浙教版科学八下第一章复习归纳
- 格式:doc
- 大小:96.00 KB
- 文档页数:5
八年级下科学第一章知识点梳理第一节模型、符号的建立与作用1、符号:是指有一定意义的图形、文字等。
如数学运算符号、电路元件符号等。
符号的作用:能简单明了地表示事物,还可以避免由于表达的文字语言不同和事物外形不同而引起的混乱。
如:交通符号、电学符号、元素符号…2、模型可以帮助人们认识和理解一些不能直接观察到的或复杂的事物。
如:地球仪、眼球模型、水分子模型……1.图2.表3.计算机图像4.公式5.化学方程式都是模型等等…在自然科学研究中,人们通过一定的科学方法,建立一个适当的模型来反映和代替客观对象,并通过研究这个模型来揭示客观对象的形态、特征和本质,这样的方法就是模型方法。
第二节物质与微观粒子模型一.分子的定义与性质:1.分子的定义:在由分子构成的物质中,分子是保持物质化学性质的最小粒子。
(注:“保持”是指构成物质的每一个分子和该物质的化学性质完全相同,如水分子保持水的化学性质。
物理性质是物质的大量分子聚集所表现的属性,是宏观的,所以单个分子是不能表现的。
保持化学性质的粒子除了分子外,还有其他的粒子,如原子、离子等。
)原子是化学变化中的最小粒子。
2.分子的性质:(1)分子很小:肉眼看不见,需通过扫描隧道显微镜等显微设备来观察。
(2)分子不断运动:温度升高,分子运动速率加快。
如远处可闻到花香,樟脑球在衣柜中时间久了就不见了。
(3)分子间有空隙:一般来说气体分子间间隔很大,固体、液体分子间间隔较小,因此气体容易压缩(如可向轮胎中打气),固体、液体不易被压缩。
不同液体混合总体积小于两者的原体积和等现象。
(4)同种物质的分子性质相同,不同种物质的分子性质不同,此处的性质是指化学性质。
二、用分子观点解释物理变化和化学变化1、由分子构成的物质,发生物理变化时,分子本身不变,只是分子间的距离发生了变化,发生化学变化时,分子本身发生变化,变成其他物质的分子。
如:水变成水蒸气时,水分子本身没有变化,只是分子间的间隔变大。
第一章热能的转化
一、热能的定义
热能(thermal energy)是由物质中的分子运动产生的、具有可能转化为机械能或其他形式能量的一种能量形式。
二、热能的转化
1.热能转化为机械能或其他形式能量:热能可转化为机械能或其他形式的能量,如汽车的发动机就是一个应用热能转化为机械能的机器,汽车发动机将燃烧燃料产生的热能转化为机械能,使汽车按照操纵者的要求运动。
2.热能转化为电能:热能可以转化为电能,在火力发电厂中,利用燃烧燃料的热能来汽化水,使蒸汽的温度和压强上升,用汽车发动机原理使汽车发动机的热能转化为电能,输入我们的家中,使用电器,实现用热能转化为电能。
3.热能转化为其他形式能量:热能还可以转化为其他形式的能量,如热量转化为化学能,在火药、煤气、氢弹等产品中,都是利用热量转化为化学能,来实现大量的能量的源泉。
三、热能的应用
1.在水力发电中,利用蒸发的热量使水蒸发,然后利用蒸汽进行相应的动力,将其转化为电能,最终输入家庭使用;
2.火力发电:在火力发电厂中,利用燃料燃烧把热能转化成机械能,驱动汽车发动机,把机械能转化为电能,然后输入家庭使用;
3.在化工工业中。
科学八年级下册第一章知识要点归纳整理1、磁极间的相互作用是:同名磁极互相排斥,异名磁极互相吸引。
2、磁体可分为天然磁体和人造磁体,通常我们看到和使用的磁体都是人造磁体,它们都能长期保持磁性,通称为永磁体。
3、磁化:使原来没有磁性的物体得到磁性的过程。
4、磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。
5、磁体:具有磁性的物质叫做磁体。
6、磁极;磁体各部分的磁性强弱不同,磁体上磁性最强的部分叫做磁极,它的位置在磁体的两端。
可以自由转动的磁体,静止后恒指南北。
为了区别这两个磁极,我们就把指南的磁极叫南极,或称S 极;另一个指北的磁极叫北极,或称N极。
铁棒被磁化后,磁性容易消失,称为软磁体。
钢被磁化后,磁性能够长期保持,称为硬磁体或永磁体,钢是制造永磁体的好材料。
人造磁体就是永磁体。
7、磁场:磁场的基本性质:它对放入其中的磁体产生磁力的作用,磁体间的相互作用是通过磁场而发生的。
磁场的方向:在磁场中某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
磁场的方向:在磁场中某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
8、磁感线:为了形象地描述磁体周围的磁场,英国物理学家法拉第引入了磁感线:依照铁屑排列情况,画出一些带箭头的曲线。
方向都跟放在该点的磁针北极所指的方向一致,这些曲线叫磁感应线、简称磁感线。
9、磁感线的特点:(1)在磁体外部,磁感线由磁体的北极(N极)到磁体的南极(S极)。
(2)磁感线的方向就是该点小磁针北极受力的方向,也就是小磁针静止后北极所指的方向。
(3)磁感线密的地方表示该点磁场强,即磁感线的疏密表示磁场的强弱。
(4)在空间每一点只有一个磁场方向,所以磁感线不相交。
10、地磁场地磁场:地球产生的磁场。
地磁北极在地理南极附近,地磁南极在地理北极附近。
地球南北极与地磁的南北极并不重合,它们之间存在的一个50夹角,叫磁偏角。
11、奥斯特实验现象:导线通电,周围小磁针发生偏转;通电电流方向改变,小磁针偏转方向相反.结论:通电导线周围存在磁场;磁场方向与电流方向有关.12、直线电流的磁场直线电流的磁场的分布规律:以导线上各点为圆心的一个个同心圆,离直线电流越近,磁性越强,反之越弱。
浙教版八年级下册科学知识点归纳第一章电与磁一、磁现象:1、磁性:能够吸引铁、钴、镍等物质的性质2、磁体:具有磁性的物质(磁铁:铁质的磁体)3、磁极:定义:磁体上磁性最强的部分叫磁极,任何磁体都有两个磁极。
种类:如果磁体能自由转动,指南的磁极叫南极(S),指北的磁极叫北极(N)相互作用规律:同名磁极相互排斥,异名磁极相互吸引。
4、磁化:① 定义:使原来没有磁性的物体得到磁性的过程。
磁铁吸引铁钉的原因是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
二、磁场:1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。
这里使用的是转换法。
2、基本性质:磁场对放入其中的磁体产生力的作用,磁极间的相互作用是通过磁场而发生的。
3、方向规定:小磁针静止时北极所指的方向就是该点磁场的方向。
4、磁感线:在磁场中一些带箭头的曲线。
①方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
②说明:A、磁感线是为了直观、形象地描述磁场而引入的曲线,不是客观存在的。
B、用磁感线描述磁场的方法叫模型法。
C、磁感线是封闭的曲线。
D、磁感线立体的分布在磁体周围,而不是平面的。
E、磁感线不相交。
F、磁感线的疏密程度表示磁场的强弱。
③熟练掌握条形磁铁磁感线的画法。
三、地磁场:①定义:在地球产生的磁场,磁针指南北是因为受到地磁场的作用。
②磁极:地磁北极在地理南极附近,地磁南极在地理北极附近。
③磁偏角:首先由我国宋代的沈括发现,地磁南北极与地理南北极不重合。
四、电生磁:1.奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。
直线电流周围的磁感线是环绕导线的同心圆,距离直线电流越近,磁场越强。
八年级下第一章电与磁知识点第一节:指南针为什么能指方向1、磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。
2、磁体:具有磁性的物质叫做磁体。
3、磁极;磁体各部分的磁性强弱不同,磁体上磁性最强的部分叫做磁极,它的位置在磁体的两端。
可以自由转动的磁体,静止后恒指南北。
为了区别这两个磁极,我们就把指南的磁极叫南极,或称S极;另一个指北的磁极叫北极,或称N极。
4、磁极间的相互作用是:同名磁极互相排斥,异名磁极互相吸引。
5、磁体可分为天然磁体和人造磁体,通常我们看到和使用的磁体都是人造磁体,它们都能长期保持磁性,通称为永磁体。
6、磁化:使原来没有磁性的物体得到磁性的过程。
铁棒被磁化后,磁性容易消失,称为软磁体。
钢被磁化后,磁性能够长期保持,称为硬磁体或永磁体,钢是制造永磁体的好材料。
人造磁体就是永磁体。
7、磁场:磁场的基本性质:它对放入其中的磁体产生磁力的作用,磁体间的相互作用是通过磁场而发生的。
磁场的方向:在磁场中某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
8、磁感线:为了形象地描述磁体周围的磁场,英国物理学家法拉第引入了磁感线:依照铁屑排列情况,画出一些带箭头的曲线。
方向都跟放在该点的磁针北极所指的方向一致,这些曲线叫磁感应线、简称磁感线。
9、磁感线的特点:(1)在磁体外部,磁感线由磁体的北极(N极)到磁体的南极(S极)。
(2)磁感线的方向就是该点小磁针北极受力的方向,也就是小磁针静止后北极所指的方向。
(3)磁感线密的地方表示该点磁场强,即磁感线的疏密表示磁场的强弱。
(4)在空间每一点只有一个磁场方向,所以磁感线不相交。
10、地磁场地磁场:地球产生的磁场。
地磁北极在地理南极附近,地磁南极在地理北极附近。
地球南北极与地磁的南北极并不重合,它们之间存在的一个夹角,叫磁偏角。
小磁针的南极始终指向地理南极的原因就是:在地理南极附近,存在着地磁场的北极或 N极。
第二节.电生磁11、奥斯特实验现象:导线通电,周围小磁针发生偏转;通电电流方向改变,小磁针偏转方向相反.结论:通电导线周围存在磁场;磁场方向与电流方向有关.12、直线电流的磁场直线电流的磁场的分布规律:以导线上各点为圆心的一个个同心圆,离直线电流越近,磁性越强,反之越弱。
初二下科学第一章知识点班级姓名1、模型的作用:模型可以是一幅图、一张表或计算机图象,一个公式如V=S/t3、构成物质有三种微粒:分子原子离子4、由原子直接构成的物质有:所以金属单质(如:铁Fe、钠Na等)、稀有气体单质(:如氦气He、氖气Ne、氩气Ar等),部分固态非金属单质(如:碳C、磷P、硫S、硅Si等)5、由离子直接构成的物质有:食盐(氯化钠NaCl)、硫酸铜CuSO4、碳酸钙、等6、由分子直接构成的物质有:水、二氧化碳、氮气、氢气、二氧化硫五氧化二磷、一氧化碳、甲烷、氧气、蔗糖、酒精等7、不同种类和不同数量的原子能构成各种不同的分子。
如:氧气和臭氧;氧气和氮气某容器中只有一种元素,它一定是单质吗?9、同种原子构成不同物质时结构是不一样的。
如金刚石和石墨;红磷和白磷等10物质的性质是由它自身的结构决定的:结构决定性质12水电解时阳极产生氧气,阴极产生氢气。
氢气与氧气体积之比是2:1,质量之比。
13、原子是化反应中的最小微粒。
原子也是构成物质的一种微粒:如金属由原子直接构成,金刚石、石墨等碳的单质也有原子直接构成等等14、原子结构的初步知识质子:每一个质子带一个单位的正电荷原子核(带正电)原子(带正电)中子(不带电)(氢原子没有中子)核外电子(带负电):每个电子带一个单位的负电荷说明:1、原子核和核外的电子所带的电荷总数相等,电性相反,整个原子不显电性。
2、质子和中子又是由更小的微粒夸克构成3、核电荷数 = 质子数 = 核外电子数相对原子质量=质子数+中子数15、元素:具有相同核电荷数(即质子数)的同一类原子总称为元素。
元素是个宏观概念。
元素是建立在微观概念上的宏观的集合概念,因此元素有只讲种类不论个数的特点。
地壳中含量最多的前四种元素是:氧(O)、硅(Si)、铝(Al)、铁(Fe)16、国际上采用公认的符号来表示元素,这种符号叫做元素符号。
元素符号的意义:A、表示某种元素,如O表示氧元素;B、表示该元素的一个原子,如O 表示一个氧原子,则2 O可表示二个氧原子。
第1章电和磁姓名:第一节【要点1】磁性与磁体1、磁性:物体具有的吸引等物质的性质。
具有的物体叫磁体。
2、磁极:磁体上磁性最强的部分叫磁极。
每个磁体都有两个磁极,南极(S)和北极(N)。
【要点2】磁极间的相互作用规律:【要点3】判断物体是否具有磁性的方法:1、根据磁铁的吸铁性判断:2、根据磁体的指向性来判断:3、根据磁极间的相互作用规律来判断:【要点4】对磁场的理解磁体的周围存在着一种特殊的物质叫磁场1、磁场的基本性质:2、磁体两极磁场,中间磁场最弱;离磁体越近,磁场越强,越远磁场越弱。
3、磁场方向(规定):【要点5】对磁感线的认识1、为了形象地描述磁体周围的磁场分布,在磁场中画一些有方向的曲线,任何一点的曲线方向都跟放在该点的小磁针静止时北极所指的方向一致(也就是该点的磁场方向)2、方向(1)、规定:(2)具体判断:3、磁感线的分布疏密可以反映磁场磁性强弱,磁感线分布越密磁场磁性越强,反之越弱。
【要点6】对地磁场的认识1、地球是一个巨大的,地球周围空间存在着磁场(地磁场)。
2、特点:地磁的北极在地理南极附近,地磁的南极在地理北极附近,但不重合。
第二节【要点1】直线电流的磁场1、奥斯特实验证明了:2、通电直导线磁场的分布特点:的同心圆;磁场方向在与直导线垂直的平面上且磁场方向与电流方向有关。
【要点2】影响通电螺线管磁性强弱的因素1、○1;○2;○3。
2、通电螺线管磁极的极性:与有关。
3、研究影响通电螺线管磁性强弱的因素的方法为法。
【要点3】1、如何判断磁体磁性的强弱:用到的科学方法为:【要点4】通电螺线管的优点1、磁性的有无可以由来控制;2、磁场方向可以由来控制;3、磁性的强弱可以由来控制。
第三节电磁铁的应用工作原理:第四节电动机【要点1】理解磁场对通电导体的作用1、通电导体受力方向与磁场方向和有关。
2、通电导体受力大小与磁场强弱和有关。
【要点2】电动机1、电动机的原理:2、直流电动机的组成:模型由磁体、线圈、和电刷组成;实际的电动机由定子和转子两个基本部分组成。
浙教版八年级下册科学知识点归纳第一章电与磁一、磁现象:1、磁性:能够吸引铁、钴、镍等物质的性质2、磁体:具有磁性的物质(磁铁:铁质的磁体)3、磁极:定义:磁体上磁性最强的部分叫磁极,任何磁体都有两个磁极。
种类:如果磁体能自由转动,指南的磁极叫南极(S),指北的磁极叫北极(N)相互作用规律:同名磁极相互排斥,异名磁极相互吸引。
4、磁化:①定义:使原来没有磁性的物体得到磁性的过程。
磁铁吸引铁钉的原因是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
二、磁场:1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它所产生的作用来认识它。
这里使用的是转换法。
2、基本性质:磁场对放入其中的磁体产生力的作用,磁极间的相互作用是通过磁场而发生的。
3、方向规定:小磁针静止时北极所指的方向就是该点磁场的方向。
4、磁感线:在磁场中一些带箭头的曲线。
①方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
②说明:A、磁感线是为了直观、形象地描述磁场而引入的曲线,不是客观存在的。
B、用磁感线描述磁场的方法叫模型法。
C、磁感线是封闭的曲线。
D、磁感线立体的分布在磁体周围,而不是平面的。
E、磁感线不相交。
F、磁感线的疏密程度表示磁场的强弱。
③熟练掌握条形磁铁磁感线的画法。
三、地磁场:①定义:在地球产生的磁场,磁针指南北是因为受到地磁场的作用。
②磁极:地磁北极在地理南极附近,地磁南极在地理北极附近。
③磁偏角:首先由我国宋代的沈括发现,地磁南北极与地理南北极不重合。
四、电生磁:1.奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。
直线电流周围的磁感线是环绕导线的同心圆,距离直线电流越近,磁场越强。
第一节 指南针为什么能指方向1. 磁体与磁极(1) 磁性:磁体具有吸引铁、钴、镍等物质的性质。
(2) 磁体:具有磁性的物体。
a.b.c.⎧⎪⎨⎪⎩按形状分:条形磁铁、针形磁铁、蹄型磁铁等;分类按来源分:天然磁铁、人造磁铁;按保持磁性的时间长短分:硬磁铁(又叫永磁铁)和软磁铁。
性质:磁体具有指向性和吸铁性,指南针就是利用磁体的指向性指示方向的。
(3) 磁极:磁体各部分磁性强弱不同,磁体上磁性最强的部位叫做磁极。
一个磁体有两个磁极,分别是N 极(北极)和S 极(南极)。
条形磁铁的两端就是两个磁极,因此条形磁铁两端磁性最强,中间磁性最弱。
磁极一般位于磁铁两端。
磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引。
a.b.c.d.A B A B A 判断物体是否具有磁性的方法:根据磁体的吸铁性:看能否吸引铁类物质;根据磁体的指向性:将物体水平吊起,静止时是否总是指向南北方向;根据磁极间的相互作用规律:将物体两端分别靠近小磁针,看是否有排斥现象;根据磁极的磁性最强:若有、两个外形完全相同的铁棒,已知一个有磁性,一个没有 磁性,区分它们的方法如右图所示,将的一端从的左端向右移动,若在移动过程中发 现吸引力不变,则说明是有B ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩磁性的;若发现吸引力由大变小再变大,则说明有磁性。
(4) 磁化:使原来没有磁性的物体得到磁性的过程。
a.b.c.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩铁棒被磁化后,磁性容易消失,称为软磁铁;钢棒被磁化后,磁性能长期保持,称为硬磁铁。
因此永磁铁常用钢棒来制作。
任何磁体靠近没有磁性的铁棒或钢棒总是相互吸引,说明物体被磁化后靠近磁体某一极的那端说明 跟该磁极是异名磁极。
并不是所有物体都能被磁化。
例如:磁铁不能吸引铜、铝、玻璃等,说明这些物体没有被磁化, 不是磁体。
例子:条形磁铁吸引两枚大头针,其中哪副图是正确的_______。
解析:大头针被磁化变成磁体,大头针下端是同名磁极,因此相互排斥,选乙图。
第一章基础知识复习一、基本概念:1、符号的意义:使用符号能表示事物,可避免由于不同和不同而引起的混乱。
列举一些常见的符号:。
2、由于事物有时,有时,有时,所以人们常用模型。
列举常见的模型:。
3、根据P的水的状态模型,可知:①分子间存在,而且液态水3分子间距离较。
②在发生状态变化时,分子本身。
请建立一个水分子扩散的模型。
4、在电解水的实验中,发现生成了两种气体:和。
体积比是。
这个实验说明:①水是由构成的。
②水是由组成的。
5、化学反应的实质是:。
6、原子是最小微粒;分子是保持物质的一种微粒。
分子和原子的主要区别是。
7、构成物质的微粒三种:、和。
金刚石是由构成的,食盐是由构成的,酒精是由构成的。
8、不同种类的原子和不同数量的原子就能构成不同的分子。
如一氧化碳和二氧化碳都是由元素组成的,原子的种类相同,但构成一个分子的原子不同。
氢气和氧气的化学性质不同(氢气能燃烧,发出色的火焰,氧气能使带火星的木条),这是因为构成它们的微粒。
即同种性质,不同种分子性质。
9、金刚石、石墨和足球烯都是由构成的,它们的化学性质。
但是由于不一样,它们的物理性质不同。
10、原子的体积很小,原子的半径一般在数量级。
原子质量也非常小,数量级。
11、水受热变成水蒸气属于变化,而水通电变成氢气和氧气属于。
它们的本质区别在于。
12、原子结构模型的建立经历了不断完善、不断的过程,从模型到模型,从模型到模型,再现代的模型,已使模型更接近事物的本质。
13、原子是由一个居原子中心的带电荷的和带电荷的构成的。
电子在核外作高速运动。
一个电子带一个单位的负电荷,整个原子呈性。
这是因为。
14、原子核是由和构成的。
而质子和中子又是由更小的微粒--构成的。
原子核所带的电荷叫做。
原子的质量主要集中在上,因为原子中的质量在整个原子质量中所占的比重极小。
氧原子核内有个质子、8个中子,它的相对原子质量是。
一般相对原子质量可以由数和数相加所得。
15、同种原子的原子核内、和是一定的。
第一章《粒子的模型与符号》复习1、模型的作用:模型可以帮助人们认识和理解一些不能直接观察到的或复杂的事物。
模型可以是一幅图、一张表或计算机图象,也可以是一个复杂的对象或过程的示意。
2、符号的作用:(1)、简单明了地表示事物(2)、可避免由于事物形态不同引起的混乱(3)、可避免由于表达的文字语言不同引起的混乱二.物质与微观粒子模型1.分子由原子构成;分子的种类由原子的种类和数目决定。
2、分子是构成物质,并保持物质化学性质的最小微粒。
同种分子性质相同,不同种分子性质不同。
3.水分解过程的模型你能说出多少相关的信息?(1)、分子由原子构成。
(2)、水电解是一个化学变化过程(3)、水是由氢元素和氧元素组成的(4)、在化学变化过程中分子可以成分更小的原子。
(5)、在化学变化过程原子不能再分,原子是化学变化中的最小微粒。
4水的三态变化(物理变化)从分子角度看,其变化的本质是水分子本身没有发生变化,只是分子之间的距离发生了变化而已。
三.原子结构的模型1、原子结构模型的发展历史:道尔顿:实心原子结构模型→汤姆森:“汤姆森模型”、→卢瑟福:“核式模型→玻尔:“分层模型”→“电子云模型”。
2、第一个提出原子概念的人是道尔顿;第一个发现电子的人是汤姆生。
3、原子是化学变化中的最小微粒。
原子也是构成物质的一种微粒,由原子直接构成的物质有:金属单质(如:铁Fe、钠Na等)、稀有气体单质(:如氦气He、氖气Ne、氩气Ar 等),部分固态非金属单质(如:碳C、磷P、硫S、硅Si等)。
4、原子结构的初步知识质子:每一个质子带一个单位的正电荷原子核(带正电)原子(带正电)中子(不带电)(氢原子没有中子)核外电子(带负电):每个电子带一个单位的负电荷说明:(1)、原子核和核外的电子所带的电荷总数相等,电性相反,整个原子不显电性。
(2)、质子和中子又是由更小的微粒夸克构成(3)、核电荷数 = 质子数 = 核外电子数相对原子质量=质子数+中子数(4)、分子与原子的主要区别是:在化学变化中,分子可分,而原子不可分。
在化学变化中,分子种类发生变化,而原子种类和原子数目没有发生变化。
5、在原子中,原子序数等于质子数等于核电荷数等于核外电子数;不一定等于中子数,中子数可以为零;不同的原子质子数一定不同。
原子的质量集中在原子核上,电子的质量可忽略不计。
(注:原子核所带的电荷数为核电荷数。
)6、科学上把具有相同质子数(即核电荷数)的同一类原子总称为元素。
如铁元素就是指铁原子的总称。
元素种类由质子数决定。
7、我们把带电的原子(或原子团)叫离子,在离子中,质子数等于核电荷数不等于核外电子数,质子数大于电子数为阳离子,质子数小于电子数为阴离子。
8、同位素:原子中原子核内质子数相同、中子数不相同的同类原子的统称。
氢的三种同位素原子是氕、氘、氚。
同位素的应用:核设施、文物鉴定、医学诊断等。
9.同位素原子是一种元素的不同种原子,元素是同位素原子的总称。
四.组成物质的元素1、单质和化合物纯净物单质:由同种元素组成的纯净物叫单质例:氧气氧化物物质化合物:由不同种元素组成的纯净物叫混合物例:水混合物:如空气、天然水、盐酸、所有的溶液其它氧化物:由两种元素组成且其中一种是氧元素的化合物叫氧化物。
2.比较元素、原子、离子、分子的区别3元素原子定义具有相同核电荷数(即质子数)的同一类原子总称为元素。
化学变化中的最小微粒区分①只讲种类,不讲个数②组成物质(单质和化合物)①既讲种类,又讲个数②构成分子,也直接构成物质使用描述物质的宏观组成描述物质的微观结构联系元素是原子的总称;元素的种类由原子中的核电荷数(质子数)决定宏观上物质由元素组成的,微观上物质是由分子、原子和离子构成的。
4元素的分布①在地壳中,含量最高的是氧,其次是硅。
金属元素含意最多的是铝,其次是铁。
②在人体中,含量最高的是氧,其次是碳和氢。
铁、碘、锌等为微量元素,这些元素在人体内的含量都应维持在一个适宜的范围,过多或过少都不利于人体健康。
③海水中,含量最高的是氧,其次是氢,含量较高的还有氯元素和钠元素。
④有机化合物主要由碳、氢、氧三种元素组成。
五.表示元素的符号1.元素符号:国际上通用的表示元素名称的符号。
2、符号表示的意义:表示一种元素,表示这种元素的1个原子。
除H、N、O、F、Cl、Br、I外,其它元素还可表示一种物质。
例:H表示氢元素和1个氢原子,而Na表示钠元素、1个钠原子和金属钠。
如元素符号前面有数字则只能表示几个某原子。
例:2O只能表示2个氧原子,mCu只能表示m个铜原子。
3.元素周期表(1)元素周期表是科学家门捷列夫发现的,(2)元素根据其核电荷数从小到大按原子结构规律排成的周期表叫元素周期表。
在元素周期表的同一周期中,从左到右,元素原子的质子数逐渐增加。
同一周期,从左到右,按金属元素、非金属元素、稀有元素排列。
在同一族内,各元素的化学性质都很相似。
要知道元素周期表的一些结构和规律。
六.表示物质的符号1、化学式:用元素符号表示物质组成的式子。
2、常见单质的化学式:氧气O2、氢气H2、氯气Cl2 、氮气N2、碘I2、铁Fe 、铜Cu 、水银Hg、硫S 、磷P 、[木炭、焦炭、活性炭、金刚石、石墨 C ]、氦气He、氖气Ne3、化学式的读法:(1)一般从右向左叫做”某化某”(2)当一个分子中原子个数不止1个时,还要指出1个分子里元素的原子个数,叫做”几某化几某”4、熟记常见元素的化合价口诀:钾钠银氢正一价;钙镁钡锌正二价;氟氯溴碘负一价;通常氧是负二价;一二铜,二三铁;三铝四硅五价磷;二四六硫二四碳;单质化合价为0。
5、常见元素的化合价的一些规律:A化合价有正、负之分;B在化合物里,通常金属元素显正价(氢为+1价),非金属元素显负价(氧显-2价);C在化合物里,各元素的正负化合价的代数和等于零(最重要的一条规则);D在单质分子里元素的化合价为零;E有些元素的化合价是可变的;F同一元素在同一化合物中化合价也可能不同。
6、离子符号的表示:⑴先写上元素符号,在其右上角标出所带的电荷数及其电性。
如Na+Cl-⑵有些离子是带电的原子集团,方法与上同,将它看成一个整体即可,称为某某离子。
如:铵根离子NH4+,碳酸根离子CO32-7、元素符号周围的数字的意义(1)、元素符号前面:表示原子、分子或离子的个数。
如2N、2H2、2Mg2+等。
(2)、元素符号右下角:表示构成分子(或原子团)的原子个数。
如H2、SO42-。
(3)元素符号右上角:表示离子所带的电荷数。
如Ca2+:表示带2个单位正电荷的钙离子(4)、元素符号正上方:表示元素的化合价。
+2如:CuO 表示氧化铜中铜元素的化合价是+2价。
(5)、元素符号左下角:表示元素原子核内的质子数(或核电荷数)。
(6)、元素符号左上角:表示元素原子核内质子数与中子数之和(即相对原子质量)。
记牢关系:离子所带的电荷数与元素化合价在数值上是相等的;离子所带的电荷的正负与元素化合价的正负相一致。
8、如何根据元素的化合价,正确写出化合物的化学式呢?口诀1:正前负后;上方标价;交叉填数;约简检验。
口诀2:氢、金前,非金后;氧化物,氧在后。
(有机化合物的书写除外)七.元素符号表示的量1.相对原子质量:某种原子的相对原子量就等于该原子的实际质量与一种12C原子的实际质量的1/12相比所得到的比值,即:原子的相对质量=质子数+中子数2.相对分子质量:化学式中各原子的相对原子量的总和。
3.化学式的意义:以CO 2为例:(1)表示该种物质(二氧化碳气体)(2)表示这种物质的组成(二氧化碳由碳元素和氧元素组成)(3)表示该物质的一个分子的构成(一个CO 2分子由一个碳原子和二个氧原子构成) (4)表示该物质的一个分子(一个二氧化碳分子)(5)表示该物质的相对分子质量(二氧化碳的相对分子质量为44) (6)、表示组成该物质各元素的原子个数比 4.元素的质量分数:5. 化合物里含某元素的质量化合物里含某元素的质量=化合物的质量×化合物里某元素的质量分数 m 元素 =m 纯净物 ×该元素的质量分数6、熟记常见的元素符号及其表示的意义(见课本P 18页) 元素名称 核电荷数 元素符号元素名称 核电荷数元素符号7、熟记常见的原子团及其离子符号、所带电荷、化合价原子团 离子符号电荷 化合价氢氧根 硝酸根 碳酸氢根 高锰酸根 铵根 硫酸根 碳酸根 亚硫酸根 锰酸根 磷酸根某元素的质量分数= ——————————————某种元素质量化合物中各元素总质量8、常见单质(注意金属单质、稀有气体、部分固态非金属直接用元素符号表示化学式的书氢气氮气氯气氧气碘溴碳硅硫磷氦气氖气氩气锌镁铜钠铝铁钾钙汞银臭氧12、氧化物二氧化硫三氧化硫一氧化碳四氧化三铁五氧化二磷二氧化碳二氧化硅氧化钙氧化铁氧化亚铁氧化铝氧化铜氧化汞氧化钾氧化钠氧化镁氧化锌二氧化锰过氧化氢氧化钠9、简单化合物氯化钠硫化锌氯化氢氯化钾二氧化氮水氯化银氯化钙氯化镁氯化钡氯化锌氯化铝氯化铜氯化铁氯化亚铁四氯化碳氯化氢硫化钠硫化钠硫化钾硫化银硫化钙硫化镁硫化钡硫化锌硝酸铵硫化铜硫化铁硫化氢硫化亚铁氢氧化钠氢氧化钾氢氧化钙氢氧化镁氢氧化铝氢氧化锌氢氧化铁氢氧化钡氢氧化铜氢氧化亚铁氢氧化铵硫酸。