19泰勒公式在证明不等式中的几个应用
- 格式:doc
- 大小:1.31 MB
- 文档页数:11
本科生实践教学活动周实践教学成果成果形式:论文成果名称:泰勒公式及其应用****:***学号: **********专业:信息与计算科学班级:计科1301****:***完成时间:2014年7月20日泰勒公式及其应用摘要在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义、内容,并介绍了泰勒公式的10个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒公式的应用,使我们更加清楚地认识泰勒公式的重要性.关键词:泰勒公式佩亚诺余项拉格朗日余项应用目录序言 (1)一、泰勒公式 (1)(一)定义 (1)(二)余项 (1)1.佩亚诺(Peano)余项 (1)2.施勒米尔希-罗什(Schlomilch-Roche)余项 (2)3.拉格朗日(Lagrange)余项 (2)4.柯西(Cauchy)余项 (2)5.积分余项 (2)(三)推导过程 (2)1.展开式 (2)2.余项 (3)二、泰勒公式的应用 (5)(一)实例 (5)1.利用泰勒公式求初等函数的幂级数展开式 (5)2.利用泰勒公式进行近似值计算 (6)3.利用泰勒公式求极限 (6)4.利用泰勒公式证明不等式 (7)5.利用泰勒公式判断级数的敛散性 (8)6.利用泰勒公式证明根的唯一存在性 (9)7.利用泰勒公式判断函数的极值 (9)8.利用泰勒公式求初等函数的幂级数展开式 (10)9.利用泰勒公式进行近似计算 (10)10.利用泰勒公式解经济学问题 (11)三、实践总结 (12)参考文献 (13)序言在数学分析中泰勒公式是一个重要的内容,由于在分析和研究数学问题中它有着重要作用,所以成为分析和研究其他数学问题的有力杠杆。
作为数学系的学生,我认为掌握泰勒公式及其应用是非常有必要的。
本文将从泰勒公式的内容和泰勒公式的应用两方面入手。
对于泰勒公式的内容,具体研究泰勒公式的定义、表达形式、推导过程;对于泰勒公式的应用,本文是以实例的形式出现,从十个方面介绍泰勒公式的应用。
泰勒公式泰勒(Tayloy)公式是微积分中的一个重要公式,也是进行数学理论研究与计算的重要的工具,但大多数的高等数学教材中,对泰勒公式应用的介绍都较少,导致学生难以掌握泰勒公式及其应用技巧。
由于低次多项式不能精确地表示函数并进行近似计算,在遇到一些精度要求较高,需要进行误差估计的情况时,就需要用高次多项式来近似表示函数并给出相应的误差公式。
泰勒公式是数学分析中一个重要的偏方程,因此在数学中有很高的地位。
泰勒公式教学方法泰勒公式是高等数学微分学教学中的重点和难点,其教学方法一直吸引着广大数学教师研究。
但是泰勒中值定理和泰勒公式比较抽象深奥,真的会让大部分同学感到困惑不解。
虽然他们已经充分预习,认真听讲,但还是会感到一头雾水,满腹疑问。
困难、无知、不理解是学生学习泰勒公式后的主要感受。
作为一个传道授业解惑的老师,我一直希望改变这种现象,希望泰勒公式给学生留下最深的印象是好的、有用的、实用的。
所以这门课的教学需要老师投入更多的精力去设计自己的教学方法和教学思路。
例:设函数f(x)在x=x0处存在二阶导数,试证:等式右端是一个二次多项式加一个高阶无穷小项。
我们回顾一下它的证明。
通过上节课的知识,我们只需要用一次洛必达法则和导数的定义就证明了这个结论。
但是,我们并不是第一次用多项式来表示一般的函数了,在第二章学习微分的时候,我们知道,如果函数f(x)在x=x0处可微,则f(x)=f(x0)+f忆(x0)(x-x0)+o(x-x0)。
这说明如果函数f(x)在x0处有一阶导数,则f(x)等于一个一次的多项式加x-x0的高阶无穷小;如果函数f(x)在x0处有二阶导数,则f(x)等于一个二次的多项式加(x-x0)2的高阶无穷小;如果函数f(x)在x0处有三阶导数呢,大家猜想,我们会得到什么结论?到了这里,学生会自然而然地想到:如果函数f(x)在x0处有三阶导数,那么f(x)就等于一个三次的多项式加(x-x0)3的高阶无穷小。
泰勒公式及其应用作者:闫艳来源:《教育界·上旬》2015年第04期【摘要】泰勒公式是高等数学中的一个重要公式,它能将一些复杂的函数近似地表示成简单的多项式函数。
本文主要探讨了泰勒公式在极限运算、近似计算、不等式的证明、级数敛散性的判断等方面的应用。
【关键词】泰勒公式极限不等式收敛性一、泰勒公式泰勒公式是一元微积分的一个重要内容,不仅在理论上占有重要地位,在近似计算、极限计算、函数性质的研究等方面都有着重要的应用。
泰勒公式的一般形式为:其中为拉格朗日余项或皮亚诺型余项。
若令,则泰勒公式变为麦克劳林公式,即:二、泰勒公式的应用1.利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理分式的极限,就能简捷地求出。
例如求极限,此为型极限,若用罗比塔法则很麻烦。
这时可将和分别用其泰勒展开式代替,则可简化此比式,求得==.注:用泰勒公式计算极限的实质是利用等价无穷小的替代来计算极限。
我们知道,当时,等,这种等价无穷小其实就是将函数用泰勒公式开至一次项,有些问题用泰勒公式和我们已经熟知的等价无穷小法相结合,问题又能进一步简化。
2. 利用泰勒公式判断函数的极值讨论函数极值通用的方法是:当且(或)时,是的极小(大)值。
但如果此时,此方法不能判别是否为极值点,可用泰勒公式。
3. 泰勒公式判断广义积分的收敛性为一正值函数,要判定的收敛性,如果能找到恰当的,,使,由比较判别法的极限形式可判别出无穷积分的收敛性。
这里的问题也是如何选取,才能应用判别法则呢?运用泰勒公式通过研究的阶,就可以解决这类问题。
4. 利用泰勒公式近似计算和误差估计泰勒定理:若函数在的某邻域内有直到n+1阶的连续偏导数,则对内的任一点,存在相应的,使得=+…+)5.利用泰勒公式证明不等式在高等数学中,常常要证明一些不等式,而且证明不等式的方法很多。
泰勒公式除了上面介绍的一些应用外,在证明不等式时也很方便。
泰勒公式及其应⽤泰勒公式的应⽤内容摘要:泰勒公式是数学分析中⼀个⾮常重要的内容,不仅在理论上占有重要的地位,在近似计算、极限计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及⾏列式的计算等⽅⾯有重要的应⽤。
本⽂着重对极限计算、敛散性的判断、中值问题以及等式与不等式的证明这四个⽅⾯进⾏论述。
关键词:泰勒公式⽪亚诺余项级数拉格朗⽇余项未定式⽬录内容摘要 0关键词 01.引⾔ (2)2.泰勒公式 (2)2.1具有拉格朗⽇余项的泰勒公式 (2)2.2带有⽪亚诺型余项的泰勒公式 (2)2.3带有积分型余项的泰勒公式 (2)2.4带有柯西型余项的泰勒公式 (3)3.泰勒公式的应⽤ (3)3.1利⽤泰勒公式求未定式的极限 (3)3.2利⽤泰勒公式判断敛散性 (6)3.3 利⽤泰勒公式证明中值问题 (11)3.4 利⽤泰勒公式证明不等式和等式 (13)4. 结束语 (19)参考⽂献 (20)1.引⾔泰勒公式是数学分析中⼀个⾮常重要的内容,微分学理论中最⼀般的情形是泰勒公式, 它建⽴了函数的增量,⾃变量增量与⼀阶及⾼阶导数的关系,将⼀些复杂的函数近似地表⽰为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有⼒杠杆。
我们可以使⽤泰勒公式, 来很好的解决某些问题, 如求某些极限, 确定⽆穷⼩的阶, 证明等式和不等式,判断收敛性,判断函数的凹凸性以及解决中值问题等。
本⽂着重论述泰勒公式在极限,敛散性判断,中值问题以及等式与不等式的证明这四个⽅⾯的具体应⽤⽅法。
2.泰勒公式2.1具有拉格朗⽇余项的泰勒公式如果函数()x f 在点0x 的某邻域内具有n+1阶导数,则对该邻域内异于0x 的任意点x,在0x 和x 之间⾄少?⼀个ξ使得:当0x =0时,上式称为麦克劳林公式。
2.2带有⽪亚诺型余项的泰勒公式如果函数()x f 在点0x 的某邻域内具有n 阶导数,则对此邻域内的点x 有:2.3带有积分型余项的泰勒公式如果函数f 在点0x 的某邻域()0x U 内具有n+1阶导数,令x ∈()0x U ,则对该邻域内异于0x 的任意点x,在0x 和x 之间⾄少?⼀个t 使得:()()()()()()()()()dt t x t f n x x n x f x x x f x f x f n x x n n n -+-?+-+=?+010000'0!1!)(其中()()()dt t x t fn n x x n -?+01!1就是泰勒公式的积分型余项。
1、绪论泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆。
作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结。
由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明。
使我们对泰勒公式有了更深一层的理解,怎样应用泰勒公式解题有了更深一层的认识。
只要在解题训练中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧。
2、布鲁克·泰勒简介布鲁克·泰勒(1685年8月18日出生于英格兰密德萨斯埃德蒙顿,1731年11月30日逝世于伦敦)是一名英国数学家,他主要以泰勒公式和泰勒级数出名。
他的母校为剑桥大学圣约翰学院。
进入大学之前,他一直在家里读书,他的全家尤其是他的父亲都喜欢音乐和艺术,并且经常在家里招待艺术家。
这对泰勒一生的工作造成了极大的影响,这从他的俩个主要科学研究课题:弦振动问题及透视画法就可以看出来。
1701年布鲁克·泰勒进入剑桥大学圣约翰学院,1709年他获得法学学士、1714年获得法学博士学位。
他也学习数学。
1708年他获得了“振荡中心”问题的一个解决方法,但是这个解法直到1714年才被发表。
因此导致约翰·白努利与他争谁首先得到解法的问题。
他1715年发表的《Methodus Incrementorum Directa et Inversa》为高等数学添加了一个新的分支,今天这个方法被称为有限差分方法。
除其它许多用途外他用这个方法来确定一个振动弦的运动。
他是第一个成功地使用物理效应来阐明这个运动的人。
在同一著作中他还提出了著名的泰勒公式。
直到1772年约瑟夫·路易斯·拉格朗日才认识到这个公式的重要性并称之为“导数计算的基础”(le principal fondement du calcul différentiel)。
泰勒公式的证明及应用work Information Technology Company.2020YEAR摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。
它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。
本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。
关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用绪论随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。
泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。
泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+- 称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。
泰勒公式及其应用江爱珍 B09010108 通信一班摘要:本文简单介绍了泰勒公式,并从六个方面来简要地介绍了其广泛的应用,分别是等式与不等式的证明、极限的计算、近似计算和误差估计,求高阶导数在某些点的数值,求行列式的值,判断级数的敛散性.关键词:泰勒公式,极限,近似计算和误差估计,极值,展开式,行列式,敛散性引言:泰勒公式是高等数学极其重要的内容,是函数展开的重要工具它可以使较为复杂的函数用简单的多项式函数来表示,更简便的解决数学问题。
本文将用例题来说明泰勒公式的应用的几个方面,并对解题方法做出总结。
一、泰勒公式的介绍18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在其著作《正 的和反的增量方法》中,提出了著名定理——泰勒定理。
泰勒公式有如下两种定义:定义1]1[若函数f 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()000()()(())!n n nfx x x o x x n +-+- (1)这里))((0nx x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''nnn x o xn fx f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n nn f x fx f x f x f x x x x x x x R x n =+-+-++-+ , (2)这里()n R x 为拉格朗日余项(1)10()()()(1)!n n n fR x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f ff x f f x x x R x n =+++++称此式为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式:12)!1(!!21+++++++=n xnxxn en xxx eθ .)()!12()1(!5!3sin 221253++++-+-+-=n n nxo n xxxx x .24622cos 1(1)()2!4!6!(2)!nnnxxxxx o xn =-+-++-+ .)(1)1(32)1ln(1132++++-+-+-=+n n nxo n xxxx x .)(1112nn x o x x x x+++++=- .二、 泰勒公式的应用1.应用泰勒公式证明例1.证明 e x i x ixsin cos += 证明:将cosx ,sinx 在x=0点泰勒展开有:cosx=∑∞=-02)!2()1(n nnn x sinx=∑∞=++-012)!12()1(n n nn x又cosx=∑∞=-02)!2()1(n n n n x =∑∞=022)!2(n n nn xi=∑∞=02)!2()(n nn ixisinx=∑∞=++-012)!12()1(n n n n ix=∑∞=++012)!12()(n n n ix所以 cosx+sinx=∑∞=02)!2()(n n n ix +∑∞=++012)!12()(n n n ix =∑∞=0!)(n nn ix =e ix ,证毕。
第2章 预备知识前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的.给定一个函数)(x f 在点0x 处可微,则有:)()()()(000x x x f x f x x f ∆+∆'+=∆+ο这样当1<<∆x 时可得近似公式x x f x f x x f ∆'+≈∆+)()()(000或))(()()(000x x x f x f x f -'+=,10<<-x x即在0x 点附近,可以用一个x 的线形函数(一次多项式)去逼近函数f ,但这时有两个问题没有解决:(1) 近似的程度不好,精确度不高.因为我们只是用一个简单的函数—一次多项式去替代可能是十分复杂的函数f .(2)近似所产生的误差不能具体估计,只知道舍掉的是一个高阶无穷小量)(0x x -ο,如果要求误差不得超过410-,用))(()(000x x x f x f -'+去替代)(x f 行吗?因此就需要用新的逼近方法去替代函数.在下面这一节我们就来设法解决这两个问题.2.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,我们可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令n n x x a x x a a x f )(...)()(0010-++-+= (2.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线)(x f y =在点))(,(00x f x 的切线)去替代)(x f y =,而是想用一条n 次抛物线n n x x a x x a a x f )(...)()(0010-++-+=去替代它.我们猜想在点))(,(00x f x 附近这两条曲线可能会拟合的更好些.那么系数0a ,1a …n a 如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有n n x x a x x a a x f )(...)()(0010-++-+=于是得:)(00x f a =第2章 预备知识2求一次导数可得:)(01x f a '= 又求一次导数可得:!2)(02x f a ''= 这样进行下去可得:!3)(03x f a '''=,!4)(0)4(4x f a =,… ,!)(0)(n x f a n n = 因此当f 是一个n 次多项式时,它就可以表成:k nk k nn x x k x f x x n x fx x x f x f x f )(!)()(!)(...))(()()(000)(00)(000-=-++-'+=∑= (2.2) 即0x 附近的点x 处的函数值)(x f 可以通过0x 点的函数值和各级导数值去计算.通过这个特殊的情形,我们得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式n n n x x n x f x x x f x x x f x f x T )(!)(...)(!2)())(()()(00)(200000-++-''+-'+=称为函数)(x f 在点0x 处的泰勒多项式,)(x T n 的各项系数!)(0)(k x fk ),...,3,2,1(n k = ,称为泰勒系数.因而n 次多项式的n 次泰勒多项式就是它本身.2.2 Taylor 公式的各种余项对于一般的函数,其n 次Taylor 多项式与函数本身又有什么关系呢?函数在某点0x 附近能近似地用它在0x 点的n 次泰勒多项式去替代吗?如果可以,那怎样估计误差呢?下面的Taylor 定理就是回答这个问题的.定理1]10[ (带拉格朗日型余项的Taylor 公式)假设函数)(x f 在h x x ≤-||0上存在直至1+n 阶的连续导函数,则对任一],[00h x h x x +-∈,泰勒公式的余项为10)1()()!1()()(++-+=n n n x x n f x R ξ其中)(00x x x -+=θξ为0x 与x 间的一个值.即有10)1(00)(000)()!1()()(!)(...))(()()(++-++-++-'+=n n nn x x n f x x n x fx x x f x f x f ξ (2.3) 推论1]10[ 当0=n ,(2.3)式即为拉格朗日中值公式:))(()()(00x x f x f x f -'=-ξ所以,泰勒定理也可以看作是拉格朗日中值定理的推广. 推论2]10[ 在定理1中,若令)0()()1(!)()(101)1(>--⋅=+-++p x x n p fx R n p n n n θξ则称)(x R n 为一般形式的余项公式, 其中0x x x --=ξθ.在上式中,1+=n p 即为拉格朗日型余项.若令1=p ,则得)0()()1(!)()(10)1(>--=++p x x n f x R n n n n θξ,此式称为柯西余项公式.当00=x ,得到泰勒公式:11)(2)!1()(!)0(...!2)0()0()0()(++++++''+'+=n n n n x n x f x n f x f x f f x f θ)(,)10(<<θ (2.4)则(2.4)式称为带有拉格朗日型余项的麦克劳林公式.定理2]10[ (带皮亚诺型的余项的Taylor 公式) 若函数f 在点0x 处存在直至n 阶导数,则有∑=-=nk k k n x x k x fx P 000)()(!)()(, )()()(x P x f x R n n -=.则当0x x →时,))(()(0n n x x x R -=ο.即有))(()(!)(...))(()()(000)(000n n n x x x x n x f x x x f x f x f -+-++-'+=ο (2.5)定理3所证的(2.5)公式称为函数)(x f 在点0x 处的泰勒公式,)()()(x P x f x R n n -=, 称为泰勒公式的余项的,形如))((0n x x -ο的余项称为皮亚诺型余项,所以(2.5)式又称为带有皮亚诺型余项的泰勒公式当(2.5)式中00=x 时,可得到)(!)0(...!2)0()0()0()()(2n nn x x n f x f x f f x f ο+++''+'+= (2.6)(2.6)式称为带有皮亚诺型余项的麦克劳林公式,此展开式在一些求极限的题目中有重要应用.由于))(()(0n n x x x R -=ο,函数的各阶泰勒公式事实上是函数无穷小的一种精细分析,也是在无穷小领域将超越运算转化为整幂运算的手段.这一手段使得我们可能将无理的或超越函数的极限,转化为有理式的极限,从而使得由超越函数所带来的极限式的奇性或不定性,得以有效的约除,这就极大的简化了极限的运算.这在后面的应用中给以介绍.第2章 预备知识4定理3 设0>h ,函数)(x f 在);(0h x U 内具有2+n 阶连续导数,且0)(0)2(≠+x f n ,)(x f 在);(0h x U 内的泰勒公式为10,)!1()(!)(...)()()(10)1(0)(000<<+++++'+=+++θθn n n n h n h x fh n x fh x f x f h x f (2.7)则21lim 0+=→n h θ. 证明:)(x f 在);(0h x U 内的带皮亚诺型余项的泰勒公式:)()!2()()!1()(!)(...)()()(220)2(10)1(0)(000++++++++++++'+=+n n n n n n n h h n x f h n x f h n x f h x f x f h x f ο将上式与(2.7)式两边分别相减,可得出)()!2()()!1()(-)(220)2(10)1(0)1(++++++++=++n n n n n n h h n x fhn x fh x fοθ,从而220)2(0)1(0)1()()!2()()()()!1(+++++++=-+⋅+n n n n n h h n x f h x f h x fn οθθθ,令0→h ,得)!2()()(lim )!1(10)2(0)2(0+=⋅⋅+++→n x fx f n n n h θ,故21lim 0+=→n h θ. 由上面的证明我们可以看得出,当n 趋近于无穷大时,泰勒公式的近似效果越好,拟合程度也越好.第3章 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数)(0x f 及n 阶导数值:)(0x f ',)(0x f '',…,)(0)(x fn ,以及用这些值表示动点x 处的函数值)(x f ,本章研究泰勒公式的具体应用,比如近似计算,证明中值公式,求极限等中的应用.3.1 应用Taylor 公式证明等式例3.1.1 设)(x f 在[]b a ,上三次可导,试证: ),(b a c ∈∃,使得3))((241))(2()()(a b c f a b b a f a f b f -'''+-+'+= 证明: (利用待定系数法)设k 为使下列式子成立的实数:0)(241))(2()()(3=---+'--a b k a b b a f a f b f (3.1) 这时,我们的问题归为证明:),(b a c ∈∃,使得:)(c f k '''=令3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--=,则0)()(==b g a g . 根据罗尔定理,),(b a ∈∃ξ,使得0)(='ξg ,即:0)(82)()2()2()(2=---+''-+'-'a k a a f a f f ξξξξξ 这是关于k 的方程,注意到)(ξf '在点2ξ+a 处的泰勒公式:2))((812)()2()2()(a c f a a f a f f -'''+-+''++'='ξξξξξ 其中),(b a c ∈∃,比较可得原命题成立.例3.1.2 设)(x f 在[]b a ,上有二阶导数,试证:),(b a c ∈∃,使得3))((241)2()()(a b c f b a f a b dx x f ba-''++-=⎰. (3.2) 证明:记20ba x +=,则)(x f 在0x 处泰勒公式展开式为: 20000)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ (3.3)对(3.3)式两端同时取[]b a ,上的积分,注意右端第二项积分为0,对于第三项的积分,由于导数有介值性,第一积分中值定理成立:),(b a c ∈∃,使得第3章 泰勒公式的应用632020))((121)()())((a b c f dx x x c f dx x x f baba-''=-''=-''⎰⎰ξ 因此原命题式成立.因此可以从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式.以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明.证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面我们通过几个例子来说明一下.3.2 应用Taylor 公式证明不等式例3.4设)(x f 在[]b a ,上二次可微,0)(<''x f ,试证:b x x x a n ≤<<≤≤∀...21,0≥i k ,11=∑=n i i k ,∑∑==>ni i i n i i i x f k x k f 11)()(.证明:取∑==ni i i x k x 10,将)(i x f 在0x x =处展开))(()()(2)())(()()(00020000x x x f x f x x f x x x f x f x f i i i i i -'+<-''+-'+=ξ 其中()n i ,...,3,2,1=.以i k 乘此式两端,然后n 个不等式相加,注意11=∑=ni i k()00110=-=-∑∑==x x k x xk ni i i ni ii得:)()()(101∑∑===<ni i i ni i ix k f x f x f k.例3.2.2 设)(x f 在[]1,0上有二阶导数,当10≤≤x 时,1)(≤x f ,2)(<''x f .试证:当10≤≤x 时,3)(≤'x f .证明:)(t f 在x 处的泰勒展开式为:2)(!2)())(()()(x t f x t a f x f t f -''+-'+=ξ 其中将t 分别换为1=t ,0=t 可得:2)1(!2)()1)(()()1(x f x x f x f f -''+-'+=ξ (3.4) 2)(!2)())(()()0(x f x x f x f f -''+-'+=η (3.5)所以(3.4)式减(3.5)式得:22!2)()1(!2)()()0()1(x f x f x f f f ηξ''--''+'=- 从而,312)1(2)(21)1()(21)0()1()(2222=+≤+-+≤''+-''++≤'x x x f x f f f x f ηξ 例3.2.3 设)(x f 在[]b a ,上二阶可导,0)()(='='b f a f ,证明:),(b a ∈∃ξ,有|)()(|)(4|)(|2a fb f a b f --≥''ξ.证明:)(x f 在a x =,b x =处的泰勒展开式分别为:21)(!2)())(()()(a x f a x a f a f x f -''+-'+=ξ,),(1x a ∈ξ 22)(!2)())(()()(b x f b x b f b f x f -''+-'+=ξ,),(2b x ∈ξ令2ba x +=,则有 4)(!2)()()2(21a b f a f b a f -''+=+ξ,)2,(1ba a +∈ξ (3.6)4)(!2)()()2(22a b f b f b a f -''+=+ξ,),2(2b b a +∈ξ (3.7) (3.7)-(3.6)得:[]0)()(8)()()(122=''-''-+-ξξf f a b a f b f 则有[])()(8)()()(8)()()(122122ξξξξf f a b f f a b a f b f ''+''-≤''-''-=- 令{})(,)(max )(21ξξξf f f ''''='',即有|)()(|)(4|)(|2a fb f a b f --≥''ξ. 例3.2.4 设)(x f 二次可微,0)1()0(==f f ,2)(max 10=≤≤x f x ,试证:16)(min 10-≤''≤≤x f x .证明:因)(x f 在[]1,0上连续,故有最大值,最小值.又因2)(max 10=≤≤x f x ,0)1()0(==f f ,故最大值在()1,0内部达到,所以()1,00∈∃x 使得)(max )(100x f x f x ≤≤=于是)(0x f 为极大值,由费马定理有:0)(0='x f ,在0x x =处按Taylor 公式展开:)1,0(,∈∃ηξ使得:第3章 泰勒公式的应用82002)()()0(0x f x f f ξ''+==, (3.8) 200)1(2)()()1(0x f x f f -''+==η. (3.9)因此{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---=''''≤''≤≤202010)1(4,4min )(),(min )(min x x f f x f x ηξ 而⎥⎦⎤⎢⎣⎡∈1,210x 时,16)1(4)1(4,4min 202020-≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x , ⎥⎦⎤⎢⎣⎡∈21,00x 时,164)1(4,4min 202020-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x . 所以,16)(min 10-≤''≤≤x f x .由上述几个例题可以看出泰勒公式还可以用来证明不等式,例3.2.1说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例3.2.2说明可以对某些函数在一定范围内的界进行估计,例3.2.3是用泰勒公式证明中值不等式,例3.2.4与例3.2.2很相似,只不过前者是界的估计,后者是对导数的中值估计.证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学习中我们要会灵活应用.但前提是要满足应用的条件,那就是泰勒公式成立的条件.3.3 应用Taylor 公式求极限例3.3.1求422cos limxex x x -→-.解:在这里我们用泰勒公式求解,考虑到极限,用带皮亚诺型余项的麦克劳林公式展开,则有)(2421cos 542x x x x ο++-=)(82154222x x x ex ο++-=-)(12cos 5422x x ex x ο+-=--所以,121)(12lim cos lim4540242-=+-=-→-→xx x xex x x x ο. 像这类函数用泰勒公式求极限就比较简单,因为使用洛毕达法则比较麻烦和复杂.例 3.3.2 设函数)(x ϕ在[)+∞,0上二次连续可微,如果)(lim x x ϕ+∞→存在,且)(x ϕ''在[)+∞,0上有界,试证:0)(lim ='+∞→x x ϕ.证明:要证明0)(lim ='+∞→x x ϕ,即要证明:0>∀ε,0>∃δ.当M x >时()εϕ<'x . 利用Taylor 公式,0>∀h ,2)(21)()()(h h x x h x ξϕϕϕϕ''+'+=+ (3.10)即[]h x h x h x )(21)()(1)(ξϕϕϕϕ''--+=' (3.11) 记)(lim x A x ϕ+∞→=,因)(x ϕ''有界,所以0>∃M ,使得M x ≤'')(ϕ, )0(≥∀x故由(3.11)知[]h x A A h x h x |)(|21)()(1)(ξϕϕϕϕ''+-+-+≤' (3.12) 0>∀ε,首先可取0>h 充分小,使得221ε<Mh , 然后将h 固定,因)(lim x A x ϕ+∞→=, 所以0>∃δ,当δ>x 时[]2)()(1εϕϕ<-+-+x A A h x h 从而由(3.12)式即得:εεεϕ=+<'22)(x .即0)(lim ='+∞→x x ϕ例3.3.3 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程. (1)32)1)(2(+-=x x y ;(2))1(cos 2215x e xx y --=.解:(1)首先设所求的渐近线为 b ax y +=,并令 xu 1=,则有:第3章 泰勒公式的应用100)(1lim )()321)(321(lim )1()21(lim])1)(2([lim 003231032=+--=+--+-=--+-=--+-→→→∞→uu bu a u u bu a u u ubu a u u b ax x x u u u x οο从中解出:1=a ,0=b .所以有渐近线:x y =.(2)设b ax y +=,xu 1=,则有 0)()4221)(2421(lim cos lim ])1(cos [lim 554424205542021522=+--⋅+-+-=---=---→-→-∞→u u bu au u u u u u bu au e u b ax e x x u u u xx ο从中解出:121-=a ,0,1==b a . 所以有渐近线:x y 121-=.从上面的例子中我们可以看得出泰勒公式在判断函数渐近线时的作用,因而我们在判断函数形态时可以考虑这个方法,通过求极限来求函数的渐进线.上述三个例子都是泰勒公式在求极限的题目上的应用,例3.3.1是在具体点或者是特殊点的极限,而第二个例子是求无穷远处的极限,第三个是利用极限来求函数的渐近线,学习了数学分析,我们知道求极限的方法多种多样,但对于有些复杂的题目我们用洛必达法则或其他方法是很难求出,或者是比较复杂的,我们不妨用泰勒公式来解决.3.4 应用Taylor 公式求中值点的极限例3.4.1]4[ 设(1))(x f 在),(00δδ+-x x 内是n 阶连续可微函数,此处0>δ; (2)当)1(,...,3,2-=n k 时,有0)(0)(=x f k ,但是0)(0)(≠x f n ;(3)当δ<≠h 0时有))(()()(000h h x f hx f h x f θ+'=-+. (3.13)其中1)(0<<h θ,证明:101)(lim -→=n h nh θ. 证明:要求出)(h θ的极限必须设法解出)(h θ,因此将(3.13)式左边的)(0h x f +及右端的))((0h h x f θ+'在0x 处展开,注意条件(2),知)1,0(,21∈∃θθ使得())(!)()()(10000h x f n h x f h x f h x f n n θ++'+=+, (3.14) ))(()!1())(()())((20)(1100h h x f n h h x f h h x f n n n θθθθ+-+'=+'--, (3.15)于是(3.13)式变为=++'-)(!)(10)(10h x f n h x f n n θ))(()!1())(()(20)(110h h x f n h h x f n n n θθθ+-+'--从而120)(10)())(()()(-++=n n n h h x nf h x f h θθθθ. 因)1,0()(,,21∈h θθθ,利用)()(x f n 的连续性,由此可得101)(lim -→=n h nh θ. 这个例子可以作为定理来使用,但前提是要满足条件.以后只要遇到相关的题目就可以简单应用.3.5 应用Taylor 公式近似计算由于泰勒公式主要是用一个多项式去逼近函数,因而可用于求某些函数的近似值,或根据误差确定变量范围.特别是计算机编程上的计算.例3.5.1 求:(1)计算e 的值,使其误差不超过610-;(2)用泰勒多项式逼近正弦函数x sin ,要求误差不超过310-,以2=m 的情形讨论x 的取值范围.解:(1) 由于x e 的麦克劳林的泰勒展开式为: 10,)!1(!...!2112<<++++++=+θθn xn x x n e n x x x e 当1=x 时,有)!1(!1...!2111++++++=n e n e θ故)!1(3)!1()1(+<+=n n e R n θ. 当9=n 时,有第3章 泰勒公式的应用 12691036288003!103)1(-<<=R 从而省略)1(9R 而求得e 的近似值为: 718285.2!91...!31!2111≈+++++≈e (2) 当2=m 时, 6sin 3x x x -≈,使其误差满足: 355410!5!5cos )(-<≤=x x x x R θ 只需6543.0<x (弧度),即大约在原点左右37°29′38″范围内,上述三次多项式逼近的误差不超过310-.3.6 应用Taylor 公式求极值定理3.1 ]12[ 设f 在0x 附近有1+n 阶连续导数,且)(0x f ')(0x f ''=0)(...0)(===x f n , 0)(0)1(≠+x f n(1)如果n 为偶数,则0x 不是f 的极值点.(2)如果n 为奇数,则0x 是f 的严格极值点,且当0)(0)1(>+x fn 时,0x 是f 的严格极小值点;当0)(0)1(<+x f n 时,0x 是f 的严格极大值点.证明:将f 在0x 点处作带皮亚诺型余项的Taylor 展开,即:))(()()!1()()()(10100)1(0+++-+-++=n n n x x x x n x f x f x f ο 于是1010100)1(0)()())(()!1()()()(++++-⎥⎦⎤⎢⎣⎡--++=-n n n n x x x x x x n x f x f x f ο 由于)!1()()())(()!1()(lim 0)1(10100)1(0+=⎥⎦⎤⎢⎣⎡--++++++→n x f x x x x n x f n n n n x x ο 故0>∃δ,),(00δδ+-x x 中,10100)1()())(()!1()(+++--++n n n x x x x n x f ο与)!1()(0)1(++n x f n 同号. (1)如果n 为偶数,则由10)(+-n x x 在0x 附近变号知,)()(0x f x f -也变号,故0x 不是f 的极值点.(2)如果n 为奇数,则1+n 为偶数,于是,10)(+-n x x 在0x 附近不变号,故)()(0x f x f -与)!1()(0)1(++n x f n 同号. 若0)(0)1(>+x f n ,则)()(0x f x f >,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极小值点. 若0)(0)1(<+x f n ,则)()(0x f x f <,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极大值点.例3.6.1 试求函数34)1(-x x 的极值.解:设34)1()(-=x x x f ,由于)47()1()(23--='x x x x f ,因此74,1,0=x 是函数的三个稳定点.f 的二阶导数为)287)(1(6)(22+--=''x x x x x f ,由此得,0)1()0(=''=''f f 及0)74(>''f .所以)(x f 在74=x 时取得极小值. 求三阶导数)4306035(6)(23-+-='''x x x x x f ,有0)0(='''f ,0)1(>'''f .由于31=+n ,则2=n 为偶数,由定理3.1知f 在1=x 不取极值.再求f 的四阶导数)1154535(24)(23)4(-+-=x x x x f ,有0)0()4(<f .因为41=+n ,则3=n 为奇数,由定理3.1知f 在0=x 处取得极大值.综上所述,0)0(=f 为极大值,82354369127374)74(34-=-=)()(f 为极小值. 由上面的例题我们可以了解到定理3.1也是判断极值的充分条件.3.7 应用Taylor 公式研究函数图形的局部形态定理3.2]12[ 设R X ∈为任一非空集合,X x ∈0,函数R X f →:在0x 处n 阶可导,且满足条件:)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n .(1)n 为偶数,如果)0(0)(0)(<>x f n ,则曲线)(x f y =在点))(,(00x f x 的邻近位于曲线过此点的切线的上(下)方.(2)n 为奇数,则曲线)(x f y =在点))(,(00x f x 的邻近位于该点切线的两侧,此时称曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.证明:因为f 在0x 处n 阶可导,并且)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n ,所以f 在0x 的开邻域 ),(0δx B 内的n 阶Taylor 公式为第3章 泰勒公式的应用 14))(()(!)())(()()(000)(000n n n x x x x n x f x x x f x f x f -+-+-'+=ο )(0x x → 于是[]⎥⎦⎤⎢⎣⎡--+-=-'+-n n n nx x x x n x f x x x x x f x f x f )())((!)()())(()()(000)(0000ο 由于!)()())((!)(lim 0)(000)(0n x f x x x x n x f n n n n x x =⎥⎦⎤⎢⎣⎡--+→ο 由此可见:0>∃δ,),(0δx B X x ∈∀,有:[]))(()()(000x x x f x f x f -'+-与n n x x n x f )(!)(00)(-同号. (1)当n 为偶数,如果0)(0)(>x f n ,则[]0))(()()(000>-'+-x x x f x f x f ,),(0δx B X x ∈∀这就表明在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上方;如果0)(0)(<x f n ,则有[]0))(()()(000<-'+-x x x f x f x f ,),(0δx B X x ∈∀因此,在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下方.(2)当n 为奇数,这时若)0(0)(0)(<>x f n ,则[])0(0))(()()(000<>-'+-x x x f x f x f , ),(0δx B X x+∈∀ [])0(0))(()()(000><-'+-x x x f x f x f , ),(0δx B X x-∈∀ 由此知,在0x 的右侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上(下)方;而在0x 的左侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下(上)方.因此,曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.3.8 应用Taylor 公式研究线形插值例 3.8.1(线形插值的误差公式) 设R b a f →],[:为实一元函数,l 为两点))(,(a f a 与))(,(b f b 所决定的线形函数,即)()()(b f a b a x a f a b x b x l --+--=,l 称为f 在区间],[b a 上的线形插值.如果f 在区间],[b a 上二阶可导,f 在],[b a 上连续,那么,我们可以对这种插值法带来的误差作出估计.应用带Lagrange 型余项Taylor 公式:),(x a ∈∃ξ,),(b x ∈∃η,使得 [][])(2))(()()(2))(()()(21)()()()(21)()()()()()()()(22ζηξηξf a x x b f a b x b f a b a x a x x b f x b x f x b a b a x f x a x f x a a b x b x f b f ab a x x f a f a b x b x f x l ''--=⎥⎦⎤⎢⎣⎡''--+''----=⎥⎦⎤⎢⎣⎡''-+'---+⎥⎦⎤⎢⎣⎡''-+'---=---+---=-其中,),(b a ∈ζ,最后一个式子是由于0>--a b x b ,0>--ab a x . )}(),(max{)()())}((),(min{)}(),(min{ηξηξηξηξf f f ab x b f a b a x ab x b a b a x f f f f ''''≤''--+''--≤--+--''''='''' 以及Darboux 定理推得.如果M 为)(x f ''的上界(特别当)(x f ''在],[b a 上连续时,根据最值定理,取)(max ],[x f M b a x ''=∈),则误差估计为 M a b f a x x b x f x l 2)(|)(|2))(()()(2-≤''--≤-ζ,],[b a x ∈∀ 这表明,M 愈小线性插值的逼近效果就会愈好,当M 很小时,曲线)(x f y =的切线改变得不剧烈,这也是符合几何直观的.3.9 应用Taylor 公式研究函数表达式例3.9.1]4[ 设在内有连续三阶导数,且满足方程:)()()(h x f h x f h x f θ+'+=+,10<<θ.(θ与h 无关) (3.16)试证:)(x f 是一次或二次函数.证明:要证)(x f 是一次或二次函数,就是要证0)(≡''x f 或0)(≡'''x f .因此要将(3.16)式对h 求导,注意θ与h 无关,我们有)()()(h x f h h x f h x f θθθ+''++'=+' (3.17)从而)()()()()(h x f hh x f x f x f h x f θθθ+''=+'-'+'-+' (3.18) 令0→h ,对(3.17)式两边取极限得:)()()(x f x f x f ''=''-''θθ,即第3章 泰勒公式的应用16 )(2)(x f x f ''=''θ 若21≠θ,由此知0)(≡''x f ,)(x f 为一次函数; 若21=θ,则(3.17)式变成:)21(21)21()(h x f h h x f h x f +''++'=+'.此式两端同时对h 求导,减去)(x f '',除以h ,然后令0→h 取极限,即得0)(≡'''x f ,即)(x f 为二次函数.实际上在一定条件下证明某函数0)(≡x f 的问题,我们称之为归零问题, 因此上例实际上也是)(x f '',)(x f '''的归零。
泰勒(taylor)公式在不等式证明中的应用
礼节介绍
1、泰勒公式是由美国数学家乔治·布莱尔·泰勒于1815年发明的,它是一种用来分析函数在某一点处的切线和曲线抛物线的数学工具,从而可以估计函数类型和特征。
2、泰勒公式可以用于函数无穷小展开式的应用,它可以解决许多函数的不等式证明、微积分和科学计算等问题。
3、泰勒公式的主要用在不等式证明中,它可以帮助数学家分析函数的某个特定点处的变化情况,从而推导出函数的不等式,有效地证明这个不等式。
4、使用泰勒公式证明不等式的步骤是:
(1)通过求解函数的导数来理解函数某点处的变化情况;
(2)求解函数在某处的切线;
(3)使用抛物线来拟合函数;
(4)使用推到出的抛物线上的不等式来表述函数中的不等式;
(5)最后,需要对不等式进行证明。
5、由于泰勒公式对函数分析和验证都有极大的帮助,它广泛应用于统计学、总体估计、微分方程、函数优化等多个领域中。
此外,它也可以为有效管理和校验一些数值问题提供有力的帮手,也是数学科学领域中数值分析的有力工具。
泰勒公式在证明不等式中的几个应用摘 要:泰勒公式作为一种重要的数学工具,无论对科研还是在证明、计算等方面,它都起着很重要的作用。
特别在高等数学畴,灵活运用泰勒公式,对不等式问题进行分析、构造、转化、放缩等是解决不等式证明问题的常用方法与思想。
本文主要通过对各类典型不等式证明问题的分析处理,归纳了用泰勒公式来证明有关定积分不等式问题、含有初等函数与幂函数的不等式和一般不等式问题,以及泰勒公式在一元函数、二元函数不等式中的推广、证明与应用.关键词:泰勒公式;偏导数;不等式引言泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。
泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数]31[-.所以泰勒公式能很好的集中体现高等数学中的“逼近”这一思想精髓。
泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。
但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.文献[3-6]介绍了运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 1 泰勒公式知识的回顾:定理1[1]设函数()f x 在点0x 处的某邻域具有1n +阶导数,则对该邻域异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:()f x =()0f x +()0'f x 0(x -x )+()0f''x 2!02(x -x )+⋅⋅⋅+ ()()0nf x n!0n (x -x )+()n R x , 其中()n R x =()(1)(1)!n f n ξ++称为余项,上式称为n 阶泰勒公式;若0x =0,则上述的泰勒公式称为麦克劳林公式,即()f x = ()0f +()0'f x +()02!f''2x +⋅⋅⋅+()()0!nf n nx +0()n x . 2 泰勒公式在证明不等式中的应用不等式是高等数学和近代数学分析的重要容之一,它反映了各变量之间很重要的一种关系即他们之间的大小关系。
不等式的容也极其丰富,证明方法很多,而泰勒公式在证明不等式问题中起着举足轻重的作用。
2.1 泰勒公式在证明有关定积分不等式问题的应用对于被积函数具有二阶或二阶以上连续可导,且又知最高阶数符号的命题.通过作辅助函数()F x =()xtaf t d⎰,将()F x 在所需点处(一般根据右边表达式确定展开点)进行泰勒展开或直接写出()f x 的泰勒展式,然后根据题意对展开式(余项)作适当处理(一般是利用介值定理或放缩技巧)。
例1[2]设()f x 在[],a b 上单调增加,且()f''x >0,证明 :()baf x dx ⎰<()b a -()()2f a f b +.题设条件告知()f x 二阶可导且()f''x >0,由于高阶导数的存在,提示我们尝试使用泰勒公式.因为不等式左边被积函数是()f x ,右边有()f a 、()f b ,我们不妨对∀t ∈[],a b ,将()f t 在点x 处展开为泰勒公式,再令,t a t b ==,进而找出()f x 与()f a 、()f b 的关系.证明 对∀t ∈[],a b ,()f t 在点x 处的一阶泰勒展开式为:()f t =()f x +()'f x ()-t x +()2!f''ξ()2-t x ,其中ξ在t 与x 之间, ∵ ()f''ξ>0, ∴ ()f t >()f x + ()'fx ()-t x <1>将,t a t b ==,分别代入〈1〉并相加,得()()f a f b +>2()f x +()a b +()'f x -2x ()'f x <2>对〈2〉的两边在[],a b 上积分,则()()f a f b +⎡⎤⎣⎦()b a ->2()baf x dx ⎰+()a b + ()baf x dx ⎰-2()b'axf x ⎰dx⇒()()f a f b +⎡⎤⎣⎦()b a ->2()ba f x dx ⎰+()ab +()f x ba—2()()bbaa xf x f x dx ⎡⎤-⎢⎥⎣⎦⎰⇒2()()f a f b +⎡⎤⎣⎦()b a ->4()baf x dx ⎰故()baf x dx ⎰<()b a -()()2f a f b +.在证明有关定积分不等式问题时,有时还需构造函数,然后通过泰勒公式与介值定理的结合使用,可以在不等式证明问题中达到事半功倍结果明朗化的效果.例2[3]设()f x 在[],a b 上二阶连续可微,其中a <0<b ,则在该区间上存在一个η,使得:()baf x dx ⎰=()bf b —()af a —12![()2b 'f b —()2'a f a ]+13!()33(b -a )f''η. 题设条件告知()f x 二阶可微,且题中含有()f''η,提示可用泰勒公式证明. 又因为含有()f''η,可构造函数()F x =()xtaf t d ⎰展开为二阶泰勒公式,注意证明过程中与介值定理的结合使用. 证明 令()F x =()xtaf t d ⎰,将()F x 在x t = (a ≤t ≤b )处展成二阶泰勒公式:()F x =()F t +'()F t ()x t -+12!''()F t ()2x t -+13!'''()F ξ()3x t -,ξ在x 与t 之间,即()F x =()F t +()f t ()x t -+12!()'f t ()2x t -+13!()''f ξ()3x t - 〈3〉令0x =,t a =则有〈3〉可得:(0)F =()F a +()f a (-a )+12!()'f a 2a +13!()1''f ξ()3a - 〈4〉〈3〉-〈4〉得()F b —()F a =()bf b —()af a —()()221''2!b f b a f a ⎡⎤-⎣⎦-()()21331''''3!b f a f ξξ⎡⎤-⎣⎦ 令min m ={()1''f ξ,()2''f ξ}, max M ={()1''f ξ,()2''f ξ},并且-3a >0 ()0a <则有()33m b a -≤()()2133''''b f a f ξξ-≤M (33b a -),因为()''f x 在[],a b 上连续,由介值定理知存在η,使得()()213333''''b f a f b aξξ--=()''f η 所以()baf x dx ⎰=()bf b —()af a —12![()2b 'f b —()2'a f a ]+13!()33(b -a )f''η. 泰勒公式不但在证明连续函数的不等式问题中起重要作用,同样在证明某一定点的不等式问题中也发挥着很大作用.例3[4] 设其中函数()f x 在[0,1]上具有二阶导数,且满足条件()f x ≤a ,''()f x ≤b ,其中a ,b 都是非负数,c 是(0,1)上任意一点,试证明:'()f c ≤22b a +. 由于()f x 在[0,1]具有二阶导数,可考虑利用()f x 在x c =的一阶泰勒公式. 证明 由于()f x 在[0,1]上具有二阶导数,()f x 在x c =的一阶泰勒公式:2()()()'()()()2!f f x f c f c x c x c ξ=+-+- <5> 其中ξ=c +()x c θ-,0<θ<1,在<5>中令x =0,则有:21''()(0)()'()(0)(0)2!f f f c f c c c ξ=+-+- (0<1ξ<c <1) 在<5>中令x =1,则有:22''()(1)()'()(1)(1)2!f f f c f c c c ξ=+-+- (0<c <2ξ<1)将上述两式相减,得22211(1)(0)'()''()(1)''()2!f f f c f c f c ξξ⎡⎤-=+--⎣⎦ 于是22211'()(1)(0)''()(1)''()2!f c f f f c f c ξξ⎡⎤=----⎣⎦≤221(1)(0)''()(1)2f f f c ξ++- 211''()2f c ξ+≤22(1)2b a a c c ⎡⎤++-+⎣⎦, 又因c ∈(0,1),22(1)c c -+≤1, 故 '()f c ≤22ba +. 从上述几例可以看出,使用泰勒公式去证明关于定积分不等式问题,我们可以遵循以下几个步骤:〈1〉高阶(二阶及二阶以上)导数的存在是提示使用泰勒公式最明显的特征之一; (2)找一个函数()f x ,选一个展开点0x ,然后写出()f x 在0x 处的泰勒公式; (3)对ξa b ∈(,) 进行放缩或或与介值定理结合使用.2.2 泰勒公式在证明关于初等函数和幂函数不等式中的应用对于欲证不等式中含有初等函数、三角函数、超越函数与幂函数结合的证明问题,要充分利用泰勒公式在00x =时的麦克劳林展开式,选取适当的基本函数麦克劳林的的展开式,对题目进行分析、取材、构造利用. 例4[1]证明不等式:316x x -≤sin x . 不等式左边是三次二项式的初等函数,右边是三角函数,两边无明显的大小关系 。
这时我们可用sin x 在00x =的二阶麦克劳林公式表示出来,然后进行比较判断两者的大小关系。
证明 31()sin 6f x x x x =-+,(0)0f =,21'()cos 12f x x x =-+,'(0)0f =, ''()sin f x x x =-+,''(0)0f =,'''()cos 1f x x =-+,'''()cos 1f ξξ=-+当3n =时,()f x 的泰勒展式为:331()000(1cos )()3!f x x x o x θ=+++-⋅+ ⇒()f x =331(1cos )()6x x o x θ-+≥0 (x ≥0, ξ≤x θ,0<ϕ<1) 所以x ≥0,,有 316x x -≤sin x .在含有无理函数与幂函数结合的不等式证明问题中,它们之间没有明显的大小关系。