青岛版六年级上数学总复习专题1 数与代数
- 格式:ppt
- 大小:2.96 MB
- 文档页数:38
六年级上册数学知识点第一单元分数乘法(一)分数乘法意义 :1、 分数乘整数的意义 与整数乘法的意义相同,就是求几个相同加数的和的简便运 算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
3×7表示 : 求 7 个 53的和是多少? 53 的 5例如: 或表示: 7 倍是多少?2、 一个数乘分数的意义就是 求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个 因数是什么都可以)例如: 3 ×1 表示 : 5 63 的 1是多少?求 5611× 表示: 6×1 表示: 6求 9 的 是多少? 6 求 a 的 1是多少? 69 A (二)分数乘法计算法则 :1、 分数乘整数的运算法则是: 分子与整数相乘,分母不变。
注:( 1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)( 2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是: 用分子相乘的积做分子, 分母相乘的积做分母。
(分 子乘分子,分母乘分母)注: (1) 如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0 除外),分数的大小不变。
(三)积与因数的关系:一个数(0 除外)乘大于 1 的数,积大于这个数。
a×b=c当,b >1 时,c>a.一个数(0 除外)乘小于 1 的数,积小于这个数。
a×b=c当,b<1时,c<a (b≠0).一个数(0 除外)乘等于 1 的数,积等于这个数。
青岛版六年级数学上册知识点归纳总结第一单元分数乘法1、分数乘整数的意义:与整数乘法的意义相同,是求几个相同加数的和的简便运算。
【例】 25+25+25+25=()×()25+25+25+25+25=()×()=()2、分数乘法的计算法则:两个分数相乘:分子与分子的乘积做分子,分母与分母的乘积做分母,能约分先约分。
整数乘分数:分子与整数的乘积做分子,如果整数能与分母约分,先约分再计算。
【例】计算:2126×391449×3143、一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算。
【例】12×25表示()。
一千克大饼52元,买910千克大饼需要多少元?4、乘积是1的两个数互为倒数,两数互为倒数乘积是1;1的倒数是1,0没有倒数。
【例】A和B互为倒数,则A5×B3=()。
A×43=B×1123=1,则6A=(),22B=()判断:任何数都有倒数。
()5、【规律】:【分数乘法比较乘积大小】:一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大,一个数乘假分数积可能比原数大可能等于原数。
【例】:78×1.02 ○78 12.4×0.05 ○12.4 98×1314○98 2314×12.4 ○12.4【例】:当43×a>43时,则a应();当43×a<43时,则a应()。
【倒数大小】:真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。
【例】判断:假分数的倒数一定小于1。
()得数是1的两个数互为倒数。
()【求一个数倒数的方法】:求真分数或假分数的倒数把这个数的分子与分母交换位置,求带分数的倒数要先把带分数转化成假分数再交换分子分母位置;对于整数求倒数,只需让整数做分母,分子是1即可;对于小数求倒数,有两个方法一法是:先把小数转化成分数再交换分子分母位置,二法是用1除以这个小数所得商就是这个小数的倒数。
六年级数学上册知识点归纳总结(青岛版)一、整数1. 整数的概念整数是正整数、零和负整数的统称,用符号表示,整数包括正整数、负整数和零。
2. 整数的比较对于两个整数的比较,可以通过大小关系符号进行表示,例如:大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
3. 整数的加法和减法•整数的加法:同号相加,异号相减,并将结果的符号与绝对值较大的整数保持一致。
•整数的减法:减法可以转化为加法,将减法转化为加法运算,例如a-b可以转化为a+(-b)。
4. 整数的乘法和除法•整数的乘法:正整数相乘结果为正,负整数相乘结果为负,任何整数与0相乘结果为0。
•整数的除法:同号相除结果为正,异号相除结果为负,任何非零整数与0相除结果为无穷大或无定义。
二、分数1. 分数的概念分数是一个整数除以一个非零整数所得的结果,由分子和分母组成,分子表示被分为若干份中的几份,分母表示将一个整体分成几份。
2. 分数的大小比较•分数的比较:可以通过通分和比较分子的大小来比较分数的大小。
•分数的通分:将两个分数的分母变为相同的数,然后比较分子的大小。
3. 分数的加减乘除•分数的加减:分母相同的分数相加(减),保持分母不变,分子相加(减)得到结果。
•分数的乘法:分子相乘得到结果的分子,分母相乘得到结果的分母。
•分数的除法:将除数取倒数,然后使用分数的乘法规则求解。
4. 分数和整数的关系•任何整数都可以写成一个分子为整数,分母为1的分数。
•分数可以转化为整数,当分子与分母相等时,分数可以化简为一个整数。
三、小数1. 小数的概念小数是分数的一种特殊形式,它是用小数点和数字组成的表示数的形式。
2. 小数的读法和写法•小数的读法:小数点前面的数字按读整数的方法读,小数点后面的数字按读整数的方法读,小数点后的数位从百分位开始读起。
•小数的写法:小数点后面的数位从百分位开始写起。
3. 小数的大小比较•小数的大小比较:按照小数点后面的数位从高位开始比较,如果整数部分相同,则从小数部分的百分位开始比较。
青岛版六年级数学上册全册知识点汇总2)确定整体和平均数。
3)列出等式或不等式。
4)解方程或不等式,得出答案。
2.例题:___买了1/4千克的糖,他想把它平均分给4个人,每人应得多少克?解题步骤:1)含有分率的关键句:平均分给4个人。
2)整体和平均数:1/4千克的糖平均分给4个人。
3)等式:1/4 ÷ 4 = x (每人应得的克数)4)解方程:1/4 ÷ 4 = 1/16千克 = 62.5克答案:每人应得62.5克糖。
未知量为x和y,列出方程组解出x和y。
2)算术法解:把一个数看作单位“1”,先计算出已知量占单位“1”的几分之几,再根据已知和未知量的和,求出未知量占单位“1”的几分之几,最后用已知量÷已知量占单位“1”的几分之几=单位“1”的量的方法求出x和y。
小结:分数除法是求已知两个因数的积与其中一个因数,求另一个因数的运算。
在进行分数除法运算时,需要注意运算顺序和比较商与被除数的大小。
解决分数除法问题的关键是找准单位“1”,求单位“1”时用具体的数除以它所占的分率,得出的就是比较量。
在解决问题时,可以用方程解法或算术法解法,但都需要找到数量间的等量关系,确定未知量和已知量的关系。
数学中,比是用来表示两个数之间关系的一种方式。
比通常写成“甲∶乙”的形式,表示甲和乙的比值。
比的后项不能为0.在连比时,先求出相同量的两个数的最小公倍数,再根据比的基本性质计算出另外两种量的数,最后把几种量的比化简成最简整数比。
比可以用分数表示,写成分数的形式,读作“几比几”。
比和比值的区别在于,比值是一个数,通常用分数表示,也可以是整数或小数。
比的基本性质是,比的前项和后项同时乘或除以相同的数(0除外),比值不变。
因此,可以运用比的基本性质来化简比。
化简比的方法有多种。
对于整数比,可以找到前项和后项的最大公因数,然后同时除以最大公因数,化成最简整数比。
对于分数比,可以找到前项和后项分母的最小公倍数,然后同时乘以最小公倍数,再化简成最简整数比。
青岛版六年上册数学第二单元教案_青岛版六年级数学上册知识树第一部分数与代数第一单元:分数乘法(1)分数乘法的计算法则:分子乘分子做分子,分母乘分母做分母,能约分先约分。
分子和整数与分母约分,因倍关系的先约分。
(2)列乘法算式的原理:“1”是已知量,求“1”的几分之几是多少,用乘法。
(3)积与第一个因数的大小比较:(4)倒数:乘积是1的两个数互为倒数,两数互为倒数乘积是1。
1的倒数是1,0没有倒数。
求一个数倒数的方法:把这个数的分子与分母交换位置。
第二单元:分数除法(5)分数除法的计算法则:法1:画图(基本方法)。
法2:分数除以整数:分子是整数的倍数,分母不变,分子除以整数。
法3:a÷b=a某1/b(b≠0)(6)列除法算式的原理:“1”是未知量,已知“1”的几分之几是多少,求“1”是多少用除法。
(7)商与被除数大小的比较:(8)解决分数应用题的方法:1、找“1”(“的”前面是“1”)2、判断“1”是已知量,用乘法。
“1”是未知量,用除法。
3、实量某对应的分率,实量÷对应的分率。
(“的”后面是对应的分率)第三单元:比(9)比的定义:两个数相除又叫两个数的比。
(10)求比值的方法:前项÷后项(11)化简比的方法:1、依据比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
2、化简整数比:找前项和后项的最大公因数,前项后项同时除以最大公因数,化成最简整数比。
化简分数比:找前项和后项分母的最小公倍数,前项后项同时乘最小公倍数,再化简整数比。
化简小数比:把小数转化成整数,再化简整数比。
(12)按比例分配:找总量,找出部分量是总量的几分之几,用乘法计算。
甲:乙=a:b,甲是乙的a/b,乙是甲的b/a,甲是全部的a/a+b,乙是全部的b/a+b第五单元:分数四则混合运算(13)混合运算顺序:先乘除,后加减。
有括号,先括号,括号内先小后中。
(14)运用运算律进行简便运算:加法运算律:1)加法交换律:a+b=b+a2)加法结合律:(a+b)+c=a+(b+c)乘法运算律:1)乘法交换律:a·b=b·a2)乘法结合律:(a·b)·c=a·(b·c)3)乘法分配律:a·(b+c)=a·b+a·c(15)去括号的方法:括号外有加号、乘号,去括号,括号内不变号。
总复习——数与代数《整理与复习》教学设计教学目标:1.使学生熟练掌握分数乘法、分数除法、分数四则混合运算、比、百分等知识。
2.让学生学会利用学会的知识解决实际问题。
3.在学习过程中让学生感悟到生活中处处有数学,体会到数学的价值。
一、复习回顾师:请你结合下面的提纲,回忆一下数与代数的知识吧。
1.分数乘法师:请你回忆分数乘法的意义,以及它的计算方法包括分数乘法应用题。
生1:分数乘整数表示求几个相同分数的和的简便运算;一个数乘分数表示求一个数的几分之几是多少。
生2:计算方法:用分子相乘的积作分子,分母相乘的积作分母。
(能约分的要约分)。
生3:分数乘法应用题:求一个数的几分之几是多少要用单位“1”的量(一个数)×几分之几。
师:那与分数乘法有关的倒数和倒数的求法又是怎么样的呢?生1:乘积是1的两个数互为倒数。
生2:倒数的求法:用求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置即可。
师:总结的非常好。
2.分数除法师:详细分数除法的意义,以及它的计算方法包括分数除法应用题。
生1:分数除法的意义与整数除法的意义相同,都是已知两个因数的积和其中的一个因数,求另一个因数的运算。
生2:计算方法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
生3:分数除法应用题:已知一个数的几分之几是多少,求这个数。
方程法:设单位“1”的量为x。
x×几分之几=已知量算术法:已知量÷几分之几=这个数。
3.分数四则混合运算师:让我们来总结分数四则混合运算的运算顺序、运算律、解决稍复杂的有关分数的实际问题。
生1:运算顺序:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。
生2:运算律:整数的运算律和运算性质对于分数同样适用。
生3:解决稍复杂的有关分数的实际问题:已知一个数以及另一个数比它多(或少)几分之几,求另一个数用乘法计算,可以列形如⎪⎭⎫ ⎝⎛±⨯⨯±b c a b c a a 1或的算式。
小手艺展示——分数乘法加数和的简表示这个数的几分之几是多分母不变。
分分子、分母同时除以它们的最大两个可以同下方写出约分后的这样计算后 倒数表示两个数之间的分把小数化为分数后再交换位假分数的倒数小于或等于例如:×3,表示:3个相加的和。
注意:得到的结果要化到最简。
分数乘整数时,可以把分数看作分母是1的假分数,进行约分计算。
分子、分母是互质数的分数叫作最简分数。
如、都叫作最简分数。
0与任何数相乘的积都等于0。
如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
找单位“1”的量:在含有分数(分率)的语句中,感悟哪个是整体,把谁给平均分了,分率前面1.分数应用题一般解题步骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量。
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看作单位“1”。
3. 分数的连乘。
解决分数连乘时,先找出具体的数量,一般是单位“1”,再看比较量与单位“1”的关系,确定另一个单位“1”;最后根据第三种量与单位“1”的关系计算。
注:可以通过画图的方法找到整体量,也就是单位“1”。
画图时,先找出单位“1”,再把单位“1”平均分成分母份数,最后把分子的份数表示出来。
如公牛有30头,母牛的头数相当于公牛的,小牛的头数相当于母牛的,小牛有多少头?要求小牛的头数,就要知道母牛的量;母牛的头数又和公牛的头数有关,先画一条线段,表示公牛的头数,再画一条线段,表示母牛的头数,根据小牛和母牛的关系,画出表示小牛的头数。
(完整word版)青岛版六年级数学上册知识点整理归纳(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)青岛版六年级数学上册知识点整理归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)青岛版六年级数学上册知识点整理归纳(word版可编辑修改)的全部内容。
六年级上册数学知识点 第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数. 例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数.(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母.(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
青岛版小学六年级数学上册重点归纳数的认识和整数的加减- 掌握1-100以内数的认识和大小比较;- 熟悉数的进位和借位(1-100以内);- 掌握整数加减法的应用;- 理解计算顺序对结果的影响;- 熟练解决包含算式的问题。
分数- 掌握基本的分数概念;- 熟悉分数的大小比较;- 掌握分数的加减法和简单的分数乘除法;- 知道分数与小数的转化关系;- 熟练解决包含分数的问题。
小数- 熟悉小数的表示方法;- 掌握小数的大小比较;- 掌握小数的加减法和简单的小数乘除法;- 知道小数与分数的转化关系;- 熟练解决包含小数的问题。
三角形- 熟悉三角形的基本性质;- 能够区分三角形的种类;- 掌握三角形内角和的计算方法。
四边形- 熟悉四边形的基本性质;- 能够区分四边形的种类;- 掌握各种四边形内角和的计算方法。
单位换算- 理解长度、重量、时间的概念;- 掌握长度、重量、时间的基本单位;- 掌握常用长度、重量、时间之间的换算关系;- 熟练解决包含单位换算的问题。
图形的认识- 熟悉各种常见图形,如:正方形、长方形、圆形、等边三角形等;- 能够通过观察图形的特征进行辨认;- 能够画出常见图形,掌握画图的基本方法。
质数- 熟悉自然数的概念;- 了解质数的定义;- 能够用筛法求出给定范围内的质数。
时间的读写- 理解时间的基本概念,如:年、月、日、时、分、秒等;- 能够读懂和写出各种时间格式。
量的认识和度量衡- 熟悉长度、质量、容积等量的基本概念;- 了解各种长度、质量、容积的基本单位;- 了解一些日常生活中常见物品的长度、质量、容积的大小;- 熟练解决包含度量衡的问题。
二维图形的周长和面积- 熟悉正方形、长方形、三角形、平行四边形等图形的周长和面积的计算方法;- 能够根据图形的大小求出周长和面积。
异常处理- 能够在计算过程中发现异常,并进行正确的处理。
以上为青岛版小学六年级数学上册的重要内容,希望同学们能够认真学习并掌握这些知识点,为以后的学习打下坚实的基础。