2015年第20届华杯赛中年级复赛A卷(√)
- 格式:pdf
- 大小:183.76 KB
- 文档页数:4
第二十届华罗庚金杯少年数学邀请赛决赛试题(初一组)(时间: 2015年4月11日10:00~11:30)一、选择题 (每小题10分, 共80分)1. 计算: ⎪⎪⎭⎫ ⎝⎛++++⨯10241108134122112048 = . 2. 一堆彩球只有红、黄两色. 先数出的50个球中有49个红球, 此后, 每数出8个球中都有7个红球, 恰好数完. 已数出的球中红球不少于90%. 这堆彩球最多有 个.3. 正整数a ,b ,c ,d 满足4332<<<d c b a , 当d c b a +++最小时, c = , d = .4. 圆形跑道上等距插着2015面旗子, 甲与乙同时同向从某面旗子的位置出发,当甲与乙再次同时回到出发点时, 甲跑了23圈, 乙跑了13圈. 不算起始点旗子位置, 则中间有 次甲正好在旗子位置追上乙.5. 现有2015张卡片, 每张上写有数字1+或1-. 如果每次指着其中的三张卡片问:“这三张卡片所写的数字的乘积是多少?”并得到正确回答. 那么, 至少问 次才能确定这2015张卡片所写的数字的乘积.6. 设a , b , c 为1到9中的三个不同整数, 则c b a abc ++的最大值是 , 最小值是 .(abc 是个三位数)7. 如右图, 正六边形中两个等边三角形的面积都为30平方厘米,那么正六边形的面积是 平方厘米.8. 从一副扑克牌中抽走一些牌, 在剩下的牌中至少要数出20张, 才能确保数出的牌中有两张同花色的牌的点数和为15. 那么最多抽走 张牌, 最少抽走 张牌. (J 、Q 、K 的点数分别为11, 12, 13, 大、小王的点数为0;一副扑克牌有54张牌, 其中52张是正牌, 另2张是副牌(大王和小王). 52张正牌又均分为13张一组, 并以黑桃、红桃、草花、方块四种花色表示各组, 每组花色的牌包括从1至10(1通常表示为A )以及J 、Q 、K 标示的13张牌).二、解答下列各题(每小题10分, 共40分, 要求写出简要过程)9. 算式20146422013531⨯⨯⨯⨯+⨯⨯⨯⨯ 的值被2015除的余数为多少?10. (1)右图共含有几个四边形? (2) 在右图的每个顶点处标上1或1-, 共有4个1和4个1-, 将每个四边形4个顶点处的数相乘, 再将所得的所有的积相加, 问:至多有多少个不同的和?11. 已知,2343111=++=-+ab c ac b bc a a c b ,,)(024222=---c b b c c b b 与c 同号, 且.c b 2≠ 求.444c b a ++12. 加工十个同样的木制玩具, 需用260毫米和370毫米长的标准木方分别为30根和40根. 仓库里有长度分别为900毫米、745毫米、1385毫米的三种标准木方, 用这三种标准木方锯出所需长度的木方, 每锯一次要损耗5毫米长木方. 问是否可以用三种木方, 每种木方选一些, 恰好锯出十个玩具所需的木方?如果可以, 要求锯的次数最少, 那么三种木方各选多少根?(说明:一根木方被锯一次要得到两个长度大于0的木方, 即不能从一端锯. )三、解答下列各题(每小题15分, 共30分, 要求写出详细过程)13. 如图, △ABC 中, D 是BC 上一点且32::=DB CD , E 是AB 上一点且12::=EB AE , F 是CA 的延长线上一点且34::=AF CA . 若△DFE 的面积为1209, 求△ABC 的面积.14. 求使得n n 22+为完全平方数的自然数n .。
第二十一届华罗庚金杯少年数学邀请赛初赛试卷B (小学中年级组)( 时间: 2015年12月12日 15:00~16:00)一、选择题 (每小题 10 分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内. )1. “凑24点”游戏规则是: 从一副扑克牌中抽去大小王剩下52张, (如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组), 用加、减、乘、除(可加括号)把牌面上的数算成24. 每张牌必须用一次且只能用一次, 并不能用几张牌组成一个多位数, 如抽出的牌是3, 8, 8, 9, 那么算式为 38)89(⨯⨯-或3)889(⨯÷-等. 在下面4个选项中, 唯一无法凑出24点的是( ). (A )1, 2, 3, 3 (B )1, 5, 5, 5 (C )2, 2, 2, 2 (D )3, 3, 3, 32. 在右图的乘法算式中, 每个汉字代表0至9中的一个数字, 不同汉字代表不同数字, 当算式成立时, “好”字代表的数字是( ).(A )1 (B )2 (C )4 (D )63. 如右图, 边长分别为10厘米和7厘米的正方形部分重叠, 重叠部分的面积是9平方厘米. 图中两个阴影部分的面积相差( )平方厘米.(A )51 (B )60 (C )42 (D )94. 库里是美国NBA 勇士队当家球星, 在过去的10场比赛中已经得了333分的高分, 他在第11场得( )分就能使前11场的平均得分达到34分.(A )35 (B )40 (C )41 (D )475. 如右图, 木板上有10根钉子, 任意相邻的两根钉子距离都相等. 以这些钉子为顶点, 用橡皮筋可套出( )个正三角形.(A )6 (B )10(C )13 (D )156. 在桌面上, 将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接, 要求无重叠, 且拼接的边完全重合, 则得到的新图形的边数为( ).(A )8 (B )7 (C )6 (D )5二、填空题(每小题10分, 共40分)7. 计算: =⨯-⨯2016198620151987 .8. 学校打算组织同学们去秋游. 每辆大巴车有39个座位, 每辆公交车有27个座位, 大巴车比公交车少2辆. 如果所有学生和老师都乘坐大巴, 每辆大巴车上有2位老师, 则多出3个座位; 如果都乘坐公交车, 每辆公交车都坐满并且各有1位老师, 则多出3位老师. 那么共有 位老师, 名同学参加这次秋游.9. 于2015年10月29日闭幕的党的十八届五中全会确定了允许普遍二孩的政策. 笑笑的爸爸看到当天的新闻后跟笑笑说: 我们家今年的年龄总和是你年龄的7倍, 如果明年给你添一个弟弟或者妹妹, 我们家2020年的年龄总和就是你那时年龄的6倍. 那么笑笑今年 岁.10. 教育部于2015年9月21日公布了全国青少年校园足球特色学校名单, 笑笑所在的学校榜上有名. 为了更好地备战明年市里举行的小学生足球联赛, 近期他们学校的球队将和另3支球队进行一次足球友谊赛. 比赛采用单循环制(即每两队比赛一场), 规定胜一场得3分, 负一场得0分, 平局两队各得1分; 以总得分高低确定名次, 若两支球队得分相同, 就参考净胜球、相互胜负关系等因素决定名次. 笑笑学校的球队要想稳获这次友谊赛的前两名, 至少要得 分. 试题答案和解析请扫下方二维码查看:。
2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每小题10分,共80分)1.(10分)计算:57.6×+28.8×﹣14.4×80+10.2.(10分)甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树棵.3.(10分)某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为.4.(10分)贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成个两两都是友国的三国联盟.5.(10分)由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是,最小的是.6.(10分)如图,三角形ABC的面积为1,DO:OB=1:3,EO:OA=4:5,则三角形DOE的面积为.17.(10分)三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)8.(10分)将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.9.(10分)如图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.10.(10分)圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?11.(10分)两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)12.(15分)如图所示,点M是平行四边形ABCD的边CD上的一点,且DM:MC=1:2,四边形EBFC为平行四边形,FM与BC交于点G.若三角形FCG的面积与三角形2MED的面积之差为13cm2,求平行四边形ABCD的面积.13.(15分)设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?32015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:57.6×+28.8×﹣14.4×80+10.【分析】把算式中的28.8×变成57.6×,14.4×80变成57.6×20,然后根据乘法的分配律简算.【解答】解:57.6×+28.8×﹣14.4×80+10=57.6×+57.6×﹣57.6×20+10=57.6×(+﹣20)+10=57.6×(20﹣20)+10=57.6×0+10=0+104=102.(10分)甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树13 棵.【分析】根据题意,甲植树的棵数占总数的,乙占总数的,丙占总数的,因此丁占总数的1﹣﹣﹣=,再根据分数乘法的意义进一步解决问题.【解答】解:60×(1﹣﹣﹣)=60×(1﹣﹣﹣)=60×=13(棵)答:丁植树13棵.故答案为:13.3.(10分)某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为122 .【分析】是2的倍数就是偶数,我们发现加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数.也就是这个数除以3,4,5,6都是余2的.属于同余问题.【解答】解:一个偶数除以3,4,5,6以后余数都是25那么这个三位数减去2得到3、4、5、6的公倍数.3,4,5,6的最小公倍数:3×4×5=120,120+2=122.故答案为122.4.(10分)贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成7 个两两都是友国的三国联盟.【分析】用A1,A2,A3,A4,A5,A6,A7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7×2÷2=7(条)虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.A2必与两个点连接虚线,不妨记为A1,A3,而A3必然再与一个点连接虚线,记为A4;A4虚线连接A5,否则剩下3个点互为敌国关系;A5虚线连接A6,否则剩下两个点无法由2条虚线连接;A6虚线连接A7,最后A7只能虚线连接A1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件,有135,136,146,246,247,257,357,一共7种.(为了直观我们用1,2,3,4,5,6,7分别代表A1,A2,A3,A4,A5,A6,A7).【解答】解:用A1,A2,A3,A4,A5,A6,A7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.6,选出的三个点没有任何两个相邻则满足条件,有135,136,146,246,247,257,357,一共7种.(为了直观我们用1,2,3,4,5,6,7分别代表A1,A2,A3,A4,A5,A6,A7),所以对于一种这样的星球局势,共可以组成7个两两都是友国的三国联盟.故答案为:7.5.(10分)由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是9421 ,最小的是1249 .【分析】4位不重复的非零的数字共能组成24个数字,按照位值原则展开求和,我们要想找到最大最小值,就需要找到这四位数字的和,按照数字大小规律即可求解.【解答】解:设四个互不相同的数字为a,b,c,d,字母a开头的,+++++=6000a+200(b+c+d )+20(b +c+d )+2(b+c+d)=6000a+222(b+c+d)同样b开头的+++++=6000b+200(a+c+d)+207(a+c+d)+2(a+c+d)=6000b+222(a+c+d)c 开头+++++=6000c+200(b+c+d)+20(b+c+d)+2(b+c+d)=6000c+222(b+c+d)d 开头:++++=6000d+200(a+b+c)+20(a+b+c)+2(a+b+c)=6000d+222(a+b+c)6000a+222(b+c+d)+6000b+222(a+c+d)+6000c+222(b+c+d)+6000d+222(a+b+c)=6000(a+b+c+d)+222(3a+3b+3c+3d)=6666(a+b+c+d)=106656∴a+b+c+d=16若要使这四位数最大千位数字尽量大,个位最小.同时保证数字不能重复,所以千位9,个位1,十位数字是2.百位为16﹣9﹣1﹣2=4.所以最大为9421.最小就是数字前小后大即可,即1249.故答案为:9421,1249.6.(10分)如图,三角形ABC的面积为1,DO:OB=1:3,EO:OA=4:5,则三角形DOE的面积为.8【分析】不难发现当高相同的时候,面积的比等于底边的比,这就是直线间的比例关系的应用.可以根据份数法求出△DOE的份数占总三角形面积的份数即可.【解答】解:依题意可知如图:设三角形DOE的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形DCE的面积为y,在△DBC中和△ABC 中,有.得y =.则△DOE 的面积为.∵△ABC的面积为1.9∴△DOE 的面积为.故答案为:.7.(10分)三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有 4 种可能数值.【分析】假设三个数的个位分别为a、b、c,那么根据条件“任意两个数之和的个位数字都等于第三个数的个位数字”可知这三个数可分为三种情况:(1)如果a、b、c都相等,则只能都为0;(2)如果a、b 、c中有两个相等;(3).如果a、b、c都不相等;据此解答即可.【解答】解:设三个数的个位分别为a、b、c(1)如果a、b、c都相等,则只能都为0;(2)如果a、b、c中有两个相等,则有以下两种情况:①.a、a、c且a<c,必有c+a=10+,则c=10,与c为数字矛盾;②.a、a、c且a>c,则有c+a=a,a+a=10+,则a=5,c=0;(3).如果a、b、c都不相等,设a<b<c,则c+b=10+a,c+a=10+,则c=10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;(1).如果都为0,则乘积末尾三位为000;10(2).如果为0,5,5①.如果个位为0的数,末尾3位都为0,则乘积末尾三位为000;②.如果个位为0的数,末尾2位都为0,则乘积末尾三位为500或000;③.如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾两位为a5,b5则×=100ab+50(a+b)+,若(α+b)为奇数,则乘积的末两位为75;若(α+)为偶数,则乘积的末两位为25,再乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上所述,积的末尾三位有000,500,250,750这四种可能.故答案为:4.二、解答下列各题(每题10分,共40分,要求写出简要过程)8.(10分)将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.【分析】因为数字交换不影响数字和,数字和是48,这个数是3的倍数,但不是9的倍数,所以不是完全平方数.【解答】解:不能得到完全平方数;因为数字交换不影响数字和,1234567891011的数字和是1+2+3+4+5+6+7+8+9+1+0+1+1=48,某两位的数字交换后,数字和仍然是48,11这个数是3的倍数,但不是9的倍数,所以不是完全平方数.9.(10分)如图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.【分析】根据题意可的等量关系式:大长方体的体积﹣切掉的小长方体的体积=余下部分的体积,然后根据长方体体积公式列出不定方程解答即可.【解答】解:根据题意可得,15×5×4﹣y×5×x=120,化简可得:xy=36,36=1×36=2×18=3×12=4×9=6×6,因为x,y为整数,且x<4,y<15,所以x=3,y=12.答:x=3,y=12.10.(10分)圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12【分析】设每两面旗子间距离为1,即跑道周长为2015.因为时间一定,速度比等于圈数比(即路程比),因为v甲:v乙=23:13,设v甲=23x,v乙=13x,甲要追上乙则需比乙多跑n圈,(23x﹣13x)t=2015n,10x×t=2015n,即甲追上乙时所花时间t =,则甲追上乙时,所走路程为23x ×;要恰好在旗子位置追上,则所走路程一定为整数,即n为偶数,然后根据n=2,4,6,8,10(最多多跑10圈)解答即可.【解答】解:设每两面旗子间距离为1,即跑道周长为2015.因为v甲:v乙=23:13,设v甲=23x,v乙=13x,甲要追上乙则需比乙多跑n圈,甲追上乙时所花时间为t,则(23x﹣13x)t=2015n10x×t=2015nt =,则甲追上乙时,所走路程为:23x ×,要恰好在旗子位置追上,则所走路程一定为整数,即n为偶数,所以n=2,4,6,8,10(最多多跑23﹣13=10圈);即甲追上乙则需比乙多跑2,4,6,8,10圈时,正好在旗子位置追上,13综上所述,甲正好在旗子位置追上乙5次.答:甲正好在旗子位置追上乙5次.11.(10分)两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?【分析】为了便于说明,设赢的为甲,输的为乙.甲第一局获胜,如果第二局又胜则直接获胜总分一定比乙多不符合题意,所以甲第二局输第三局赢.由于每局最多相差2分获胜,所以甲第一、三局都赢,则一、三局至少会比乙多得2+2=4分,所以乙第二局至少赢甲4分及以上,所以只能以11分取胜,否则不和比赛规则.然后讨论第二局的可能比分即可.【解答】解:设赢的为甲,输的为乙.甲第一局获胜,如果第二局又胜则直接获胜总分一定比乙多不符合题意,所以甲第二局输第三局赢.甲第一、三局都赢,则一、三局至少会比乙多得2+2=4分,所以乙第二局至少赢甲4分及以上,所以只能以11分取胜.所以第二局的比分可以为:0:11,1:11,2:11,…7:11;共8种.(乙在第二局赢了多少分,甲都可以通过一、三局赢回多少分使两人总分相同,所以甲在第二局得分从0~7都可能;例如三局比分分别为20:18、0:11、11:2)答:第二局的比分共有8种可能.14三、解答下列各题(每小题15分,共30分,要求写出详细过程)12.(15分)如图所示,点M是平行四边形ABCD的边CD上的一点,且DM:MC=1:2,四边形EBFC为平行四边形,FM与BC交于点G.若三角形FCG的面积与三角形MED的面积之差为13cm2,求平行四边形ABCD的面积.【分析】想求出平行四边形的面积,就需要找到这个面积差13对应的面积份数.需要将这两个三角形建立关系.首先要知道在DEMBC中是沙漏模型,BCFGM也是沙漏模型,两个平行四边形的同底等高的,是面积相等的2个平行四边形.△BCF是平行四边形ABCD面积的一半.【解答】解:连接BD根据沙漏模型的对应边成比例可知:∵DE∥BC∴15旗开得胜∴令S△DEM=a则S△CEM=S△BDM=2a,S△CBM=4a∴S△BCF=S BCE=2+4=6a∵MB∥CF∴∴∴∵S△GCF﹣S△DEM=13∴∴a=5s∵S△BCD=S△BDM+S△BCM=2a+4a=6a∴S▱ABCD=2×S BCD=2×6a=12a=12×5=60cm2答:平行四边形的面积是60cm216旗开得胜13.(15分)设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?【分析】首先找出这些字的出现次数,注意重复的个数,然后表示出这11个数,再根据数字和为21,那么4个数字和就是84,在根据数字和一定时一个数字越大则另一个越小的关系找出最大值即可.【解答】解:经观察不难发现其中“一”,“言”,“举”,“知”,“行”,各出现两次,其它汉字只有一次.令这五个汉字所代表的数依次为a,b,c,d,e(均为正整数),设11个连续自然数为(x+1),(x+2),…(x+11),则(x+1)+(x+2)+…+(x+11)+a+b+c+d+e=21×4,即11x+a+b+c+d+e=18,则x=0,且a+b+c+d+e=1+2+3+4=10时,e最大为8,11个数为1到11.可构造出“一家之言”、“言扬行举”、“举世皆知”、“知行合一”分别为“3,5,11,2”,“2,10,8,1”,“1,9,7,4”,“4,8,6,3”.综上所述:“行”可代表的数最大为8.17。
2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。
分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题份分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,线段DC 上的动点P 与CB 延长线上的动点Q 满=,则PQ PA ⋅的最小值为 .答案34.解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解;(ii) ππππw w 22925≤<≤,此时2549≤≤w ;(iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd ,若,,,d c c b b a ><>则称abcd 为P 类数,若d c c b b a <><,,,则称abcd 为Q 类数,则P 类数总量与Q 类数总量之差等于 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=. 三、解答题9.(本题满分16分)若实数c b a ,,满足cb ac b a 424,242=+=+,求c 的最小值. 解:将2,2,2abc分别记为,,x y z ,则,,0x y z >.由条件知,222,x y z x y z +=+=,故2222224()2z y x z y z y z y -==-=-+.8分因此,结合平均值不等式可得,4221111(2)244y y z y y y y +==++≥⋅=12分 当212y y =,即y =时,zx求).由于2log c z =,故c的最小值225log log 33=-.16分 10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值. 解:由条件可知,(14)i j a a i j ≤<≤是6个互不相同的数,且其中没有两个为相反数,由此知,4321,,,a a a a 的绝对值互不相等,不妨设||||||||4321a a a a <<<,则||||(14)i j a a i j ≤<≤中最小的与次小的两个数分别是12||||a a 及13||||a a ,最大与次大的两个数分别是34||||a a 及24||||a a ,从而必须有121324341,81,3,24,a a a a a a a a ⎧=-⎪⎪⎪=⎨⎪=⎪=-⎪⎩ 10 分 于是2341112113,,248a a a a a a a =-===-. 故2231412113{,}{,24}{2,}82a a a a a a =--=--,15分结合1a Q ∈,只可能114a =±.由此易知,123411,,4,642a a a a ==-==-或者123411,,4,642a a a a =-==-=.检验知这两组解均满足问题的条件. 故123494a a a a +++=±. 20 分 11.(本题满分20分)设21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.解:由条件知,点1F 、2F 的坐标分别为(-1, 0)和(l, 0) .设直线l 的方程为y kx m =+,点A 、B 的坐标分别为11(,)x y 和22(,)x y ,则12,x x 满足方程22()12x kx m ++=,即 222(21)4(22)0k x kmx m +++-=.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程①的两个不同实根,因此有①的判别式22222(4)4(21)(22)8(21)0km k m k m ∆=-⋅+⋅-=+->,即2221k m +>.②由直线11,,BF l AF 的斜率1212,,11y y k x x ++依次成等差数列知,1212211y yk x x +=++,又1122,y kx m y kx m =+=+,所以122112()(1)()(1)2(1)(1)kx m x kx m x k x x +++++=++,化简并整理得,12()(2)0m k x x -++=.假如m k =,则直线l 的方程为y kx k =+,即 z 经过点1F (-1, 0),不符合条件. 因此必有1220x x ++=,故由方程①及韦达定理知,1224()221kmx x k =-+=+,即12m k k=+.③ 由②、③知,222121()2k m k k +>=+,化简得2214k k>,这等价于||2k >. 反之,当,m k满足③及||2k >l 必不经过点1F (否则将导致m k =,与③矛盾), 而此时,m k 满足②,故l 与椭圆有两个不同的交点A 、B ,同时也保证了1AF 、1BF 的斜率存在(否则12,x x 中的某一个为- l ,结合1220x x ++=知121x x ==-,与方程①有两个不同的实根矛盾).10分点2F (l , 0)到直线l: y kx m =+的距离为211|2|(2)22d k kk ==+=+.注意到||2k >t =t ∈,上式可改写为 21313()()222t d t t t=⋅+=⋅+.考虑到函数13()()2f t t t=⋅+在上上单调递减,故由④得,(1)f d f <<,即2)d ∈.20 分加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.证法一:我们证明:2[]222111[]2()(1)()n n n n i i j i n i i i j a a a n a ====⎛⎫ ⎪+-≤+ ⎪ ⎪⎝⎭∑∑∑∑,① 即对1,2,,[]2n i =,取1i ε=,对[]1,,2ni n =+,取1i ε=-符合要求.(这里,[]x 表示实数x 的整数部分.) 10分事实上,①的左边为2222[][][]222111[]1[]1[]122222n n n n n n i j i j i j n n n i i i j j j a a a a a a ====+=+=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ []2221[]122222n n i j n i j n n a n a ==+⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤ ⎪ ⎪≤+- ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪ ⎪⎝⎭⎝⎭∑∑(柯西不等式)30分 []2221[]1212222n n i j n i j n n a a ==+⎛⎫⎛⎫⎛+⎫⎡⎤⎡⎤ ⎪ ⎪=+ ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪⎪⎝⎭⎝⎭∑∑(利用122n n n +⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦) []2221[]12(1)n n i j n i j n a n a ==+⎛⎫⎛⎫ ⎪ ⎪≤++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭∑∑(利用[]x x ≤) 21(1)()ni i n a =≤+∑.所以 ① 得证,从而本题得证.证法二:首先,由于问题中12,,,n a a a 的对称性,可设12n a a a ≥≥≥.此外,若将12,,,n a a a 中的负数均改变符号,则问题中的不等式左边的21)(∑=n i i a 不减,而右边的21ni i a=∑不变,并且这一手续不影响1i ε=±的选取,因此我们可进一步设120n a a a ≥≥≥≥. 10分引理:设120n a a a ≥≥≥≥,则1110(1)ni i i a a -=≤-≤∑.事实上,由于1(1,2,,1)i i a a i n +≥=-,故当n 是偶数时,1123411(1)()()()0ni i n n i a a a a a a a --=-=-+-++-≥∑,11232111(1)()()ni i n n n i a a a a a a a a ---=-=------≤∑.当n 是奇数时,11234211(1)()()()0ni i n n n i a a a a a a a a ---=-=-+-++-+≥∑,1123111(1)()()ni i n n i a a a a a a a --=-=-----≤∑.引理得证. 30 分回到原题,由柯西不等式及上面引理可知22122211111(1)(1)n n n ni i i i i i i i i a a n a a n a -====⎛⎫⎛⎫⎛⎫+-≤+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑,这就证明了结论. 40分证法三:加强命题:设12,,,n a a a ⋅⋅⋅(2n ≥)是实数,证明:可以选取12,,,{1,1}n εεε⋅⋅⋅∈-,使得 2221111()()()()n nn i i i i i i i a a n a n ε===+≤+∑∑∑.证明 不妨设22212n a a a ≥≥⋅⋅⋅≥,以下分n 为奇数和n 为偶数两种情况证明.当n 为奇数时,取12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,于是有12221112()[()()]n nni i jn i i j a a a -+===+-∑∑∑12221122[()+()]n ni jn i j a a -+===∑∑1222112112()+2()()22n n i j n i j n n a n a -+==--≤⋅⋅-∑∑(应用柯西不等式).1222112(1)()+(1)()n ni jn i j n a n a -+===-+∑∑ ①另外,由于22212n a a a≥≥⋅⋅⋅≥,易证有122211211(1)(1)n n i j n i j a a n n -+==+≥-∑∑,因此,由式①即得到1222112(1)()+(1)()n nijn i j n a n a -+==-+∑∑211()()n i i n a n =≤+∑,故n 为奇数时,原命题成立,而且由证明过程可知,当且仅当12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,且12n a a a ==⋅⋅⋅=时取等号.当n 为偶数时,取1221n εεε==⋅⋅⋅==,24221n n n εεε++==⋅⋅⋅==-,于是有2222112()[()()]n nni i j n i i j a a a +===+-∑∑∑22222122[()+()]n ni j n i j a a +===∑∑2222122()+2()()22nn i j n i j n n a n a +==≤⋅⋅-∑∑(应用柯西不等式).222212[()+()]n nijn i j n a a +===∑∑22111()()()nn ii i i n a n a n ===≤+∑∑,故n 为偶数时,原命题也成立,而且由证明过程可知,当且仅当120n a a a ==⋅⋅⋅==时取等号,若12,,,n a a a ⋅⋅⋅不全为零,则取不到等号.综上,联赛加试题一的加强命题获证. 2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.证明:不妨设1||A k =.设在12,,,n A A A 中与1A 不相交的集合有s 个,重新记为12,,,s B B B ,设包含1A 的集合有t 个,重新记为12,,,t C C C .由已知条件,1()i B A S ∈,即112(){,,,}i t B A C C C ∈,这样我们得到一个映射12121:{,,,}{,,,},()s t i i f B B B C C C f B B A →=. 显然f 是单映射,于是,s t ≤. 10 分设112{,,,}k A a a a =.在n A A A ,,,21⋅⋅⋅中除去12,,,s B B B ,12,,,t C C C 后,在剩下的n s t --个集合中,设包含i a 的集合有i x 个(1i k ≤≤),由于剩下的n s t --个集合中每个集合与从的交非空,即包含某个i a ,从而12k x x x n s t +++≥--. 20 分不妨设11max i i k x x ≤≤=,则由上式知i n s tx k --≥,即在剩下的n s t --个集合中,包含1a的集合至少有n s tk--个.又由于),,2,1(1t i C A i ⋅⋅⋅=⊆,故12,,,t C C C 都包含1a ,因此包含1a 的集合个数至少为(1)n s t n s k t n s tt k k k---+---+=≥(利用2k ≥) nk ≥(利用s t ≤). 40 分 3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.证法一:设CF 与圆Q 交于点L (异于C),连接PB 、PC 、 BL 、KL .注意此时C 、D 、L 、K 、E 、P 六点均在圆Ω上,结合A 、 B 、P 、C 四点共圆,可知∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP ,因此△FB E ∽△FPB ,故FB 2=FE ·FP .10分又由圆幂定理知,FE ·FP= FL ·FC ,所以FB 2=FL ·FC . 从而△FBL ∽△FCB .因此, ∠FLB=∠FBC=∠APC=∠KPC=∠FLK, 即B 、K 、L 三点共线. 30 分再根据△FBL ∽△FCB 得,∠FCB=∠FBL=12∠ABC, 即∠ABC=2∠FCB .证法二:设CF 与圆Ω交于点L (异于C).对圆内接广义六边形DCLKPE 应用帕斯卡定理可知, DC 与KP 的交点A 、CL 与PE 的交点F 、LK 与ED 的交点了共线,因此B ’是AF 与ED 的交点,即B ’=B .所以B 、K 、L 共线.10分根据A 、B 、P 、C 四点共圆及L 、K 、P 、C 四点共圆,得 ∠ABC=∠APC=∠FLK=∠FCB+∠LBC,又由BK 平分∠ABC 知,∠FBL=12∠ABC ,从而 ∠ABC=2∠FCB .4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn . 解:对正整数m ,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)()v m m S m =-,①这里()S m 表示正整数m 在二进制表示下的数码之和.由于1)1(2+-n k 不整除()!!kn n ,等价于2()!()(1)!kn v k n n ≤-,即22(()!)(!)kn v kn n v n -≥-,进而由①知,本题等价于求所有正整数k ,使得()()S kn S n ≥对任意正整数n 成立. 10分我们证明,所有符合条件的k 为2(0,1,2,)aa =.一方面,由于(2)()aS n S n =对任意正整数n 成立,故2ak =符合条件. 20 分另一方面,若k 不是2的方幂,设2,0,ak q a q =⋅≥是大于1的奇数.下面构造一个正整数n ,使得()()S kn S n <.因为()(2)()aS kn S q S qn <⋅=, 因此问题等价于我们选取q 的一个倍数m ,使得()()m S m S q <. 由(2,q )=l ,熟知存在正整数u ,使得21(mod )uq ≡.(事实上,由欧拉定理知,u 可以取()q ϕ的.)设奇数q 的二进制表示为1212222,0,2t a a at a a a t +++=<<<≥.取1122222t t a a tu aa-+++++,则()S m t =,且2(21)0(mod )t a tu m q q =+-≡.我们有1(1)02121211212(122)12t t ttu uu t a a lu a u t ul m q q q q q -+-=---=++⋅=+⋅+++=+⋅∑由于2102u uq -<<,故正整数21u q -的二进制表示中的最高次幂小于u ,由此易知,对任意整数,(01)i j i j t ≤<≤-,数212t u iu a q +-⋅与212tu ju a q+-⋅的二进制表示中没有相同的项.又因为0i a >,故212(0,1,,1)tu lu a l t q +-⋅=-的二进制表示中均不包含1,故由②可知21()1()()u m S S t t S m q q-=+⋅>=, 因此上述选取的m 满足要求.综合上述的两个方面可知,所求的k 为2(0,1,2,)aa =.50分。