混凝土简支梁桥桥墩地震内力计算过程
- 格式:docx
- 大小:96.87 KB
- 文档页数:10
混凝土桥墩的抗震标准一、前言混凝土桥墩是公路、铁路、城市桥梁等交通建筑中常见的构件,其安全性能直接关系到交通行业的发展和人民的生命财产安全。
在地震灾害频繁的中国,混凝土桥墩的抗震性能更是备受关注。
因此,制定合理的混凝土桥墩抗震标准,对于提高桥梁的抗震能力具有重要的意义。
二、混凝土桥墩的抗震设计要求1.设计基本要求混凝土桥墩的抗震设计应满足以下基本要求:(1)满足设计载荷和强度要求;(2)满足位移限值要求;(3)满足抗震性能要求。
2.设计地震参数混凝土桥墩的抗震设计应根据地震区划、场地条件、地震动力学特征等因素确定地震参数,包括设计地震加速度、设计地震分组、设计地震烈度等。
3.设计荷载混凝土桥墩的抗震设计荷载应包括静力荷载和动力荷载。
其中,静力荷载包括自重、活荷载、温度荷载等;动力荷载包括地震作用、风荷载等。
4.设计强度混凝土桥墩的抗震设计应根据设计地震参数和设计荷载计算墩身和墩柱的受力状态,确定墩身和墩柱的强度等级和配筋形式。
5.设计位移限值混凝土桥墩的抗震设计应根据工程实际情况和设计地震参数,确定墩身和墩柱的位移限值。
一般来说,混凝土桥墩的位移限值应满足结构安全和使用要求。
三、混凝土桥墩的抗震设计规范1.国家标准《公路桥梁抗震设计规范》(GB 50011-2010)和《铁路桥梁抗震设计规范》(TB 10002-2013)是我国公路、铁路桥梁抗震设计的重要规范,其中包括了混凝土桥墩的抗震设计要求和规范。
2.行业标准交通行业还制定了一些行业标准,如《公路桥梁设计细则》、《铁路桥梁设计规范》等,这些标准对于混凝土桥墩的抗震设计也有一定的规范。
3.地方标准不同地区的地震状况和场地条件不同,因此一些地方政府和地震局也制定了一些地方标准,如《广东省公路桥梁抗震设计规范》、《四川省公路桥梁抗震设计规范》等。
四、混凝土桥墩的抗震检验方法1.静力弹塑性分析法静力弹塑性分析法是一种常用的混凝土桥墩抗震检验方法,其原理是在设计地震作用下,通过静力荷载作用下混凝土桥墩的弹塑性分析,确定墩身和墩柱的受力状态和变形情况,从而判断其抗震能力。
桥梁工程课程设计计算书题目:跨径20m钢筋混凝土简支梁桥设计院(系):土木建筑工程学院专业班级:学号:学生姓名:指导教师:目录一.选择结构尺寸-------------------------------1二.主梁翼缘板计算-----------------------------2三.活载横向分布系数的计算---------------------2四.主梁内力计算-------------------------------4五.横隔梁内力计算-----------------------------7六.挠度计算-----------------------------------9七.支座设计-----------------------------------10一.选择结构尺寸1.桥梁的跨径及桥宽主梁全长:19.96m(标准跨径为30m)计算跨径:19.5m桥宽:9+2 1.0m人行道2.主梁尺寸的确定(梁肋)主梁间距1.8m~2.5m ,取1.8m 六根主梁高跨比1/14~1/25梁高取h=1.5m3.横隔梁尺寸的确定中横隔梁的高度可作成主梁高的3/4左右, 取1.0m横隔梁的肋宽通常取15~18cm,上宽下窄,上取16cm,下取15cm 4.主梁肋板尺寸翼板厚度根部不小于梁高1/10,取18cm;边缘厚度不小于10cm,取14cm腹板厚度b=15cm图1 横断面图(单位:cm)图2纵断面图 (单位:cm)图3 T 梁横断面 (单位:cm )二.主梁作用效应计算1.恒载及内力桥面铺装为3c m厚的沥青表面处治(容重23kN/m 3)和平均厚9cm 的混凝土垫层(容重24 kN/m 3),T 板材料容重25 k N/m3① 每延米板上的恒载g :沥青表面处治: 1g =0.03⨯1.0⨯23=0.69 kN/m防水混凝土面层:2g =16.2240.109.0=⨯⨯ kN/mT 梁翼板自重: g 3=75.2250.1214.008.0=⨯⨯+ k N/m合计: 6.5=∑=i g g kN/m② 每延米板条的恒载内力弯矩m kN gl M Ag ⋅-=⨯⨯-=-=︒06.38.06.5212122剪力48.48.06.5=⨯==︒gl Q Ag kN2.公路Ⅰ级汽车荷载产生的内力将加重车后轮作用于铰缝轴线上,后轴作用力140=P kN,着地长度m a 2.02=着地宽度m b 6.02=,则板上荷载压力面的边长为:m a a 44.012.022.0221=⨯+=H +=, 图4 汽车荷载计算图式(单位:cm ) m b b 84.012.026.0221=⨯+=H +=荷载作用于悬臂根部的有效分布宽度 双轮时m l d a a 64.321=++=︒ 冲击系数3.11=+μ作用于每米宽板条上的弯矩为:()m kN b l a P M Ap ⋅-=⎪⎭⎫ ⎝⎛-⨯⨯⨯-=⎪⎭⎫ ⎝⎛-+-=︒75.14484.0164.3414023.144121μ ()2564.3414023.14212=⨯⨯⨯-=+=a P Q Apμ kN3.荷载组合()()m kN M M M Ap Ag A ⋅=-⨯+-⨯=+=804.2275.144.1792.12.14.12.1 376.40254.148.42.14.12.1=⨯+⨯=+=Ap Ag A Q Q Q kN三.活载横向分布系数的计算1.杠杆原理法计算1#梁,2#梁,3#梁支点位置的汽车、人群荷载横向分布系数,并列表表示,如下图所示,相应于荷载位置的影响线1#梁 汽车 36.072.02121=⨯=∑=q oq m η人群 2.1==r or m η2#梁 汽车5.0)722.0278.0(2121=+⨯=∑=q oq m η人群 0==r or m η3#梁 汽车63.0)63.063.0(2121=+⨯=∑=q oq m η人群 0==r or m η图5 杠杆原理法计算横向分布系数 (单位:cm )2.偏心压力法此桥在跨度内设有横隔梁,具有强大的横向连接刚性,承重结构的长宽比为229.28.165.19>=⨯=B l 故按刚性横梁法来绘制横向影响线,并计算横向分布系数,本桥各梁横截面均相等,梁数n =5,梁间距为2.2m22222625242322212517.56)90270450(m a a a a a a a i i =++=+++++=∑=1#梁影响线竖标值19.07.565.46112212116-=-=∑-==i n i a a n η 由11η和15η计算横向影响线的零点位置19.08.15524.0xx -⨯=解得x=6.61m ()5805.0239.0342.04.0484.02121=+++⨯=∑=q cq m η564.0==r cr m η图6 偏心压力法计算横向分布系数(单位:c m)2#梁影响线竖标值381.07.567.25.4611212121=⨯+=∑+==in i a a a n η048.07.56450270611212125-=⨯-=∑-==in i a a a n η()477.012.012.0207.027.0357.02121=++++⨯=∑=q cq m η 524.07.565.46112212111=+=∑+==i n i a a n η405.0==r cr m η3#梁影响线竖标值195.01213131=∑+==i n i a a a n η 195.01213135=∑-==in i a aa n η195.021=∑=q cq m η 195.0==r cr m η四.主梁内力计算1.恒载内力计算(1)恒载集度 主梁()5.172520.02.2220.018.06.12.01=⨯⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛++⨯=g kN/m 横隔梁对于边主梁12.216.25257218.016.0220.02.2220.018.06.12=÷⎭⎬⎫⎩⎨⎧⨯⨯+⨯⎪⎭⎫ ⎝⎛-⨯⎥⎦⎤⎢⎣⎡+-=g k N/m 对于中主梁24.412.22'2=⨯=g kN/m 桥面铺装层[] 4.72523902.02409.093=÷⨯⨯+⨯⨯=g kN/m栏杆和人行道2.2525.54=⨯=g kN/m作用于边主梁的全部恒载强度为:54.26=∑=i g g kN/m作用于中主梁的全部恒载强度为:56.28'=g k N/m (2)恒载内力计算边主梁的弯矩和剪力()x l gxM x -=2 ()x l gQ x 22-=表4 恒载内力2.活载内力计算取ξ=1 (双车道不折减) 取冲击系数(1+u)=1.3 公路Ⅰ级 q k=10.5kN /m ,人群荷载3.5kN/m 2计算弯矩效应:KN p k 238=计算剪力效应:KN p k 6.2852382.1=⨯= 一号梁(1)2l处弯矩:()cq qm M ζμ+=121(k k k k q y p Ω+)=m kN ⋅=⎪⎭⎫⎝⎛⨯+⨯⨯⨯⨯213.125253.475.1045.192385805.00.13.1 m kN p m M or cr r⋅=⨯⨯=Ω=827.9353.475.3564.021图7 支点剪力计算图示(单位c m)(2)4l处弯矩: ()cq qm M ζμ+=141(k k k k q y p Ω+)=m kN ⋅=⎪⎭⎫⎝⎛⨯⨯+⨯⨯⨯⨯⨯317.10335.19815.10165.1932385805.00.13.12 m kN p m M or cr r⋅=⨯⨯⨯=Ω=19.975.193235.3564.0241二号梁与三号梁计算方法同上,略。
计算简图某城市互通立交匝道桥上部结构采用预应力混凝土连续梁桥体系,跨径布置为2×25m ,梁宽从10.972m 变化到15.873m ;桥墩和桥台上都设置板式橡胶支座。
以下为该桥采用《公路工程抗震设计规范》(JTJ004—89)的简化计算方法手算的计算步骤及计算结果:附2.1 顺桥向地震力计算该联支座全部采用板式橡胶支座,故地震力由两部分组成:上部结构对板式橡胶支座顶面处产生的水平地震荷载及桥墩地震荷载。
一、上部结构对板式橡胶支座顶面处产生的水平地震荷载上部结构对D6号墩板式橡胶支座顶面处产生的水平地震荷载按下式计算:zsp h z i ni itpitpihs G K C C KK E 10β∑==(附2-1)式中,3.1=i C ,2.0=z C ,1.0=h K 1、确定基本参数(1)全联上部结构总重力:2353.4825)86.527.518(⨯+⨯+=zsp G 255023.0⨯⨯⨯+kN 2.16155=(2)实体墩对支座顶面顺桥向换算质点重力:()pff tp ztp GX X G G ⎥⎦⎤⎢⎣⎡-+==2131由于不考虑地基变形,即0=f X故 ()p pff tp G GX X G 311312=⎥⎦⎤⎢⎣⎡-+= 而 kN G p 3.57525346.4295.5=⨯⨯= 得 kN G G G p tp ztp 8.1913/===(3)一联上部结构对应的全部板式橡胶支座顺桥向抗推刚度之和1K :m kN K /103915.23.5756244.2480)23(41⨯=⨯+⨯+=(4)设置板式橡胶支座的D6号桥墩顺桥向抗推刚度2K :8015.01=I 4m ,088.12=I 4m ,676.13=I 4m083.105.06.045.01321=-+=I I I I e 从而,得 49233.0m I e =m kN l EI K e D /1055.8746.49233.0103.3335373⨯=⨯⨯⨯== m kN K K D /1055.852⨯==∴ 2、计算桥梁顺桥向自振基本周期T 1[]{}ZspZtp Zsp Ztp ZspZtp Zsp Ztp G G K K G G G K K K G G K K K G g24)()(2121221121121-++-++=ω-24.11s 1=s T 673.1211==ωπ3、计算动力放大系数1β根据1T 及规范三类场地土动力放大系数函数,计算1β:646.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β4、计算上部结构对D6号桥墩产生的水平地震力上部结构对D6号桥墩板式橡胶支座顶面处产生的顺桥向水平荷载按式(附2-1)计算:kN E E iihs hs 6.1302.16155646.01.02.03.1103915.23.575624=⨯⨯⨯⨯⨯⨯⨯==∑二、实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载按下式计算:11hp i z h li i E C C K X G βγ=得 D6号墩kN E th 22.476.1910.10.18482.01.02.03.1=⨯⨯⨯⨯⨯⨯= 三、桥墩顺桥向地震剪力和弯矩第二联D6号桥墩墩底的顺桥向地震剪力和弯矩分别如下:kN Q D 82.13422.46.1306=+=()kN M D 93.585346.422.46.1306=⨯+=附2.2 横桥向地震力计算D6号桥墩横桥向水平地震荷载按下式计算(参见D6号墩计算简图):111i h p i z h i iE C C K X Gβγ= (附2-2)式中,3.1=i C ,2.0=z C ,1.0=h K 1、计算i X 1由于5031.14606.474<==B H 故取 ()fi f i X H H X X -⎪⎭⎫⎝⎛+=13/11不考虑地基变形时:0=f X故有 3/11⎪⎭⎫ ⎝⎛=H H X i i得 889.06.4744.3333/111=⎪⎭⎫⎝⎛=X ,621.06.4747.1133/112=⎪⎭⎫ ⎝⎛=X2、计算桥墩各质点重力i GkN G 6.80772/2.161550== kN G 4.32825146.2122.61=⨯⨯=kN G 61.247252.2502.42=⨯⨯= 3、计算横桥向基本振型参与系数1γ011.16.247621.04.328889.06.807716.247621.04.328889.06.80771220201=⨯+⨯+⨯⨯+⨯+⨯==∑∑==ni iini iiG XGX γ 4、计算D6号桥墩振动单元横桥向振动时的动力放大系数1β (1)计算横桥向柔度δ:934.11=I 4m ,700.32=I 4m ,254.103=I 4m32105.06.045.01I I I I e -+= 得 4569.2m I e =H 2H 1HD6号墩计算简图563731076.81/5.11419/10412.1646.5569.2103.333-⨯===+⋅=⨯=⨯⨯⨯==KmkN K K K Ks K m kN l EI K DS De D δ (2)计算桥墩横向振动的基本周期T 1s gG T t 72.122/11=⎪⎪⎭⎫ ⎝⎛=δπ(3)确定动力放大系数1β根据T 1及规范三类场地土动力放大系数函数,得629.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β5、计算各质点的水平地震力根据公式(附2-2)计算作用于D6号桥墩各质点的横桥向水平地震力:kNE kN E kN E hp hp hp 40.26.247586.0011.1629.01.02.03.156.44.328839.0011.1629.01.02.03.155.1336.8077011.1629.01.02.03.1210=⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯= 6、计算横桥向地震剪力和弯矩D6号墩墩底的横桥向地震剪力和弯矩分别如下:kN Q D 51.14040.256.455.1336=++=m kN M D ⋅=⨯+⨯+⨯=34.598137.140.2334.356.4346.455.1336。
计算简图某城市互通立交匝道桥上部结构采用预应力混凝土连续梁桥体系,跨径布置为2×25m ,梁宽从10.972m 变化到15.873m ;桥墩和桥台上都设置板式橡胶支座。
以下为该桥采用《公路工程抗震设计规范》(004—89)的简化计算方法手算的计算步骤及计算结果:附2.1 顺桥向地震力计算该联支座全部采用板式橡胶支座,故地震力由两部分组成:上部结构对板式橡胶支座顶面处产生的水平地震荷载及桥墩地震荷载。
一、上部结构对板式橡胶支座顶面处产生的水平地震荷载上部结构对D6号墩板式橡胶支座顶面处产生的水平地震荷载按下式计算:zsp h z i ni itpitpihs G K C C KK E 10β∑==(附2-1)式中,3.1=i C ,2.0=z C ,1.0=h K 1、确定基本参数(1)全联上部结构总重力:2353.4825)86.527.518(⨯+⨯+=zsp G 255023.0⨯⨯⨯+kN 2.16155=(2)实体墩对支座顶面顺桥向换算质点重力:()pff tp ztp GX X G G ⎥⎦⎤⎢⎣⎡-+==2131由于不考虑地基变形,即0=f X故 ()p pff tp G GX X G 311312=⎥⎦⎤⎢⎣⎡-+= 而 kN G p 3.57525346.4295.5=⨯⨯= 得 kN G G G p tp ztp 8.1913/===(3)一联上部结构对应的全部板式橡胶支座顺桥向抗推刚度之和1K :m kN K /103915.23.5756244.2480)23(41⨯=⨯+⨯+=(4)设置板式橡胶支座的D6号桥墩顺桥向抗推刚度2K :8015.01=I 4m ,088.12=I 4m ,676.13=I 4m083.105.06.045.01321=-+=I I I I e 从而,得 49233.0m I e =m kN l EI K e D /1055.8746.49233.0103.3335373⨯=⨯⨯⨯== m kN K K D /1055.852⨯==∴2、计算桥梁顺桥向自振基本周期T 1[]{}ZspZtp Zsp Ztp ZspZtp Zsp Ztp G G K K G G G K K K G G K K K G g24)()(2121221121121-++-++=ω-24.11s 1= s T 673.1211==ωπ3、计算动力放大系数1β根据1T 及规范三类场地土动力放大系数函数,计算1β:646.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β4、计算上部结构对D6号桥墩产生的水平地震力上部结构对D6号桥墩板式橡胶支座顶面处产生的顺桥向水平荷载按式(附2-1)计算:kN E E iihs hs 6.1302.16155646.01.02.03.1103915.23.575624=⨯⨯⨯⨯⨯⨯⨯==∑二、实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载按下式计算:11hp i z h li i E C C K X G βγ=得 D6号墩kN E th 22.476.1910.10.18482.01.02.03.1=⨯⨯⨯⨯⨯⨯= 三、桥墩顺桥向地震剪力和弯矩第二联D6号桥墩墩底的顺桥向地震剪力和弯矩分别如下:kN Q D 82.13422.46.1306=+=()kN M D 93.585346.422.46.1306=⨯+=附2.2 横桥向地震力计算D6号桥墩横桥向水平地震荷载按下式计算(参见D6号墩计算简图):111i h p i z h iiE C C K X G βγ= (附2-2)式中,3.1=i C ,2.0=z C ,1.0=h K 1、计算i X 1由于5031.14606.474<==B H 故取 ()fi f i X H H X X -⎪⎭⎫⎝⎛+=13/11不考虑地基变形时:0=f X故有 3/11⎪⎭⎫ ⎝⎛=H H X i i得 889.06.4744.3333/111=⎪⎭⎫⎝⎛=X ,621.06.4747.1133/112=⎪⎭⎫ ⎝⎛=X2、计算桥墩各质点重力i GkN G 6.80772/2.161550==kN G 4.32825146.2122.61=⨯⨯=kN G 61.247252.2502.42=⨯⨯=3、计算横桥向基本振型参与系数1γ011.16.247621.04.328889.06.807716.247621.04.328889.06.80771220201=⨯+⨯+⨯⨯+⨯+⨯==∑∑==ni iini iiG XGX γ 4、计算D6号桥墩振动单元横桥向振动时的动力放大系数1β (1)计算横桥向柔度δ:934.11=I 4m ,700.32=I 4m ,254.103=I 4m 32105.06.045.01I I I I e -+= 得 4569.2m I e =H 2H 1HD6号墩计算简图563731076.81/5.11419/10412.1646.5569.2103.333-⨯===+⋅=⨯=⨯⨯⨯==KmkN K K K Ks K m kN l EI K DS De D δ (2)计算桥墩横向振动的基本周期T 1s gG T t 72.122/11=⎪⎪⎭⎫ ⎝⎛=δπ(3)确定动力放大系数1β根据T 1及规范三类场地土动力放大系数函数,得629.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β5、计算各质点的水平地震力根据公式(附2-2)计算作用于D6号桥墩各质点的横桥向水平地震力:kNE kN E kN E hp hp hp 40.26.247586.0011.1629.01.02.03.156.44.328839.0011.1629.01.02.03.155.1336.8077011.1629.01.02.03.1210=⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯= 6、计算横桥向地震剪力和弯矩D6号墩墩底的横桥向地震剪力和弯矩分别如下:kN Q D 51.14040.256.455.1336=++=m kN M D ⋅=⨯+⨯+⨯=34.598137.140.2334.356.4346.455.1336。
桥梁常用计算公式桥梁是道路、铁路、水路等交通工程中非常重要的基础设施。
在设计和施工过程中,需要进行一系列的计算来保证桥梁的稳定性和安全性。
下面是桥梁常用的计算公式和方法,供参考:1.静力平衡计算桥梁的静力平衡是保证桥梁结构稳定的基础。
在计算静力平衡时,常用的公式有:-受力平衡公式:对于简支梁,ΣFy=0,ΣMa=0;对于连续梁,ΣFy=0,ΣMa=0。
-桥墩反力计算公式:P=Q+(M/b),其中P为桥墩反力,Q为桥面荷载,b为桥墩底宽度。
2.梁的弯矩计算桥梁在受到荷载作用时,会出现弯矩。
常用的梁的弯矩计算公式有:-点荷载的弯矩计算公式:M=Px;- 面荷载的弯矩计算公式:M=qx^2/2;-均布载荷的弯矩计算公式:M=qL^2/83.梁的挠度计算挠度是指梁在受荷载作用时的变形程度。
常用的梁的挠度计算公式有:-点荷载的挠度计算公式:δ=Px^2/(6EI);- 面荷载的挠度计算公式:δ=qx^2(6L^2-4xL+x^2)/24EI;-均布载荷的挠度计算公式:δ=qL^4/(185EI)。
4.桥梁的自振频率计算自振频率是指桥梁结构固有的振动频率。
常用的自振频率计算公式有:-单跨梁自振频率计算公式:f=1/2π(1.875)^2(EI/ρA)^0.5/L^2;-多跨梁自振频率计算公式:f=1/2π(π^2(EI/ρA)^0.5/L^2+Σ(1.875)^2(EI/ρA)^0.5/L_i^2)。
5.破坏形态计算桥梁在受到荷载作用时可能发生不同的破坏形态,常用的破坏形态计算公式有:-弯曲破坏计算公式:M=P*L/4;-剪切破坏计算公式:V=P/2;-压弯破坏计算公式:M=P*L/2;-压剪破坏计算公式:V=P。
6.抗地震设计计算在地震区设计的桥梁需要进行抗地震设计,常用的抗地震设计计算公式有:-设计地震力计算公式:F=ΣW*As/g;-结构抗震强度计算公式:S=ηD*ηL*ηI*ηW*A。
其中,ΣW为结构作用力系数,As为地震地表加速度,g为重力加速度,ηD为调整系数,ηL为长度和工况调整系数,ηI为体型和影响系数,ηW为材料和连接性能系数,A为结构抗震强度。
铁路简支梁桥墩地震力简化计算模型研究下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!铁路简支梁桥墩地震力简化计算模型研究1. 引言铁路桥梁作为铁路交通重要组成部分,其安全性和抗震能力至关重要。
12.2桥梁墩台的计算12.2.1 重力式桥墩1.作用(荷载)及其组合在第一章总论里,已经对公路桥涵设计所用的作用(荷载)及其组合作了详细介绍,本节仅结合桥墩计算所应考虑的内容予以阐述。
桥墩计算中考虑的永久作用为:·上部结构的恒重对墩帽或拱座产生的支承反力,包括上部构造混凝土收缩及徐变作用;·桥墩自重,包括在基础襟边上的土重;·预加力,例如对装配式预应力空心桥墩所施加的预加力;·基础变位作用,对于奠基于非岩石地基上的超静定结构,应当考虑由于地基压密等引起的支座长期变位的影响,并根据最终位移量按弹性理论计算构件截面的附加内力;·水的浮力,基础底面位于透水性地基上的桥梁墩台,当验算稳定时,应考虑设计水位的浮力;当验算地基应力时,可仅考虑低水位的浮力,或不考虑水的浮力。
基础嵌入不透水性地基的桥梁墩台不考虑水的浮力。
作用在桩基承台底面的浮力,应考虑全部底面积。
对桩嵌入不透水地基并灌注混凝土封闭者,不应考虑桩的浮力,在计算承台底面浮力时应扣除桩的截面面积。
当不能确定地基是否透水时,应以透水或不透水两种情况与其他作用组合,取其最不利者。
桥墩计算中考虑的可变作用为:·作用在上部结构的车道荷载,对于钢筋混凝土柱式墩台应计入冲击力,对于重力式墩台则不计冲击力;·人群荷载;·作用在上部结构和墩身上的纵、横向风力;·车道荷载制动力;·作用在墩身上的流水压力;·作用在墩身上的冰压力;·上部结构因温度变化对桥墩产生的附加力;·支座摩阻力。
作用于桥墩上的偶然作用为:·地震作用;·作用在墩身上的船只或漂浮物的撞击作用。
上述各种作用的计算方法可参见第一章相关内容和《桥规》(JTG D60)有关条文。
重力式桥墩的作用效应组合主要与墩身所要验算的内容有关,例如,墩身截面的强度和偏心的验算,整个桥墩的纵向及横向稳定性验算等。
主要内容第四章桥梁抗震设计
《铁路工程抗震设计规范》的适用范围:
位于常水位水深超过5m的桥墩,应计入地震动水压力对抗震检算内容及方法抗震验算规定
3)建筑材料容许应力的修正系数,应符合下表的规定。
桥墩地震作用计算
图中,
h——基础底面位于地面以下或一般冲刷线以下的深度(m)。
(二)地震力计算公式
β——
根据场地类别和地震动参数区划确定的地震动反应谱特
桥梁抗震设计实例
桥梁抗震设计实例
桥梁抗震设计实例
185.1261.8418.990.6261.8418.990.62
⎡⎢⎢
=⎢⎢⎣桥梁抗震设计实例
桥梁抗震设计实例
地基变形引起的各质点水平位移
桥梁抗震设计实例桥梁抗震设计实例。
桥墩地震作用计算1 桥墩计算简图梁桥下部结构和上部结构是通过支座相互连接的,当梁桥墩台受到侧向力作用时,如果支座摩阻力未被克服,则上部桥跨结构通过支座对墩台顶部提供一定约束作用。
震害表明,在强震作用下,支座均有不同程度破坏,桥跨梁也有较大的纵、横向位移,墩台上部约束作用并不明显。
《公路抗震规范》计算桥墩地震作用时,不考虑上部结构对下部结构的约束作用,均按单墩确定计算简图。
(1)实体墩计算实体墩台地震作用时,可将桥梁墩身沿高度分成若干区段,把每一区段的质量集中于相应重心处,作为一个质点。
从计算角度,集中质量个数愈多,计算精度愈高,但计算工作量也愈大。
一般认为,墩台高度在50~60m以下,墩身划分为4~8个质点较为合适。
对上部结构的梁及桥面,可作为一个集中质量,其作用位置顺桥向取在支座中心处,横桥向取在上部结构重心处。
桥面集中质量中不考虑车辆荷载,由于车辆的滚动作用,在纵向不产生地震力;在横向最大地震惯性力也不会超过车辆与桥面之间摩阻力,一般可以忽略。
实体墩的计算简图为一多质点体系。
(2)柔性墩柔性墩所支承的上部结构重量远大于桥墩本身重量,桥墩自身质量约为上部结构的1/5~1/8,它的大部分质量集中于墩顶处,可简化为一单质点体系。
2 桥墩基本振型与基本周期(1)基本振型墩台下端嵌固于基础之上,墩身可视为竖向悬臂杆件。
在水平地震力作用下,墩身变形由弯曲变形和剪切变形组成,两种变形所占的份额与桥墩高度与截面宽度比值H/B有关。
当计算实体桥墩横向变形时,H/B的值较小,应同时考虑弯曲变形和剪切变形影响;当计算纵向变形时,H/B的值较大,弯曲变形占主导作用。
公路桥梁墩身一般不高,质量和刚度沿高度分布均匀,实体墩在确定地震作用时一般只考虑第1振型影响,由于墩身沿横桥向和顺桥向的刚度不同,在计算时应分别采用不同的振型曲线。
振型曲线确定之后,可以运用能量法或等效质量法将墩身各区段重量折算到墩顶,换算成单质点体系计算基本周期。
计算书工程名称:设计编号:计算内容:桥梁计算书共页计算年月日校核年月日审核年月日专业负责年月日目录一、计算资料 (3)二、桥梁纵向荷载计算 (3)1.永久作用 (3)2.可变作用 (4)三、桥墩、桥台盖梁抗弯、抗剪承载力计算及裂缝宽度计算 (4)四、墩台桩基竖向承载力计算 (5)五、桥台桩身内力计算 (5)1、桥台桩顶荷载计算 (5)2、桥台桩基变形系数计算 (5)3、m法计算桥台桩身内力 (6)六、桥墩桩身内力计算 (7)1、桥墩墩柱顶荷载计算 (7)2、桥墩桩基变形系数计算 (7)3、m法计算桥墩桩身内力 (7)七、桥台、桥墩桩基桩身强度校核 (8)1、桥台桩基桩身强度校核 (8)2、桥墩桩基桩身强度校核 (9)一、计算资料1.设计荷载汽车荷载:城—A级人群荷载:按《城市桥梁设计规范》(CJJ 11-2011)10.0.5条取用。
2.桥梁跨径及横断面布置跨径组合:3×13m简支梁桥,单孔计算跨径:l0 =12.60 m;桥梁横断面:4.5m(人行道)+15m(混行车道)+ 4.5m(人行道)=24m。
3.桥梁主要构造上部结构采用3跨13m装配式先张法预应力空心板梁(使用《中华人民共和国交通行业公路桥梁通用图》板梁系列,编号36-2分册,交通部专家委员会等编制)。
下部结构采用桩柱式桥墩、桥台。
墩台基础采用φ120cm钻孔灌注桩。
4.桥梁主要材料(1)、混凝土空心板梁:采用C50砼预制,C40砼封端,板梁铰缝采用C50砼浇注;桥面铺装:10cm厚C50砼现浇层+4cm细粒式沥青砼(AC-13C)+6cm中粒式沥青砼(AC-20C);墩台盖梁:C30砼;墩台桩基础:C30水下砼。
(2)、钢筋普通钢筋采用HPB300和HRB400钢筋,板梁预应力钢筋为Φs15.2高强度低松弛预应力钢绞线。
5.计算依据《城市桥梁设计规范》(CJJ11-2011)《公路桥涵设计通用规范》(JTG D60-2004)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D60-2004)《公路桥涵地基与基础设计规范》(JTG D60-2004)6.计算内容由于设计周期较短,设计时桥梁上部结构套用《中华人民共和国交通行业公路桥梁通用图》(板梁系列,编号36-2分册,交通部专家委员会等编制)图纸,不再进行验算,本计算书主要对桥梁墩台、桩基等下部结构进行计算。
桥墩抗震计算 选用最不利的空心板处的独柱墩进行抗震计算(一)设计资料1、 上部构造:3孔25m 连续桥面简支空心板,25m 预制后张预应力空 心板,计算跨径为24.26m,每跨横向设6块板。
桥面现浇10cm 厚50 号混凝土,7cm 沥青混凝土。
2、 桥面宽度(单幅):0.5 (防撞护栏)+净 7.0(行车道)+ 0.5m (护栏)=8.0m 。
3、 设计荷载:公路H 级。
4、 支座:墩顶每块板板端设 GYZ250x52m 板式橡胶支座2个。
5、 地震动峰值加速度:0.10g 。
6、 下部构造:巨型独柱墩,1.3 x 1.5m ;钻孔桩直径1.5m ,均值长 40m 墩柱为30号混凝土,桩基础为30号混凝土,HRB335钢筋。
(二)恒载计算桥墩F II r 忙 I1、上部恒载反力(单孔)空心板:4.7843 X 25X 26= 3109.8kN桥面铺装(包括50号混凝土和沥青混凝土):7X 25X 0.1 X 26+ 7X 25X 0.07 X 24= 749kN防撞护栏:0.351 X 25X 25X 2 = 438.8kN合计:3109.8 + 749+ 438.8 = 4297.6kN 2、下部恒载计算1)盖梁加防震挡块重力P G= 23.358 X 26 = 607.3kN2)墩身重力P d= 3.23 X 13X26= 1091.7kN3)单桩自重力2P z= —X 1.5 X 40X 25= 1767.1kN4(三)水平地震力计算1、顺桥向水平地震力计算1)上部结构对板式橡胶支座顶面处产生的水平地震荷载ihs = —--C j C z K h '1 G spK i t pi W式中:C = 1.7 , C Z = 0.3 , K h= 0.2根据地质资料分析,桥位所在地土层属皿类场地,所以有0.45) 0.951 = 2.25 X (对于板式橡胶支座的梁桥其中:2G tpQ (K i K 2)G sp —{[G tp K i (K i K 2)G sp ]2 —4G p G sp K i K 2}1/2 3 1 = g —2G sp G tpn1= 'Kis i丄计算采用 3孔x 25m 为一联,故n = 2K負 G d A ris=iS t其中:n s = 2X 12= 24, G d = 1200kN/m由橡胶支座计算知— 2 2A r = x 0.25 2= 0.0491m 24' t = 0.032mis= 24 x1200°.°491= 44190kN/m0.032K1= 44190kN/mnK2=二 K ipi Tl i其中:墩柱采用30号混凝土,则E c = 3.00 x 104MPa 4 3 7 2E1= 0.8 x 3.00 x 10 x 10 = 2.4 x 10 kN/m按墩高H= 13+2=15m g 制设计,支座垫石+支座厚度=0.1 + 0.052 = 0.152mi=—-ip=3I 1E 1li = 15+ 0.142 = 15.152m柱惯矩:I 1= 0.4531m43 0.4531 2.4 107K P—3—9378.1kN/m15.152K= 9378.1kN/mG P—3X4297.6 -2—6446.4kNG P—G P + n G P其中:G cp —607.3kNGP— 1091.7kNn —0.16( X f2+2x f12+x f x 1+X f1 +1)2 f 2 2顺桥向作用于支座顶面的单位水平力在支座顶面处的水平位移为: X d—X—© o l 0 + X Q其中:l 0—l i —15.152mX3 3l 15 152 3Q—10——0.000107 3E1I1 3 2.4 10 0.4531桩的计算宽度:b i= 0.9(d+1) = 0.9 x (1.5 + 1) = 2.25m桩在土中的变形系数:a =普m 4—20000kN/m其中:桩采用30号混凝土,则E c—3.0 x 104MPa7 兀 4 6El —0.8 x 3.0 x 10 x — x 1.5 —5.964 x 10 64a — 5 20000 2f5-0.3763V 5.964H06桩长h = 40ma h = 0.3763 x 40= 15.052m > 2.5m取 a h = 4.0,故 K h = 0由公路桥涵地基与基础设计规范(JTJ 024-85)附表6.11查得B 3 D 4- B 4 D 3A 3B 4 - A 4 B 3A 3B 4 - A 4 B 32.441 1.6251。
钢筋混凝土桥墩地震残余位移估计1.2.3抗震规范关于残留位移验算规定Kobe地震后,日本于1995年首次把残余位移验算内容列入桥梁抗震规范,对残余位移规定如下【371138】:dRSd盼dR=靠0,一,Ⅺ彳k(1.1)(1.2)r:妻缸/(g.只汗+1)(1.3)九为容许残余位移值,,.为双线性因子(即桥墩截面初始刚度和屈服刚度的比值),靠由双线性因子,.确定,纵为桥墩位移延性因子由地面运动和桥墩的特性计算得出,d,为桥墩的屈服位移。
S为结构的响应加速度,只为桥墩横向力。
对于钢筋混凝土桥墩c尺为O.5,该值是基于残余位移比谱(Kawashimaetal.1998)获得。
如被定为墩底到上部结构重心距离的l%(1%漂移比),因为Kobe地震中残余位移漂移比超过1.75%的桥墩由于无法修复而推倒重建。
目前我国公路和铁路抗震规范中都还没有关于残余位移的具体规定,但残余位移有可能会在将来的抗震设计中起到重要甚至是控制作用。
因此准确评估钢筋混凝土柱的抗震性能,对保证钢筋混凝土结构在地震作用下的安全性有重要的意义。
1.3论文研究目的和内容本文基于国内外对桥墩地震残余位移问题的研究现状,以国内外最新桥墩拟静力试验为依托,以地震模拟开放软件OpenSees为数值平台,研究桥墩地震残余位移的组成成份以及与结构特性、地震动特性的关系,特别是纵筋粘结滑移的影响问题。
日本学者认为:纵筋粘结滑移是产生桥墩地震残余位移的重要因素,本文力图对该问题做一全面剖析。
全文共分四章,具体内容如下:第二章OpenSees平台及数值分析模型纤维模型能很好的模拟构件的弯曲变形和轴向变形,但截面纤维模型只考虑纤维的纵向变形而忽略剪切变形,所以不能模拟构件的剪切变形和扭曲变形,且平截面假定不能很好的反应钢筋混凝土中钢筋的粘结滑移现象[4411451。
2.2.4非线性纤维梁柱单元OpenSees中非线性梁柱单元和塑性铰梁柱单元均是基于柔度法。
纤维单元通过积分点数估计非线性特征沿单元长度的分布。
混凝土简支梁桥桥墩地震内力计算过程、桥梁基本概况:(1)跨径布置:5*20m简支板梁桥;(2)桥面宽度:0.5m (防撞栏)+6.5m (行车道)+0.5m (防撞栏)=7.5m;(3)支承体系:每跨结构一端设置固定支座,一端设置板式橡胶支座;(4)桥面铺装:C40防水混凝土,平均厚度为13cm;(5)材料:主梁为C50混凝土,盖梁、墩柱、防撞栏均为C30混凝土;(6)地震设防:场地地震动加速度峰值为0.1g,地震动反应特征周期为0.4s,抗震设防类别为B类,抗震设防烈度为7度,场地条件为川类总体布置图见图1。
U Q U图1桥梁立面布置图、结构尺寸:上部结构:主梁梁高0.9m,具体尺寸参见图2a)主梁横断面图图3柱式墩地震内力计算简图图2上部结构具体尺寸图图3桥墩尺寸图、桥墩地震内力计算过程(不考虑地基变形):(1)柱式墩地震内力的计算简图如图 3所示:b )中板断面图r< rL :」i ix 丄•」c )边板断面图F 部结构:采用独柱式桥墩,墩高 7.5m ,桥墩直径1.8m ,见图3.a )平面图b )立面图1(2) 顺桥向水平地震力的计算公式为:本算例根据《公路桥梁抗震设计细则》规定属于柱式墩的规则桥梁。
其顺 桥向水平地震力可按照6.7.3之规定来计算。
具体计算步骤如下:E htp = Shi G t / g① G t 的确定:G t = G sp ■ G cp ■ G p ;一跨主梁重量=203 6872 2 7960「10000 26.5 = 1936.4kN桥面铺装重量=°.!3 6.5 20 26 =439.4kN防撞栏重量=2 4081.21 “10000 20 25 =408.12kN 一孔梁的重力 G sp -1936.4 439.4 408.12 =2783.92kN 盖梁重力 G cp =25 2 6.783 =339.15kN 墩身重力 G p =7.5 3.14 0.9225 = 476.89kN因此 =0.16 516 1 =0.21由此可求得 G t =2783.92 339.15 0.21 476.89= 3223.22kN② S h1的确定该值的确定与结构的基本周期相关。
本算例桥墩的自振周期计算公式为⑴飞为结构在顺桥向或横桥向作用于支座顶面或上部结构质量重心上单墩身重力换算系数n =0.16 Xf 汉2X2 2.二1 +X f X 1 +X 1 +1f-f-f-222J由于不考虑地基变形,即 X f =0,X 1可根据静力挠度曲线求得: f-2悬臂梁的静力挠度曲线为:y x 二2x x - 3丨 . ..' 丿,当x=l/2时,6EI 5yi 「药。
由此可知,X f2詁2®耳。
5l 3y 2 _48EI ;丨31 f- 2分,仅将其视为一个分段, 其重心位于桥墩一般位置,即 3.75m 高度处。
位水平力在该点引起的水平位移,可通过下式计算: :s =1 K T 。
其中K T 为桥墩 的抗推刚度。
本算例桥墩顺桥向的抗推刚度为:岑=3 3.0 104 严4/64 =「1 105kN/mH 37.53故而,=1 K T =0.91 10‘m/kN根据已知条件可知,特征周期为 T g =0.55s ,结构的自振周期为T=0.34s,显 然O.isvTvT g ,因此,水平加速度反应谱 S hi 的取值应根据下式计算:S11 = S m ax = 2.25C j C s C d A = 2.25 0.43 1.3 1 0.1g=0.126g③ 结构的顺桥向设计地震力为:E htp 二 E1G/g =0・126g 3223.22/g =406.13kN(3) 横桥向水平地震力的计算公式为:(第6.7.2 条)E ihp = S h1 1 X 1i G i / g①确定S hi在计算结构自振周期时,由于桥墩为柔性墩,故G t 的计算结果与顺桥向计算结果一致。
因此其结构的自振周期为 T i =0.34s 。
故水平加速度反应谱S hi 的取 值仍为0.126g 。
② 1的确定n ' X 1i Gi号 O 为简化计算,本算例不对桥墩进行详细划、X^G ii =0⑵桥墩的自振周期为:1久=2二 d 2 =2 3.14.g⑶确定S hi13223.22x0.91x10, 79.8=0.34s1的计算公式为:1也'1 一 X f 。
鉴于不考虑HX 10G 0 X 11G 1 X 12G 22783.92 0.96 339.15 0.74 476.89 2 2 2 = 2 2 X 10G 0X 11G 1 X 12G 22783.92 0.96 339.15 0.74476.89③ 上部结构产生的横桥向内力 E ohp :E )hp=0.126g 1.03 1 2783.92/g = 361.3kN④ 盖梁产生的横桥向内力E ihp :E 1hp =0.126g 1.03 0.96 339.15/g = 42.25kN⑤ 桥墩自身产生的横桥向内力 E ihp :E 2hp =0.126g 1.03 0.74 476.89/g = 45.8kN⑥ 桥墩横向设计地震内力为:E hp 二 E 0hp E 1hpE 2hp = 361.3 42.2545.8 = 449.35 kN对于简支梁桥采用实体桥墩的情况,其地震力的计算可参照《细则》中的 第6.7.2条之规定进行相应的计算。
该种情况下重力式桥墩顺桥向与横桥向的水平地震力均按下式计算:E ihp - S h1 1 X 1i G i / g、结构资料因为 H / B =7.5/1.8 =4.17 ::: 5 ,故而 =X f 地基变形,即X f =0,所以,1X i 。
H "1 ;X 11 二 H 1 H - II : 7.5 0.67.5 1.2 0.45 = 0.961 1X 1^:.:H ^ H 空=」3.75/ 7.5 0.45 1.2 3 =0.74G o = 2783.92kN ; G =339.15kN ; G 2 二 G p = 476.89kN因此,n、X 1iG- 71 n、X :G上部结构与柔性墩算例的上部结构参数取值相同。
下部结构为实体墩,墩身截面尺寸见图4a)平面图b)立面图图4桥墩尺寸图二、桥墩地震内力计算过程:(不考虑地基变形:X f=0)(1)纵桥向地震内力①基本参数计算:上部结构重力:G0二G s p =2783.92kN盖梁重力:G 二G cp = 339.15kN桥墩重力:G2=G p=7.5 3.9 1.2 25 =877.5kN②S hi的确定丄结构自振周期T i的确定:T=2.j G t rI g丿其中:G t=G sp+ |X f+丄(1 —X f )b p =2783.92+[><877.5 = 3076.42kN3_ 3、s=1k T 1.198 105i;= 0.83 10‘m/kN == -11 II1 II1 il1 IIL 」桥墩的抗推刚度: ky 3EI 3 3.0 1 04 3.9 1.23312 7.535= 1.198 10 kN /m⑥桥墩自身产生的纵向地震内力 E 3hp :X 1^ 已.H 二 7.5 0.6 7.5 1.2 0.45 =0.89X 12 二 H 2; H 二 3.75/ 7.5 1.2 0.45 [= 0.41 G o =2783.92kN ; G =339.15kN ; G^G^877.5kN因此,X 10G 0 +X 11G 1 +X 12G 22783.92 +0.89汉339.15+0.41 汉 877.58n222_22_〔”08、v2X 10G 0 X 11Gr X 12G 2 2783.92 0.89 339.15 0.41 877.5 X 1G ii=0④上部结构产生的纵桥向内力 E ohp :E °hp =0.126g 1.08 1 2783.92/g =378.84kN1结构的自振周期T, =2二d 彳=2 i g 丿 根据已知条件可知,特征周期为 T g =0.55s ,结构的自振周期为T=0.32s,显3076.42汇 0.83"0生 ¥二 0.32s 然O.lsvTvT g ,因此,水平加速度反应谱 S hi 的取值应根据下式计算:S h 1 - S max2.25C j C s C d A =2.25 0.43 1.3 1 0.1g=0.126g!的计算公式为:n二 X 1i G i1罟 。
为简化计算,Z X 12G ii =0本算例不对桥墩进行详细划分,仅将其视为一个分段,其重心位于桥墩一般位置, 即 3.75m 高度处。
因为 H / B =7.5/1.2 -6.25 • 5 ,故而 X 1^ X f 1 _ XF H i 。
鉴于不考虑地基变形,即 X f =0,所以,n7 X 1i G ii =01 =⑤盖梁产生的纵向地震内力E ihp:E1h p =0.126g 1.08 0.89 339.15/g =41.07kNX^G iX 10G 0 ' X 11G 1 ■ X12G 2 2783.92 0.96 339.15 0.74 877.5J X 2G X 12O G 。
X ;G 1 X :G 2i =022=1.052783.92 0.96339.15 0.74 877.5E 2h p =0.126g 1.08 0.41 877.5/g = 48.96kN⑦ 设计地震内力E :E =E 0h p E 1hp - E 2hp =378.84 41.07 48.96 = 468.87kN(2)横桥向地震内力①基本参数计算:桥墩重力:G 2 二 G p =7.5 3.9 1.2 25 =877.5kN ②i 的确定X'G ii =0分,仅将其视为一个分段,其重心位于桥墩一般位置,即3.75m 高度处。
上部结构重力: G 0 二 G sp =2783.92kN 盖梁重力:G iG cp =339.15kN1的计算公式为:1 n―X 1i G ii =0O 为简化计算,本算例不对桥墩进行详细划因为 H / B =7.5/3.9 =1.92 ::: 5 ,故而 X. -X f '旦F(1-X f )。
鉴于不考虑 lH丿地基变形, 即X f =0,所以,X H =(H2/H )131X 10 = H o. H 3 =1 ;7.5 0.6 7.5 1.2 0.45 = 0.96 二 3.75/ 7.5 1.2 0.45= 0.74因此,G 0 二 2783.92kN ; G =339.15kN ; G 2 二 G p =877.5kN③ S hi 的确定1结构自振周期T i 的确定:「=2二 匹 2I g 丿n其中:G t = » G j X ; =G 0x 1o G j X : G 2X : =3576.99kNi 卫桥墩的抗推刚度: k 「3E 3 =3 3.° 104 132 3.9\ 1.265 ^kN/mH 3 12 7.53;s=Vk y =v 1.265 106 =0.791 10(m/kN根据已知条件可知,特征周期为 T g =0.55s ,结构的自振周期为T=0.11s,显 然0.1s < T < Tg ,因此,水平加速度反应谱 S hi 的取值应根据下式计算:% = S m ax = 2.25C j C s C d A = 2.25 0.43 1.3 1 0.1g=0.126g④上部结构产生的纵桥向内力 E ohp :E °hp=0.126g 1.05 1 2783.92/g = 368.31kN⑤盖梁产生的纵向地震内力 E ihp :臥=0.12肉 1.05 0.96 339.15/g = 43.07kN⑥ 桥墩自身产生的纵向地震内力 E 3hp :E 2hp =0.126g 1.05 0.74 877.5/g = 85.91kN⑦ 设计地震内力E :E= E ohp E 1hp E 2hp =368.31 43.07 85.91 二 497.29kN结构的自振周期3576.99 0.791 10』= 0.11s。