高一数学第28课时 二次函数与一元二次方程
- 格式:doc
- 大小:270.00 KB
- 文档页数:8
二次函数与一元二次方程方程《深度探讨:二次函数与一元二次方程方程》一、引言在数学的世界里,二次函数与一元二次方程方程是非常重要的概念。
它们不仅在数学理论和实际问题中起着重要作用,还在生活中的方方面面有着广泛的应用。
本文将从深度和广度的角度对这两个概念进行全面评估,并撰写一篇有价值的文章,希望能够帮助读者更全面、深刻地理解这两个概念。
二、二次函数与一元二次方程方程的概念解析1. 二次函数的定义所谓二次函数,就是最高次项是二次项的函数。
一般来说,二次函数的一般形式可以表示为:f(x) = ax^2 + bx + c。
其中,a、b、c为常数,且a不等于0。
二次函数的图像通常是一个开口向上或向下的抛物线。
2. 一元二次方程方程的定义一元二次方程方程是指最高次项为二次项的方程。
一元二次方程方程的一般形式为:ax^2 + bx + c = 0。
其中,a、b、c为常数,且a不等于0。
一元二次方程方程的求解是数学上重要的课题,它涉及到方程的根与系数之间的关系。
三、从简到繁:二次函数与一元二次方程方程的关系在深入探讨二次函数与一元二次方程方程的关系之前,我们先从简单的实例开始。
以y = x^2为例,这是一个简单的二次函数。
当我们令y=0时,就得到了一个一元二次方程方程x^2 = 0。
通过这个简单的实例,我们可以看到二次函数与一元二次方程方程之间的密切联系。
四、深入探讨:二次函数与一元二次方程方程的求解1. 二次函数的求解对于二次函数f(x) = ax^2 + bx + c,其中a不等于0,我们可以通过多种方法来求解。
一种常用的方法是配方法,即通过将二次项化成完全平方的形式,然后进行转换和求解。
2. 一元二次方程方程的求解对于一元二次方程方程ax^2 + bx + c = 0,其中a不等于0,我们可以利用求根公式或配方法来求解方程的根。
然后根据根的情况,可以进一步讨论一元二次方程方程解的情况。
五、总结与回顾:二次函数与一元二次方程方程的应用与意义二次函数与一元二次方程方程在数学上有着非常重要的应用与意义。
二次函数与一元二次方程知识点《二次函数是什么?》小朋友们,今天我们来认识一个新朋友,它叫二次函数。
你们看,假如有一个卖冰淇淋的小摊,摊主每天卖出去的冰淇淋数量和价格之间有一种特别的关系。
假设价格是 x 元,卖出去的数量是 y 个,这个关系可以用一个式子 y = 2x^2 10x + 15 来表示。
这里的 y = 2x^2 10x + 15 就是一个二次函数。
就好像我们搭积木,二次函数就是用一些数字和字母搭成的特别的“房子”。
在这个“房子”里,x 就像一个会变的小精灵,它一变,y 也就跟着变啦。
小朋友们,你们能想象到这个有趣的画面吗?《一元二次方程长啥样?》小朋友们,我们来聊聊一元二次方程。
比如说,有个小朋友去买糖果,一颗糖果 2 元钱,他买完糖果后老板说一共收了 10 元钱,那他到底买了几颗糖果呢?我们可以设他买的糖果数量是 x ,就可以列出一个方程 2x = 10 ,这是个很简单的方程。
但是,如果老板说小朋友买糖果一共花了 10 元,而且每颗糖果2 元,但是因为买得多,还打了 2 元的折扣,那这个时候我们列出的方程就是 2x 2 = 10 ,像这样的方程就是一元一次方程。
那一元二次方程呢?比如一个花园是正方形的,它的边长增加 2 米,面积就增加了 24 平方米,那原来花园的边长是多少呢?我们设原来的边长是 x 米,就可以列出方程 x^2 + 24 = (x + 2)^2 ,这就是一元二次方程啦。
小朋友们,是不是有点神奇?《二次函数的图像》小朋友们,我们来一起画画。
这次我们要画的可不是普通的画哦,是二次函数的图像。
比如说二次函数 y = x^2 ,我们来看看它的图像是什么样子的。
我们先找几个 x 的值,像 2、1、0、1、2 ,然后算出对应的 y 值。
当 x = 2 时,y = 4 ;x = 1 时,y = 1 ;x = 0 时,y = 0 ;x = 1 时,y = 1 ;x = 2 时,y = 4 。
二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。
高一数学知识点:二次函数与一元二次方程【导语】以下是作者为大家推荐的有关高一数学知识点,如果觉得很不错,欢迎点评和分享~感谢你的浏览与支持!二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴以下表:解析式顶点坐标对称轴y=ax^2(0,0)x=0y=a(x-h)^2(h,0)x=hy=a(x-h)^2+k(h,k)x=hy=ax^2+bx+c(-b/2a,[4ac-b^2]/4a)x=-b/2a当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h 个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一样式化为y=a(x-h)^2+k的情势,可肯定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a 时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?|当△=0.图象与x轴只有一个交点;当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是获得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一样情势:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).7.二次函数知识很容易与其它知识综合运用,而形成较为复杂的综合题目。
二次函数与一元二次方程的关系二次函数和一元二次方程是高中数学中经常涉及的重要概念。
二次函数是指函数的表达式为二次多项式的函数,而一元二次方程则是指仅含有一个未知数的二次方程。
本文将探讨二次函数与一元二次方程之间的紧密联系。
一、二次函数的定义与图像特征二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为实数且a≠0。
其中,a决定函数的开口方向和形状,b则决定了函数图像在x轴上的平移,c则表示函数图像在y轴上的平移。
二次函数在坐标平面上呈现出的图像一般为抛物线。
当a>0时,抛物线开口向上,成为顶点向上的抛物线;当a<0时,抛物线开口向下,成为顶点向下的抛物线。
而顶点坐标则可以通过二次函数的顶点公式来求得:顶点坐标为(-b/2a, f(-b/2a))。
二、一元二次方程的定义与解法一元二次方程是指只含有一个未知数的二次方程,一般的形式为ax² + bx + c = 0,其中a、b、c为实数且a≠0。
解一元二次方程的一种常见的方法是使用求根公式,即二次方程的根公式:x = (-b±√(b²-4ac))/2a。
根据一元二次方程的判别式Δ = b²-4ac的值可以推断出方程的解的情况。
当Δ>0时,方程有两个不同的实数解;当Δ=0时,方程有两个相同的实数解;当Δ<0时,方程无实数解,但可以有复数解。
三、二次函数与一元二次方程的关系二次函数与一元二次方程有许多紧密的联系。
事实上,二次函数的图像与一元二次方程的解之间存在着深刻的关联。
首先,对于二次函数f(x) = ax² + bx + c来说,它的图像与x轴的交点就对应了一元二次方程ax² + bx + c = 0的解。
也就是说,如果求得二次函数的根,就可以得到对应一元二次方程的解。
其次,二次函数的顶点坐标(-b/2a, f(-b/2a))可以提供一元二次方程的最值情况。
二次函数与一元二次方程二次函数和一元二次方程是高中数学中常见的概念。
它们在数学中具有重要的地位和应用价值。
本文将探讨二次函数和一元二次方程的定义、特点、图像以及它们之间的关系。
一、二次函数的定义和特点二次函数是指一元二次方程的解所构成的函数。
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为实数,且a≠0。
根据一元二次方程的解的性质,二次函数的定义域为实数集R,而值域则取决于抛物线的开口方向和顶点高低。
当a>0时,抛物线开口向上,最值在顶点处取得;当a<0时,抛物线开口向下,最值为负无穷或正无穷。
二次函数的图像是一个抛物线,其对称轴为x=-b/(2a),顶点坐标为(-b/(2a), f(-b/(2a)))。
根据顶点坐标和对称性,可以进一步得到二次函数的对称轴方程和顶点形式方程。
二、一元二次方程的定义和特点一元二次方程是指未知数只有一个,其次数为2的方程。
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为实数,且a≠0。
一元二次方程的解为x=(-b±√(b^2-4ac))/2a,根据根的性质可知,一元二次方程的解的个数和判别式的大小有关。
当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程无实数解。
一元二次方程在实际问题中有广泛的应用,如物体自由落体、抛体运动、二次函数的最值等等。
三、二次函数与一元二次方程的关系二次函数与一元二次方程之间存在紧密的联系。
一元二次方程的解对应于二次函数的零点,即二次函数与x轴的交点。
对于给定的二次函数y=ax^2+bx+c,可以通过求解一元二次方程ax^2+bx+c=0来确定二次函数的零点。
而解一元二次方程得到的解又可以构成一元二次函数的图象上的点。
具体而言,当一元二次方程有两个不相等的实数解时,也就是判别式大于0时,对应的二次函数与x轴有两个交点,即抛物线与x轴相交于两点;当一元二次方程有两个相等的实数解时,也就是判别式等于0时,对应的二次函数与x轴有一个交点,即抛物线与x轴相切于一个点;当一元二次方程无实数解时,也就是判别式小于0时,对应的二次函数与x轴没有交点,即抛物线不与x轴相交。
二次函数与一元二次方程的关系二次函数和一元二次方程是数学中相关且密切的概念。
二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是常数且a ≠ 0。
而一元二次方程则是形如ax² + bx + c = 0的方程,其中a、b、c同样是常数且a ≠ 0。
本文将重点探讨二次函数与一元二次方程之间的关系,并且讨论二次函数和一元二次方程在解决实际问题中的应用。
一、表达方式的异同二次函数和一元二次方程的最大区别在于表达方式。
二次函数以函数形式来表示,即通过自变量x的取值来确定因变量f(x)的值。
一元二次方程则是通过方程来表示,需要求解x的值使得方程等式成立。
二次函数 f(x) = ax² + bx + c (1)一元二次方程 ax² + bx + c = 0 (2)二、图像特点的共同之处虽然表达方式不同,但是二次函数和一元二次方程共享一个重要的特点:它们的图像形状相同。
二次函数的图像是一条抛物线,而一元二次方程的解对应的图像也是抛物线。
这是因为在方程中,方程左边为0的点是方程右边所表示函数的零点,即方程解的集合。
因此,解对应的图像形状与函数的图像相同。
在图像上,我们可以观察到抛物线的顶点、开口方向和开口大小等特点,这些特点对应着二次函数和一元二次方程的系数。
例如,对于二次函数f(x) = ax² + bx + c,顶点的横坐标等于 -b/2a,纵坐标则是直接代入这个横坐标得到的函数值。
在一元二次方程中,顶点的横坐标同样等于 -b/2a,纵坐标则是方程解得到的函数值。
因此,两者的顶点位置是相同的。
此外,二次函数和一元二次方程的开口方向也是一样的。
当a > 0时,抛物线开口朝上,函数的极值为最小值;当a < 0时,抛物线开口朝下,函数的极值为最大值。
同样地,在一元二次方程中,当a > 0时,方程的解对应的抛物线开口朝上,解是方程的最小值;当a < 0时,抛物线开口朝下,解是方程的最大值。
二次函数与一元二次方程的关系知识点总结嘿,朋友们!今天咱就来好好唠唠二次函数与一元二次方程的关系,这可真是数学里超有趣的一部分啊!
你看啊,二次函数就像是一个调皮的小精灵,y=ax²+bx+c 就是它的魔法咒语。
比如说,y=x²+2x+3,这就是一个具体的二次函数啦。
那一元二次方程呢,就像是小精灵设置的一个关卡。
比如x²+2x+3=0 就是一个一元二次方程。
这两者关系密切得很嘞!二次函数的图像与 x 轴的交点,不就是一元二次方程的解嘛!就好像找宝藏一样,交点就是我们要找的宝贝呀!比如说二次函数y=x²-2x-3,当它与 x 轴相交时,那两个交点对应的 x 值,不就是方程x²-2x-3=0 的解嘛!这不是超有意思吗?
嘿,你想想,这就像一场刺激的游戏!二次函数是游戏场景,一元二次方程就是游戏任务。
我们得通过各种方法去找到任务的答案,也就是那些解呀!
而且哦,如果二次函数的图像与 x 轴没有交点,那不就说明一元二次方程无解嘛,是不是挺神奇的?
哇塞,这种关系真的让数学变得超级有趣呀!咱得好好抓住这个知识点,把它玩得透透的!
我觉得二次函数与一元二次方程的关系就像锁和钥匙,锁就是一元二次方程,钥匙就是二次函数,只有用对了钥匙才能打开锁,找到我们想要的答案!这两者真的是相辅相成,缺一不可呀!咱们可得把它们研究明白咯,以后遇到相关问题就能轻松搞定啦!。
二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。
《二次函数与一元二次方程》知识点梳理
知识点一、二次函数与一元二次方程的关系 1.函数
,当
时,得到一元二次方程
,那么一元二次方程的解就是二次函数的图象与x 轴交点
的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不
相等实根;
(2)当二次函数的图象与x 轴有且只有一个交点,
这时,则方程有两个相等实根;
(3)当二次函数的图象与x 轴没有交点,这时
,则方程没有实根.
通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:
要点诠释:
二次函数图象与 x 轴的交点的个数由的值来确定. 2.函数
与直线
的公共点情况
方程
的根的情况.
函数
与直线
的公共点情况
方程
的根的情况.
知识点二、利用二次函数图象求一元二次方程的近似解
用图象法解一元二次方程的步骤:
1.作二次函数的图象,由图象确定交点个数,即方程解的个数
2.由二次函数图象与的交点位置,确定交点的横坐标的取值范围;3.利用计算器计算方程的近似根.。
二次函数与一元二次方程一、引言在数学中,二次函数和一元二次方程是重要的概念。
它们在数学和实际生活中都有广泛的应用。
本文将对二次函数和一元二次方程进行详细的介绍和探讨。
二、二次函数二次函数是一种特殊的函数形式,其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为实数常数且a≠0。
二次函数的图像是一条抛物线,其开口的方向取决于系数a的正负。
1. 抛物线的形状当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
抛物线的开口方向决定了二次函数的凹凸性质。
2. 抛物线的顶点二次函数的顶点是抛物线的最高点或最低点。
顶点的横坐标为x = -b / 2a,纵坐标为f(x) = f(-b / 2a)。
3. 对称轴二次函数的对称轴是通过抛物线顶点的一条垂直线。
对称轴的方程为x = -b / 2a。
4. 零点二次函数的零点是使得f(x) = 0的x值,也称为方程的根。
零点可以通过解一元二次方程得到。
三、一元二次方程一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为实数常数且a≠0。
解一元二次方程的方法有多种,包括因式分解、配方法、公式法等。
1. 因式分解法当一元二次方程能够因式分解时,可以通过因式分解的方法解得方程的根。
例如,对于方程x^2 - x - 6 = 0,可以将其写成(x - 3)(x + 2) = 0的形式,从而得到x的两个解:x = 3和x = -2。
2. 配方法当一元二次方程无法直接进行因式分解时,可以使用配方法解方程。
配方法的关键是通过添加和减去合适的常数,将方程转化为一个可进行因式分解的形式。
3. 公式法一元二次方程的根也可以通过求解一元二次方程的根公式得到。
根公式为:x = (-b ± √(b^2 - 4ac)) / 2a其中±表示两个解,即正负号分别对应两个根。
四、应用举例二次函数和一元二次方程在实际生活中有广泛的应用。
高一二次函数与一元二次方程不等式【实用版】目录1.高一二次函数的基本概念2.一元二次方程不等式的基本概念3.高一二次函数与一元二次方程不等式的关系4.如何利用高一二次函数解决一元二次方程不等式5.总结与展望正文【高一二次函数的基本概念】高一二次函数是指形如 y=ax^2+bx+c 的函数,其中 a、b、c 为常数,且 a≠0。
它是一种最简单的非线性函数,它的图像通常是一个开口朝上或开口朝下的抛物线。
高一二次函数在数学中有着广泛的应用,是解析几何、微积分等高级数学知识的基础。
【一元二次方程不等式的基本概念】一元二次方程不等式是指形如 ax^2+bx+c>0 或 ax^2+bx+c<0 的不等式,其中 a、b、c 为常数,且 a≠0。
解一元二次方程不等式,通常需要先找出方程的根,然后根据根的位置关系来判断不等式的解集。
【高一二次函数与一元二次方程不等式的关系】高一二次函数与一元二次方程不等式有着密切的关系。
首先,一元二次方程不等式的解集可以看作是高一二次函数的值域。
其次,高一二次函数的图像与一元二次方程不等式的解集有着直接的联系,可以用来直观地表示和描述一元二次方程不等式的解集。
【如何利用高一二次函数解决一元二次方程不等式】要利用高一二次函数解决一元二次方程不等式,首先需要将不等式转化为等式,即找出对应的一元二次方程。
然后,通过解这个方程,可以得到方程的根。
最后,根据根的位置关系,可以判断出不等式的解集。
【总结与展望】高一二次函数与一元二次方程不等式是数学中的基本概念,它们在数学中有着广泛的应用。
理解它们之间的关系,可以帮助我们更好地解决一元二次方程不等式,提高我们的数学能力。
高一数学二次函数与一元二次方程教案高邮市送桥中学知识目标:(1)会用判别式的符号解释二次函数图象与x 轴交点及一元二次方程的根。
(2)理解解函数的零点与方程根的联系及判断函数的零点所在的大致区间。
能力目标:体验并理解函数与方程相互转化的数学思想培和数形结合的数学思想。
情感目标:培养学生积极探索,主动参与,大胆创新,勇于开拓的精神 教学过程: 一、引入等式20ax bx c ++=()0a ≠是关于x 的一元二次方程,关系式2y ax bx c =++()0a ≠则是关于自变量x 的二次函数。
今天我们将进一步研究它们之间的关系。
二、新授 观察思考:1、 几个具体的一元二次方程及其对应的二次函数,如①方程2230x x --=与函数223y x x =--; ②方程2210x x -+=与函数221y x x =-+; ③方程2230x x -+=与函数223y x x =-+。
研讨探究问题:一元二次方程的根与二次函数图象和x 轴交点坐标有什么关系 ? 探究点一:二次函数图象与一元二次方程根的关系。
⑴以①为例(幻灯片)结论:一元二次方程2230x x --=的判别式∆>0 ⇔一元二次方程2230x x --=有两个不相等的实数根⇔对应的二次函数223y x x =--的图象与x 轴有两个交点为(3,0),(–1,0)。
(2)再研究②③,能得类似的结论吗?结论:一元二次方程2210x x -+=判别式∆=0一元二次方程2210x x -+=⇔有两等根⇔对应的二次函数221y x x =-+的图象与x 轴有唯一的交点为(1,0)。
一元二次方程判别式2230x x -+=∆﹤0 ⇔一元二次方程2230x x -+= 方程无实数根⇔对应的二次函数223y x x =-+的图象与x轴没有交点。
联想发散2、一元二次方程20ax bx c ++=(a >0)根的个数及其判别式与二次函数2y ax bx c =++(a >0)图象与x 轴的位置之间有什么联系?)以a >0为例,如下表所示:思考:当二次函数2y ax bx c =++(a ﹤0)时,是否也有类似的结论呢? 探究点二:函数的零点一元二次方程20ax bx c ++=()0a ≠的的实数根就是二次函数c bx ax y ++=2的值为零时自变量的x 的值,也就是二次函数2y ax bx c =++的图象与x 轴交点的横坐标,因此一元二次方程20ax bx c ++=()0a ≠的的实数根也称为二次函数2y ax bx c =++()0a ≠的零点。
第28课时 二次函数与一元二次方程某某省通州高级中学 严东来【教学目标】1.让学生理解一元二次方程的根与二次函数的零点的关系,由此体会可以利用二次函数的图象讨论一元二次方程的解的情况.2.让学生在利用二次函数的图象讨论一元二次方程的解的情况的过程中.体会数形结合这一重要的数学思想【学习指导】高中数学中,函数与方程的思想是体现得比较多的数学思想方法,在高考中也是屡考不爽,已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,常常需要通过抛物线去考查函数的零点、顶点和函数值的正负等等,这是数形结合这一重要的数学思想的最好体现.本节重点有两个:一是会用二次函数图象讨论二次方程及二次函数的有关问题,二是会用二次函数图象讨论二次方程根的分布问题.难点是能否画出符合题意的二次函数的图象.【例题精析】例1. 求证:⑴作出二次函数322-+=x x y 的图象,观察图象分别指出x 取何值时,y=0 ? y<0? y>0?⑵二次函数y =ax 2+bx +c (a >0)与一元二次方程ax 2+bx+c =0(a >0)之间有怎样的关系?【分析】通过研究本题,让学生理解用二次函数图象讨论二次方程及二次函数的有关问题,并体会借助于图形写出一元二次不等式的解集的方法(因为有很多的问题不可避免的会用到一些解一元二次不等式的知识)并体会由特殊到一般的探究问题的思想方法.【解法】⑴ (略) ⑵① 当△=b 2-4ac >0时,二次函数y =ax 2+bx +c (a >0)与x 轴有两个交点(x 1,0)、(x 2,0),(不妨设x 1<x 2=对应的一元二次方程ax 2+bx +c =0(a >0)有两个不等实根x 1、x 2;② 当△=b 2-4ac =0时,二次函数y =ax 2+bx +c (a >0)与x 轴有且只有一个交点(x 0,0),对应的一元二次方程ax 2+bx +c =0(a >0)有两个相等实根x 0;③ 当△=b 2-4ac <0时,二次函数y =ax 2+bx +c (a >0)与x 轴没有公共点,对应的一元二次方程ax 2+bx +c =0(a >0)没有实根.【评注】这道习题基本上囊括了本节的内容,让学生自己通过探究得出结论比老师直接给出结论更能够体现新课程的理念.例2. 已知函数f (x )=3x+log 2x 问:方程f (x )=0在区间[14,1]内没有实数解?为什么?【分析】运用解的存在性定理进行判别,只要计算出给定区间的端点函数值即可.本题也为利用二次函数图象讨论二次方程根的情况做一个铺垫.【解法】∵f (41)=341+log 214=43-2<0, 又f (1)=31+log 21=3>0,∵函数f (x )=3x +log 2x 的图象是连续曲线,∴f(x)在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解.【评注】 判断函数在给定区间是否有解,可以运用解的存在性定理进行判别,只要计算出给定区间的端点函数值即可.例3.⑴关于x 的方程0142)3(22=++++m x m x 有两实根,且一个大于1,一个小于1,求m 的取值X 围;⑵关于x 的方程0142)3(22=++++m x m x 有两实根在[)4,0内,求m 的取值X 围;⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值X 围;⑷关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值X 围;【分析】按如图所示列出不等式【解法】令f(x)=142)3(22++++m x m x⑴∵ 对应抛物线开口向上,∴方程有两实根,且一个大于1,一个小于1,等价于f(1)<0 , 即 01421)3(212<++•++m m 解得 421-<m . ⑵ 据题意 得552715370142)3(81601420)142(4)3(442)3(200)4(0)0(2-≤<-⇔⎪⎪⎩⎪⎪⎨⎧≥-≤-<<->++++≥+⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+-+=∆<+-<>≥m m m m m m m m m m f f 或. ⑶ 有图知,原命题等价于⎪⎪⎩⎪⎪⎨⎧-<-<⇔⎩⎨⎧<<8414210)3(0)1(m m f f ∴421-<m . ⑷ 令g(x)=142)3(22++++m x m mx ,据题意 得⎩⎨⎧><⎩⎨⎧<>0)4(00)4(0g m g m 或 可以解得 01319<<-m . 【评注】讨论一元二次方程根的分布问题的解题的步骤:1.根据条件画出图象;2.根据图象写出字母参数必须满足的条件;3.解不等式.例4.若4288(2)50x a x a +--+>对任意实数x 均成立,某某数a 的取值X 围.【分析】由于对数形结合这一重要的数学思想的不理解,就可能在解题过程中出现一些错误.错解展示1:由题意可得:2164(2)48(5)032a a a ∆=--⨯⨯-<⇒<<. 故所某某数a 的取值X 围是1(,3)2. 错解展示2:令2x t =,则原不等式可化为:288(2)50t a t a +--+>, 由2164(2)48(5)032a a a ∆=--⨯⨯-<⇒<<,故所某某数a 的取值X 围是1(,3)2.【解法】令2x t =,由x R ∈得0t ≥.则题设等价于不等式288(2)50t a t a +--+>对一切0t ≥均成立. 亦即:2()88(2)5f t t a t a =+--+在[0,)+∞上恒取正值. 从而有2164(2)48(5)032a a a ∆=--⨯⨯-<⇒<<, 或(0)508(2)028f a a =-+>⎧⎪-⎨-≤⎪⨯⎩⇒25a ≤<. 故所某某数a 的取值X 围是1(,5)2.【评注】 错解1误把原不等式看作是关于x 的一元二次不等式;而错解2虽通过换元将原不等式化为关于t 的一元二次不等式,然而却忽略了新变元t 的变化X 围.【本课练习】1.函数f (x )=x 2+4x +4在区间[-4,-1]上( ).A 、没有零点B .有无数个零点C .有两个零点D .有一个零点2.方程ln x +2x =6在区间上的根必定属于区间( )A .(-2,1)B .5,42⎛⎫ ⎪⎝⎭C .71,4⎛⎫ ⎪⎝⎭D .75,42⎛⎫ ⎪⎝⎭ 3.已知f (x )=(x -a )(x -b )-2(a <b ),并且α、β是方程f (x )=0的两个根(α<β),则实数a 、b 、α、β的大小关系可能是( )A .α<a <b <βB .a <α<β<bC .a <α<b <βD .α<a <β<b4.不等式(a -2)x 2+2(a -2)x -4<0对x ∈R 恒成立,则a 的取值X 围是( )A .(-∞,2)B .(]2,2-C .(-2,2)D .(-∞,2)5.已知集合A ={x |x 2-5x +4≤0}与B ={x |x 2-2ax +a +2≤0,a ∈R},若A B =A ,求a 的取值X 围.6.已知函数2()(3)1f x kx k x =+-+的图像与x 轴的交点在原点的右侧,试确定实数k 的取值X 围.7.二次函数f (x )=ax 2+bx +c (a >b >c ),f (1)=0,()g x ax b =+.(1)求证:两函数f (x )、g (x )的图象交于不同两点A 、B ;(2)求线段AB 在x 轴上射影长的取值X 围.附答案 1.D (点拨:函数y =f (x )的图像与横轴的交点的横坐标称为这个函数的零点,而函数f (x )=x 2+4x +4在区间[-4,-1]上与横轴的交点的横坐标为-2,故它有有一个零点,且为不变号零点.)2.B (点拨:根据解的存在性定理进行判别.)3.A 本题采用数形结合法,画出函数图象加以解决即可.4.B 5.∵A =[1,4],A B =A ,∴B ⊆A . 若B =φ,即x 2-2ax +a +2>0恒成立,则△=4a 2-4(a +2)<0,∴-1<a <2;若B ≠φ, 令f (x )=x 2-2ax +a +2,如图知 .,+=-,-=,+-=410187)4(03)1(0)2(442≤≤≥≥≥∆a a f a f a a 解之得2≤a ≤718,综上可知a ∈(-1,718). 6(1)当0k ≠时,由(0)1f =可知:①当0k <时,()f x 的图像是开口向下的抛物线,它与x 轴的两交点分别在原点两侧;②当0k >时,()f x 的图像是开口向上的抛物线,必须:2(3)40,30,2k k k k ⎧∆=--≥⎪⎨-->⎪⎩解得01k <≤. (2)当0k =时,()31f x x =-+与x 轴的交点为1(,0)3,适合题意. 综上所述,所某某数k 的取值X 围为(,1]-∞.7.(1)∵f (1)=a +b +c =0,a >b >c ,∴a >0,c <0.由⎩⎨⎧b ax y c bx ax y +=++=2得ax 2+(b -a )x +c -b =0,△=(b +a )2-4ac >0.所以两函数f (x )、g (x )的图象必交于不同的两点;(2)设A (x 1,y 1),B (x 2,y 2),射影分别为A 1、B 1,则211A B =(x 1-x 2)2=(a c -2)2-4.∵a +b +c =0,a >b >c ,∴-2<a c <-21.∴A 1B 1∈(23,32).【教学建议】 结论与方法多多通过合作探究的方式让学生自己得出,并通过自己的练习掌握,切不可将此过程由老师包办代替.。