´ BC ´=30°,∴BH ⊥AB ´,且AH =12AB ´=1,∴BH 22AB AH -3AC ´B ´=90°,AH =B ´H ,∴C ´H =12AB ´=1,∴ C ´B =BH -C ´H 31 ,故答案为31 .【解后反思】本题考查了旋转的知识,解这类题通常抓住变换前后的全等图形中对应边、对应角相等.当旋转角为60°时,可以得到等边三角形;当旋转角为45°时,可以得到等腰直角三角形. 【关键词】三角形全等的识别 ;全等三角形的性质;等腰三角形的性质;勾股定理;C ´ABHCB ´ABCB ´C ´2. ( 四川省成都市,12,4分)如图,△ABC ≌△A ´B ´C ´,其中∠A =36°,∠C ´=24°,∠B = .【答案】120°.【逐步提示】本题考查了三角形全等的性质及三角形内角和定理,解题的关键是掌握有关的性质.先根据全等三角形对应角相等求出∠C ,再利用三角形内角和定理可求出∠B .【详细解答】解:∵△ABC ≌△A ´B ´C ´,∴∠C =∠C ´=24°,∴ ∠B =180°―∠A ―∠C =180°―36°―24°=120° ,故答案为 120° .【解后反思】全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等. 【关键词】三角形的内角和;全等三角形的性质三、解答题1. ( 山东省枣庄市,24,10分)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,EP =FP =6,EF =3,∠BAD =60°,AB >63⑴求∠EPF 的大小;⑵若AP =10,求AE +AF ;⑶若△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动,请直接写出AP 长的最大值和最小值.【逐步提示】本题考查了菱形的性质、等腰三角形三线合一性及全等三角形等知识,解题的关键是熟练掌握图形的性质和判定,善于转化.⑴过点P 作PG ⊥EF 于G .根据等腰三角形三线合一性,得∠EPF =2∠FPG ,再解Rt △PFG ,利用特殊角三角函数值求∠FPG 的大小,即可得∠EPF ;⑵作PM ⊥AB 于M ,PN ⊥AD 于N .根据菱形的对角线平分对角的性质,可证明△PME ≌ △PNF ,得ME =NF ,再利用三角函数求出AM =AN ,通过线段和差得到AE +AF 与AM 、AN 的关系,即可求值;⑶当E 、F 分别与A 、B 重合时,AP 取最小值,当EF ⊥AC 时,AP 取最大值. 【详细解答】解:⑴如图,过点P 作PG ⊥EF 于G . ∵PE =PF =6,PG ⊥EF ,∴FG =EG =12 EF =33FPG =∠EPG =12∠EPF . 在Rt △FPG 中,sin ∠FPG =FG PF333.∴∠FPG =60°,∴∠EPF =2∠FPG =120°.AC BCA ´B ´ABDCFPE⑵作PM ⊥AB 于M ,PN ⊥AD 于N .∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC ,AM =AN ,PM =PN . 在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF , ∴Rt △PME ≌Rt △PNF .∴ME =NF . 又AP =10,∠PAM =12∠DAB =30°, ∴AM =AN =AP ·cos30°=10×3=53. ∴AE +AF =(AM +ME )+(AN -NF )=AM +AN =103.⑶如图,当△EFP 的三个顶E ,F ,P 分别在线段AB ,AD ,AC 上运动时,点P 在P 1,P 2之间运动,易知P 1O =P 2O =3,AO =9,∴AP 的最大值为12,AP 的最小值为6.【解后反思】运动型问题一般是图形在运动中产生函数关系问题或探究几何图形的变化规律问题,这类问题可细分为点动型、线动型、形动型.解答这类问题时,要求对几何元素的运动过程有一个完整、清晰的认识,不管点动、线动还是形动,要善于借助动态思维的观点来分析,不被“动”所迷惑,从特殊情形入手,变中求不变,动中求静,抓住静的瞬间,以静制动,把动态的问题转化为静态的问题来解决,从而找到“动”与“静”的联系,揭示问题的本质,发现运动中的各个变量之间互相依存的函数关系,从而找到解决问题的突破口,也就找到了解决这类问题的途径.【关键词】全等三角形的性质 ;三角形全等的识别;等腰三角形的性质;特殊角三角函数值的运用;动点题型2. (重庆A ,19,7分)如图,点A ,B ,C ,D 在同一条直线上,CE //DF ,EC =BD ,AC =FD . 求证:AE =FB .【逐步提示】由CE //DF ,可知∠ACE =∠D . 利用“SAS ”可以判定△ACE ≌△FDB ,即可判定AE =FB . 【详细解答】证明:∵CE //DF ,∴∠ACE =∠D . 在△ACE 和△FDB 中,OABDCFP 1EP 2M ABDCFPE N G∵EC=BD,∠ACE=∠D,AC=FD,∴△ACE≌△FDB(SAS).∴AE=FB.【解后反思】利用三角形全等是证明两条线段或两个角相等的重要方法. 证明两个三角形全等必须有一组对应边相等的条件,判定两个三角形全等的方法主要有“SAS”、“ASA”、“AAS”和“SSS”,对于直角三角形,还有“HL”,结合全等三角形的判定方法,可寻找所需要的条件. 当题目中出现平行线时,可根据平行线的性质得到相等的角,还要注意公共线段、公共角、重合线段、重合角在得到相等线段和相等角的作用.【关键词】全等三角形的识别;全等三角形的性质(重庆B,19,7分)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【逐步提示】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC≌△CED,然后根据全等三角形对应角相等即可证明∠B=∠E.【详细解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,,,AB CEBAC ECDAC CD=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CED(SAS),∴∠B=∠E.【解后反思】利用三角形全等是证明两个角或两条线段相等的重要方法. 证明两个三角形全等必须有一组对应边相等的条件,判定两个三角形全等的方法主要有“SAS”、“ASA”、“AAS”和“SSS”,对于直角三角形,还有“HL”,结合全等三角形的判定方法,可寻找所需要的条件. 当题目中出现平行线时,可根据平行线的性质得到相等的角,还要注意公共线段、公共角、重合线段、重合角在得到相等线段和相等角的作用.【关键词】全等三角形的识别;全等三角形的性质3.(重庆B,25,12分)已知△ABC是等腰直角三角形,∠BAC=90°,CD=12BC,DE⊥CE,DE=CE,连接AE,点M 是AE的中点.(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证MN⊥AE;(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索MNAC 的值并直接写出结果.EMCBA图1D图2NMEDCBAENMCBA图3D【逐步提示】(1)先证明△ACE是直角三角形,根据CM=12AE,求出AE即可解决问题.(2)如图,延长EN至点F,使NF=EN,连接BF,连接AF.先证明△NBF≌△NDE,可得BF=DE=CE,∠FBN=∠NDE.根据题意可得∠ACE=∠ACB+∠DCE-∠DCB=90°-∠DCB,只要证出∠ABF=90°-∠DCB.即可证明∠ACE=∠ABF,又AB=AC,利用“SAS”可证出△ABF≌△ACE,进而可得∠FAB=∠EAC,所以有∠FAE=∠FAB+∠BAE=∠EAC+∠BAE=∠BAC=90°,又MN是△EAF的中位线.根据三角形的中位线的性质可得MN∥AF,从而∠NME=∠FAE=90°,可证MN⊥AF.(3)如图5,连接DM并延长到点G,使MG=MD,连接AG、BG,延长AG、EC交于点F.可得△AMG≌△EMD,∴AG=DE=EC,∠GAM=∠DEM,∴AG∥DE,∴∠F=∠DEC=90°,∵∠FAC+∠ACF=90°,∠BCD+∠ACF=90°,∴∠FAC=∠BCD=30°∴∠BAG=∠ACE=120°,在△ABG和△CAE中,,,,AB ACBAG ACEAG EC=⎧⎪∠=∠⎨⎪=⎩∴△ABG≌△CAE,∴BG=AE,∵BN=ND,DM=MG,∴MN是△DBG的中位线,∴BG=AE=2MN,设BC=2a,则CD=a,DE=EC=22a,AC=2a,CF=22a,AF=62a,EF=2a,∴AE=22142AF EF+=a,∴MN=144a,∴147442aMNAC a==.【详细解答】(1)解:∵△ABC是等腰直角三角形,∠BAC=90°,AB=4,∴AC=AB=4,BC=42,∠ACB=∠ABC=45°.∵CD=12BC,∴CD=22∵DE⊥CE,DE=CE,∴△CDE是等腰直角三角形,∴∠DCE=∠CDE=45°,∴CE=CD·sin45°=2.∵∠ACE=∠DCE+∠ACB=45°+45°=90°,∴在Rt△ACE中,AE2225AC CE+=∵点M是AE中点,∴CM=12AE5(2)证明:如图4,延长EN至点F,使NF=EN,连接BF,连接AF.∵点N是BD的中点,∴BN=DN.∵∠BNF=∠DNE,∴△NBF≌△NDE.∴BF=DE,∠FBN=∠NDE,∵DE=CE,∴BF=CE.∵∠ACE=∠ACB+∠DCE-∠DCB,∴∠ACE=45°+45°-∠DCB=90°-∠DCB.在△BCD中,∵∠DBC+∠BDC+∠DCB=180°,∠BDC=∠NDE+∠CDE,又∵∠CDE=45°,∴∠DBC+∠NDE=135°-∠DCB.∵∠ABF=∠DBC+∠FBN-∠ABC,∠FBN=∠NDE,∴∠ABF=∠DBC+∠NDE-∠ABC=135°-∠DCB-45°=90°-∠DCB.∴∠ABF=∠ACE.∵AB=AC,∴△ABF≌△ACE.∴∠FAB=∠EAC∵∠BAC=∠BAE+∠EAC=90°,∴∠FAB+∠BAE=90°,即∠FAE=90°.∵点M是AE中点,NF=NE,∴MN是△EAF的中位线.∴MN∥AF.∴∠NME=∠FAE=90°.∴MN⊥AF.(3)解:7 MNAC.【解后反思】本题综合考查全等三角形的判定和性质、勾股定理、三角形的中位线等知识,解题的关键是添加辅助线,构造全等三角形.在几何问题的求解或证明中,全等三角形起着很重要的作用,应该充分利用已知条件和图形找出图中的全等三角形,根据全等三角形对应边、对应角分别相等的性质可实现等边、等角的代换,而当要证明的两线段之间或两角之间没有直接联系时,往往需要通过等量代换适当转换来求解..【关键词】三角形全等的识别;全等三角形的性质;勾股定理;三角形中位线定理4.5.(四川泸州,18,6分)如图,C是线段AB的中点,CD=BE, CD∥BE.求证:∠D=∠E.【逐步提示】要证明两个不同三角形中的两个角相等,可以证明这两个角所在的两个三角形全等,从而选择合适的判定方法证明两个三角形全等.【详细解答】证明:∵C 是线段AB 的中点,∴AC=CB ,∵CD ∥BE ,∴∠ACD=∠CBE ,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE, ∴∠D=∠E.【解后反思】证明两个三角形全等,一般情况下是已知两个条件去找第三个全等条件,有以下几种情况:(1)已知两边.⎧⎨⎩找第三边;找两边的夹角;(2)已知两角⎧⎨⎩找其中任意一角的对边找两角的夹边;(3)已知一边及其邻角⎧⎨⎩找任意一角找夹该已知角的边;(4)已知一边及其对角,找余下的任一角. 【关键词】三角形全等的判定方法5. ( 四川南充,19,8分)已知ΔABN 和ΔACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2. (1)求证:BD =CE ; (2)求证:∠M =∠N .21O ED MAN【逐步提示】本题考查了全等三角形的判定与性质;解题的关键是证明三角形全等.(1)由SAS 证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS 证明△ACM≌△ABN,得出对应角相等即可. 【详细解答】解:(1)证明:在△ABD 和△ACE 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD≌△ACE(SAS ), ∴BD=CE;(2)证明:∵∠1=∠2, ∴∠1+∠DAE=∠2+∠DAE, 即∠BAN=∠CAM,由(1)得:△ABD≌△ACE, ∴∠B=∠C,在△ACM 和△ABN 中,C BAC ABCAM BAN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM≌△ABN(ASA),∴∠M=∠N.已知条件寻找的条件选择的判定方法两角夹边或一角对边ASA或AAS一角及其对边任一角AAS一角及其邻边角的另一边或边的另一邻角或边的对角SA S或ASA或AAS 两边夹角或另一边或直角SAS或SSS或HL 【关键词】全等三角形的性质;三角形全等的识别6(四川省宜宾市,18,6分)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD【逐步提示】已知∠CAB=∠DBA,可得AO=BO,因而可证明△BOC≌△AOD,结论成立. 【详细解答】证明:∠CAB=∠DBA,所以AO=BO在△BOC和△AOD 中∠CBD=∠DAC(已知)OB=OA(已证)∠CBD=∠DAC(已证)△BOC≌△AOD(ASA)所以BC=AD【解后反思】除了上面的证明方法外,也可以证明△BAC≌△ABD(ASA)【关键词】全等三角形的性质与判定;等腰三角形的性质与判定。
共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。
初中数学全等图形练习题1. 下列图形是全等图形的是( )A.B.C.D.2. 如图,在△ABC中,D,E分别为BC,AC边上的中点,AD,BE相交于点G,若S△BDE=1,S△ABC=( )A.1B.2C.3D.43. 如图,O是等边△ABC内的一点,OA=1,OC=3,∠AOC=150∘,则OB的长为()A.3B.4C.2√2D.√104. 下列说法中,正确的个数为()①用一张像底片冲出来的10张五寸照片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的正六边形是全等形④面积相等的两个直角三角形是全等形.A.1个B.2个C.3个D.4个5. 如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同6. 如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60∘,若CG=3,AH=7,则菱形ABCD的边长为()A.8B.9C.D.7. 下列说法正确的是()A.所有正方形都是全等图形B.所有长方形都是全等图形C.所有半径相等的圆都是全等图形D.面积相等的两个三角形是全等图形8. 如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计)________.9. 用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是________(填序号)10. 如图,有6个条形方格图,图上由实线围成的图形是全等形的有________.11. 请在下图中把正方形分成2个、4个、8个全等的图形:________.12. 下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=________.13. 全等图形的形状和大小都相同.________ (判断对错).14. 如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.15. 判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.16. 沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.17. 我们把两个能够互相重合的图形称为全等形.(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.18. 如图,在Rt△ABC中,∠ACB=90∘,请用尺规过点C作直线l,使其将Rt△ABC分割成两个等腰三角形.(保留作图痕迹,不写作法)19. 如图,△ABC中,∠B=∠C,点D、E、分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,求证:ED=EF.参考答案与试题解析初中数学全等图形练习题一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】B【考点】全等图形【解析】全等图形应形状相同,大小一致.【解答】解:全等图形应形状相同,大小一致.只有B符合题意.故选B.2.【答案】D【考点】三角形的面积【解析】此题暂无解析【解答】解:由题意得:△BDE和△CDE等底同高,所以S△CDE=S△BDE=1.所以S△BCE=2S△BDE=2.因为△BCE和△BAE等底同高,所以S△ABC=2S△BCE=4.故选D.3.【答案】D【考点】旋转的性质等边三角形的性质【解析】此题暂无解析【解答】解:将△AOC绕A点顺时针旋转60∘到△AO′B的位置,由旋转的性质,得AO=AO′,所以△AOO′是等边三角形,由旋转的性质可知∠AOC=∠AO′B=150∘,所以∠BO′O=150∘−60∘=90∘.因为OO′=OA=1,BO′=OC=3,所以OB=√12+32=√10.故选D.4.【答案】B【考点】全等图形【解析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解.【解答】解:①用一张像底片冲出来的10张五寸照片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的正六边形是全等形,错误,正六边形的边长不一定相等;④面积相等的两个直角三角形是全等形,错误.综上所述,说法正确的是①②共2个.故选B.5.【答案】B【考点】全等图形【解析】根据全等图形的定义,能够完全重合的两个图形是全等图形解答即可.【解答】解:如果两个图形全等,则这个图形必定是形状大小完全相同.故选B.6.【答案】B【考点】菱形的性质等边三角形的性质与判定相似多边形的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】全等图形【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形进行分析即可.【解答】解:A、所有正方形都是全等图形,说法错误;B、所有长方形都是全等图形,说法错误;C、所有半径相等的圆都是全等图形,说法正确;D、面积相等的两个三角形是全等图形,说法错误;故选:C.二、填空题(本题共计 6 小题,每题 5 分,共计30分)8.【答案】21cm【考点】规律型:图形的变化类全等图形【解析】观察图形,发现:以中间的点看,再画第二个图形的时候,需要再往右用1个格,画第三个图的时候,需要再往右用3个格,画第四个图的时候,需要再往右走1个格,以此类推,则画10个图,需要4+1+3+1+3+1+3+1+3+1=21个.【解答】解:∵后面画出的图形与第一个图形完全一样,∴以中间的点看,再画第二个图形的时候,需要再往右用1个格,画第三个图形的时候,需要再往右用3个格,画第四个图形的时候,需要再往右用1个格,以此类推,则画10个图形,需要4+(1+3+1+3+1+3+1+3+1)=21个.故答案为:21cm.9.【答案】①②⑤【考点】全等图形【解析】解:拿两个“90∘60∘30∘的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故答案为:①②⑤.【解答】此题暂无解答10.【答案】①和⑥,②③⑤【考点】全等图形【解析】设每个小方格的边长为1,分别表示出第个图形的各边长,再根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,①与⑥的的三条边对应相等,②,③,⑤的四条边对应相等,故①⑥是全等形,②③⑤是全等形.故答案为:①和⑥,②③⑤.11.【答案】分法可分别如下所示:【考点】全等图形【解析】(1)选择对边的两个中点连接即可;(2)分别连接对边的两个中点即可;(3)分别连接对边的两个中点及不相邻的两个顶点即可.【解答】解:所作图形如下所示:.12.【答案】27cm【考点】全等图形【解析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:∵AB=3cm,∴CD=2AB=6cm,∴AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm13.【答案】正确【考点】全等图形【解析】利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.【解答】解:全等图形的形状和大小都相同,正确.故答案为:正确.三、解答题(本题共计 6 小题,每题 5 分,共计30分)14.【答案】解:如图所示:.【考点】全等图形【解析】利用网格图形的特征和全等图形的性质即可求解.【解答】此题暂无解答15.【答案】解:(1)全等.理由:等边三角形各角都是60∘,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【考点】全等图形【解析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.【解答】解:(1)全等.理由:等边三角形各角都是60∘,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.16.【答案】解:如下图所示:【考点】作图—应用与设计作图全等图形【解析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,且必须保证分割后的两个图形相同.【解答】解:如下图所示:17.【答案】解:(1)所画图形如上.(2)能,所画图形如上所示.【考点】全等图形【解析】(1)根据题意画出图形即可,注意所得的图形不应全等.(2)作长为1,宽分别为1,2,3,4,5的图形即可.【解答】解:(1)所画图形如上.(2)能,所画图形如上所示.18.【答案】,△ACD和△CDB即为所求【考点】作图—应用与设计作图【解析】作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边AD=DB.的一半,可得CD=12【解答】解19.【答案】证明:∠DEC=∠B+∠BDE,∠DEC=∠DEF+∠CEF 又∵∠DEF=∠B,∴∠BDE=∠CEF又∵BD=CE,∠B=∠C,∴△EBD≅△FCE,∴ED=EF.【考点】全等三角形的性质【解析】此题暂无解析【解答】证明:∠DEC=∠B+∠BDE,∠DEC=∠DEF+∠CEF 又∵∠DEF=∠B,∴∠BDE=∠CEF又∵BD=CE,∠B=∠C,∴△EBD≅△FCE,∴ED=EF.。
专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论. 1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∠四边形ABCD 是正方形,∠AB =AD ,∠B =∠ADC =90°.把∠ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '. E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =求AF 的长.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12∠BAD.当BC=4,DC=7,CF=1时,CEF的周长等于.(4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AH∠MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,E 、F 分别是BC 、CD 上的点,且EF =BE +FD ,探究图中∠BAE 、∠F AD 、∠EAF 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE .连接AG ,先证明△ABE ∠∠ADG ,再证明△AEF ∠∠AGF ,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E 、F 分别是BC 、CD 上的点,且EF =BE +FD ,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD 中,∠ABC +∠ADC =180°,AB =AD ,若点E 在CB 的延长线上,点F 在CD 的延长线上,如图3所示,仍然满足EF =BE +FD ,请直接写出∠EAF 与∠DAB 的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在∠ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt ∠ABC 中,∠BAC =90°,AB =AC ,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将∠ABD绕点A按逆时针方向旋转90º,得到∠ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△F AE∠△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.(1)请回答:在图2中,∠FCE的度数是,DE的长为.参考小明思考问题的方法,解决问题:∠BAD.猜(2)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=12想线段BE,EF,FD之间的数量关系并说明理由.8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD是正方形,一个等腰直角三角板的一个锐角顶点与A点重合,将此三角板绕A点旋转时,两边分别交直线BC,CD于M,N.(1)如图1,当M,N分别在边BC,CD上时,求证:BM+DN=MN(2)如图2,当M,N分别在边BC,CD的延长线上时,请直接写出线段BM,DN,MN之间的数量关系(3)如图3,直线AN与BC交于P点,MN=10,CN=6,MC=8,求CP的长.9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM∠EF于点M,请直接写出AM和AB的数量关系;∠BAD,(3)如图2,将Rt∠ABC沿斜边AC翻折得到Rt∠ADC,E,F分别是BC,CD边上的点,∠EAF=12连接EF,过点A作AM∠EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在∠ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP (0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD∠CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.。
专题二全等三角形模型解题解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.解题模型二对称模型针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.图示:图示:4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.5.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.6.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.解题模型三旋转模型针对训练8.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.10.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.图示:12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.14.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.15.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.图示:16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.图示:解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.图示:解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应角相等.解题模型二对称模型图示:针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【点睛】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.图示:3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用S AS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS).∴∠A=∠C(全等三角形对应角相等).【点睛】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.【点睛】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.5.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.【分析】由∠ABC=∠ACB可得AB=AC,又点D、E分别是AB、AC的中点.得到AD=AE,通过△ABE≌△ACD,即可得到结果.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,熟记定理是解题的关键.6.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF.∴BF=CE.在△ABF和△DCE中,[来源:]∴△ABF≌△DCE(SAS).∴∠GEF=∠GFE.∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO 与△CDO全等,所以有OB=OC.【点睛】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=75°.【分析】(1)要证明△ABE≌△ACF,由题意可得AB=AC,∠B=∠ACF,BE=CF,从而可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质可以求得∠ADC的度数.【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.¥解题模型三旋转模型针对训练9.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,图示:,∴△ABC≌△EDC(ASA).【点睛】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.10.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【分析】(1)根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论;(2)根据∠ACD=90°,AC=CD,得到∠2=∠D=45°,根据等腰三角形的性质得到∠4=∠6=67.5°,由平角的定义得到∠DEC=180°﹣∠6=112.5°.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得可得∠CAE=∠CBD,根据“八字型”证明∠AOP=∠PCB=60°即可.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B.∵CE=BF,图示:∴CF=BE.又∵CD=AB,∴△CDF≌△BAE(SAS).∴DF=AE.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.14.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.[来源:Z|xx|]【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【点睛】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.15.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【点睛】本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是SSS证明△ACE≌△BDF.16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C.在△ABE与△CDF中,,∴△ABE≌△CDF(ASA).(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD.∵EG=5,∴CD=10.∵△ABE≌△CDF,∴AB=CD=10.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【点睛】本题主要考查了角平分线的性质和全等三角形的性质及判定,利用图形写出已知条件和求证是解图示:答此题的关键.解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.【分析】先证明∠BCE=∠CAD,再证明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代换,可得出DE=AD+BE.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明两线段的和等于一条线段常常借助三角形全等来证明,要注意运用这种方法图示:19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【分析】分析图可知,全等三角形为:△ACD≌△CBE.根据这两个三角形中的数量关系选择ASA证明全等.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
三角形与全等三角形(压轴题组)1.(2021·江西赣州·九年级期中)如图1.在等腰直角三角形ABC中.∠BAC=90°.点E.F 分别为AB.AC的中点.H为线段EF上一动点(不与点E.F重合).将线段AH绕点A逆时针方旋转90°.得到AG.连接GC.HB.(1)证明:△AHB≌△AGC(2)如图2.连接HG和GF.其中HG交AF于点Q.①证明:在点H的运动过程中.总有∠HFG=90°.②若AB=AC=4.当EH的长度为多少时.△AQG为等腰三角形?2.(2021·北京市第三十一中学九年级期中)四边形ABCD是正方形.△BEF是等腰直角三角形.∠BEF=90°.BE=EF.G为DF的中点.连接EG.CG .EC.(1)如图1.若点E在CB边的延长线上.直接写出EG与GC的位置关系及ECGC的值.(2)将图1中的△BEF绕点B顺时针方向旋转至图2所示位置.在(1)中所得的结论是否仍然成立?若成立.请写出证明过程.若不成立.请说明理由.(3)将图1中的△BEF.绕点B顺时针旋转α(0°<α<90°).若BE=1.AB=2.当E.F.D 三点共线时.求DF的长.3.(2021·湖北青山·九年级期中)已知.在菱形ABCD中.∠BCD=60°.将边CD绕点C顺时针旋转α°(0<α<120).得到线段CE.连接ED、ED或其延长线交∠BCE的角平分线于点F.(1)如图1.若α=20.直接写出∠E与∠CFE的度数.(2)如图2.若60<α<120.求证:EF﹣DF=CF.(3)如图3.若AB=6.点G为AF的中点.连接BG.则DC旋转过程中.BG的最大值为.4.(2021·福建安溪·九年级期中)在等腰直角△ABC中.AB=AC.点D在底边BC上.∠EDF 的两边分别交AB、AC所在直线于E、F两点.∠EDF=2∠ABC.BD=nCD.(1)如图1.若n=1.则DE DF.(填“>”“<”或“=”)(2)连接EF.①如图2.沿着直线EF折叠.使得点A落在边BC上的D点.求AEAF的值(含n的式子表示).②如图3.EF∥BC.且59EFBC.求出n的值.5.(2021·陕西莲湖·九年级期中)在菱形ABCD中.∠ABC=60°.P是射线BD上一动点.以AP为边向右侧作等边△APE.点E的位置随着点P的位置变化而变化.问题提出(1)如图1.当点E在菱形ABCD内部或边上时.连接CE.BP与CE的数量关系是.CE与CB的位置关系是.(2)如图2.当点E在菱形ABCD外部时.(1)中的结论是否还成立?若成立.请予以证明.若不成立.请说明理由.问题解决(3)如图3.连湖公园有一块观赏园林区.其形状是一个边长为20m的菱形ABCD.其中∠ABC=60°.对角线BD是一条花间小径.现计划在BD延长线上(包括D点)取点P.以AP 为边长修建一个等边△APE 的娱乐区.放置各类运动娱乐设施.从娱乐区顶点E 再修一条直直的小路BE .为了让游客们更轻松愉快地游玩.园区还计划在BE 中点处设置一个直饮水点F .求饮水点F 到C 点的最短距离.6.(2021·陕西·交大附中分校九年级期中)问题研究.如图.在等腰△ABC 中.AB AC =.点D 、E 为底边BC 上的两个动点(不与B 、C 重合).且DAE B ∠=∠.(1)请在图中找出一个与ABE △相似的三角形.这个三角形是__________.(2)若90BAC ∠=︒.分别过点D 、E 作AB 、AC 的垂线.垂足分别为F 、G .且DF 、EG 的反向延长线交于点M .若1AB =.求四边形AFMG 的面积.问题解决(3)如图所示.有一个矩形仓库ABCD .其中40AB =米.30AD =米.现计划在仓库的内部的E 、F 两处分别安装监控摄像头.其中点E 在边BC 上.点F 在边DC 上.设计要求45EAF ∠=︒且CE CF =.则CE 的长应为多少米?7.(2021·黑龙江·哈尔滨市第六十九中学校九年级期中)如图.在平面直角坐标系中.直线AB 的解析式为y =kx +3分别交x 轴、y 轴于点A 、B .∠BAO =45°.(1)求直线AB 的解析式.(2)点C 在x 轴负半轴上.连接CB .过点B 作BC 的垂线交x 轴于点P .设点P 的横坐标为t .△BAP 的面积为S .求S 与t 之间的函数解析式.(不要求写出自变量t 的取值范围). (3)在(2)的条件下.延长BC 至Q .使BQ =BP .过点Q 作x 轴的垂线交x 轴于点D .点E 为线段CQ 的中点.过点E 作BQ 的垂线交BD 的延长线与点F .若EF 10.求Q 点坐标.8.(2021·河南·金明中小学九年级期中)把两个等腰直角△ABC 和△ADE 按如图1所示的位置摆放.将△ADE 绕点A 按逆时针方向旋转.如图2.连接BD .EC .设旋转角为α(0360α︒<<︒).(1)如图1.BD与EC的数量关系是___________.BD与EC的位置关系是___________. (2)如图2.(1)中BD和EC的数量关系和位置关系是否仍然成立.若成立.请证明.若不成立请说明理由.(3)如图3.当点D在线段BE上时.BEC∠=___________.△的面积最大.(4)当旋转角α=__________时.ABD9.(2021·北京·景山学校九年级期中)在△ABC中.AB=23.CD⊥AB于点D.CD=2.(1)如图1.当点D是线段AB中点时.①AC的长为.②延长AC至点E.使得CE=AC.此时CE与CB的数量关系为.∠BCE与∠A的数量关系为.(2)如图2.当点D不是线段AB的中点时.画∠BCE(点E与点D在直线BC的异侧).使∠BCE=2∠A.CE=CB.连接AE.①按要求补全图形.②求AE的长.10.(2021·山西·九年级期中)综合与实践问题情境:数学活动课上.老师要求学生出示两个大小不一样的等腰直角三角形.如图1所示.把Rt△ADE和Rt△ABC摆在一起.其中直角顶点A重合.延长CA至点F .满足AF=AC.然后连接DF、BE.实践猜想:(1)图1中的BE与DF的数量关系为:.位置关系为:.猜想证明:(2)当△ADE绕着点A顺时针旋转一定角度α(0<α<90°)时.如图2所示.(1)中的结论是否还成立若成立.请写出证明过程.若不成立.请说明理由.问题解决:(3)若42,22BC DE==.△ADE绕着点A顺时针旋转一定角度α(0<α<360°)的过程中.求BE的最大值与最小值.。
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。