鲁教版八年级数学下册第六章《特殊平行四边形》测试题
- 格式:doc
- 大小:269.50 KB
- 文档页数:4
鲁教版(五四制)八年级数学下册第六章特殊平行四边形达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法不正确的是( )A .矩形的对角线相等B .直角三角形斜边上的中线等于斜边的一半C .对角线互相垂直且相等的四边形是正方形D .菱形的对角线互相垂直2、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( )A .20B .40C .60D .803、已知菱形ABCD 的对角线交于原点O ,点A 的坐标为()-,点B 的坐标为(1,-,则点D 的坐标是( )A .(B .()1-C .()-D .(2, 4、如图,在ABCD 中,19DAM ∠=︒,DE BC ⊥于E ,DE 交AC 于点F ,M 为AF 的中点,连接DM ,若2AF CD =,则CDM ∠的大小为( ).A .112°B .108°C .104°D .98°5、如图,在△ABC 中,∠ACB =90°,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,若∠CDE =12∠B ,则∠A 等于( )A .36°B .40°C .48°D .54°6、如图,E 、F 分别是正方形ABCD 的边CD 、BC 上的点,且CE BF =,AF 、BE 相交于点G ,下列结论中正确的是( )①AF BE =;②AF BE ⊥;③AG GE =;④ABG CEGF S S =四边形△.A .①②③B .①②④C .①③④D .②③④7、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A .矩形B .菱形C .正方形D .梯形8、如图,菱形OABC 的边OA 在平面直角坐标系中的x 轴上,60AOC ∠=︒,4OA =,则点C 的坐标为( )A .(2,B .()2C .(D .()2,29、如图,点E 、F 分别在正方形ABCD 的边DC 、BC 上,AG ⊥EF ,垂足为G ,且AG =AB ,则∠EAF =( )度A .30°B .45°C .50°D .60°10、如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =AD ,则∠ACE 的度数为( )A .22.5°B .27.5°C .30°D .35°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,Rt △ABC 中,∠BAC =90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF =5,则AE =_____.2、如图,菱形ABCD 中,12AB =,60ABC ∠=︒,点E 在AB 边上,且2BE AE =,动点P 在BC 边上,连接PE ,将线段PE 绕点P 顺时针旋转60︒至线段PF ,连接AF ,则线段AF 长的最小值为__.3、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O ,在正方形外有一点P ,6OP =,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的最大值为______.4、如图,ABC 中,AB AC =,D 为AB 中点,E 在AC 上,且BE AC ⊥,若52DE =,4AE =,则边BC 的长度为______.5、如图,菱形ABCD 的边长为4,∠BAD =120°,E 是边CD 的中点,F 是边AD 上的一个动点,将线段EF 绕着点E 顺时针旋转60°得到线段EF ',连接AF '、BF ',则△ABF '的周长的最小值是________________.三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD 中,AB =AD ,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.2、在等腰Rt△ABC中,∠ACB=90°,D,E是边AC,BC上的点,且满足AD=CE,连接DE,过点C作DE的垂线,垂足为F,交AB于点G.(1)点D如图所示.①请依题意在下图中补全图形;②猜想DE与CG的数量关系,并证明;(2)连接DG,GE,若AB=2,直接写出四边形CDGE面积的最小值.3、如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,10OC=,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC OA=,8边上的点E处.(1)直接写出B点的坐标____________________;(2)求D、E两点的坐标.CD的长为半径作弧,两弧分别相交于M、N 4、如图,已知菱形ABCD中,分别以C、D为圆心,大于12两点,直线MN交CD于点F,交对角线AC于点E,连接BE、DE.(1)求证:BE=CE;(2)若∠ABC=72°,求∠ABE的度数.5、在△ABC中,BC=AC,∠C=90°,D是BC边上一个动点(不与点B,C重合),连接AD,以AD为边作正方形ADEF(点E,F都在直线BC的上方),连接BE.(1)根据题意补全图形,并证明∠CAD=∠BDE;(2)用等式表示线段CD与BE的数量关系,并证明;(3)用等式表示线段AD,AB,BE之间的数量关系(直接写出).-参考答案-一、单选题1、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.2、B【解析】【分析】根据菱形的面积公式求解即可.【详解】×10×8=40.解:这个菱形的面积=12故选:B.【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.3、A【解析】【分析】根据菱形是中心对称图形,菱形ABCD 的对角线交于原点O ,则点D 与点B 关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:∵菱形是中心对称图形,菱形ABCD 的对角线交于原点O ,∴D 与点B 关于原点中心对称,点B 的坐标为(1,-,∴点D 的坐标是( 故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键.4、C【解析】【分析】根据平行四边形及垂直的性质可得ADF 为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得AM MF DM ==,由等边对等角及三角形外角的性质得出38DMC DCM ∠=∠=︒,根据三角形内角和定理即可得出.【详解】解:∵四边形ABCD 为平行四边形,∴AD BC ∥,∵DE BC ⊥,∴DE AD ⊥,∴ADF 为直角三角形,∵M 为AF 的中点,∴AM MF DM ==,∴2AF DM =,19MDA MAD ∠=∠=︒,∵2AF CD =,∴DM CD =,∴38DMC DCM MDA MAD ∠=∠=∠+∠=︒,∴1801803838104CDM DCM DMC ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.5、D【解析】【分析】根据线段垂直平分线的性质得到∠BDE =∠ADE =90°,AD =BD ,根据直角三角形斜边上的中线等于斜边的一半可得,CD =BD =AD =12AB ,由等边对等角可得∠B =∠DCE ,∠A =∠ACD ,设∠CDE =x ,则∠B =∠DCE =2x ,∠ADC =90°-x ,∠A =45°+12x ,由直角三角形两锐角互余得45°+12x +2x =90°,解得x 值,即可求解.【详解】解:由题意可知:MN 为AB 的垂直平分线,∴∠BDE =∠ADE =90°,AD =BD ,∵∠ACB =90°,∴CD =BD =AD =12AB ,∴∠B =∠DCE ,∠A =∠ACD ,设∠CDE =x ,则∠B =∠DCE =2x ,∠ADC =90°-x ,∴∠A =12(180°-∠ADC )=45°+12x ,∴∠A +∠B =45°+12x +2x =90°,解得:x =18°,∴∠A =45°+12x =54°,故选:D .【点睛】此题考查了直角三角形斜边上的中线、线段垂直平分线的性质、三角形外角的性质及等腰三角形的性质,注意垂直平分线上任意一点,到线段两端点的距离相等.6、B【解析】【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.【详解】解:∵四边形ABCD 是正方形,∴AB BC CD AD ===,90ABC BCD ∠=∠=︒,在ABF 与BCE 中,AB BC ABC BCD BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴ABF BCE ≅,∴AF BE =,①正确;∵90BAF BFA ∠+∠=︒,BAF EBC ∠=∠,∴90EBC BFA ∠+∠=︒,∴90BGF ∠=︒,∴AF BE ⊥,②正确;∵GF 与BG 的数量关系不清楚,∴无法得AG 与GE 的数量关系,③错误;∵ABF BCE ≅,∴ABF BCE S S =,∴ABF BGF BCE BGF S S S S -=-,即ABG CEGF S S =四边形,④正确;综上可得:①②④正确,故选:B .【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.7、B【解析】【分析】根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.【详解】展得到的图形如上图,由操作过程可知:AB =CD ,BC =AD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 为菱形,故选:B .【点睛】本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.8、A【解析】【分析】如图:过C 作CE ⊥OA ,垂足为E ,然后求得∠OCE =30°,再根据含30°角直角三角形的性质求得OE ,最后运用勾股定理求得CE 即可解答.【详解】解:如图:过C 作CE ⊥OA ,垂足为E ,∵菱形OABC ,4OA =∴OC =OA =4∵60AOC ∠=︒,∴∠OCE=30°∵OC=4∴OE=2∴CE==∴点C的坐标为(2,.故选A.【点睛】本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.9、B【解析】【分析】根据正方形的性质以及HL判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,即可求∠EAF=45°【详解】解:在正方形ABCD中,∠B=∠D=∠BAD=90°,AB=AD,∵AG⊥EF,∴∠AGF=∠AGE=90°,∵AG =AB ,∴AG =AB=AD ,在Rt △ABF 与Rt △AGF 中,AB AG AF AF =⎧⎨=⎩∴△ABF ≌△AGF ,∴∠BAF =∠GAF ,同理可得:△AGE ≌△ADE ,∴∠GAE =∠DAE ;∴∠EAF =∠EAG +∠FAG 1452BAD ︒=∠=, ∴∠EAF =45°故选:B【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、解题的关键是得出△ABF ≌△AGF .10、A【解析】【分析】利用正方形的性质证明∠DBC =45°和BE =BC ,进而证明∠BEC =67.5°.【详解】解:∵四边形ABCD 是正方形,∴BC =AD ,∠DBC =45°,∵BE =AD ,∴BE =BC ,∴∠BEC =∠BCE =(180°﹣45°)÷2=67.5°,∵AC ⊥BD ,∴∠COE =90°,∴∠ACE =90°﹣∠BEC =90°﹣67.5°=22.5°,故选:A .【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.二、填空题1、5【解析】【分析】依题意,可得DF 是△ABC 的中位线,得到BC 的边长;又结合直角三角形斜边中线是斜边的一半,即可求解;【详解】∵ D ,F 分别为AB ,AC 的中点,∴DF 是△ABC 的中位线,∴BC =2DF =10,在Rt △ABC 中,E 为BC 的中点,152AE BC == 故答案为:5.【点睛】本题主要考查直角三角形性质及中线的性质,关键在熟练综合使用和分析;2、【解析】【分析】在BC 上取一点G ,使得BG BE =,连接EG ,EF ,作直线FG 交AD 于T ,过点A 作AH GF ⊥于H .证明120BGF ∠=︒,推出点F 在射线GF 上运动,根据垂线段最短可知,当点F 与H 重合时,AF 的值最小,求出AH 即可.【详解】解:在BC 上取一点G ,使得BG BE =,连接EG ,EF ,作直线FG 交AD 于T ,过点A 作AH GF ⊥于H .60B ∠=︒,BE BG =,ΔBEG ∴是等边三角形,EB EG ∴=,60BEG BGE ∠=∠=︒,PE PF =,60EPF ∠=︒,ΔEPF ∴是等边三角形,60PEF ∴∠=︒,EF EP =,BEG PEF ∠=∠,BEP GEF ∴∠=∠,在ΔBEP 和GEF ∆中,BE GE BEP GEF PE PF =⎧⎪∠=∠⎨⎪=⎩, ()ΔΔBEP GEF SAS ∴≅,60EGF B ∴∠=∠=︒,120BGF ∴∠=︒,∴点F 在射线GF 上运动,根据垂线段最短可知,当点F 与H 重合时,AF 的值最小,12AB =,2BE AE =,8BE ∴=,4AE =,60BEG EGF ∠=∠=︒,∴GT //AB∵BG //AT∴四边形ABGT 是平行四边形,8AT BG BE ∴===,60ATH B ∠=∠=︒,∴30TAH ∠=︒12TH AH = 在Rt ATH ∆中,222AT TH AH +=∴ 22218()2AH AH +=AH ∴=AF ∴的最小值为故答案为:【点睛】本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、3【解析】【分析】由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案【详解】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,∵正方形ABCD边长为6,O为正方形中心,∴AE=3,∠OAE=45°,OE⊥AB,∴OE=3,∵OP=6,∴d=PE=6-3=3;故答案为:3【点睛】本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.4【解析】【分析】由BE⊥AC,D为AB中点,52DE=,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得BC的长.【详解】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,AB AC=∴AB=AC=2DE=2×52=5,∵AE=4,∴BE,CE=AC-AE=1,∴BC【点睛】此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.5、【解析】【分析】取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.【详解】解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,∵四边形ABCD为菱形,∴AB=AD,∵∠BAD=120°,∴∠CAD=60°,∴△ACD为等边三角形,又∵DE=DG,∴△DEG也为等边三角形.∴DE=GE,∵∠DEG=60°=∠FEF',∴∠DEG﹣∠FEG=∠FEF'﹣∠FEG,即∠DEF=∠GEF',由线段EF绕着点E顺时针旋转60°得到线段EF',所以EF=EF'.在△DEF 和△GEF '中,DE GE DEF GEF EF EF '=⎧⎪∠=∠⎨='⎪⎩, ∴△DEF ≌△GEF '(SAS ).∴∠EGF '=∠EDF =60°,∴∠F 'GA =180°﹣60°﹣60°=60°,则点F '的运动轨迹为射线GF '.观察图形,可得A ,E 关于GF '对称,∴AF '=EF ',∴BF '+AF '=BF '+EF '≥BE ,在Rt△BCH 中,∵∠H =90°,BC =4,∠BCH =60°,∴12,2CH BC BH ===,在Rt△BEH 中,BE∴BF '+EF∴△ABF '的周长的最小值为AB +BF '+EF '=故答案为:.【点睛】本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE ≌△FBE ,即可得出AE =EF ,进而利用菱形的判定方法得出答案.(1)(1)如图:EF 即为所求作(2)证明:如图,连接DF ,∵AD //BC ,∴∠ADE =∠EBF ,∵AF 垂直平分BD ,∴BE =DE .在△ADE 和△FBE 中,ADE FBE DE BEAED BEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△FBE(ASA),∴AE=EF,∴BD与AF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.2、(1)①作图见解析;②DE=CG,证明见解析;(2)12【解析】【分析】(1)①按照题意作图即可;②如图1过点D作DH⊥AC交AB于H,连接CH交DE于O,连接EH,∠A=∠B=45°,∠ADH=90°,∠A=∠DHA=45°,DA=DH= CE,四边形DHEC是平行四边形,∠DCE=90°,四边形DHEC是矩形,矩形对角线相等且互相平分可知,DE=CH,OD=OC,∠ODC=∠OCD,证明∠CDE=∠BCG=∠ACH,△ACH≌△BCG,进而可说明DE=CG.(2)如图2,由(1)可知DE=CG,CG⊥DE,S四边形CDGE12=•DE•CG12=•CG2;可知面积最小即CG的值最短;根据垂线段最短可知,当CG⊥AB时,CG的值最短,由AG=GB,∠ACB=90°,可知CG1 2 =AB=1,进而可求四边形面积的最小值.(1)解:①图形如图1所示.②结论:DE=CG.证明:如图1中,过点D作DH⊥AC交AB于H,连接CH交DE于O,连接EH.∵AC=BC,∠ACB=90°∴∠A=∠B=45°∵AD⊥DH∴∠ADH=90°∴∠A=∠DHA=45°∴DA=DH∵AD=CE∴DH=CE∵∠ADH=∠ACB=90°∴DH∥BC∴四边形DHEC是平行四边形∵∠DCE=90°∴四边形DHEC是矩形∴DE=CH,OD=OC=OE=OH∴∠ODC=∠OCD∵CG⊥DE∴∠CDE+∠DCG=90°,∠DCG+∠BCG=90°∴∠CDE=∠BCG=∠ACH在△ACH 和△BCG 中∵45ACH BCG CA CB A B ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACH ≌△BCG (ASA )∴CH =CG∴DE =CG .(2)解:如图2由(1)可知DE =CG ,CG ⊥DE∴S 四边形CDGE 12=•DE •CG 12=•CG 2 根据垂线段最短可知,当CG ⊥AB 时,CG 的值最短∵CA =CB ,CG ⊥AB∴AG =GB∴CG 12=AB =1 ∴四边形CDGE 的面积的最小值为12.【点睛】本题考查了垂线段,矩形的判定与性质,三角形全等,等腰三角形的判定与性质.解题的关键在于对知识的灵活综合运用.3、 (1)(10,8)(2)D (0,5),E (4,8)【解析】【分析】(1)根据10OA =,8OC =,可得B 点的坐标;(2)根据折叠的性质,可得AE =AO ,OD =ED ,根据勾股定理,可得EB 的长,根据线段的和差,可得CE 的长,可得E 点坐标;再根据勾股定理,可得OD 的长,可得D 点坐标;(1)解:∵10OA =,8OC =,∴B 点的坐标(10,8),故答案为:(10,8);(2)解:依题意可知,折痕AD 是四边形OAED 的对称轴,在Rt △ABE 中,AE =AO =10,AB =OC =8,由勾股定理,得BE ,CE =BC -BE =10-6=4,E (4,8).在Rt △DCE 中,由勾股定理,得DC 2+CE 2=DE 2,又∵DE =OD ,CD =8-OD ,(8-OD )2+42=OD 2,解得OD =5,D (0,5).所以D (0,5),E (4,8);【点睛】本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.4、 (1)见解析(2)∠ABE =18°【解析】【分析】(1)根据四边形ABCD 是菱形,得出CB =CD ,∠ACB =∠ACD ,再证△ECB ≌△ECD (SAS ),得出BE =DE ,根据MN 垂直平分线段CD ,得出EC =ED 即可;(2)根据等腰三角形内角和可求∠BAC =∠BCA =12(180°﹣72°)=54°,根据EB =EC ,求出∠EBC =∠ECB =54°即可.(1)证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ACB =∠ACD ,在△ECB 和△ECD 中,CE CE ECB ECD CB CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ECB ≌△ECD (SAS ),∴BE =DE ,由作图可知,MN 垂直平分线段CD ,∴EC =ED ,∴BE =CE .(2)解:∵BA=BC,∠ABC=72°,∴∠BAC=∠BCA=1(180°﹣72°)=54°,2∵EB=EC,∴∠EBC=∠ECB=54°,∴∠ABE=∠ABC﹣∠EBC=18°.【点睛】本题考查菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,等腰三角形的性质,三角形内角和定理,正确理解题意是解题关键.5、 (1)见解析(2)BE=,证明见解析(3)222+=AB BE AD2【解析】【分析】(1)证明∠CAD和∠BDE都与∠ADC互余即可;(2)过E作EG⊥CB于G,利用△ACD≌△DGE可得CD=EG,AC=DG,从而可证明△BGE是等腰直角三角形,即可得到BE;(3)由AB2=AC2+BC2=2AC2,AC2=AD2−CD2可得AB2=2(AD2−CD2),再根据BE即可得到线段AD,AB,BE之间的数量关系.(1)解:(1)补全图形如图所示.证明:∵正方形ADEF,∴∠ADE=90°,∴∠BDE=180°−∠ADE−∠ADC=90°−∠ADC,∵∠C=90°,∴∠CAD=90°−∠ADC,∴∠CAD=∠BDE;(2)解:BE .证明:过E作EG⊥CB于G,如图:∵四边形ADEF 是正方形,∴AD =DE ,∵EG ⊥CB ,∴∠G =90°=∠C ,在△ACD 和△DGE 中,C D CAD GDE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△DGE (AAS ),∴CD =EG ,AC =DG ,∵AC =BC ,∴DG =BC ,∴DG −DB =BC −DB ,即BG =CD ,∴BG =EG ,∴△BGE 是等腰直角三角形,∴BEBG ,∴BECD ;(3)解:2222AB BE AD +=.理由如下:∵∠C =90°,AC =BC ,∴AB 2=AC 2+BC 2=2AC 2,AC 2=AD 2−CD 2,∴AB 2=2(AD 2−CD 2),而BE,BE2,∴CD2=12BE2),∴AB2=2(AD2−12即AB2=2AD2−BE2.【点睛】本题考查等腰直角三角形、正方形、全等三角形的性质及应用,解题的关键是构造全等三角形,熟练掌握勾股定理的应用.。
第六章特殊平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是( )A.12B.9C.6D.3A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形3.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的( )A.15 B.14C.13D.3105.如图,已知正方形ABCD的对角线长为√2,将正方形ABCD沿直线EF 折叠,则图中阴影部分的周长为( )A.2B.4C.8D.66.已知四边形ABCD是平行四边形,下列结论中错误的有( )①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.1个B.2个C.3个D.4个7.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16B.17C.18D.198.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是( )A.(4,5)B.(5,3)C.(5,4)D.(4,3)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AEB.△ABE≌△AGFC.BE=DFD.BE=EF10.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为___________时,两条对角线长度相等.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为___________.13.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=___________.14.如图是根据四边形的不稳定性制作的边长为15 cm的可活动菱形衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=___________.15.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为___________.16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD 于点E,则DE= .17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.18.如图,在边长为2的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,……,按此规律所作的第n个菱形的边长是.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.求证:BD=CE.20.如图所示,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH.求证:∠DHO=∠DCO.21.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.22.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.23.如图所示,把一张矩形纸片ABCD沿对角线BD折叠,使点C落在点E 处,BE与AD交于点F.(1)线段BF与DF相等吗?请说明理由.(2)若将折叠的图形恢复原状,点F与BC边上的点G正好重合,连接DG,试判断四边形BGDF的形状,并说明理由.(3)若AB=4,AD=8,在(2)的条件下,求线段DG的长.24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并加以证明.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE__________是菱形(填“可能”或“不可能”).请说明理由.参考答案一、1.【答案】D 2.【答案】A3.【答案】D解:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.【答案】B5.【答案】B6.【答案】A解:①当AB=BC时,它是菱形,正确;②当AC⊥BD时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD时,它是矩形,因此④是错误的.7.【答案】B 8.【答案】C 9.【答案】D10.【答案】D解:∵四边形ABCD是正方形,∴∠PAE=∠MAE=45°.∵PM⊥AC,∴∠PEA=∠MEA.又∵AE=AE,∴根据“ASA”可得△APE≌△AME.故①正确;由①得PE=ME,∴PM=2PE.同理PN=2PF,又易知PF=BF,四边形PEOF是矩形,∴PN=2BF,PM=2FO.∴PM+PN=2FO+2BF=2BO=BD.故②正确;在Rt△PFO中,∵FO2+PF2=PO2,而PE=FO,∴PE2+PF2=PO2.故③正确.二、11.【答案】90°解:对角线相等的平行四边形是矩形.12.【答案】12解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12.13.【答案】22.5°解:如图,由四边形ABCD 是正方形,可知∠BAD=∠D=90°,∠CAD=12∠BAD=45°.由FE ⊥AC,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE=AD,AF=AF,∴Rt △AEF ≌Rt △ADF(HL). ∴∠FAD=∠FAE=12∠CAD=12×45°=22.5°.14.【答案】120° 15.【答案】4.8 16.【答案】√2-1 17.【答案】20解:点N 是BC 的中点,点E,F 分别是BM,CM 的中点,由三角形的中位线定理可证EN ∥MC,NF ∥ME,EN=12MC,FN=12MB.又易知MB=MC,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD=12得AM=6.在Rt △ABM 中,由勾股定理得BM=10.因为点E 是BM 的中点,所以EM=5,所以四边形ENFM 的周长为20.18.【答案】(2√3)n-1三、19.证明:∵四边形ABCD 是菱形, ∴AB=CD,AB ∥CD.又∵BE=AB,∴BE=CD.∴四边形BECD 是平行四边形.∴BD=CE.20.证明:∵四边形ABCD 是菱形,∴AB ∥CD,OD=OB,AC ⊥BD.∵DH ⊥AB,∴∠AHD=∠BHD=90°.∴∠BDH+∠ODC=90°.∵∠DCO+∠ODC=90°,∴∠BDH=∠DCO.在Rt △BHD 中,OB=OD,∴OH=OD.∴∠DHO=∠BDH.∴∠DHO=∠DCO.21.(1)证明:∵DE ∥AC,CE ∥BD,∴四边形OCED 为平行四边形.∵四边形ABCD 为矩形,∴OD=OC.∴四边形OCED 为菱形.(2)解:∵四边形ABCD 为矩形,∴BO=DO=12BD.∴S △OCD =S △OCB =12S △ABC =12×12×3×4=3.∴S 菱形OCED =2S △OCD =6.22.(1)证明:在△BCE 与△DCF 中,{BC =DC ,CE =CF ,∠BCE =∠DCF ,∴△BCE ≌△DCF.(2)解:∵△BCE ≌△DCF,∴∠EBC=∠FDC=30°.∵∠BCD=90°,∴∠BEC=60°.∵EC=FC,∴∠CEF=45°.∴∠BEF=105°.23.解:(1)相等.理由:∵在△ABF 和△EDF 中,∠A=∠E=∠C=90°,∠AFB=∠EFD, AB=ED=CD,∴△ABF ≌△EDF.∴BF=DF.(2)四边形BGDF 是菱形.理由:由四边形ABCD 是矩形,易得AD ∥BC,则BG ∥DF.∵△BCD 沿BD 折叠之后得到△BED,∴BC=BE.而恢复原状后,点F 与点G 重合,则BG=BF,而由(1)得BF=DF,∴BG=DF.∴四边形BGDF 为平行四边形.又∵BF=DF,∴四边形BGDF 为菱形.(3)由(2)知DG=BG,∴CG=8-DG.又∵CD 2+GC 2=DG 2,即42+(8-DG)2=DG 2,解得DG=5.24.解:(1)OE=OF.证明如下:∵CE 是∠ACB 的平分线,∴∠ACE=∠BCE.又∵MN ∥BC,∴∠NEC=∠ECB.∴∠NEC=∠ACE.∴OE=OC.∵CF 是∠ACD 的平分线,∴∠OCF=∠FCD.又∵MN ∥BC,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O 运动到AC 的中点,且△ABC 满足∠ACB 为直角时,四边形AECF 是正方形.理由如下:∵当点O 运动到AC 的中点时,AO=CO,又∵EO=FO,∴四边形AECF 是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF.∴四边形AECF 是矩形.已知MN ∥BC,当∠ACB=90°时,∠AOE=90°,∴AC ⊥EF.∴四边形AECF 是正方形.(3)不可能.理由如下:连接BF,∵CE 平分∠ACB,CF 平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE 是菱形,则BF ⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE 不可能为菱形.。
鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中错误的是()A.四边形OCPD是菱形B.CP=2QCC.∠AOP=∠BOP D.CD⊥OP2、如图,在△ABC中,AB=AC,BD=CD,点E为AC的中点,连接DE,若△ABC的周长为20cm,则△CDE的周长为()A.10 cm B.12 cm C.14 cm D.16 cm 3、下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是13.B.若AC、BD为菱形ABCD的对角线,则AC BD⊥的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.4、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为()A.6.5B.8 C.10D.125、如图已知:四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是正方形D.当∠ABC=90︒时,它是矩形6、菱形周长为20,其中一条对角线长为6,则菱形面积是( )A .48B .40C .24D .127、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,6AC =,8BD =,EF 为过点O 的一条直线,则图中阴影部分的面积为( )A .4B .6C .8D .128、如图.在长方形纸片ABCD 中,AB =12,AD =20,所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.点P ,Q 分别在边AB 、AD 上移动,则点A ′在BC 边上可移动的最大距离为( )A .8B .10C .12D .169、如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,BE =CF =2,CE 与DF 交于点H ,点G 为DE 的中点,连接GH ,则GH 的长为( )A B C .4.5 D .4.310、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( )A .20B .40C .60D .80第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、长方形纸片ABCD 按图中方式折叠,其中,EF EC 为折痕,如果折叠后',',A B E 在一条直线上,那么CEF ∠的大小是________度.2、如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,连接EB ,ED ,当126BED ∠=︒时,EDA ∠的度数为______.3、如图,在矩形ABCD 中,AB =6,BC =8.如果E、F 分别是AD 、BC 上的点,且EF 经过AC 中点O ,G ,H 是对角线AC 上的点.下列判断正确的有______.①在AC 上存在无数组G 、H ,使得四边形EGFH 是平行四边形;②在AC 上存在无数组G 、H ,使得四边形EGFH 是矩形;③在AC 上存在无数组G 、H ,使得四边形EGFH 是菱形;④当AG =54时,存在E 、F 、G ,H ,使得四边形EGFH 是正方形.4、如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点D 在x 轴上,边BC 在y 轴上,若点A 的坐标为(12,13),则点C 的坐标是___.5、如图,矩形ABCD 的两条对角线相交于点O ,已知120AOD ∠=︒, 2.5cm AB =,则矩形对角线BD 的长为_______cm .三、解答题(5小题,每小题10分,共计50分)1、已知:线段m .求作:矩形ABCD ,使矩形宽AB =12m ,对角线AC =m .2、如图,四边形ABCD 是平行四边形,O 是对角线AC 的中点,过点O 的直线分别交边BC ,AD 于点E ,F ,连结AE ,CF .(1)求证:△AOF ≌△COE ;(2)当∠OAF =∠OFA 时,求证:四边形AECF 是矩形.3、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD'于点E.AB=6cm,BC=8cm.(1)求证AE=EC;(2)求阴影部分的面积.4、已知:如图,在△ABC中,AD是BC边上的高,CE是中线,F是CE的中点,12CD AB=,求证:DF⊥CE.5、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH 的中点.(1)求证:AE=CE;(2)猜想线段AE,EG和GF之间的数量关系,并证明.-参考答案-一、单选题1、A【解析】【分析】根据作图信息可以判断出OP 平分AOB ∠,由此可以逐一判断即可.【详解】解:由作图可知,,,OC OD PC PD OP ==平分AOB ∠∴OP 垂直平分线段CD∴∠AOP =∠BOP ,CD ⊥OP故选项C ,D 正确;由作图可知,CD CP PD ==∴PCD ∆是等边三角形,∴60CPD ∠=︒∵OP 垂直平分线段CD∴30CPQ ∠=︒∴CP =2QC故选项B 正确,不符合题意;由作图可知,,OC OD PC PD ==,不能确定四边形OCPD 是菱形,故选项A 符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.2、A【解析】【分析】根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.【详解】解:∵点E为AC的中点,∴AE=CE,∵BD=CD,∴DE=1AB,2∵△ABC的周长为20,即AB+BC+AC=20cm,∴△CDE的周长=DE+CD+CE=1(AB+BC+AC)=10cm,2故选:A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.3、B【解析】【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是16,故A错误,不符合题意;B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则AC⊥BD 的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.4、A【解析】【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【详解】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD,又∵E是边AD的中点,∴OE=12AD=12×13=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故选:A.【点睛】本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.5、C【解析】【分析】根据矩形、菱形、正方形的判定逐个判断即可.【详解】解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC =BD ,∴四边形ABCD 是矩形,故本选项符合题意;D 、∵四边形ABCD 是平行四边形,又∵∠ABC =90°,∴四边形ABCD 是矩形,故本选不项符合题意;故选:C .【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中.6、C【解析】【分析】由菱形对角线互相垂直且平分的性质、结合勾股定理解得4OA =,继而解得AC 的长,最后根据菱形的面积公式解题.【详解】解:如图,6BD =,菱形的周长为20,5AB ∴=,四边形ABCD 是菱形,132OB DB ∴==,OA OC =,AC BD ⊥,由勾股定理得4OA =,则8AC =, 所以菱形的面积11682422AC BD =⋅=⨯⨯=. 故选:C .【点睛】本题考查菱形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.7、B【解析】【分析】根据菱形的性质可证出ΔΔCFO AEO ≅,可将阴影部分面积转化为BOC ∆的面积,根据菱形的面积公式计算即可.【详解】 解:四边形ADCB 为菱形, OC OA ∴=,//AB CD ,FCO OAE ∠=∠,FOC AOE ∠=∠,()CFO AEO ASA ≅,∴CFO AOE S S =,∴CFO BOF BOC S S S +=, ∴1111··6864242BOC S AC BD =⨯=⨯⨯⨯= 故选:B .【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为BOC ∆的面积为解题关键.8、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.9、A【解析】【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE +∠DCH =90°,∴∠CDF +∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE === ∴GH故选A .【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.10、B【解析】【分析】根据菱形的面积公式求解即可.【详解】×10×8=40.解:这个菱形的面积=12故选:B.【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.二、填空题1、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∴CEF ∠=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键. 2、18°##18度【解析】【分析】由“SAS ”可证△DCE ≌△BCE ,可得∠CED =∠CEB =12∠BED =63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD 是正方形,∴AD =CD =BC =AB ,∠DAE =∠BAE =∠DCA =∠BCA =45°,在△DCE 和△BCE 中,CD BC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△DCE ≌△BCE (SAS ),∴∠CED =∠CEB =12∠BED =63°,∵∠CED =∠CAD +∠ADE ,∴∠ADE =63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE ≌△BCE 是本题的关键.3、①②④【解析】【分析】如图,矩形ABCD ,O 为对角线的交点,由中心对称性证明:,OE OF = 所以当OG OH =时,四边形EGFH 是平行四边形,当OE OG OF OH 时,四边形EGFH 是矩形,当,,OG OH EF AC 四边形EGFH 是菱形,再利用正方形的性质求解,AG 从而可得答案.【详解】解:如图,矩形ABCD ,O 为对角线的交点,由中心对称性可得:,OE OF =所以当OG OH =时,四边形EGFH 是平行四边形,所以AC 上存在无数组G 、H ,使得四边形EGFH 是平行四边形;故①符合题意;当OE OG OF OH 时,四边形EGFH 是矩形,而OE 不是定值,所以在AC 上存在无数组G 、H ,使得四边形EGFH 是矩形;故②符合题意;当,,OG OH EF AC四边形EGFH 是菱形,而AC 位置确定,所以EF 唯一,所以在AC 上不存在无数组G 、H ,使得四边形EGFH 是菱形,故③不符合题意;如图,当四边形EGFH 是正方形时,,,,EG GF FH EH OE OF OG OH EF GH,FA FC由矩形ABCD 可得:90,6,8,,ABC AB DC AD BC OA OC 226810,,5,ACAG CH OA OC 2226+8,AF AF 25,4AF 2225155,44OF OG 1555,44AG 所以当AG =54时,存在E 、F 、G ,H ,使得四边形EGFH 是正方形,故④符合题意; 故答案为:①②④【点睛】本题考查的是平行四边形的判定与性质,矩形的判定与性质,菱形的判定,正方形的性质,掌握“特殊四边形的判定与性质”是解本题的关键.4、(0,-5)【解析】【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,5OC,=∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.5、5【解析】【分析】由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.【详解】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∵∠AOD=120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.三、解答题1、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.【详解】解:先作m的垂直平分线,取m的一半为AB,以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,过A作BC的平行线,与过C作AB的平行线交于D,则四边形ABCD为所求作矩形;∵AD∥BC,CD∥AB,∴四边形ABCD为平行四边形,∵BC⊥AB,∴∠ABC=90°,∴四边形ABCD为矩形,∵AB=12m,AC=m,∴矩形的宽与对角线满足条件,∴四边形ABCD为所求作矩形.【点睛】本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.2、 (1)见解析;(2)见解析【解析】【分析】(1)根据四边形ABCD 为平行四边形形,可得//AD BC ,所以FAC ECA ∠=∠,∠=∠AFE CEF ,再根据O 是对角线AC 的中点,可得OA OC =,进而证明AOF COE ∆≅∆;(2)根据矩形的判定可得出答案.(1) 解:证明:四边形ABCD 为平行四边形,//AD BC ∴,FAC ECA ∴∠=∠,∠=∠AFE CEF , O 是对角线AC 的中点,OA OC ∴=,在AOF ∆和COE ∆中,FAC ECA AFE CEF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOF COE AAS ∴∆≅∆;(2)解:证明:OAF OFA ∠=∠,OA OF ∴=,AOF COE ∆≅∆,OE OF ∴=,OA OC =,∴四边形AECF 为平行四边形,AC EF =,∴四边形AECF 为矩形.【点睛】本题考查了矩形的性质、全等三角形的判定与性质,解题的关键是综合运用三角形和四边形的知识.3、 (1)证明见解析 (2)275cm 4【解析】【分析】(1)先根据折叠的性质可得EAC DAC ∠=∠,再根据矩形的性质、平行线的性质可得DAC ACB ∠=∠,从而可得EAC ACB ∠=∠,然后根据等腰三角形的判定即可得证;(2)设cm AE EC x ==,从而可得(8)cm BE x =-,先在Rt ABE △中,利用勾股定理可得x 的值,再利用三角形的面积公式即可得.(1)证明:由折叠的性质得:EAC DAC ∠=∠,四边形ABCD 是长方形,AD BC ∴,DAC ACB ∴∠=∠,EAC ACB ∴∠=∠,AE EC ∴=.(2) 解:四边形ABCD 是长方形,90B ∴∠=︒,设cm AE EC x ==,则(8)cm BE BC EC x =-=-,在Rt ABE △中,222AB BE AE +=,即2226(8)x x +-=, 解得254x =,即25cm 4EC =, 则阴影部分的面积为21125756(cm )2244EC AB ⋅=⨯⨯=. 【点睛】本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.4、见解析【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得DE =12AB ,再求出DE =CD ,然后根据等腰三角形三线合一的性质证明即可.【详解】证明: 在△ACB 中,CE 是中线,∴点E 为AB 边的中点∵AD 是BC 边上的高, ∴△ADB 是直角三角形∴DE =12AB ,∵CD =12AB ,∴DC =DE ,∵F 是CE 中点,∴DF ⊥CE .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.5、 (1)见解析(2)AE 2+ GF 2=EG 2,证明见解析【解析】【分析】(1)根据“SAS ”证明△ADE ≌△CDE 即可;(2)连接CG ,可得CG =GF =GH =12FH ,再证明∠ECG =90°,然后在Rt △CEG 中,可得CE 2+CG 2=EG 2,进而可得线段AE ,EG 和GF 之间的数量关系.(1)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠ADE =∠CDE ,在△ADE 和△CDE 中AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△CDE ,∴AE =CE ;(2)AE 2+ GF 2=EG 2,理由:连接CG∵△ADE ≌△CDE ,∴∠1=∠2.∵G为FH的中点,FH,∴CG=GF=GH=12∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,在Rt△CEG中,CE2+CG2=EG2,∴AE2+ GF2=EG2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.。
鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形ABCD的边长为8,对角线AC、BD相交于点G.K为AC上的一点,且⊥于点E,交BD于点F,则AF的长为CK=BK并延长交CD于点H.过点A作AE BH()A.B.4C.D.AB=,如果将该矩形沿对角线BD折叠,那么图中阴影部分BED的面积2、如图,矩形ABCD中,6是22.5,则BC=()A.8 B.10 C.12 D.143、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),则下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.②③B.①②③C.②④D.①②④4、如图,在Rt△ABC中,∠ACB=90°,如果D为边AB上的中点,那么下面结论错误的是()A.12CD AB=B.12CB AB=C.∠A=∠ACD D.∠ADC=2∠B5、如图,在矩形纸片ABCD中,AB=6,BC=8,点M为AB上一点,将△BCM沿CM翻折至△ECM,ME与AD相交于点G,CE与AD相交于点F,且AG=GE,则BM的长度是()A .185B .4C .245D .56、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )A .菱形B .矩形C .正方形D .三角形7、已知菱形ABCD 的对角线交于原点O ,点A 的坐标为()-,点B 的坐标为(1,-,则点D 的坐标是( )A .(B .()1-C .()-D .(2, 8、陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是( )A .B .C .D .9、如图,在正方形ABCD 中,4AB =,点E 在对角线AC 上,若5ABE S =△,则CDE 的面积为( )A.3 B.4 C.5 D.610、在菱形ABCD中,对角线AC,BD相交于点O,如果AC=6,BD=8,那么菱形ABCD的面积是()A.6 B.12 C.24 D.48第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形ABCD中,AB E,F分别为边AB,BC的中点,连接AF,DE,点N,M分别为AF,DE的中点,连接MN.则MN的长为_________.2、如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为___km.3、如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=6,则GH的长为_________.4、菱形的判定:(1)有一组邻边____________的平行四边形叫做菱形.几何语言描述:∵四边形ABCD是平行四边形,AB=____________,∴四边形ABCD是菱形.(2)对角线互相____________的平行四边形是菱形几何语言描述:∵在平行四边形ABCD中,AC⊥____________,∴ 平行四边形ABCD是菱形.(3)四条边都____________的四边形是菱形.几何语言描述:∵在四边形ABCD 中,AB =BC =CD =____________,∴ 平行四边形ABCD 是菱形.5、将两个直角三角板如图放置,其中AB =AC ,∠BAC =∠ECD =90°,∠D =60°.如果点A 是DE 的中点,CE 与AB 交于点F ,则∠BFC 的度数为 _____°.三、解答题(5小题,每小题10分,共计50分)1、如图,直线12l l ∥,线段AD 分别与直线1l 、2l 交于点C 、点B ,满足AB CD .(1)使用尺规完成基本作图:作线段BC 的垂直平分线交1l 于点E ,交2l 于点F ,交线段BC 于点O ,连接ED 、DF 、FA 、AE .(保留作图痕迹,不写做法,不下结论)(2)求证:四边形AEDF 为菱形.(请补全下面的证明过程)证明:12l l ∥1∴∠=____①____ EF 垂直平分BCOB OC ∴=,90EOC FOB ︒∠=∠=∴____②____FOB ∆≌OE ∴=____③____AB CD =OB AB OC DC +=+∴OA OD ∴=∴四边形AEDF 是___④_____EF AD ⊥∴四边形AEDF 是菱形(______⑤__________)(填推理的依据).2、如图,已知菱形ABCD 中,分别以C 、D 为圆心,大于12CD 的长为半径作弧,两弧分别相交于M 、N 两点,直线MN 交CD 于点F ,交对角线AC 于点E ,连接BE 、DE .(1)求证:BE =CE ;(2)若∠ABC =72°,求∠ABE 的度数.3、已知:如图,在▱ABCD 中,AE ⊥BC ,CF AD ⊥,点E ,F 分别为垂足.(1)求证:△ABE ≌△CDF ;(2)求证:四边形AECF 是矩形.4、如图,在平行四边形ABCD 中,E 、F 分别是边AB 、DC 上的点,且AE CF =,90DEB ∠=︒,求证:四边形DEBF 是矩形5、如图,长方形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且G 点在长方形ABCD 内部,延长BG 交DC 于点F .(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB 的值.-参考答案-一、单选题1、C【解析】【分析】根据正方形的性质以及已知条件求得OK 的长,进而证明AOF ≌BOK ,即可求得OF OK =,勾股定理即可求得AF 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是正方形AC BD ∴⊥,AC BD =,11,22AO AC BO BD ==∴AC ==,12OC AC == 90AOE BOK ∴∠=∠=︒,2390∠+∠=︒,AO BO =CK =OK OC CK ∴=-=AE BH ⊥∴1290∠+∠=︒13∠∠∴=在AOF 与BOK 中13AO BOAOF BOK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOF ≌BOKOF OK ∴==在Rt AOF中,AF ===故选C【点睛】本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.2、C【解析】【分析】根据折叠和矩形的性质,可得∠DBE =∠CBD ,AD ∥BC ,AD =BC ,AB ⊥AD ,从而得到∠BDE =∠DBE ,进而得到BE =DE ,再由BED 的面积是22.5,可得152BE =,然后根据勾股定理,即可求解. 【详解】解:根据题意得: ∠DBE =∠CBD ,AD ∥BC ,AD =BC ,AB ⊥AD ,∴∠BDE =∠CBD ,∴∠BDE =∠DBE ,∴BE =DE ,∵BED 的面积是22.5,6AB =,∴122.52AB DE ⨯= ,解得:152DE = , ∴152BE =,在Rt ABE△中,由勾股定理得:92AE===,∴9151222BC AD AE BE==+=+=.故选:C【点睛】本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.3、B【解析】【分析】根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】如图所示,∵△ABC是直角三角形,∴根据勾股定理:22249x y AB+==,故①正确;由图可知2x y CE-==,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯⨯+=, 即2449xy +=,故③正确;由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误;故正确的是①②③.故答案选B .【点睛】本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.4、B【解析】【分析】根据直角三角形斜边上的中线的性质结合等腰三角形的性质及含30 角的直角三角形的性质,三角形外角的性质判定即可求解.【详解】解:在Rt ABC 中,90ACB ∠=︒,D 为边AB 上的中点,12AD BD CD AB ∴===,故A 选项正确,不符合题意;A ACD∴∠=∠,故C选项正确,不符合题意;DCB B∠=∠,2ADC DCB B B∴∠=∠+∠=∠,故D选项正确,不符合题意;只有当30A∠=︒时,12CB AB=,故B选项错误,符合题意.故选:B.【点睛】本题主要考查直角三角形斜边上的中线,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.5、C【解析】【分析】由ASA证明△GAM≌△GEF(ASA),得出GM=GF,AF=ME=BM=x,EF=AM=6-x,因此DF=8-x,CF=x+2,在Rt△DFC中,由勾股定理得出方程,解方程即可.【详解】解:设BM=x,由折叠的性质得:∠E=∠B=90°=∠A,在△GAM和△GEF中,A EAG GEAGM EGF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△GAM≌△GEF(ASA),∴GM=GF,∴AF=ME=BM=x,EF=AM=6-x,∴DF=8-x,CF=8-(6-x)=x+2,在Rt△DFC中,由勾股定理得:(x+2)2=(8-x)2+62,解得:x=245,∴BM=245.故选:C.【点睛】本题考查了矩形的性质,折叠有性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和全等三角形的判定与性质,由勾股定理得出方程是解决问题的关键.6、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH BD FG,EF AC HG,11,22FG BD EF AC==,∴四边形EFGH是平行四边形,∵AC BD⊥,∴EF FG⊥,∴平行四边形EFGH是矩形,又AC与BD不一定相等,EF∴与FG不一定相等,∴矩形EFGH不一定是正方形,【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.7、A【解析】【分析】根据菱形是中心对称图形,菱形ABCD的对角线交于原点O,则点D与点B关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:∵菱形是中心对称图形,菱形ABCD的对角线交于原点O,∴D与点B关于原点中心对称,点B的坐标为(1,-,∴点D的坐标是(故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键.8、C【分析】根据矩形的判定定理判断即可.【详解】∵A满足的条件是有一个角是直角的平行四边形是矩形,∴A合格,不符合题意;∵B满足的条件是三个角是直角的四边形是矩形,∴B合格,不符合题意;∵C满足的条件是有一个角是直角的四边形,∴无法判定,C不合格,符合题意;∵D满足的条件是有一个角是直角的平行四边形是矩形,∴D合格,不符合题意;故选C.【点睛】本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.9、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCD,∴AB=AD,∠BAC=DAC,∵AE =AE ,∴△ABE ≌△ADE ,∴ABE ADE S S =△△=5,同理△CBE ≌△CDE ,∴CBE CDE S S =,∵5ABE S =△, ∴CDE 的面积为:44252⨯-⨯ =3, 故选A .【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.10、C【解析】【分析】利用菱形的面积公式即可求解.【详解】解:菱形ABCD 的面积=2AC BD ⨯=682⨯=24, 故选:C .【点睛】本题考查菱形的面积公式,菱形的面积等于对角线乘积的一半.二、填空题1、1【解析】【分析】连接AM ,延长AM 交CD 于G ,连接FG ,由正方形ABCD 推出AB =CD =BCAB ∥CD ,∠C =90°,证得△AEM ≌GDM ,得到AM =MG ,AE =DG =12AB ,根据三角形中位线定理得到MN =12FG ,由勾股定理求出FG 即可得到MN .【详解】解:连接AM ,延长AM 交CD 于G ,连接FG ,∵四边形ABCD 是正方形,∴AB =CD =BCAB ∥CD ,∠C =90°,∴∠AEM =∠GDM ,∠EAM =∠DGM ,∵M 为DE 的中点,∴ME =MD ,在△AEM 和GDM 中,EAM DGM AEM GDM ME MD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEM ≌△GDM (AAS ),∴AM =MG ,AE =DG =12AB =12CD , ∴CG =12CD∵点N 为AF 的中点,∴MN =12FG , ∵F 为BC 的中点,∴CF =12BC∴FG ,∴MN =1,故答案为:1.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,勾股定理,三角形的中位线定理,正确作出辅助线且证出AM =MG 是解决问题的关键.2、1.2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CM =AM =BM 解答即可.【详解】解:∵M 是公路AB 的中点,∴AM =BM ,∵AC ⊥BC ,∴CM =AM =BM ,∵AM 的长为1.2km ,∴M ,C 两点间的距离为1.2km .故答案为:1.2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.3、6【解析】【分析】由矩形的性质及直角三角形斜边上的中线的性质可求解BE=2AF=12,再利用三角形中位线定理可求解.【详解】解:在矩形ABCD中,∠BAD=90°,∵F为BE的中点,AF=6,∴BE=2AF=12.∵G,H分别为BC,EC的中点,BE=6,∴GH=12故答案为6.【点睛】根据直角三角形斜边上的中线等于斜边的一半,求解BE的长是解题的关键.再根据中位线定理求出GH.4、相等AD垂直BD相等AD【解析】略5、120【解析】【分析】DE,由∠D=60°,得到△ACD是等先根据直角三角形斜边上的中线等于斜边的一半得出AC=AD=AE=12边三角形,那么∠ACD=60°,∠ACF=30°,再由三角形的外角性质可求出∠BFC的度数.【详解】解:∵∠DCE=90°,点A是DE的中点,DE,∴AC=AD=AE=12∵∠D=60°,∴△ACD是等边三角形,∴∠ACD=60°,∴∠ACF=∠DCE-∠ACD=30°,∵∠FAC=90°,∴∠BFC=∠FAC+∠ACF=90°+30°=120°故答案为:120【点睛】本题主要考查了直角三角形的性质,等边三角形的判定与性质,三角形外角和定理等知识,求出∠ACF=30°是解题的关键.三、解答题1、 (1)见解析∆;③OF;④平行四边形;⑤对角线互相垂直的平行四边形是菱形(2)①2∠;②EOC【解析】【分析】(1)分别以A、D为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1于E,交l2于F,直线EF为线段AD的垂直平分线,连接ED、DF、FA、AE即可;(2):根据12l l ∥,内错角相等得出1∠=∠2①,根据EF 垂直平分BC ,得出OB OC =,90EOC FOB ︒∠=∠=,可证②△EOC FOB ∆≌,根据全等三角形性质得出OE =OF ③,再证OA OD =,根据对角线互相平分的四边形是平行四边形判定四边形AEDF 是平行四边形④,根据对角线互相垂直EF AD ⊥即可得出四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤). (1)解:分别以A 、D 为圆心,大于AD 的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l 1于E ,交l 2于F ,直线EF 为线段AD 的垂直平分线,连接ED 、DF 、FA 、AE 即可;如图所示(2)证明:12l l ∥,1∴∠=∠2①, EF 垂直平分BC ,OB OC ∴=,90EOC FOB ︒∠=∠=,∴②△EOC FOB ∆≌,OE ∴=OF ③,AB CD =,OB AB OC DC +=+∴,OA OD ∴=,∴四边形AEDF 是平行四边形④,∴四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①2∠;②EOC ∆;③OF ;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.2、 (1)见解析(2)∠ABE =18°【解析】【分析】(1)根据四边形ABCD 是菱形,得出CB =CD ,∠ACB =∠ACD ,再证△ECB ≌△ECD (SAS ),得出BE =DE ,根据MN 垂直平分线段CD ,得出EC =ED 即可;(2)根据等腰三角形内角和可求∠BAC =∠BCA =12(180°﹣72°)=54°,根据EB =EC ,求出∠EBC =∠ECB =54°即可.(1)证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ACB =∠ACD ,在△ECB 和△ECD 中,CE CE ECB ECD CB CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ECB ≌△ECD (SAS ),∴BE =DE ,由作图可知,MN 垂直平分线段CD ,∴BE =CE .(2)解:∵BA =BC ,∠ABC =72°,∴∠BAC =∠BCA =12(180°﹣72°)=54°,∵EB =EC ,∴∠EBC =∠ECB =54°,∴∠ABE =∠ABC ﹣∠EBC =18°.【点睛】本题考查菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,等腰三角形的性质,三角形内角和定理,正确理解题意是解题关键.3、 (1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行四边形的性质可得,AB CD B D =∠=∠,再根据垂直的定义可得90AEB CFD ∠=∠=︒,然后根据三角形全等的判定定理(AAS 定理)即可得证;(2)先根据平行四边形的性质可得AD BC ∥,再根据平行线的性质可得90EAF ∠=︒,然后根据矩形的判定即可得证.(1) 证明:四边形ABCD 是平行四边形,,AB CD B D ∴=∠=∠,,AE BC CF AD ⊥⊥,90AEB CFD ∴∠=∠=︒,在ABE △和CDF 中,90B D AEB CFD AB CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABE CDF AAS ∴≅.(2)证明:,AE BC CF AD ⊥⊥,90AEC AFC ∴∠=∠=︒,四边形ABCD 是平行四边形,AD BC ∴,18090EAF AEC ∴∠=︒-∠=︒,∴在四边形AECF 中,90AEC AFC EAF ∠=∠=∠=︒,∴四边形AECF 是矩形.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.4、证明见解析【解析】【分析】平行四边形ABCD ,可知AB CD AB CD =,;由于AE CF = ,可得BE DF =,BE DF ,知四边形DEBF 为平行四边形,由90DEB ∠=︒可知四边形DEBF 是矩形.【详解】证明:∵四边形 ABCD 是平行四边形∴AB CD AB CD =,∵AE CF BE AB AE DF DC CF ==-=-,,∴BE DF =∵BE DF BE DF =,∴四边形DEBF 为平行四边形又∵90DEB ∠=︒∴四边形DEBF 是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.5、 (1)见解析(2) (3)224AD AB n= 【解析】【分析】(1)由折叠得AE GE =,由中点得AE DE =,由此得到结论;(2)连接EF ,依据DF 2CF =,求出DF 、CF ,根据长方形的性质得到9AB DC ==,由△ABE ≌△GBE ,得到9BG AB ==, 证明Rt △EGF ≌Rt △EDF (HL ),得到6GF DF ==.由勾股定理求出BC 即可得到AD ;(3)设DF a =,则AB DC n DF na ==⋅=,得到()1BF BG GF na a n a =+=+=+,由勾股定理求出2BC ,再求出2224AD BC na ==,即可得到答案.(1)证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC∴AD BC ===.(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n ==. 【点睛】此题考查了矩形与折叠,全等三角形的判定及性质,勾股定理求线段长,解题的关键是掌握各知识点,考查分析问题能力及推理论证能力.。
第六章特殊平行四边形单元测试卷一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是( )A.12B.9C.6D.32.下列命题为真命题的是( )A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形3.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的( )A. B. C. D.5.如图,已知正方形ABCD的对角线长为,将正方形ABCD沿直线EF 折叠,则图中阴影部分的周长为( )A.2B.4C.8D.66.已知四边形ABCD是平行四边形,下列结论中错误的有( )①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.1个B.2个C.3个D.4个7.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16B.17C.18D.198.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是( )A.(4,5)B.(5,3)C.(5,4)D.(4,3)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AEB.△ABE≌△AGFC.BE=DFD.BE=EF10.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为___________时,两条对角线长度相等.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为___________.13.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=___________.14.如图是根据四边形的不稳定性制作的边长为15 cm的可活动菱形衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=___________.15.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为___________.16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD 于点E,则DE= .17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.18.如图,在边长为2的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,……,按此规律所作的第n个菱形的边长是.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.求证:BD=CE.20.如图所示,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB 于点H,连接OH.求证:∠DHO=∠DCO.21.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.22.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.23.如图所示,把一张矩形纸片ABCD沿对角线BD折叠,使点C落在点E 处,BE与AD交于点F.(1)线段BF与DF相等吗?请说明理由.(2)若将折叠的图形恢复原状,点F与BC边上的点G正好重合,连接DG,试判断四边形BGDF的形状,并说明理由.(3)若AB=4,AD=8,在(2)的条件下,求线段DG的长.24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并加以证明.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE__________是菱形(填“可能”或“不可能”).请说明理由.参考答案一、1.【答案】D 2.【答案】A3.【答案】D解:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.【答案】B5.【答案】B6.【答案】A解:①当AB=BC时,它是菱形,正确;②当AC⊥BD时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD时,它是矩形,因此④是错误的.7.【答案】B 8.【答案】C 9.【答案】D10.【答案】D解:∵四边形ABCD是正方形,∴∠PAE=∠MAE=45°.∵PM⊥AC,∴∠PEA=∠MEA.又∵AE=AE,∴根据“ASA”可得△APE≌△AME.故①正确;由①得PE=ME,∴PM=2PE.同理PN=2PF,又易知PF=BF,四边形PEOF是矩形,∴PN=2BF,PM=2FO.∴PM+PN=2FO+2BF=2BO=BD.故②正确;在Rt△PFO中,∵FO2+PF2=PO2,而PE=FO,∴PE2+PF2=PO2.故③正确.二、11.【答案】90°解:对角线相等的平行四边形是矩形.12.【答案】12解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24.∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.13.【答案】22.5°解:如图,由四边形ABCD是正方形,可知∠BAD=∠D=90°,∠CAD=∠BAD=45°.由FE⊥AC,可知∠AEF=90°.在Rt△AEF与Rt△ADF中, AE=AD,AF=AF,∴Rt△AEF≌Rt△ADF(HL). ∴∠FAD=∠FAE=∠CAD=×45°=22.5°.14.【答案】120°15.【答案】4.8 16.【答案】-117.【答案】20解:点N是BC的中点,点E,F分别是BM,CM的中点,由三角形的中位线定理可证EN∥MC,NF∥ME,EN=MC,FN=MB.又易知MB=MC,所以四边形ENFM是菱形.由点M是AD的中点,AD=12得AM=6.在Rt△ABM中,由勾股定理得BM=10.因为点E是BM的中点,所以EM=5,所以四边形ENFM 的周长为20.18.【答案】(2)n-1三、19.证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD.又∵BE=AB,∴BE=CD.∴四边形BECD是平行四边形.∴BD=CE.20.证明:∵四边形ABCD是菱形,∴AB∥CD,OD=OB,AC⊥BD.∵DH⊥AB,∴∠AHD=∠BHD=90°.∴∠BDH+∠ODC=90°.∵∠DCO+∠ODC=90°,∴∠BDH=∠DCO.在Rt△BHD中,OB=OD,∴OH=OD.∴∠DHO=∠BDH.∴∠DHO=∠DCO.21.(1)证明:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形.∵四边形ABCD为矩形,∴OD=OC.∴四边形OCED为菱形.(2)解:∵四边形ABCD为矩形,∴BO=DO=BD.∴S△OCD=S△OCB=S△ABC=××3×4=3.∴S菱形OCED=2S△OCD=6.22.(1)证明:在△BCE与△DCF中,∴△BCE≌△DCF.(2)解:∵△BCE≌△DCF,∴∠EBC=∠FDC=30°.∵∠BCD=90°,∴∠BEC=60°.∵EC=FC,∴∠CEF=45°.∴∠BEF=105°.23.解:(1)相等.理由:∵在△ABF和△EDF中,∠A=∠E=∠C=90°,∠AFB=∠EFD,AB=ED=CD,∴△ABF≌△EDF.∴BF=DF.(2)四边形BGDF是菱形.理由:由四边形ABCD是矩形,易得AD∥BC,则BG∥DF.∵△BCD沿BD折叠之后得到△BED,∴BC=BE.而恢复原状后,点F与点G重合,则BG=BF,而由(1)得BF=DF,∴BG=DF.∴四边形BGDF为平行四边形.又∵BF=DF,∴四边形BGDF为菱形.(3)由(2)知DG=BG,∴CG=8-DG.又∵CD2+GC2=DG2,即42+(8-DG)2=DG2,解得DG=5.24.解:(1)OE=OF.证明如下:∵CE是∠ACB的平分线,∴∠ACE=∠BCE.又∵MN∥BC,∴∠NEC=∠ECB.∴∠NEC=∠ACE.∴OE=OC.∵CF是∠ACD的平分线,∴∠OCF=∠FCD.又∵MN∥BC,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角时,四边形AECF 是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF.∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°时,∠AOE=90°,∴AC⊥EF.∴四边形AECF是正方形.(3)不可能.理由如下:连接BF,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°.若四边形BCFE是菱形,则BF⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE不可能为菱形.。
鲁教版(五四制)八年级数学下册第六章特殊平行四边形定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明想判断家里的门框是否为矩形,他应该()A.测量三个角是否都是直角B.测量对角线是否互相平分C.测量两组对边是否分别相等D.测量一组对角是否是直角2、一块含45°角的直角三角板和一把直尺按如图所示方式放置,直尺的一边EF与直角三角板的斜边AB位于同一直线上,DE>AB.开始时,点E与点A重合,直角三角板固定不动,然后将直尺沿AB 方向平移,直到点F与点B重合时停止.设直尺平移的距离AE的长为x,边AC和BC被直尺覆盖部分的总长度为y,则y关于x的函数图象大致是()A.B.C.D.3、已知菱形ABCD,对角线AC=6,BD=8,则菱形ABCD的面积为()A.48 B.36 C.25 D.24AB=,如果将该矩形沿对角线BD折叠,那么图中阴影部分BED的面积4、如图,矩形ABCD中,6是22.5,则BC=()A.8 B.10 C.12 D.145、如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为()A.1 B.2 C D.6、如图,O是矩形ABCD的对角线的交点,M是AD的中点.若BC=8,OB=5,则OM的长为()A .2B .2.5C .3D .47、在Rt ABC 中,90ACB ∠=︒,分别以A 点,B 点为圆心以大于12AB 为半径画弧,两弧交于E ,F ,连接EF 交AB 于点D ,连接CD ,以C 为圆心,CD 长为半径作弧,交AC 于G 点,则:CG AB =( )A .B .1:2C .D .8、下列命题中是真命题的选项是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相垂直且相等的四边形是正方形C .对角线相等的平行四边形是矩形D .三条边都相等的四边形是菱形9、已知菱形ABCD 的对角线交于原点O ,点A 的坐标为()-,点B 的坐标为(1,-,则点D 的坐标是( )A .(B .()1-C .()-D .(2, 10、下列说法不正确的是( )A .矩形的对角线相等B .直角三角形斜边上的中线等于斜边的一半C .对角线互相垂直且相等的四边形是正方形D .菱形的对角线互相垂直第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)它具有平行四边形的一切性质:两组对边分别平行且相等,两组对角________,对角线________.(2)具有矩形的一切性质:四个角都是________,对角线相等.(3)具有菱形的一切性质:四条边相等;对角线互相________,每条对角线________一组对角.2、如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=6,则GH的长为_________.3、(1)有一个角是直角的_______是矩形.几何语言:∵四边形ABCD是平行四边形,∠A=90°,∴四边形ABCD是矩形.(2)_______相等的平行四边形是矩形.几何语言:∵ 四边形ABCD是平行四边形,AC=BD(或OA=OC=OB=OD),∴四边形ABCD是矩形.(3)有三个角是_______的四边形是矩形.几何语言:∵ ∠A=∠B=∠C=90°,∴四边形ABCD是矩形.4、(1)定义法:有一组邻边________并且有一个角是________的平行四边形是正方形.(2)矩形法:一组邻边相等的________是正方形(3)菱形法:一个角为直角的________是正方形5、如图,在矩形ABCD中,DE⊥CE,AE<BE,AD=4,AB=10,则DE长为________.三、解答题(5小题,每小题10分,共计50分)A,C,B两点分别是x,y轴正半轴上的动点,且满足1、如图,在平面直角坐标系中,已知点(4,4)BAC∠=︒.90(1)写出BOA∠的度数;+的值;(2)求BO OC(3)若BP 平分OBC ∠,交OA 于点P ,PN y ⊥轴于点N ,AQ 平分BAC ∠,交BC 于点Q ,随着C ,B 位置的变化,NP AQ +的值是否会发生变化?若不变,求其值;若变化,说明理由.2、如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,已知A (m ,0),B (0,n ),且m 、n 满足281620n n n m -++-=.(1)求A 、B 两点的坐标;(2)如图2,若点C 在第一象限,∠ACB =90°,AC =BC ,点D 为边AB 中点,以点D 为顶点的直角∠EDF 两边分别交边BC 于E ,交边AC 于F ,求四边形EDFC 的面积;(3)如图3,若点C 在y 轴的正半轴上,H 是第一象限内的一点,且H 点的横、纵坐标始终相等,点P (x ,24x -+)为直线AB 上一点,∠HCP =90°,HC =CP ,当点P 在x 轴下方时,求出点P 的坐标.3、如图,在菱形ABCD 中,点E 、F 分别是边CD 、BC 的中点(1)求证:四边形BDEG 是平行四边形;(2)若菱形ABCD 的边长为13,对角线AC =24,求EG 的长.4、如图,在正方形ABCD 中,点E 、F 分别在线段BC 、CD 上,连接AE 、AF ,且BE =DF .求证:AE =AF .5、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH 的中点.(1)求证:AE=CE;(2)猜想线段AE,EG和GF之间的数量关系,并证明.-参考答案-一、单选题1、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,选项A符合题意;B 、对角线互相平分的四边形是平行四边形,∴选项B 不符合题意,C 、两组对边分别相等的四边形是平行四边形,∴选项C 不符合题意;D 、一组对角是直角的四边形不是矩形,∴选项D 不符合题意;故选:A .【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.2、A【解析】【分析】根据直尺的平移可知,共分三个阶段,利用等腰直角三角形的性质求解即可.【详解】解:根据直尺的平移可知,共分三个阶段,分别如下图所示:如图①,设DE 、GF 与AC 的交点分别为M 、P ,作MN GF ⊥,由此可得四边形MNFE 为矩形,则MN EF =,45CMN A ∠=∠=︒,则MNP △为等腰直角三角形由勾股定理可得:MP =即y ==,如图②,设DE 与AC 的交点分别为M ,GF 与BC 的交点为点Q ,作MN GF ⊥,延长MC 交GF 于点P ,由此可得,四边形MNFE 为矩形,则MN EF =,45CMN A ∠=∠=︒,则MNP △、CPQ 为等腰直角三角形,则CP CQ =,MP ==所以,y MC CQ MP =+===如图③,由图①可得y ==,即y 不随x 的变化,不变,故选:A .【点睛】此题考查了动点问题的函数图像,涉及了勾股定理、矩形的判定与性质,等腰直角三角形的判定与性质,解题的关键是熟练掌握并灵活运用相关性质进行求解.3、D【解析】【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:∵菱形ABCD的对角线AC=8,BD=6,∴菱形的面积S=12AC•BD=12×8×6=24.故选:D.【点睛】本题考查了菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.4、C【解析】【分析】根据折叠和矩形的性质,可得∠DBE=∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由BED的面积是22.5,可得152BE=,然后根据勾股定理,即可求解.【详解】解:根据题意得:∠DBE=∠CBD,AD∥BC,AD=BC,AB⊥AD,∴∠BDE=∠CBD,∴∠BDE=∠DBE,∴BE=DE,∵BED的面积是22.5,6AB=,∴122.52AB DE⨯=,解得:152DE=,∴152 BE=,在Rt ABE△中,由勾股定理得:92AE===,∴9151222BC AD AE BE ==+=+= . 故选:C【点睛】本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.5、C【解析】【分析】根据正方形的性质得到AB =AD ,∠BAE =∠ADF =90°,根据全等三角形的性质得到∠ABE =∠DAF ,求得∠AOB =90°,根据三角形的面积公式得到OA =1,由勾股定理即可得到答案.【详解】解:∵四边形ABCD 是正方形,∴AB =AD ,∠BAE =∠ADF =90°,在△ABE 与△DAF 中,AB AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF (SAS ),∴∠ABE =∠DAF ,∴∠ABE +∠BAO =∠DAF +∠BAO =90°,∴∠AOB =90°,∵△ABE ≌△DAF ,∴S △ABE =S △DAF ,∴S△ABE-S△AOE=S△DAF-S△AOE,即S△ABO=S四边形OEDF=1,∵OA=1,∴BO=2,∴AB故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE≌△DAF是解题的关键.6、C【解析】【分析】首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB6=,∵M是AD的中点,7、B【解析】【分析】根据尺规作图可知EF是AB的垂直平分线,从而CD=CG=12AB,然后可求CG:AB的值.【详解】解:根据尺规作图可知EF是AB的垂直平分线,∴D是AB中点,∴CD=CG=12 AB,∴CG:AB=12AB:AB=1:2,故选B.【点睛】本题考查了尺规作图-作线段的垂直平分线,直角三角形斜边中线的性质,熟练掌握直角三角形斜边的中线的中线等于斜边的一半是解本题的关键.8、∴OM=12CD=故选:C.【点睛】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质.注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.3.C【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断后,即可确定正确的选项.【详解】解:A.一组对边平行且相等的四边形是平行四边形,原命题是假命题,不符合题意;B.对角线互相平分、垂直且相等的四边形是正方形,原命题是假命题,不符合题意;C.对角线相等的平行四边形是矩形,是真命题,符合题意;D.四条边都相等的四边形是菱形,原命题是假命题,不符合题意;故答案选:C.【点睛】考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定方法,难度不大.9、A【解析】【分析】根据菱形是中心对称图形,菱形ABCD的对角线交于原点O,则点D与点B关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:∵菱形是中心对称图形,菱形ABCD的对角线交于原点O,∴D与点B关于原点中心对称,点B的坐标为(1,-,∴点D的坐标是(故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键.10、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.二、填空题1、相等互相平分直角垂直平分【解析】略2、6【解析】【分析】由矩形的性质及直角三角形斜边上的中线的性质可求解BE=2AF=12,再利用三角形中位线定理可求解.【详解】解:在矩形ABCD中,∠BAD=90°,∵F为BE的中点,AF=6,∴BE=2AF=12.∵G,H分别为BC,EC的中点,BE=6,∴GH=12故答案为6.【点睛】根据直角三角形斜边上的中线等于斜边的一半,求解BE的长是解题的关键.再根据中位线定理求出GH.3、平行四边形对角线直角【解析】略4、相等直角矩形菱形【解析】略5、【解析】【分析】设AE=x,则BE=10﹣x,由勾股定理得AD2+AE2=DE2,BC2+BE2=CE2,DE2+CE2=CD2,则AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(舍去),则AE=2,然后由勾股定理即可求解.【详解】解:设AE=x,则BE=10﹣x,∵四边形ABCD是矩形,∴CD=AB=10,∠A=∠B=90°,∴AD 2+AE 2=DE 2,BC 2+BE 2=CE 2,∵DE ⊥CE ,∴∠DEC =90°,∴DE 2+CE 2=CD 2,∴AD 2+AE 2+BC 2+BE 2=CD 2,即42+x 2+42+(10﹣x )2=102,解得:x =2或x =8(不合题意,舍去),∴AE =2,∴DE故答案为:【点睛】本题考查了矩形的性质,勾股定理,掌握勾股定理是解题的关键.三、解答题1、 (1)45BOA ︒∠=;(2)8BO OC +=;(3)NP AQ +的值为4,不变,见解析【解析】【分析】(1)过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,由点(4,4)A ,得到OA 是BOC ∠的角平分线,由此得到45BOA ︒∠=;(2)由(1)得四边形AEOF 为正方形,证明△BAF ≌△CAE ,得到BF=CE ,根据BO OC OF OE +=+求出结果;(3)过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,延长NP 交AE 于K ,则四边形OEKN 为矩形,由OBP BOA CBP ABC ∠+∠=∠+∠推出AB=AP ,证明ΔΔAQB AKP ≅,得到AQ AK =,证明ΔAKP 是等腰直角三角形,得到AK=PK ,由此得到AQ PK =,依据NP AQ NP PK NK +=+=求出结果.(1)解:过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,如图1所示:点(4,4)A ,4AE AF ∴==,OA ∴是BOC ∠的角平分线,90BOC ∠=︒,45BOA ∴∠=︒;(2)解:由(1)得:四边形AEOF 为矩形,4AE AF ==,∴四边形AEOF 为正方形,4AE AF OE OF ∴====,90EAF ∠=︒,90BAC ∠=︒,90BAF FAC FAC CAE ∴∠+∠=∠+∠=︒,BAF CAE ∴∠=∠,AE x ⊥轴,AF y ⊥轴,90BFA CEA ∴∠=∠=︒,在ΔBAF 和CAE ∆中,BAF CAE AF AEBFA CEA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ΔΔBAF CAE ASA ∴≅,BF CE ∴=,448BO OC OF BF OC OF CE OC OF OE ∴+=++=++=+=+=;(3)解:随着C ,B 位置的变化,NP AQ +的值为4,不变,理由如下: 过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,延长NP 交AE 于K ,如图2所示: 则四边形OEKN 为矩形,90AKP ∴∠=︒,4NK OE ==,由(2)得:ΔΔBAF CAE ≅,AB AC ∴=,90BAC ∠=︒,ΔBAC ∴是等腰直角三角形,45ABC ACB ∴∠=∠=︒, BP 平分OBC ∠,OBP CBP ∴∠=∠,45BOA ABC ∠=∠=︒,OBP BOA CBP ABC ABP ∴∠+∠=∠+∠=∠, BPA OBP BOA ∠=∠+∠,BPA ABP ∴∠=∠,AB AP =∴,PN y ⊥轴,45BOA ∠=︒,ΔONP ∴是等腰直角三角形, 45NPO ∴∠=︒,45APK NPO ∴∠=∠=︒, AQ 平分BAC ∠,BAC ∆是等腰直角三角形, AQ BC ∴⊥,90AQB AKP ∴∠=∠=︒,在ΔAQB 和ΔAKP 中,45AQB AKP AB AP ABQ APK ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ΔΔAQB AKP ASA ∴≅,AQ AK ∴=,90AKP ∠=︒,45APK ∠=︒, ΔAKP ∴是等腰直角三角形, AK PK ∴=,AQ PK ∴=,4NP AQ NP PK NK ∴+=+==.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、坐标与图形性质、正方形的判定与性质、等腰直角三角形的判定与性质等知识,本题综合性强,熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.2、 (1)A (2,0),B (0,4) (2)52(3)P (4,4-)【解析】【分析】(1)将281620n n n m -++-=化简,然后根据绝对值及平方的非负性质求解即可得;(2)过点D 作DM BC ⊥,DN AC ⊥,根据平行线的判定和性质及垂线的性质可得DM AC ∥,∥DN BC ,90DMC DMB DNC DNF ∠=∠=∠=∠=︒,依据等边对等角得出45ABC BAC ∠=∠=︒,ABC ADN ∠=∠,由全等三角形的判定和性质可得DBM ADN ≅,DM AN =,根据等量代换及正方形的判定定理可得四边形DMCN 为正方形,再一次利用全等三角形的判定和性质得出DME DNF ≅,DME DNF S S =,结合图形可得DNCM DFCE S S =正方形四边形,由勾股定理及线段中点的性质可得AB =BD AD ==DN =,据此求解即可得出结果; (3)过点H 作HG y ⊥轴,过点P 作PF y ⊥轴,根据各角之间的数量关系可得PCF CHG ∠=∠,依据全等三角形的判定和性质可得CHG PCF ≅,GH CF =,CG PF =,由点(),24P x x -+,可得PF x =,24OF x =-,设()0,C a ,则CO a =,可得24GH a x =+-,OG CG OC x a =+=+,即可确定()24,H a x x a +-+,根据题意可得24x a a x +=+-,求解确定x 的值,即可得出点P 的坐标.(1) 解:281620n n n m -++-=,∴()2420n n m -+-=, ∵()240n -≥,20n m -≥,∴40n -=,20n m -=,解得:4n =,2m =,∴()2,0A ,()0,4B ;(2)解:如图所示:过点D 作DM BC ⊥,DN AC ⊥,∴DM AC ∥,∥DN BC ,90DMC DMB DNC DNF ∠=∠=∠=∠=︒,∵90ACB ∠=︒,AC BC =, ∴18090452ABC BAC ︒-︒∠=∠==︒, ∵D 为AB 中点,∴AD BD =,∵∥DN BC ,∴ABC ADN ∠=∠,在DBM 与ADN 中,90BMD DNA ABC ADN BD AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴DBM ADN ≅,∴DM AN =,∵45ADN BAC ∠=∠=︒,∴DN AN =,∴DN DM =,∵90DMC ACB DNC ∠=∠=∠=︒,∴四边形DMCN 为矩形,∵DN DM =,∴四边形DMCN 为正方形,∴90MDN ∠=︒,即90MDE EDN ∠+∠=︒,∵90FDN EDN ∠+∠=︒,∴MDE FDN ∠=∠,在DME 与DNF 中,90MDE FDN DM DN DME DNF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴DME DNF ≅,∴DME DNF S S =,∵DNF DME DNCM DFCE DECN DECN S S S S S S =+=+=正方形四边形四边形四边形,由(1)得()2,0A ,()0,4B ,∴2OA =,4OB =,∴AB∴BD AD =∴222DN AN AD +=,解得:DN =, ∴252DNCM S DN ==正方形, ∴四边形EDFC 的面积为52; (3)解:如图所示:过点H 作HG y ⊥轴,过点P 作PF y ⊥轴,则90HGC PFO ∠=∠=︒,∵90HCP ∠=︒,∴90HCG PCF ∠+∠=︒,∵90HCG CHG ∠+∠=︒,∴PCF CHG ∠=∠,在CHG 与PCF 中,CHG PCF HGC PFO CH CP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CHG PCF ≅,∴GH CF =,CG PF =,∵(),24P x x -+,∴PF x =,24OF x =-,∴CG x =,设()0,C a ,则CO a =,∴24CF a x =+-,24GH a x =+-,∴OG CG OC x a =+=+,∵H 点的横纵坐标相等,且()24,H a x x a +-+,∴24x a a x +=+-,解得:4x =,将4x =代入可得()4,4P -,∴点P 的坐标为()4,4-.【点睛】题目主要考查绝对值和平方的非负性质,一次函数,平行线的判定和性质,全等三角形的判定和性质,正方形的判定和性质,勾股定理等,理解题意,结合图象,作出相应辅助线,综合运用这些知识点是解题关键.3、 (1)证明见解析(2)10【解析】【分析】(1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;(2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.(1)证明:∵AC平分∠BAD,AB∥CD,∴∠DAC=∠BAC,∠DCA=∠BAC,∴∠DAC=∠DCA,∴AD=DC,又∵AB∥CD,AB=AD,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形.(2)解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,对角线AC=24,∴CD=13,AO=CO=12,∵点E、F分别是边CD、BC的中点,∴EF∥BD(中位线),∵AC、BD是菱形的对角线,∴AC⊥BD,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∵四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴5=,OB OD∴EG=BD=10.【点睛】本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.4、见解析.【解析】【分析】利用正方形的性质可证明△ABE ≌△ADF ,可得AE =AF .【详解】证明:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∵BE =DF ,在Rt△ABE 与Rt△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴Rt△ABE ≌Rt△ADF (SAS ),∴AE =AF .【点睛】本题考查了正方形的性质,全等三角形的性质与判定,掌握正方形的性质是解题的关键.5、 (1)见解析(2)AE 2+ GF 2=EG 2,证明见解析【解析】【分析】(1)根据“SAS ”证明△ADE ≌△CDE 即可;(2)连接CG ,可得CG =GF =GH =12FH ,再证明∠ECG =90°,然后在Rt △CEG 中,可得CE 2+CG 2=EG 2,进而可得线段AE ,EG 和GF 之间的数量关系.(1)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠ADE =∠CDE ,在△ADE 和△CDE 中AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△CDE ,∴AE =CE ;(2)AE 2+ GF 2=EG 2,理由:连接CG∵△ADE ≌△CDE ,∴∠1=∠2.∵G 为FH 的中点,∴CG =GF =GH =12FH ,∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG =90°,在Rt △CEG 中,CE 2+CG 2=EG 2,∴AE 2+ GF 2=EG 2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.。
鲁教版(五四制)八年级数学下册第六章特殊平行四边形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为()A.8 B.10 C.12 D.162、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设PA x,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当PCD和PAB△的面积相等时,y的值为()A B C D 3、在四边形ABCD 中,对角线AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是( )A .∠ABC =90°B .AC ⊥BD C .AB =CD D .AB ∥CD4、如图,点A ,B ,C 在同一直线上,且23AB AC =,点D ,E 分别是AB ,BC 的中点.分别以AB ,DE ,BC 为边,在AC 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作1S ,2S ,3S ,若1S 23S S +等于( )A B C D 5、如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BD 于点F .若AB =6,BC =8,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.46、下列说法中正确的是( )A .矩形的对角线平分每组对角;B .菱形的对角线相等且互相垂直;C .有一组邻边相等的矩形是正方形;D .对角线互相垂直的四边形是菱形.7、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数()A.80°B.90°C.100°D.110°8、下列命题中是真命题的是().A.有一组邻边相等的平行四边形是菱形B.对角线互相垂直且相等的四边形是菱形C.对角线相等的四边形是矩形D.有一个角为直角的四边形是矩形9、下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是13.B.若AC、BD为菱形ABCD的对角线,则AC BD的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.10、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是()A.∠D=90°B.AB=CD C.AD=BC D.BC=CD第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将两个直角三角板如图放置,其中AB=AC,∠BAC=∠ECD=90°,∠D=60°.如果点A是DE的中点,CE与AB交于点F,则∠BFC的度数为_____°.2、有一个角是直角的平行四边形叫做________.矩形的性质定理1:矩形的四个角都是________.矩形的性质定理2:矩形的对角线________.3、如图,在矩形ABCD 中,ABC ∠的角平分线BE 交AD 于点E ,连接EC ,EC 恰好平分BED ∠,若2AB =,则DE 的长为______.4、有一组邻边________并且有一个角是________的平行四边形叫做正方形.正方形的四条边都相等,四个角都是直角.因此,________既是矩形,又是菱形.5、长方形纸片ABCD 按图中方式折叠,其中,EF EC 为折痕,如果折叠后',',A B E 在一条直线上,那么CEF ∠的大小是________度.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD 和正方形CEFG ,点G 在CD 上,AB =5,CE =2,T 为AF 的中点,求CT 的长.2、如图,在正方形ABCD中,点E、F分别在线段BC、CD上,连接AE、AF,且BE=DF.求证:AE=AF.3、如图,在四边形ABCD中,AB=AD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.4、如图1,直线AB分别与x轴、y轴交于A、B两点,已知A(m,0),B(0,n),且m、n满足281620-++-=.n n n m(1)求A 、B 两点的坐标;(2)如图2,若点C 在第一象限,∠ACB =90°,AC =BC ,点D 为边AB 中点,以点D 为顶点的直角∠EDF 两边分别交边BC 于E ,交边AC 于F ,求四边形EDFC 的面积;(3)如图3,若点C 在y 轴的正半轴上,H 是第一象限内的一点,且H 点的横、纵坐标始终相等,点P (x ,24x -+)为直线AB 上一点,∠HCP =90°,HC =CP ,当点P 在x 轴下方时,求出点P 的坐标.5、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB =5cm ,∠BOC =120°,求矩形对角线的长.-参考答案-一、单选题1、A【解析】【分析】根据翻折的性质,可得BA ′与AP 的关系,根据线段的和差,可得A ′C ,根据勾股定理,可得A ′C ,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.2、D【解析】【分析】先结合图象分析出矩形AD和AB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.【详解】解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,当P点到达B点时,从图象看出x=3,即AB=3.当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为143=62⨯⨯,在Rt△ABP中,AP=由面积相等可知:162⨯⨯=AP y ,解得y =, 故选:D .【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.3、B【解析】略4、B【解析】【分析】设BE =x ,根据正方形的性质、平行四边形的面积公式分别表示出S 1,S 2,S 3,根据题意计算即可.【详解】 ∵23AB AC =,AC AB BC =+ ∴AB =2BC ,又∵点D ,E 分别是AB ,BC 的中点,∴设BE =x ,则EC =x ,AD =BD =2x ,∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH•AD2x•2x∴x2∵BD=2x,BE=x,∴S2=MH•BD=(3x−2x)•2x=2x2,S3=EN•BE=x•x=x2,∴S2+S3=2x2+x2=3x2故选:B.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.5、C【解析】【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【详解】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.【点睛】此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.6、C【解析】【分析】根据矩形及菱形的性质,菱形及正方形的判定定理依次判断即可得.【详解】解:A、矩形的对角线不平分每组对角,故选项错误;B、菱形的对角线互相垂直但不相等,故选项错误;C、有一组邻边相等的矩形是正方形,故选项正确;D、对角线互相垂直的平行四边形是菱形,故选项错误;故选:C.【点睛】题目主要考查特殊四边形的判定和性质,熟练掌握特殊四边形的判定和性质是解题关键.7、B【解析】【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,=90°.∴∠EBD=∠A′BE+∠DBC′=180°×12故选B.【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.8、A【解析】【分析】根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.【详解】解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;D、有三个角是直角的四边形是矩形,所以该选项不正确.故选:A.【点睛】本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.9、B【解析】【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是16,故A错误,不符合题意;B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则AC⊥BD 的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.10、D【解析】二、填空题1、120【解析】【分析】DE,由∠D=60°,得到△ACD是等先根据直角三角形斜边上的中线等于斜边的一半得出AC=AD=AE=12边三角形,那么∠ACD=60°,∠ACF=30°,再由三角形的外角性质可求出∠BFC的度数.【详解】解:∵∠DCE=90°,点A是DE的中点,DE,∴AC=AD=AE=12∵∠D=60°,∴△ACD是等边三角形,∴∠ACD=60°,∴∠ACF=∠DCE-∠ACD=30°,∵∠FAC=90°,∴∠BFC=∠FAC+∠ACF=90°+30°=120°故答案为:120【点睛】本题主要考查了直角三角形的性质,等边三角形的判定与性质,三角形外角和定理等知识,求出∠ACF=30°是解题的关键.2、矩形直角相等【解析】3、2【解析】【分析】根据矩形的性质得//AD BC ,=AD BC ,=90A ︒∠,根据BE 是ABC ∠的角平分线,得45ABE CBE ∠=∠=︒,则45ABE CBE ∠=∠=︒,2AE AB ==,在Rt BAE 中,根据勾股定理得BE =DEC ECB ∠=∠,由因为EC 平分BED ∠则BEC DEC ∠=∠,等量代换得BEC ECB ∠=∠,所以BC BE ==AD =【详解】解:∵四边形ABCD 为矩形,∴//AD BC ,=AD BC ,=90A ︒∠,∵2AB =,BE 是ABC ∠的角平分线,∴45ABE CBE ∠=∠=︒,∴2AE AB ==,在Rt BAE 中,根据勾股定理得,BE∵//AD BC ,∴DEC ECB ∠=∠,∵EC 平分BED ∠,∴BEC DEC ∠=∠,∴BEC ECB ∠=∠,∴BC BE == ∴AD =∴2=-=,DE AD AE故答案为:2.【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.4、相等直角正方形【解析】略5、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∠=90°,∴CEF故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.三、解答题1【解析】【分析】连接AC ,CF ,如图,根据正方形的性质得到AC ,AB CF ACD =45°,∠GCF =45°,则利用勾股定理得到AF CT 的长.【详解】解:连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴AC AB CF CE ACD =45°,∠GCF =45°,∴∠ACF =45°+45°=90°,在Rt △ACF 中AF =,∵T 为AF 的中点,∴12CT AF =,∴CT. 【点睛】 本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质,也考查了直角三角形斜边上的中线性质.2、见解析.【解析】【分析】利用正方形的性质可证明△ABE ≌△ADF ,可得AE =AF .【详解】证明:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∵BE =DF ,在Rt△ABE 与Rt△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴Rt△ABE ≌Rt△ADF (SAS ),∴AE =AF .【点睛】本题考查了正方形的性质,全等三角形的性质与判定,掌握正方形的性质是解题的关键.3、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE ≌△FBE ,即可得出AE =EF ,进而利用菱形的判定方法得出答案.(1)(1)如图:EF 即为所求作(2)证明:如图,连接DF ,∵AD //BC ,∴∠ADE =∠EBF ,∵AF 垂直平分BD ,∴BE =DE .在△ADE 和△FBE 中,ADE FBE DE BEAED BEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FBE (ASA ),∴AE =EF ,∴BD 与AF 互相垂直且平分,∴四边形ABFD 为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.4、 (1)A (2,0),B (0,4) (2)52(3)P (4,4-)【解析】【分析】(1)将281620n n n m -++-=化简,然后根据绝对值及平方的非负性质求解即可得;(2)过点D 作DM BC ⊥,DN AC ⊥,根据平行线的判定和性质及垂线的性质可得DM AC ∥,∥DN BC ,90DMC DMB DNC DNF ∠=∠=∠=∠=︒,依据等边对等角得出45ABC BAC ∠=∠=︒,ABC ADN ∠=∠,由全等三角形的判定和性质可得DBM ADN ≅,DM AN =,根据等量代换及正方形的判定定理可得四边形DMCN 为正方形,再一次利用全等三角形的判定和性质得出DME DNF ≅,DME DNF S S =,结合图形可得DNCM DFCE S S =正方形四边形,由勾股定理及线段中点的性质可得AB =BD AD ==DN =,据此求解即可得出结果; (3)过点H 作HG y ⊥轴,过点P 作PF y ⊥轴,根据各角之间的数量关系可得PCF CHG ∠=∠,依据全等三角形的判定和性质可得CHG PCF ≅,GH CF =,CG PF =,由点(),24P x x -+,可得PF x =,24OF x =-,设()0,C a ,则CO a =,可得24GH a x =+-,OG CG OC x a =+=+,即可确定()24,H a x x a +-+,根据题意可得24x a a x +=+-,求解确定x 的值,即可得出点P 的坐标.(1) 解:281620n n n m -++-=,∴()2420n n m -+-=, ∵()240n -≥,20n m -≥,∴40n -=,20n m -=,解得:4n =,2m =,∴()2,0A ,()0,4B ;(2)解:如图所示:过点D 作DM BC ⊥,DN AC ⊥,∴DM AC ∥,∥DN BC ,90DMC DMB DNC DNF ∠=∠=∠=∠=︒, ∵90ACB ∠=︒,AC BC =, ∴18090452ABC BAC ︒-︒∠=∠==︒, ∵D 为AB 中点,∴AD BD =,∵∥DN BC ,∴ABC ADN ∠=∠,在DBM 与ADN 中,90BMD DNA ABC ADN BD AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴DBM ADN ≅,∴DM AN =,∵45ADN BAC ∠=∠=︒,∴DN AN =,∴DN DM =,∵90DMC ACB DNC ∠=∠=∠=︒,∴四边形DMCN 为矩形,∵DN DM =,∴四边形DMCN 为正方形,∴90MDN ∠=︒,即90MDE EDN ∠+∠=︒,∵90FDN EDN ∠+∠=︒,∴MDE FDN ∠=∠,在DME 与DNF 中,90MDE FDN DM DN DME DNF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴DME DNF ≅,∴DME DNF S S =,∵DNF DME DNCM DFCE DECN DECN S S S S S S =+=+=正方形四边形四边形四边形,由(1)得()2,0A ,()0,4B ,∴2OA =,4OB =,∴AB∴BD AD =∴222DN AN AD +=,解得:DN =, ∴252DNCM S DN ==正方形, ∴四边形EDFC 的面积为52; (3)解:如图所示:过点H 作HG y ⊥轴,过点P 作PF y ⊥轴,则90HGC PFO ∠=∠=︒,∵90HCP ∠=︒,∴90HCG PCF ∠+∠=︒,∵90HCG CHG ∠+∠=︒,∴PCF CHG ∠=∠,在CHG 与PCF 中,CHG PCF HGC PFO CH CP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CHG PCF ≅,∴GH CF =,CG PF =,∵(),24P x x -+,∴PF x =,24OF x =-,∴CG x =,设()0,C a ,则CO a =,∴24CF a x =+-,24GH a x =+-,∴OG CG OC x a =+=+,∵H 点的横纵坐标相等,且()24,H a x x a +-+,∴24x a a x +=+-,解得:4x =,将4x =代入可得()4,4P -,∴点P 的坐标为()4,4-.【点睛】题目主要考查绝对值和平方的非负性质,一次函数,平行线的判定和性质,全等三角形的判定和性质,正方形的判定和性质,勾股定理等,理解题意,结合图象,作出相应辅助线,综合运用这些知识点是解题关键.5、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=12AC,OB=OD=12BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.。
鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在Rt ABC △中,CD 是斜边AB 上的中线,则以下判断正确的是( )A .2BC CD =B .2CD AB =C .2AC CD = D .CD BD =2、将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,则∠EBD 的度数( )A .80°B .90°C .100°D .110°3、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,6AC =,8BD =,EF 为过点O 的一条直线,则图中阴影部分的面积为( )A .4B .6C .8D .124、如图,在正方形ABCD 中,4AB =,点E 在对角线AC 上,若5ABE S =△,则CDE 的面积为( )A .3B .4C .5D .65、如图,O 是矩形ABCD 的对角线的交点,M 是AD 的中点.若BC =8,OB =5,则OM 的长为()A .2B .2.5C .3D .46、如图,把一长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点D 落在∠BAC 内部.若2CAE BAD '∠=∠,且15CAD '∠=︒,则∠DAE 的度数为( )A .12°B .24°C .39°D .45°7、如图,在Rt△ABC中,∠ACB=90°,如果D为边AB上的中点,那么下面结论错误的是()A.12CD AB=B.12CB AB=C.∠A=∠ACD D.∠ADC=2∠B8、菱形ABCD的边长为5,一条对角线长为6,则菱形面积为()A.20 B.24 C.30 D.489、已知,在平面直角坐标系xOy中,点A的坐标为(3,0),点B的坐标为(0,4),点C是线段AB的中点,则线段OC的长为()A.52B.3 C.4 D.510、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是()A.20 B.40 C.60 D.80第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知:在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点,四边形EHFG是_____________.2、如图,正方形ABCD 和正方形DEFG 的边长分别为3和2,点E 、G 分别为AD CD 、边上的点,H 为BF 的中点,连接HG ,则HG 的长为____________.3、如图,在正方形ABCD 中,AB E ,F 分别为边AB ,BC 的中点,连接AF ,DE ,点N ,M 分别为AF ,DE 的中点,连接MN .则MN 的长为_________.4、如图,正方形ABCD 中,E 为CD 上一动点(不含C 、)D ,连接AE 交BD 于F ,过F 作FH AE ⊥交BC 于H ,过H 作HG BD ⊥于G ,连接AH ,EH .下列结论:①AF FH =;②45HAE ∠=︒;③FH 平分GHC ∠;④2BD FG =,正确的是__(填序号).5、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个OP ,当正方形绕着点O旋转时,则点P到正方形,边长为6,中心为O,在正方形外有一点P,6正方形的最短距离d的最大值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形ABCD中,AB=6,BC=8.(1)用尺规作图法作菱形AECF,使点E、F分别在BC和AD边上;(2)求EF的长度.2、如图,在正方形ABCD中,E、F、G分别是AB、BC、CD边上的点,AF和EG交于点H.现在提供三个关系:①AF⊥EG;②AH=HF;③AF=EG.(1)从三个关系中选择一个作为条件,一个作为结论,形成一个真命题.写出该命题并证明;(2)若AB=3,EG垂直平分AF,设BF=n.①求EH :HG 的值(含n 的代数式表示);②连接FG ,点P 在FG 上,当四边形CPHF 是菱形时,求n 的值.3、如图,长方形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且G 点在长方形ABCD 内部,延长BG 交DC 于点F .(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB 的值. 4、求作:Rt △ABC ,使∠A =45°,斜边AB =a .5、在等腰Rt△ABC 中,∠ACB =90°,D ,E 是边AC ,BC 上的点,且满足AD =CE ,连接DE ,过点C 作DE 的垂线,垂足为F ,交AB 于点G .(1)点D 如图所示.①请依题意在下图中补全图形;②猜想DE 与CG 的数量关系,并证明;(2)连接DG,GE,若AB=2,直接写出四边形CDGE面积的最小值.-参考答案-一、单选题1、D【解析】【分析】直接利用直角三角形的性质得出斜边长即可.【详解】解:在Rt ABC中,CD是斜边AB上的中线,∴=,AD BDAB CD2=,∴=,CD BD故选:D.【点睛】本题主要考查直角三角形的性质,解题的关键是熟练掌握直角三角形斜边上的中线的性质.2、B【解析】【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠EBD =∠A ′BE +∠DBC ′=180°×12=90°.故选B .【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE =∠A ′BE ,∠DBC =∠DBC ′是解题的关键.3、B【解析】【分析】根据菱形的性质可证出ΔΔCFO AEO ≅,可将阴影部分面积转化为BOC ∆的面积,根据菱形的面积公式计算即可.【详解】 解:四边形ADCB 为菱形, OC OA ∴=,//AB CD ,FCO OAE ∠=∠,FOC AOE ∠=∠,()CFO AEO ASA ≅,∴CFO AOE S S =,∴CFO BOF BOC S S S +=, ∴1111··6864242BOC S AC BD =⨯=⨯⨯⨯= 故选:B .【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为BOC ∆的面积为解题关键.4、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCD ,∴AB =AD ,∠BAC =DAC ,∵AE =AE ,∴△ABE ≌△ADE ,∴ABE ADE S S =△△=5,同理△CBE ≌△CDE ,∴CBE CDE S S =,∵5ABE S =△, ∴CDE 的面积为:44252⨯-⨯ =3, 故选A .【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.5、C【解析】【分析】首先由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后由勾股定理求得AB 的长,即CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,继而求得答案.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5, ∴AC =2OB =10,∴CD =AB 6=,∵M 是AD 的中点,6、C【解析】【分析】由折叠的性质得到DAE EAD '∠=∠,由长方形的性质得到90DAE EAD BAD ''∠+∠+∠=︒,根据角的和差倍分得到290EAD BAD ''∠+∠=︒,整理得2()90CAE CAD BAD ''∠+∠+∠=︒ ,最后根据+2DAE EAD CAE CAD BAD CAD ''''∴∠=∠=∠∠=∠+∠解题.【详解】 解:折叠,DAE EAD '∴∠=∠ ABCD 是矩形DA AB ∴⊥90DAE EAD BAD ''∴∠+∠+∠=︒290EAD BAD ''∴∠+∠=︒2()90CAE CAD BAD ''∴∠+∠+∠=︒2,15CAE BAD CAD ''∠=∠∠=︒2(215)90BAD BAD ''∴∠+︒+∠=︒30590BAD '∴︒+∠=︒12BAD '∴∠=︒+22121539DAE EAD CAE CAD BAD CAD ''''∴∠=∠=∠∠=∠+∠=⨯︒+︒=︒39DAE ∠=︒故选:C .【点睛】本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.7、B【解析】【分析】根据直角三角形斜边上的中线的性质结合等腰三角形的性质及含30 角的直角三角形的性质,三角形外角的性质判定即可求解.【详解】解:在Rt ABC 中,90ACB ∠=︒,D 为边AB 上的中点,12AD BD CD AB ∴===,故A 选项正确,不符合题意; A ACD ∴∠=∠,故C 选项正确,不符合题意;DCB B ∠=∠,2ADC DCB B B ∴∠=∠+∠=∠,故D 选项正确,不符合题意;只有当30A ∠=︒时,12CB AB =,故B 选项错误,符合题意.故选:B .【点睛】本题主要考查直角三角形斜边上的中线,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.8、B【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO,∴AC=8,∴菱形的面积是:6×8÷2=24,故选:C.【点睛】本题主要考查菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.9、A【解析】【分析】根据勾股定理和直角三角形的性质即可得到结论.【详解】 解:点A 的坐标为(3,0),点B 的坐标为(0,4),3OA ∴=,4OB =,5AB OA =, 点C 是线段AB 的中点,1155222OC AB ∴==⨯=, 故选:A .【点睛】本题考查了坐标与图形性质,勾股定理,直角三角形斜边边上的中线,解题的关键是正确的理解题意.10、B【解析】 【分析】根据菱形的面积公式求解即可.【详解】解:这个菱形的面积=12×10×8=40.故选:B .【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.二、填空题1、菱形【分析】由已知条件得出GF是△ADC的中位线,GE是△ABC的中位线,EH是△ABD的中位线,由三角形中位线定理得出GF∥EH,GF=EH,得出四边形EGFH是平行四边形,再证出GE=EH,即可得出四边形EHFG 是菱形.【详解】∵点E、F、G、H分别是AB、CD、AC、BD的中点,∴GF是△ADC的中位线,GE是△ABC的中位线,EH是△ABD的中位线,∴GF∥AD,GF=12AD,GE=12BC,EH∥AD,EH=12AD,∴GF∥EH,GF=EH,∴四边形EGFH是平行四边形,又∵AD=BC,∴GE=EH,∴四边形EGFH是菱形.故答案是:菱形【点睛】本题考查了三角形中位线定理、平行四边形的判定、菱形的判定方法;解题的关键是熟练掌握菱形的判定方法,由三角形中位线定理得出线段之间的关系.2【解析】【分析】延长GF交AB于M,过点H作HN⊥GM于N,利用三角形中位线的判定及性质求出FN、NH,再利用勾股定理求出HG的长.解:延长GF交AB于M,过点H作HN⊥GM于N,∵正方形ABCD和正方形DEFG,∴GM⊥AB,FM=3-2=1,BM=3-2=1,∴FM=BM,NH BM∥,∵H为BF的中点,∴1212 NH FN BM===,∴52 GN GF FN=+=,∴GH=,.【点睛】此题考查了正方形的性质,三角形中位线的判定及性质,勾股定理,熟练掌握各知识点是解题的关键.3、1【解析】【分析】连接AM,延长AM交CD于G,连接FG,由正方形ABCD推出AB=CD=BC AB∥CD,∠C=90°,证得△AEM ≌GDM ,得到AM =MG ,AE =DG =12AB ,根据三角形中位线定理得到MN =12FG ,由勾股定理求出FG 即可得到MN .【详解】解:连接AM ,延长AM 交CD 于G ,连接FG ,∵四边形ABCD 是正方形,∴AB =CD =BCAB ∥CD ,∠C =90°,∴∠AEM =∠GDM ,∠EAM =∠DGM ,∵M 为DE 的中点,∴ME =MD ,在△AEM 和GDM 中,EAM DGM AEM GDM ME MD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEM ≌△GDM (AAS ),∴AM =MG ,AE =DG =12AB =12CD , ∴CG =12CD∵点N 为AF 的中点,∴MN =12FG ,∵F 为BC 的中点,∴CF =12BC∴FG ,∴MN =1,故答案为:1.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,勾股定理,三角形的中位线定理,正确作出辅助线且证出AM =MG 是解决问题的关键.4、①②④【解析】【分析】连接FC ,延长HF 交AD 于点L .可证ADF CDF ∆∆≌,进而可得FHC FCH ∠=∠,由此可得出FH AF =;再由FH AF =,即可得出45HAE ∠=︒;连接AC 交BD 于点O ,则2BD OA =,证明AOF FGH ≌,即可得出OA GF =,进而可得2BD FG =;过点F 作MN BC ⊥于点N ,交AD 于点M ,由于F 是动点,FN 的长度不确定,而FG OA =是定值,即可得出FH 不一定平分GHC ∠.【详解】解:如图,连接FC ,延长HF 交AD 于点L .∵BD 为正方形ABCD 的对角线∴45ADB CDF ∠=∠=︒,AD CD =在ADF 和CDF 中45AD CD ADB CDF DF DF =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADF CDF SAS ∆∆≌∴AF FC =,DCF DAF ∠=∠∵90AFL ∠=︒,90ALH LAF ∠+∠=︒ ,ALH FHC ∠=∠∴90LHC DAF ∠+∠=︒∵DCF DAF ∠=∠,90FCD FCH ∠+∠=︒∴FHC FCH ∠=∠∴FH FC =∴AF FH =故①正确;∵90AFH ∠=︒,AF FH =∴AFH 是等腰直角三角形∴45HAE ∠=︒故②正确;连接AC 交BD 于点O ,则2BD OA =∵90AFO GFH GHF GFH ∠+∠=∠+∠=︒∴AFO GHF ∠=∠在AOF 和FGH 中90AFO GHF AOF FGH AF FH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOF FGH AAS ∆∆≌∴OA GF =∴22BD OA GF ==故④正确.过点F 作MN BC ⊥于点N ,交AD 于点M ,F 是动点∵FN 的长度不确定,而FG OA =是定值∴FN 不一定等于FGFH ∴不一定平分GHC ∠故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.5、3【解析】【分析】由题意以及正方形的性质得OP 过正方形ABCD 各边的中点时,d 最大,求出d 的值即可得出答案【详解】解:如图:设AB 的中点是E ,OP 过点E 时,点O 与边AB 上所有点的连线中,OE 最小,此时d =PE 最大,∵正方形ABCD边长为6,O为正方形中心,∴AE=3,∠OAE=45°,OE⊥AB,∴OE=3,∵OP=6,∴d=PE=6-3=3;故答案为:3【点睛】本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.三、解答题1、 (1)作图见解析(2)15 2【解析】【分析】(1)连接AC,作线段AC的垂直平分线MN,交BC于E,交AD于F,连接AE,CF,四边形AECF即为所作.(2)利用勾股定理,求出AC,CF,再利用勾股定理求出OF即可.(1)解:如图,连接AC ,分别以A C 、为圆心,大于12AC 的长为半径画弧,连接两弧交点,即为线段AC 的垂直平分线MN ,MN 与线段BC AD 、分别交于点E F 、,连接AE ,CF ,菱形AECF 即为所求作.(2)解:AC 交EF 于点O∵四边形ABCD 是矩形∴6890AB CD BC AD D ====∠=︒,,由勾股定理得10AC =∴5OA OC ==设AF FC x ==,由勾股定理得222(8)6x x =-+ 解得254x = ∵90FOC∴154OF === ∴1522EF OF == ∴EF 的长为152. 【点睛】本题考查垂直平分线的性质与作图,菱形的判定和性质,矩形的性质等知识.解题的关键在于灵活运用所学知识解决问题,属于中考常考题型.2、 (1)见解析(2)①6n n-【解析】【分析】(1)过点作DP AF ⊥交AB 于点P ,先证四边形DGEP 是平行四边形,得DP EG =,再由ASA 证ABF DAP ∆≅∆,得AF DP =,即可得出结论;(2)①过点H 作AD 的平行线交AB 于N ,交CD 于Q ,则3NQ AD AB ===,::EH HG NH HQ =,证NH 是ABF ∆的中位线,得1122NH BF n ==,则132HQ n =-,即可得出答案;②先由菱形的性质得3HF FC n ==-,再证262AF AH n ==-,在Rt ABF 中,由勾股定理得出方程,解方程即可.(1)解:在正方形ABCD 中,E 、F 、G 分别是AB 、BC 、CD 边上的点,AF 和EG 交于点H ,且AF EG ⊥;求证:AF EG =.证明:过点D 作DP AF ⊥交AB 于点P ,如图1所示:则90ADP DAF ∠+∠=︒.AF EG ⊥,//DP EG ∴,四边形ABCD 是正方形,90B BAD BAF DAF ∴∠=∠=∠+∠=︒,AB AD =,//AB CD ,ABF ADP ∴∠=∠,四边形DGEP 是平行四边形,DP EG ∴=,在ABF ∆与DAP ∆中,BAF ADP AB DA B DAP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABF DAP ASA ∴∆≅∆,AF DP ∴=,AF EG ∴=;(2)解:①过点H 作AD 的平行线交AB 于N ,交CD 于Q ,如图2所示:则3NQ AD AB ===,::EH HG NH HQ =, EG 垂直平分AF ,N ∴、H 分别为AB 、AF 的中点,NH ∴是ABF ∆的中位线,1122NH BF n ∴==, 132HQ n ∴=-, 12::1632n n EH HG NH HQ n n ∴===--; ②如图3所示:四边形CPHF 是菱形,3HF FC n ∴==-, EG 垂直平分AF ,3AH HF n ∴==-,262AF AH n ∴==-,在Rt ABF 中,由勾股定理得:222AB BF AF +=,即2223(62)n n +=-,解得:4n =4n =,4n ∴= 【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理、三角形中位线定理、平行线分线段成比例定理等知识;本题综合性强,解题的关键是熟练掌握正方形的性质和菱形的性质.3、 (1)见解析(2) (3)224AD AB n= 【解析】【分析】(1)由折叠得AE GE =,由中点得AE DE =,由此得到结论;(2)连接EF ,依据DF 2CF =,求出DF 、CF ,根据长方形的性质得到9AB DC ==,由△ABE ≌△GBE ,得到9BG AB ==, 证明Rt △EGF ≌Rt △EDF (HL ),得到6GF DF ==.由勾股定理求出BC 即可得到AD ;(3)设DF a =,则AB DC n DF na ==⋅=,得到()1BF BG GF na a n a =+=+=+,由勾股定理求出2BC ,再求出2224AD BC na ==,即可得到答案.(1)证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC∴AD BC ===.(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n ==. 【点睛】此题考查了矩形与折叠,全等三角形的判定及性质,勾股定理求线段长,解题的关键是掌握各知识点,考查分析问题能力及推理论证能力.4、见解析【解析】【分析】作射线AD ,在AD 上截取AB a ,作AB 的垂直平分线EF ,交线段AB 于点G ,在射线GC 上截取GC GA =,连接,CA CB ,则ABC 即为所求.【详解】如图所示,作射线AD ,在AD 上截取AB a ,作AB 的垂直平分线EF ,交线段AB 于点G ,在射线GC 上截取GC GA =,连接,CA CB ,则ABC 即为所求.【点睛】本题考查了作等腰直角三角形,掌握基本作图以及等腰直角三角形的性质是解题的关键.5、(1)①作图见解析;②DE=CG,证明见解析;(2)12【解析】【分析】(1)①按照题意作图即可;②如图1过点D作DH⊥AC交AB于H,连接CH交DE于O,连接EH,∠A=∠B=45°,∠ADH=90°,∠A=∠DHA=45°,DA=DH= CE,四边形DHEC是平行四边形,∠DCE=90°,四边形DHEC是矩形,矩形对角线相等且互相平分可知,DE=CH,OD=OC,∠ODC=∠OCD,证明∠CDE=∠BCG=∠ACH,△ACH≌△BCG,进而可说明DE=CG.(2)如图2,由(1)可知DE=CG,CG⊥DE,S四边形CDGE12=•DE•CG12=•CG2;可知面积最小即CG的值最短;根据垂线段最短可知,当CG⊥AB时,CG的值最短,由AG=GB,∠ACB=90°,可知CG1 2 =AB=1,进而可求四边形面积的最小值.(1)解:①图形如图1所示.②结论:DE=CG.证明:如图1中,过点D作DH⊥AC交AB于H,连接CH交DE于O,连接EH.∵AC=BC,∠ACB=90°∴∠A=∠B=45°∵AD⊥DH∴∠ADH=90°∴∠A=∠DHA=45°∴DA=DH∵AD=CE∴DH=CE∵∠ADH=∠ACB=90°∴DH∥BC∴四边形DHEC是平行四边形∵∠DCE=90°∴四边形DHEC是矩形∴DE=CH,OD=OC=OE=OH∴∠ODC=∠OCD∵CG ⊥DE∴∠CDE +∠DCG =90°,∠DCG +∠BCG =90° ∴∠CDE =∠BCG =∠ACH在△ACH 和△BCG 中∵45ACH BCG CA CB A B ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACH ≌△BCG (ASA )∴CH =CG∴DE =CG .(2)解:如图2由(1)可知DE =CG ,CG ⊥DE∴S 四边形CDGE 12=•DE •CG 12=•CG 2 根据垂线段最短可知,当CG ⊥AB 时,CG 的值最短 ∵CA =CB ,CG ⊥AB∴AG =GB∴CG 12=AB=1∴四边形CDGE的面积的最小值为1.2【点睛】本题考查了垂线段,矩形的判定与性质,三角形全等,等腰三角形的判定与性质.解题的关键在于对知识的灵活综合运用.。
鲁教版(五四制)八年级数学下册第六章特殊平行四边形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在Rt △ABC 中,∠ACB =90°,如果D 为边AB 上的中点,那么下面结论错误的是( )A .12CD AB = B .12CB AB = C .∠A =∠ACD D .∠ADC =2∠B2、能够判断一个四边形是矩形的条件是( )A .对角线相等B .对角线垂直C .对角线互相平分且相等D .对角线垂直且相等3、如图,在正方形ABCD 中,4AB =,点E 在对角线AC 上,若5ABE S =△,则CDE 的面积为( )A .3B .4C .5D .64的正方形ABCD 中,点E 是对角线AC 上一点,且EF AB ⊥于点F ,连接DE ,当22.5ADE ∠=︒时,EF =( )A .1B .2C 1D .145、如图,在正方形ABCD 中,点E 、点F 分别在AD 、CD 上,且AE =DF ,若四边形OEDF 的面积是1,OA 的长为1,则正方形的边长AB 为( )A .1B .2CD .6、如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP ,EF .给出下列结论:①PD =;②四边形PECF 的周长为8;③AP EF =;④EF 的最小值为2222PB PD PA +=;⑥AP EF ⊥.其中正确结论有几个( )A .3B .4C .5D .67、在Rt ABC △中,CD 是斜边AB 上的中线,则以下判断正确的是( )A .2BC CD =B .2CD AB =C .2AC CD = D .CD BD =8、如图,正方形ABCD 的对角线相交于点O ,以点O 为顶点的正方形OEGF 的两边OE ,OF 分别交正方形ABCD 的两边AB ,BC 于点M ,N ,记AOM 的面积为1S ,CON 的面积为2S ,若正方形的边长10AB =,116S =,则2S 的大小为( )A .6B .7C .8D .99、如图,矩形ABCD 中,6AB =,如果将该矩形沿对角线BD 折叠,那么图中阴影部分BED 的面积是22.5,则BC =( )A .8B .10C .12D .1410、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是( )A.测量对角线是否互相平分B.测量一组对角是否都为直角C.测量对角线长是否相等D.测量3个角是否为直角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为___km.2、如图,在四边形ABCD中,AB=12,BD⊥AD.若将△BCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长为____.3、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.4、如图,在矩形ABCD 中,AB =2,BC =3,若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 于点F ,则BF 的长为__.5、如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 在x 轴的正半轴上,且顶点B 的坐标是(1,2),如果以O 为圆心,OB 长为半径画弧交x 轴的正半轴于点P ,那么点P 的坐标是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,Rt ABC 中,90ACB ∠=︒,点D 在AB 上,8AD =,6BD =,DE BC ⊥于点E ,把DBE 绕点D 旋转得DGF △,且点G ,F 在AC 上.(1)求证:四边形CEDF 是正方形;(2)求四边形CEDF 的面积,2、如图,长方形纸片ABCD 沿对角线AC 折叠,设点D 落在D ′处,BC 交AD '于点E .AB =6cm ,BC =8cm .(1)求证AE =EC ;(2)求阴影部分的面积.3、如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,已知A (m ,0),B (0,n ),且m 、n 满足281620n n n m -++-=.(1)求A 、B 两点的坐标;(2)如图2,若点C 在第一象限,∠ACB =90°,AC =BC ,点D 为边AB 中点,以点D 为顶点的直角∠EDF 两边分别交边BC 于E ,交边AC 于F ,求四边形EDFC 的面积;(3)如图3,若点C 在y 轴的正半轴上,H 是第一象限内的一点,且H 点的横、纵坐标始终相等,点P (x ,24x -+)为直线AB 上一点,∠HCP =90°,HC =CP ,当点P 在x 轴下方时,求出点P 的坐标.4、如图,在矩形ABCD 中,AB =6,BC =8.(1)用尺规作图法作菱形AECF ,使点E 、F 分别在BC 和AD 边上;(2)求EF 的长度.5、如图,在四边形ABCD 中,∠B =∠C .点E 、F 、G 分别在边AB 、BC 、CD 上,AE =GF =GC .(1)求证:四边形AEFG 是平行四边形;(2)当∠FGC 与∠EFB 满足怎样的关系时,四边形AEFG 是矩形.请说明理由.-参考答案-一、单选题1、B【解析】【分析】根据直角三角形斜边上的中线的性质结合等腰三角形的性质及含30 角的直角三角形的性质,三角形外角的性质判定即可求解.【详解】解:在Rt ABC 中,90ACB ∠=︒,D 为边AB 上的中点,12AD BD CD AB ∴===,故A 选项正确,不符合题意; A ACD ∴∠=∠,故C 选项正确,不符合题意;DCB B ∠=∠,2ADC DCB B B ∴∠=∠+∠=∠,故D 选项正确,不符合题意;只有当30A ∠=︒时,12CB AB =,故B 选项错误,符合题意.故选:B .【点睛】本题主要考查直角三角形斜边上的中线,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.2、C【解析】略3、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCD ,∴AB =AD ,∠BAC =DAC ,∵AE =AE ,∴△ABE ≌△ADE ,∴ABE ADE S S =△△=5,同理△CBE ≌△CDE ,∴CBE CDE S S =,∵5ABE S =△, ∴CDE 的面积为:44252⨯-⨯ =3, 故选A .【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.4、C【解析】【分析】证明67.5CDE CED ∠=∠=︒,则CD CE =AC 的长,得2AE =,证明AFE ∆是等腰直角三角形,可得EF 的长.【详解】 解:四边形ABCD 是正方形,AB CD BC ∴==90B ADC ∠=∠=︒,45BAC CAD ∠=∠=︒, 22AC AB ,22.5ADE ∠=︒,9022.567.5CDE ∴∠=︒-︒=︒,4522.567.5CED CAD ADE ∠=∠+∠=︒+︒=︒,CDE CED ∴∠=∠,CD CE ∴==2AE ∴=EF AB⊥,90AFE∴∠=︒,AFE∴∆是等腰直角三角形,1EF∴,故选:C.【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.5、C【解析】【分析】根据正方形的性质得到AB=AD,∠BAE=∠ADF=90°,根据全等三角形的性质得到∠ABE=∠DAF,求得∠AOB=90°,根据三角形的面积公式得到OA=1,由勾股定理即可得到答案.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,在△ABE与△DAF中,AB ADBAE ADFAE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∴∠ABE+∠BAO=∠DAF+∠BAO=90°,∴∠AOB =90°,∵△ABE ≌△DAF ,∴S △ABE =S △DAF ,∴S △ABE -S △AOE =S △DAF -S △AOE ,即S △ABO =S 四边形OEDF =1,∵OA =1,∴BO =2,∴AB故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证得△ABE ≌△DAF 是解题的关键.6、D【解析】【分析】如图,过点P 作PM AB ⊥于点M ,连接PC ,可说明四边形AMFD 为矩形,AM DF =,BM CF =,MPB △是等腰直角三角形,=BM PM ;①中PF MF MP AB BM AM DF =-=-==,=90PFD ∠︒可得PDF ∆为等腰直角三角形,进而求PD ,由于四边形PECF 是平行四边形,=PF CE ,故可知PD ==;②90BCD ∠=︒,四边形PECF 为矩形,进而可求矩形的周长;③证明ADP CDP △≌△,由全等可知AP PC =,进而可说明AP EF =;④==EF PC AP ,当AP 最小时,EF 最小,即AP BD ⊥时,AP 最小,计算即可;⑤在Rt PBM △和Rt PDF 中,勾股定理求得222PB PM MB =+,222PD PF FD =+将线段等量替换求解即可;⑥如图1,延长AP 与EF 交于点H ,证明APM △FEP ≌,得MAP PFE ∠=∠,90MAP MPA MPA HPF ∠+∠=︒∠=∠,,90PFE HPF ∠+∠=︒,=90PHF ∠︒进而可说明AP EF ⊥.【详解】解:如图,过点P 作PM AB ⊥于点M ,连接PC ,由题意知FM AD DF AB ∥,∥∴四边形AMFD 为平行四边形∵90MAD ∠=︒∴四边形AMFD 为矩形∴AM DF AD MF ==,∵BM AB AM CF CD DF =-=-,∴BM CF =∵4590ABD BMP ∠=︒∠=︒,∴45MPB ∠=︒∴MPB △是等腰直角三角形∴=BM PM①∵PF MF MP AB BM AM DF =-=-==,=90PFD ∠︒∴PDF ∆为等腰直角三角形∴PD =PE BC ⊥,PF CD ⊥∴PE CD PF BC ∥,∥∴四边形PECF 是平行四边形∴=PF CE∴PD =故①正确;②∵90BCD ∠=︒∴四边形PECF 为矩形∴四边形PECF 的周长222228CE PE CE BE BC =+=+==故②正确; ③四边形PECF 为矩形PC EF ∴=∵在ADP △和CDP 中∵45AD CD ADP CDP PD PD =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≌△△∴AP PC =∴AP EF =故③正确;④∵EF PC AP ==∴当AP 最小时,EF 最小∴当AP BD ⊥时,即1122AP BD ==⨯=EF的最小值等于故④正确;⑤在Rt PBM △和Rt PDF 中,22222PB PM MB PM =+=,2222222PD PF FD FD AM ===+∴22222222PB PD PM AM AP +=+=故⑤正确;⑥如图1,延长AP 与EF 交于点H∵在APM △和FEP 中∵AP EF AM PF MP PE =⎧⎪=⎨⎪=⎩∴APM △()FEP SSS ≌∴MAP PFE ∠=∠∵90MAP MPA MPA HPF ∠+∠=︒∠=∠,∴90PFE HPF ∠+∠=︒∴=90PHF ∠︒AP EF ∴⊥故⑥正确;综上,①②③④⑤⑥正确,故选:D .【点睛】本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.7、D【解析】【分析】直接利用直角三角形的性质得出斜边长即可.【详解】解:在Rt ABC 中,CD 是斜边AB 上的中线,2AB CD ∴=,AD BD =,CD BD ∴=,故选:D .【点睛】本题主要考查直角三角形的性质,解题的关键是熟练掌握直角三角形斜边上的中线的性质.8、D【解析】【分析】由题意依据全等三角形的判定得出△BOM ≌△CON ,进而根据正方形的性质即可得出2S 的大小.【详解】解:∵正方形ABCD 的对角线AC ,BD 交于点O ,∴OC =OD =BO =AO ,∠ABO =∠ACB =45°,AC ⊥BD .∵∠MOB +∠BON =90°,∠BON +∠CON =90°∴∠BOM =∠CON ,且OC =OB ,∠ABO =∠ACB =45°,∴△BOM ≌△CON (ASA ),2S =S △BOM ,∴121BOM AOB S S S S S ==++,∵AOB S =14S 正方形ABCD ,正方形的边长10AB =,116S =, ∴2S =14S 正方形ABCD -1S =110101694⨯⨯-=. 故选:D.【点睛】本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.9、C【解析】【分析】根据折叠和矩形的性质,可得∠DBE =∠CBD ,AD ∥BC ,AD =BC ,AB ⊥AD ,从而得到∠BDE =∠DBE ,进而得到BE =DE ,再由BED 的面积是22.5,可得152BE =,然后根据勾股定理,即可求解. 【详解】解:根据题意得: ∠DBE =∠CBD ,AD ∥BC ,AD =BC ,AB ⊥AD ,∴∠BDE =∠CBD ,∴∠BDE =∠DBE ,∴BE =DE ,∵BED 的面积是22.5,6AB =, ∴122.52AB DE ⨯= ,解得:152DE = , ∴152BE =, 在Rt ABE △ 中,由勾股定理得:92AE===,∴9151222BC AD AE BE==+=+=.故选:C【点睛】本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.10、D【解析】【分析】矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.【详解】解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;B、测量一组对角是否都为直角,不能判定形状,故不符合题意;C、测量对角线长是否相等,不能判定形状,故不符合题意;D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;故选:D.【点睛】本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.二、填空题1、1.2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CM=AM=BM解答即可.【详解】解:∵M是公路AB的中点,∴AM=BM,∵AC⊥BC,∴CM=AM=BM,∵AM的长为1.2km,∴M,C两点间的距离为1.2km.故答案为:1.2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.2、24【解析】【分析】根据直角三角形斜边上中线的性质,即可得到DE=BE12=AB=6,再根据折叠的性质,即可得到四边形BCDE的周长为6×4=24.【详解】解:∵BD⊥AD,点E是AB的中点,∴DE=BE12=AB=6,由折叠可得:CB=BE,CD=ED,∴四边形BCDE的周长为6×4=24.故答案为:24.【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、(0,-5)【解析】【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,5=OC,∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.4【解析】【分析】连接BE ,先根据矩形的性质可得2,3,90CD AB AD BC C D ====∠=∠=︒,从而可得1CE DE ==,再利用勾股定理可得AE BE =,然后根据ADE BCE ABE ABCD SS S S ++=即可得出答案.【详解】解:如图,连接BE ,在矩形ABCD 中,∵2,3AB BC ==, 2,3,90CD AB AD BC C D ∴====∠=∠=︒, E 是边CD 的中点,112CE DE CD ∴===,AE ∴=BE = ADE BCE ABE ABCD S S S S ++=,BF AE ⊥, 111222AD DE BC CE AE BF AB BC ∴⋅+⋅+⋅=⋅,即111313123222⨯⨯+⨯⨯+=⨯,解得BF =【点睛】本题考查了矩形的性质、勾股定理等知识,熟练掌握矩形的性质是解题关键.5、0)【解析】【分析】利用勾股定理求出OB 的长度,同圆的半径相等即可求解.【详解】由题意可得:OP =OB ,OC =AB =2,BC =OA =1,∵OB∴OP∴点P 0).故答案为:0).【点睛】本题考查勾股定理的应用,在直角三角形中,两条直角边的平方和,等于斜边的平方.三、解答题1、 (1)见解析 (2)57625【解析】【分析】(1)根据旋转的性质可得DBE ≌DGF △,进而可得90DEB DFG ∠=∠=︒,根据三个角是直角的四边形证明四边形CEDF 是矩形,根据邻边相等的矩形是正方形即可得证;(2)在Rt ADG 中,根据勾股定理得AG 根据等面积法即可求得DF ,进而求得正方形的面积.(1)∵DE BC ⊥,∴90DEC DEB ∠=∠=︒.由旋转得:DE DF =,DBE ≌DGF △.∴90DEB DFG ∠=∠=︒.∵90ACB ∠=︒,∴四边形CEDF 是矩形.∵DE DF =,∴四边形CEDF 是正方形.(2)由(1)得:四边形CEDF 是正方形,∴90EDF ∠=︒.由旋转得:DBE ≌DGF △,90EDF BDG ∠=∠=︒.∴6BD GD ==,90GDA ∠=︒.在Rt ADG 中,根据勾股定理得:10AG . ∵22ADG AD DG AG DF S ⋅⋅==△,∴861022DF ⨯⋅=. ∴245DF =. ∴257625CEDF S DF ==正方形. 【点睛】本题考查了正方形的性质与判定,勾股定理,旋转的性质,全等的性质,掌握以上性质定理是解题的关键.2、 (1)证明见解析 (2)275cm 4【解析】【分析】(1)先根据折叠的性质可得EAC DAC ∠=∠,再根据矩形的性质、平行线的性质可得DAC ACB ∠=∠,从而可得EAC ACB ∠=∠,然后根据等腰三角形的判定即可得证;(2)设cm AE EC x ==,从而可得(8)cm BE x =-,先在Rt ABE △中,利用勾股定理可得x 的值,再利用三角形的面积公式即可得.(1)证明:由折叠的性质得:EAC DAC ∠=∠,四边形ABCD 是长方形,AD BC ∴,DAC ACB ∴∠=∠,EAC ACB ∴∠=∠,AE EC ∴=.(2)解:四边形ABCD 是长方形,90B ∴∠=︒,设cm AE EC x ==,则(8)cm BE BC EC x =-=-,在Rt ABE △中,222AB BE AE +=,即2226(8)x x +-=, 解得254x =, 即25cm 4EC =, 则阴影部分的面积为21125756(cm )2244EC AB ⋅=⨯⨯=. 【点睛】本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.3、 (1)A (2,0),B (0,4) (2)52(3)P (4,4-)【解析】【分析】(1)将281620n n n m -++-=化简,然后根据绝对值及平方的非负性质求解即可得;(2)过点D 作DM BC ⊥,DN AC ⊥,根据平行线的判定和性质及垂线的性质可得DM AC ∥,∥DN BC ,90DMC DMB DNC DNF ∠=∠=∠=∠=︒,依据等边对等角得出45ABC BAC ∠=∠=︒,ABC ADN ∠=∠,由全等三角形的判定和性质可得DBM ADN ≅,DM AN =,根据等量代换及正方形的判定定理可得四边形DMCN 为正方形,再一次利用全等三角形的判定和性质得出DME DNF ≅,DME DNF S S =,结合图形可得DNCM DFCE S S =正方形四边形,由勾股定理及线段中点的性质可得AB =BD AD ==DN =,据此求解即可得出结果; (3)过点H 作HG y ⊥轴,过点P 作PF y ⊥轴,根据各角之间的数量关系可得PCF CHG ∠=∠,依据全等三角形的判定和性质可得CHG PCF ≅,GH CF =,CG PF =,由点(),24P x x -+,可得PF x =,24OF x =-,设()0,C a ,则CO a =,可得24GH a x =+-,OG CG OC x a =+=+,即可确定()24,H a x x a +-+,根据题意可得24x a a x +=+-,求解确定x 的值,即可得出点P 的坐标.(1) 解:281620n n n m -++-=,∴()2420n n m -+-=, ∵()240n -≥,20n m -≥,∴40n -=,20n m -=,解得:4n =,2m =,∴()2,0A ,()0,4B ;(2)解:如图所示:过点D 作DM BC ⊥,DN AC ⊥,∴DM AC ∥,∥DN BC ,90DMC DMB DNC DNF ∠=∠=∠=∠=︒,∵90ACB ∠=︒,AC BC =, ∴18090452ABC BAC ︒-︒∠=∠==︒, ∵D 为AB 中点,∴AD BD =,∵∥DN BC ,∴ABC ADN ∠=∠,在DBM 与ADN 中,90BMD DNA ABC ADN BD AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴DBM ADN ≅,∴DM AN =,∵45ADN BAC ∠=∠=︒,∴DN AN =,∴DN DM =,∵90DMC ACB DNC ∠=∠=∠=︒,∴四边形DMCN 为矩形,∵DN DM =,∴四边形DMCN 为正方形,∴90MDN ∠=︒,即90MDE EDN ∠+∠=︒,∵90FDN EDN ∠+∠=︒,∴MDE FDN ∠=∠,在DME 与DNF 中,90MDE FDN DM DN DME DNF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴DME DNF ≅,∴DME DNF S S =,∵DNF DME DNCM DFCE DECN DECN S S S S S S =+=+=正方形四边形四边形四边形,由(1)得()2,0A ,()0,4B ,∴2OA =,4OB =,∴AB∴BD AD =∴222DN AN AD +=,解得:DN =, ∴252DNCM S DN ==正方形, ∴四边形EDFC 的面积为52; (3)解:如图所示:过点H 作HG y ⊥轴,过点P 作PF y ⊥轴,则90HGC PFO ∠=∠=︒,∵90HCP ∠=︒,∴90HCG PCF ∠+∠=︒,∵90HCG CHG ∠+∠=︒,∴PCF CHG ∠=∠,在CHG 与PCF 中,CHG PCF HGC PFO CH CP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CHG PCF ≅,∴GH CF =,CG PF =,∵(),24P x x -+,∴PF x =,24OF x =-,∴CG x =,设()0,C a ,则CO a =,∴24CF a x =+-,24GH a x =+-,∴OG CG OC x a =+=+,∵H 点的横纵坐标相等,且()24,H a x x a +-+,∴24x a a x +=+-,解得:4x =,将4x =代入可得()4,4P -,∴点P 的坐标为()4,4-.【点睛】题目主要考查绝对值和平方的非负性质,一次函数,平行线的判定和性质,全等三角形的判定和性质,正方形的判定和性质,勾股定理等,理解题意,结合图象,作出相应辅助线,综合运用这些知识点是解题关键.4、 (1)作图见解析 (2)152【解析】【分析】(1)连接AC ,作线段AC 的垂直平分线MN ,交BC 于E ,交AD 于F ,连接AE ,CF ,四边形AECF 即为所作.(2)利用勾股定理,求出AC ,CF ,再利用勾股定理求出OF 即可.(1)解:如图,连接AC ,分别以A C 、为圆心,大于12AC 的长为半径画弧,连接两弧交点,即为线段AC 的垂直平分线MN ,MN 与线段BC AD 、分别交于点E F 、,连接AE ,CF ,菱形AECF 即为所求作.(2)解:AC 交EF 于点O∵四边形ABCD 是矩形∴6890AB CD BC AD D ====∠=︒,,由勾股定理得10AC =∴5OA OC ==设AF FC x ==,由勾股定理得222(8)6x x =-+ 解得254x = ∵90FOC∴154OF === ∴1522EF OF == ∴EF 的长为152. 【点睛】 本题考查垂直平分线的性质与作图,菱形的判定和性质,矩形的性质等知识.解题的关键在于灵活运用所学知识解决问题,属于中考常考题型.5、 (1)见解析(2)当∠FGC=2∠EFB时,四边形AEFG是矩形,理由见解析【解析】【分析】(1)要证明该四边形是平行四边形,只需证明AE∥FG.根据对边对等角∠GFC=∠C,则∠B=∠GFC,得到AE∥FG.(2)在平行四边形的基础上要证明是矩形,只需证明有一个角是直角.根据三角形FGC的内角和是180°,添加∠FGC=2∠EFB,可得到∠BFE+GFC=90°.则∠EFG=90°.(1)证明:在四边形ABCD中,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形;∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.【点睛】本题考查了平行四边形的判定,矩形的判定,熟练掌握矩形的判定是解题的关键.。
1
八年级数学下册
第六章《特殊平行四边形》单元检测题
一、选择题:(30分)
1、用直尺和圆规作一个以线段AB 为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( )
(A )一组邻边相等的四边形是菱形 (B )四边相等的四边形是菱形
(C )对角线互相垂直的平行四边形是菱形 (D )每条对角线平分一组对角的平行四边形是菱形 2、若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )
(A )矩形 (B )等腰梯形 (C )对角线相等的四边形 (D )对角线互相垂直的四边形 3、如图,菱形ABCD 中,AB =15,ADC ∠=︒120,则B 、D 两点之间的距离为( ) (A )15 (B
(C ).75 (D
)
4、如图,矩形ABCD 中,E 为BC 的中点,作AEC ∠的平分线交AD 于点F ,若AB =6,AD =16,
则FD 的长度为( )
(A )4 (B )5 (C )6 (D )8
5、下列命题中,错误的是( )
(A )平行四边形的对角线互相平分 (B )菱形的对角线互相垂直平分
(C )矩形的对角线相等且互相垂直平分 (D )角平分线上的点到角两边的距离相等
6、已知AD 是直角梯形ABCD 的高,CD CB AB ==2,延长上底到点F 使延长的部分的长等于上
底长。
那么C ,D ,F 与上底的其中一个顶点构成的四边形( )
(A )一定是矩形 (B )一定是菱形 (C )一定是梯形 (D )是矩形或菱形 7、如图,矩形纸片ABCD 中,AB cm BC cm ==68,,现将其沿AE 对折,使得点B 落在边AD 上
的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )
(A )cm 6 (B )cm 4 (C )cm 2 (D )cm 1
8、如图,在ABC ∆中,CF AB ⊥于点F ,BE AC ⊥于点E ,M 为BC 的中点,则图中等腰三角形
有( )
(A )2个 (B )3个 (C )4个 (D )5个
9、如图,在ABC ∆中,AB AC BC ===108,,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中
点,连接DE ,则CDE ∆的周长为( )
(A )20 (B )12 (C )14 (D )13
(第1题图) C (第3题图)
(第4题图) D
2
10、如图,边长分别为2和4的两个正方形ABCD 和CEFG 并排放在一起,连接BD 并延长交EG 于
点T ,交FG 于点P ,则GT =( )
(A
(B
) (C )2 (D )1
二、填空题(24分):
11、如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点,
且OE α=,则菱形ABCD 的周长为
_____________。
12、已知ABCD ,对角线AC ,BD 相交于点D 。
请你加一个适当的条件,
使ABCD 成为一个菱形。
你添加的条件是________________。
13、如图,矩形ABCD 的对角线相交于点O ,AB =3,AOB ∠=︒60, 则对角线AC 的长为________。
14、已知正方形ABCD
的对角线AC =,则正方形ABCD 的周长为___________。
15、如图所示,直线a
经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE a ⊥于点E ,BF a ⊥于
点F
,若DE BF ==43,,则EF 的长为__________。
16、如图,已知正方形ABCD 的边长为3,E 为CD 边上一点,DE =1,以点A 为中心,把ADE ∆顺时针旋转︒90,得ABE '∆,连接EE ',则EE '的长等于__________。
17、如图,在Rt ABC ∆中,ACB ∠=︒90,D 为边AB 的中点,将BCD ∆沿着直线CD 翻折,点B 的对应点为点B ',如果B D AB '⊥,那么_______ACB '∠=度。
18、如图,矩形ABCD 中,AB BC ==23,,对角线AC 的垂直平分线分别交AD BC 于点E ,F ,连接CE ,则CE 的长为_______________。
三、解答题(++++=8610101246分): 19、如图所示,四边形ABCD 是平行四边形,AC ,BD 交于点O ,∠=∠12。
(1)求证:四边形ABCD 是矩形。
(2)若BOC ∠=︒120,AB cm =4,求四边形ABCD 的面积。
D
B
(第7题图) C (第8题图)
B
D
(第9题图) (第10题图) F
(第11题) (第12题) (第15题) (第16题) (第17题) (第18题)
3 20、已知,如图所示,四边形ABCD 是菱形,DE AB ⊥交BA 的延长线于点E ,DF BC ⊥交BC 的延长线于点F 。
求证:.FC AE =
21、如图,在四边形ABCD 中,DAB DCB ∠=∠=︒90,对角线AC 与BD 相交于点O ,M ,N 分别是边BD ,AC 的中点。
(1)求证:.MN AC ⊥
(2)当AC cm BD cm ==810,时,求MN 的长。
22、如图所示,在Rt ABC ∆中,ACB ∠=︒90,将R
t A B C ∆绕点C 顺时针方向旋转︒60得到DEC ∆,点E 在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转︒180得到ABF ∆,连接AD. (1)求证:四边形AFCD 是菱形。
(2)连接BE 并延长交AD 于点G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?
B
4
23、猜想与证明:
如图摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM ,ME ,试猜想DM 与ME 的关系,并证明你的结论。
拓展与延伸:
(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,
则DM 和ME 的关系为______________________。
(2)如图摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的
中点,试证明(1)中的结论仍然成立。
图
图。