北师版八年级数学上册 综合复习练习(PDF版)
- 格式:pdf
- 大小:330.56 KB
- 文档页数:10
八年级上册数学综合复习题基础题北师版一、单选题(共7道,每道3分)1.下列生活中的现象,属于平移的是()A.抽屉的拉开B.汽车刮雨器的运动C.坐在秋千上人的运动D.投影片的文字经投影变换到屏幕答案:A试题难度:三颗星知识点:平移的定义2.下列说法正确的是()A.49的平方根是-7B.的算术平方根是4C.a²的算术平方根是aD.的立方根是a答案:D试题难度:三颗星知识点:立方根3.第二象限内的点(m,n)到x轴的距离是()A.mB.-mC.nD.-n答案:C试题难度:三颗星知识点:点的坐标4.下列选项正确的是()A.一个多边形的内角相等,则它的边一定都相等B.一组对边平行,另一组对边相等的四边形是等腰梯形C.正方形既是矩形,又是菱形D.矩形的对角线一定互相垂直答案:C试题难度:三颗星知识点:四边形的性质与判定5.如图,有一个直角三角形纸片,两直角边AC=3,BC=4,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD等于()A. B.C. D.答案:A试题难度:三颗星知识点:折叠问题6.下列字母是中心对称图形的是()A.UB.HC.MD.E答案:B试题难度:三颗星知识点:中心对称图形7.已知一次函数y=(a-1)x-b的图象如图所示,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.a<1,b>0D.a<1,b<0答案:A试题难度:三颗星知识点:一次函数图象与系数的关系二、填空题(共8道,每道3分)1.若无理数a满足3.2<a<4,请你写出一个满足条件的无理数a:.答案:、、、或试题难度:三颗星知识点:无理数2.若一个正数的平方根是2a+1和-a-2,则这个正数是.答案:9试题难度:三颗星知识点:平方根3.已知m<0,那么点P(-m²-1,m-2)关于原点的对称点在第象限,其坐标为.答案:(m²+1,2-m)试题难度:三颗星知识点:点的坐标4.如图,在梯形ABCD中,AD//BC,AE//DC交BC于E,已知梯形的周长为30cm,AD=5cm,则△ABE的周长为.答案:20cm试题难度:三颗星知识点:梯形性质5.等腰梯形上底为6cm,下底为8cm,高为cm,则腰长为.答案:2cm试题难度:三颗星知识点:梯形性质6.如图,在平面直角坐标系中,□ABCD的顶点A、D的坐标分别是(0,0),(2,3),AB=5,则顶点C的坐标为.答案:(7,3)试题难度:三颗星知识点:坐标与图形性质7.若2,4,2x,4y四个数的平均数是5,而5,7,4x,6y四个数的平均数是9,则x2+y2= .答案:13试题难度:三颗星知识点:平均数8.在直角坐标系中,A(2,0),B(-4,0),△ABC为等边三角形,则C点的坐标为.答案:(-1,)或(-1,)试题难度:三颗星知识点:点的坐标三、计算题(共1道,每道8分)1.(1)(2)答案:(1)(2)试题难度:三颗星知识点:二次根式的混合运算四、解答题(共5道,每道7分)1.一辆卡车装满货物后,高4米,宽2.8米.这辆卡车能通过横截面如图所示(上方是一个半圆)的隧道吗?答案:能通过解:∵卡车在隧道中间位置能通过的可能性最大∴如图,O为EF的中点,OE=1.4m,OG为圆的半径,OG=2m在直角△OEG中GE²=OG²-OE²=2²-1.4²=2.04 ∵(4-2.6)²=1.4²=1.96,2.04>1.96 ∴在相同宽度下隧道的高度高于卡车的高度,卡车能通过该隧道试题难度:三颗星知识点:勾股定理应用之拱桥问题2.如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(3)B出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B 的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.答案:(1)10;(2)1;(3)3;(4)(5)试题难度:三颗星知识点:一次函数的图象3.佳能电脑公司的李经理对2008年11月份电脑的销售情况做了调查,情况如下表:请你回答下列问题:(1)2008年11月份电脑价格(与销售台数无关)组成的数据平均数为,中位数为,本月平均每天销售台(11月份为30天).(2)如果你是该商场的经理,根据以上信息,应该如何组织货源,并说明你的理由.答案:解:(1)平均数=(6000×20+4500×40+3800×60+3000×30)=4120;中位数为:3800;本月平均每天销售的数量为:(20+40+60+30)=5(台);(2)价格为6000元一台的电脑,销售数量的频率=≈0.13;(3)如:多进3800元的电脑,适量进些其他价位的电脑等.故答案为:4120,3800,5.试题难度:三颗星知识点:平均数、中位数、众数4.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品九折销售,乙商品七折销售,调价后两种商品的单价和比原来的单价和降低了20%.甲、乙两种商品原来的单价各是多少?答案:解:设甲单价为x,乙单价为y,根据题意可得:解得:答:甲单价50元,乙单价50元.试题难度:三颗星知识点:二元一次方程应用题5.已知一次函数y=kx+b的图象经过点A(-4,0),B(2,6)两点.(1)求一次函数y=kx+b 的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.答案:解:(1)∵一次函数y=kx+b的图象经过两点A(-4,0)、B(2,6),∴,解得,∴函数解析式为:y=x+4;(2)函数图象如图:(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.试题难度:三颗星知识点:一次函数五、证明题(共1道,每道7分)1.如图,在△ABC中,∠ACB=90°,点E为AB的中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.答案:证明:∵EF⊥BC,∠ACB=90°∴EF∥AC ∵E为Rt△ABC斜边中点∴EC=EA又∵AF=CE ∴∠1=∠2=∠3=∠4=∠5=∠6 从而△AEF和△EAC均为等腰三角形且底角相等∴两顶角∠FAE=∠AEC ∴AF∥EC ∴四边形ACEF是平行四边形(一组对边平行且相等的四边形为平行四边形)试题难度:三颗星知识点:平行四边形的判定。
北师大版2020-2021学年度八年级数学上册期末综合复习基础训练题(附答案)一、单选题1.某班9名同学的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是( ).A .59,63B .59,61C .59,59D .57,612.已知一次函数y =(a -1)x -1+3a ,当x ≤2时,y ≥0,则a 的取值范围为( ) A .a ≤35 B .a <1 C .35≤a <1 D .35≤a ≤1 3.如图所示,14∠=∠,再从①//AB CD ;②12∠=∠;③34∠=∠;④BAD CDA ∠=∠中选取一个条件就可以得出23∠∠=,这个条件可以是( )A .仅①B .仅④C .仅①④D .①②③④ 4.估计48的立方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 5.某企业复工之后,举行了一个简单的技工比赛,参赛的五名选手在单位时间内加工零件的合格率分别为:94.3% ,96.1% , 94.3% ,91.7% ,93.5%.关于这组数据,下列说法正确的是( )A .平均数是93.96%B .方差是0C .中位数是93.5%D .众数是94.3%6.小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这10次成绩的( )A .众数B .方差C .平均数D .频数7.如图,3,11在数轴上的对应点分别为C ,B ,点C 是AB 的中点,则点A 表示的数是( )8.如果23x y -+和()22310x y +-互为相反数,那么,x y 的值是( ) A .117167x y ⎧=⎪⎪⎨⎪=⎪⎩ B .167117x y ⎧=⎪⎪⎨⎪=⎪⎩ C .167117x y ⎧=-⎪⎪⎨⎪=-⎪⎩ D .117167x y ⎧=-⎪⎪⎨⎪=-⎪⎩9.64的值是( )A .4B .±4C .8D .±810.初二年级在小学段期间外出游学,同学们所乘的客车先在公路上匀速行驶,在服务区休息一段时间后,进入高速路继续匀速行驶,已知客车行驶的路程s(千米)与行驶的时间r(小时)的函数关系的图象如图所示,则客车在高速路上行驶的速度为( )A .60千米/小时B .75千米/小时C .80千米/小时D .90千米/小时 11.函数y 11x -+中,自变量x 的取值范围是( ) A .x ≥–1B .x >2C .x ≥–1且x ≠2D .x >–1且x ≠2二、填空题12123_____. 13.冷冻一个25℃的物体,如果它每小时下降2℃,则物体的温度T (单位:℃)与冷冻时间t (单位:时)之间的关系式是__________.14.己知点P 1与P 2,P 2与P 3分别关于y 轴和x 轴对称,若点P 1在第一象限,则点P 3在第____象限.15.已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米,该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式)为________.16.将正比例函数y=﹣2x 的图象向上平移3个单位,则平移后所得图象的解析式是_____.17.在ABC △中,若A B C ∠=∠-∠,则ABC △是____三角形.18.如果021=-++b a ,那么ab = .19.若实数x 与y 满足320x y -++=,则点P (x ,y )在第______ 象限.20.已知|2x +y ﹣6|+(x ﹣y +3)2=0,则x =_____,y =_____.21.计算:()26-8=______.22.若25x y =⎧⎨=⎩是方程kx -2y =2的一个解,则k 的值为____. 23.若一组数据7,3,5,x ,2,9的众数为7,则这组数据的中位数是__________.三、解答题24.在某城市中,市民中心在火车站以西8 000 m 再往北4 000 m 处,盛华公司在火车站以西6 000 m 再往南4 000 m 处,传媒大楼在火车站以南6 000 m 再往东4 000 m 处.请建立适当的平面直角坐标系,分别写出各地点的坐标.25.已知338y x x =-+-+,求32x y + 的平方根.(5分)26.如图,在下列解答中,填写适当的理由或数学式:(1)∵EB ∥DC , (已知)∴∠DAE =∠__. ( ___________________________________)(2)∵∠BCF +∠AFC =180°,(已知)∴ ____∥___. ( ___________________________________)(3)∵ ____∥___, (已知)∴∠EF A =∠ECB . ( ___________________________________)27.如图,已知直线l 1:y 1=x +b 经过点A (﹣5,0),交y 轴于点B ,直线l 2:y 2=﹣2x ﹣4与直线l 1:y 1=x +b 交于点C ,交y 轴于点D .(1)求b 的值;(2)求△BCD 的面积;(3)当0≤y 2<y 1时,则x 的取值范围是 .(直接写出结果)28.如图是某市部分地区的示意图,请你建立适当的直角坐标系,并写出图中各地点相应的坐标(图中小正方形的边长均为1).29.计算:(1)(3+2)﹣2(2)5(5+5)+364-﹣|﹣81|30.如图是学校的平面示意图,已知旗杆的位置是()2,3-,实验室的位置是()1,4.(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、宿舍楼和大门的位置;(2)已知办公楼的位置是()2,1-,教学楼的位置是()2,2,在图中标出办公楼和教学楼的位置.(2)1 (83)642+⨯-32.(1)27-26-18⨯(2)()223-24+33.如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.34x y-x y2xyx y+++( x y≠)35.水资源越来越缺乏,全球提倡节约用水,水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,有关数据如下表:月用水量(m3)10 13 14 17 18户数 2 2 3 2 1如果该小区有500户家庭,根据上面的统计结果,估计该小区居民每月需要用水多少立方米?(写出解答过程).参考答案1.B【解析】试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.试题解析:从小到大排列此数据为:57、59、59、59、61、63、65、67、70,数据59出现了三次最多为众数,61处在第5位为中位数.所以本题这组数据的中位数是61,众数是59.故选B .考点:1.众数;2.中位数.2.C【解析】【分析】由x ≤2时,y ≥0,知y 随x 的增大而减小,则a -1<0,取x =2时,y ≥0,求解不等式组即可解决问题.【详解】∵当x ≤2时,0y ≥,∴y 随x 的增大而减小,∴10a -<,即1a <,当2x =时,()21130y a a =--+≥,解得:35a ≥, ∴a 的取值范围为315a ≤<. 故选:C .【点睛】本题考查了一次函数图象和系数的关系,一次函数图象上点的坐标特征,能够准确理解题意是解题的关键.3.C【解析】【分析】根据平行线的判定和性质进行分析即可.【详解】解:①∵//AB CD ,∴∠CDA=∠BAD ,∵∠1=∠4,∴∠2=∠3;②∵12∠=∠,14∠=∠,则24∠∠=,不能得出23∠∠=;③∵34∠=∠,14∠=∠,则13∠=∠,不能得出23∠∠=;④∵BAD CDA ∠=∠,14∠=∠,∴23∠∠=.故选C.【点睛】本题考查了平行线的判定和性质,解题的关键是结合条件进行论证,难度不大.4.B【解析】【分析】即可得出答案.【详解】∴34,即48的立方根的大小在3与4之间,故选:B .【点睛】5.D【解析】【分析】根据中位数、平均数、众数、方差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:91.7% ,93.5%,94.3%,94.3% ,96.1% . 则中位数为:94.3%,故选项C 错误; 平均数是:91.7%93.5%94.3%94.3%96.1%398%9.5=++++,故选项A 错误;方差是反映一组数据的波动大小的一个量,因为数据有波动,所以方差不可能为0,故选项B错误;94.3%出现两次,出现次数最多,故众数是94.3%,选项D正确;故选:D.【点睛】本题考查了平均数、众数、中位数以及方差,掌握计算方法是解题的关键.6.B【解析】分析:根据众数、平均数、频数、方差的概念分析.详解:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选:B.点睛:此题考查统计学的相关知识.注意:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.D【解析】【分析】点C是AB的中点,设A表示的数是a,根据AC=CB,求出a的值即可.【详解】设A表示的数是a,∵点C是AB的中点,∴AC=CB,∴33-=-,a解得:6a=-故选D.【点睛】此题主要考查了实数与数轴的特征,以及两点间的距离的求法,要熟练掌握.8.A【解析】【分析】利用互为相反数的两数之和为0列出关系式,再根据非负数的性质求出x 与y 的值即可.【详解】 ∵23x y -+和()22310x y +-互为相反数, ∴()22323100-+++-=x y x y , 又∵230-+≥x y ,()223100+-≥x y , ∴230-+=x y 且()223100+-=x y , 即232310x y x y -=-⎧⎨+=⎩①② 由②−①×2得:716=y , 解得:167y =, 将167y =代入①得:16237-⨯=-x , 解得:117x =, ∴方程组的解为117167x y ⎧=⎪⎪⎨⎪=⎪⎩, 故选:A .【点睛】此题主要考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键. 9.C【解析】【分析】根据算术平方根的定义解答即可.【详解】8,故选:C .【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.正数a 有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.10.C【解析】【分析】根据函数图象中的数据用路程除以时间可以求得客车在高速路上行驶的速度.【详解】解:由题意可得,客车在高速路上行驶的速度为:(300−60)÷(5−2)=80(千米/小时),故选:C .【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.C【解析】分析:根据分式及二次根式有意义的条件进行求解即可.详解:由题意得,1020x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠2,故选C .点睛:此题考查了分式及二次根式有意义的条件.注意:分式有意义的条件是分母不等于零,分式无意义的条件是分母等于零.二次根式有意义的条件是被开方数大于或等于零.12.6【解析】试题分析:先将二次根式化为最简,然后再进行二次根式的乘法运算即可.试题解析:原式.【考点】二次根式的乘除法.13.252T t =-【解析】直接利用原温度减去降下的温度进而列式,即可得出答案.【详解】由题可得物体温度T (单位:℃)与冷冻时间t (单位:时)之间的关系式是252T t =-. 故答案为:252T t =-.【点睛】本题考查了函数关系式,解决本题的关键是根据题意列出函数关系式.14.第三象限.【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点得到点P 3在第三象限.【详解】若P 1在第一象限,则根据P 1与P 2关于y 轴对称,P 2在第二象限;再根据P 2与P 3关于x 轴对称,则P 3在第三象限.故答案为:第三象限.【点睛】此题考查轴对称的概念,解题关键在于依次分析它们的位置.15.70S a= 【解析】【分析】根据油箱的总量固定不变,利用每千米耗油0.1升乘以700千米即可得到油箱的总量,故可求解.【详解】依题意得油箱的总量为:每千米耗油0.1升乘以700千米=70升∴轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式)为70S a =故答案为:70S a=. 【点睛】此题主要考查列函数关系式,解题的关键是根据题意找到等量关系列出关系式.16.y=-2x+3【分析】根据一次函数图象平移的规律即可得出结论.【详解】解:正比例函数y=-2x 的图象向上平移3个单位,则平移后所得图象的解析式是:y=-2x+3, 故答案为y=-2x+3.【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键. 17.直角.【解析】【分析】根据三角形内角和定理求解即可.【详解】解:根据三角形内角和定理知°+180A B C ∠+∠∠=A B C ∠=∠-∠∴°2180B ∠=°90B ∴∠=故ABC △是直角三角形故答案为:直角.【点睛】主要考查了三角形的内角和定理,注意运用等量代换的方法求得∠B 的值.18.-2【解析】根据题意,可得1+a =0,∣b-2∣=0,从而得到a+1=0,a=-1,b-2=0,b=2,ab=-2. 试题分析:因为二次根式为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要求每一项都为零,即1+a =0,∣b-2∣=0,而零的二次根式为0,0的绝对值为0,从而得到a+1=0,b-2=0,解得a=-1,b=2,ab=-2.考点:几个非负数的和为零,要求每一项都为零.【解析】试题解析:∵(x-3)2+|y+2|=0,∴x-3=0,y+2=0,∴x=3,y=-2,∴A 点的坐标为(3,-2),∴点A 在第四象限.20.1 4【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值即可.【详解】解:2|26|(3)0x y x y +-+-+=,∴263x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,把1x =代入①得:4y =,则1x =,4y =,故答案为:1;4.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.2【解析】【分析】将根号下化成()()22236-8=8=2=2,即可得出答案.【详解】=,故答案为2.【点睛】开根号运算,可先将根号下的式子先化简,再根据情况灵活计算.22.6【解析】【分析】根据二元一次方程解的定义,将x,y的值代入方程即可得到关于k的一元一次方程再解答即可.【详解】解:∵25xy=⎧⎨=⎩是方程kx-2y=2的一个解,∴2k-2×5=2解得:k=6故答案为:6.【点睛】本题考查了已知二元一次方程的解求方程中的参数,解题的关键是熟知二元一次方程解的概念.23.6【解析】【分析】根据众数为7可得x=7,然后根据中位数的概念求解.【详解】解:∵这组数据众数为7,∴x=7,这组数据按照从小到大的顺序排列为:2,3,5,7,7,9,则中位数为:5762+=,故答案为:6.【点睛】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.24.火车站(0,0)、市民中心(-8 000,4 000)、盛华公司(-6 000,-4 000)、传媒大楼(4 000,-6 000).【解析】试题分析:由题意知,每个地点的位置都是以火车站为中心;由此,可以以火车站为坐标原点,分别以正东,正北方向为x 轴、y 轴的正方向建立平面直角坐标系;然后根据火车站的坐标确定其它地方的坐标.解:以火车站为原点,以正东方向为x 轴正方向,以正北方向为y 轴正方向,以2 000 m 为单位长度,建立平面直角坐标系,图略.各地点的坐标分别为:火车站(0,0)、市民中心(-8 000,4 000)、盛华公司(-6 000,-4 000)、传媒大楼(4 000,-6 000).25.±5【解析】试题分析:由二次根式的意义知被开方数大于等于0,可求得x 与y ,再代入求值. 试题解析:由题意可知:x=3 y=8则32x y +=3×3+2×8=25所以32x y +的平方根为±5考点:二次根式的意义26.(1)D ,两直线平行,内错角相等;(2)AD ,BC ,同旁内角互补,两直线平行;(3)AD , BC ,两直线平行,同位角相等.【解析】【分析】根据平行线的判定,以及证明题的书写规则解题即可【详解】解:(1)∵EB∥DC,(已知)∴∠DAE=∠D .(两直线平行,内错角相等)(2)∵∠BCF+∠AFC=180°,(已知)∴AD∥BC . (同旁内角互补,两直线平行);(3)∵AD∥BC(已知)∴∠EF A=∠ECB .(两直线平行,同位角相等)【点睛】此题考查平行线的判定,注意熟练区分内错角、同位角和同旁内角27.(1)b=5;(2)272;(3)﹣3<x≤﹣2【解析】【分析】(1)把点A的坐标代入直线l1:y1=x+b,列出方程并解答;(2)利用两直线相交求得点C的坐标,由直线l2、l1求得点B、D的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A(﹣5,0)代入y1=x+b,得﹣5+b=0解得b=5;(2)由(1)知,直线l1:y1=x+5,且B(0,5).根题意知,524 y xy x=+⎧⎨=--⎩.解得32xy=-⎧⎨=⎩,即C(﹣3,2).又由y2=﹣2x﹣4知,D(0,﹣4).所以BD=9.所以S△BCD=12BD•|x C|=1932⨯⨯=272;(3)由(2)知,C(﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.28.见解析(答案不唯一).【解析】分析:首先选择合适的位置作为坐标原点建立平面直角坐标系,然后根据点的位置得出坐标.详解:答案不唯一,如建立如图所示的直角坐标系,则各地点相应的坐标为:教育局(-2,3),苏果超市(-1,1),怡景湾酒店(-4,-2),同仁医院(2,-3).点睛:本题主要考查的是平面直角坐标系的实际应用,属于基础题型.选择坐标原点是解决这个问题的关键.原点的位置可以自由进行选择.29.(13;(2)﹣7.【解析】【分析】(1)先去括号,然后合并同类二次根式即可得出答案;(2)直接利用二次根式的乘法运算法则、立方根的性质分别化简得出答案.【详解】(1)(+)﹣=+﹣=;(2)(+)+﹣|﹣|=5+1﹣4﹣9=﹣7.【点睛】此题主要考查了二次根式的混合运算及立方根的化简,熟练掌握二次根式的运算法则是解题关键.30.(1)坐标系见解析,食堂(-5,5)、宿舍楼(-6,2)、大门(0,0);(2)见解析.【解析】【分析】(1)直接利用旗杆的位置是(-2,3),得出原点的位置进而得出答案;(2)利用(1)中原点位置即可得出答案.【详解】解:(1)如图所示:食堂(-5,5)、宿舍楼(-6,2)、大门(0,0);(2)如图所示:办公楼和教学楼的位置即为所求.【点睛】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.31.(1)1(2)432【解析】【分析】(1)根据平方差公式即可求解;(2)根据二次根式的混合运算法则即可求解.【详解】(1)=3-2=1(2)==【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.32.(1(2)5【解析】【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)根据完全平方公式和二次根式的减法法则运算.【详解】解:(1)原式===+-=.(2)原式235【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.33.(1) AP=13cm,OA=5cm (2) OP=12cm【解析】【分析】(1)、设AP=a,OA=b,根据图一和图二列出二元一次方程组,从而得出答案;(2)、根据Rt△OAP的勾股定理得出答案.【详解】(1)设AP=a,OA=b,由题意818a ba b-=⎛+=⎝,解得135ab=⎛=⎝,∴AP=13cm,OA=5cm.(2)当OA⊥OP时,在Rt△PAO中,,∴OP=12cm.点睛:本题主要考查的是二元一次方程组的应用以及勾股定理的实际应用,属于基础题型.根据题意列出方程组是解决这个问题的关键.34.0【解析】【分析】把22x-y=-,22x+y=+,不难发现分子上可用公式因式分解,再约分化简即可. 【详解】解:2222-++2+=-=0【点睛】此题考查的是二次根式的化简,要学会把平方差公式和完全平方公式用在此题是解决此题的关键.35.7000.【解析】试题分析:先根据样本求出10户家庭的平均用水量,再乘以该小区的总户数即可.试题解析:根据题意得:(立方米),14×500=7000(立方米),答:该小区居民每月需要用水7000立方米.考点:1.用样本估计总体;2.加权平均数.。
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
2022-2023学年北师大版八年级数学上册《第1章勾股定理》期末复习综合练习题(附答案)1.下列线段不能构成直角三角形的是()A.5,12,13B.4,3,5C.4,7,5D.7,24,25 2.下列各组数中,是勾股数的为()A.1,2,3B.4,5,6C.3,4,5D.7,8,93.如图,某公园处有一块长方形草坪,有极少数人为了避开拐角∠AOB走“捷径”,在花圃内走出了一条“路”AB.他们踩伤草坪,仅仅少走了()A.4m B.6m C.8m D.10m4.传说,古埃及人常用“拉绳”的方法画直角,有一根长为m的绳子,古埃及人用这根绳子拉出了一个斜边长为n的直角三角形,那么这个直角三角形的面积用含m和n的式子可表示为()A.B.C.D.5.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,大正方形面积为S1,小正方形面积为S2,则(a+b)2可以表示为()A.S1﹣S2B.S1+S2C.2S1﹣S2D.S1+2S26.如图,在Rt△ABC中,分别以三角形的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=9,S2=16,则S3的值为()A.7B.10C.20D.257.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.3B.5C.4D.3.58.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.如果a2+b2≠c2,则△ABC不是直角三角形9.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向右滑动()A.15m B.9m C.7m D.8m10.如图,一圆柱体的底面周长为10cm,高AB为12cm,BC是直径,一只蚂蚁从点A出发沿着圆柱的表面爬行到点C的最短路程为()A.17cm B.13cm C.12cm D.14cm11.直角三角形的两直角边是3和4,则斜边是12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.13.如图所示的网格是正方形网格,点A、B、C、D均在格点上,则∠CAB+∠CBA=°.14.如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为.15.直角三角形的两边长分别是3cm、5cm,则第三边平方为.16.在正方形网格中,A、B、C、D均为格点,则∠BAC﹣∠DAE=.17.如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷,若绳子的长度为5.5米,固定点C到帐篷支撑杆底部B的距离是4.5米,现有一根高为3.2米的竿,它能否做帐篷的支撑竿,请说明理由.18.如图,△ABC中,AB2=32,∠ABC=45°,D是BC边上一点,且AD=AC,若BD﹣DC=1.求DC的长.19.如图,已知△ABC中,∠ACB=90°,过点B作BD∥AC,交∠ACB的平分线CD于点D,CD交AB于点E.(1)求证:BC=BD;(2)若AC=3,AB=6,求CD的长.20.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ABC=90°,BC=6m,AB=8m,AD=26m,CD=24m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要100元,问总共需投入多少元?21.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.22.勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:a b c13=1+24=2×1×25=2×2+125=2+312=2×2×313=4×3+137=3+424=2×3×425=6×4+149=4+540=2×4×541=8×5+1…………n a=b=c=(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现a,b,c之间的关系吗?(3)你能用以上结论解决下题吗?20192+20202×10092﹣(2020×1009+1)223.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD2.24.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.参考答案1.解:A、52+122=169=132,故是直角三角形,不符合题意;B、32+42=52,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、72+242=252,故是直角三角形,不符合题意.故选:C.2.解:A、错误,∵12+22=5≠32=9,∴不是勾股数;B、错误,∵42+52=41≠62=36,∴不是勾股数;C、正确,∵32+42=25=52=25,∴是勾股数;D、错误,∵72+82=113≠92=81,∴不是勾股数.故选:C.3.解:在Rt△AOB中,AB=10m,∴AO+BO﹣AB=6+8﹣10=4m.即少走了4m.故选:A.4.解:设这个直角三角形的两直角边分别为a,b,由题意可得,,∴2ab=(a+b)2﹣(a2+b2)=(m﹣n)2﹣n2=m2﹣2mn,∴这个直角三角形的面积=ab=.故选:A.5.解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C.6.解:在Rt△ABC中,AC2+AB2=BC2,由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∵S1=9,S2=16,∴S3=S1+S2=9+16=25.故选:D.7.解:∵BC=5,AC=5,∴S△ABC=×5×3=×AC×BD,∴BD=3,解法二:过A点做AE⊥BC交于点E,则易证三角形AEC全等三角形BDC,所以BD等于AE=3.故选:A.8.解:A、∠C﹣∠B=∠A,即∠A+∠B=∠C,又∵∠A+∠B+∠C=180°,则∠C=90°,那么△ABC是直角三角形,说法正确;B、c2=b2﹣a2,即a2+c2=b2,那么△ABC是直角三角形且∠B=90,说法正确;C、∠A:∠B:∠C=1:2:3,又∵∠A+∠B+∠C=180°,则∠C=90°,则△ABC是直角三角形,说法正确;D、a=3,b=5,c=4,32+52≠42,但是32+42=52,则△ABC可能是直角三角形,故原来说法错误.故选:D.9.解;梯子顶端距离墙角地距离为=24(m),顶端下滑后梯子底端距离墙角的距离为=15(m),15﹣7=8(m).故选:D.10.解:如图所示:由于圆柱体的底面周长为10cm,则AD=10×=5(cm).又因为CD=AB=12cm,所以AC=13(cm).故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是13cm.故选:B.11.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长=5,故答案为5.12.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3或a﹣b=﹣3(舍去),故答案是:3.13.解:由图可知:AD2=CD2=5,AC2=10,∴∠ADC=90°,∴∠ACD=45°,∴∠BAC+∠BCA=∠ACD=45°,故答案为:45.14.解:延长AB和DC,两线交于O,∵∠C=90°,∠ABC=135°,∴∠OBC=45°,∠BCO=90°,∴∠O=45°,∵∠A=90°,∴∠D=45°,则OB=BC,OD=OA,OA=AD,BC=OC,设BC=OC=x,则BO=x,∵CD=6,AB=2,∴四边形ABCD的面积S=S△OAD﹣S△OBC=×OA×AD﹣=16,故答案为:16.15.解:①当3cm和5cm都是直角边时,第三边为斜边,由勾股定理得:第三边平方为=34;②当3cm为直角边和5cm为斜边时,第三边为直角边,由勾股定理得:第三边平方为=16(cm).故答案为:16或34.16.解:如图所示,把△ADE移到△CFG处,连接AG,此时∠DAE=∠FCG,∵CF∥BD,∴∠BAC=∠FCA,∴∠BAC﹣∠DAE=∠FCA﹣∠FCG=∠ACG,设小正方形的边长是1,由勾股定理得:CG2=12+32=10,AC2=AG2=12+22=5,∴AC2+AG2=CG2,AC=AG,∴∠CAG=90°,即△ACG是等腰直角三角形,∴∠ACG=45°,∴∠BAC﹣∠DAE=45°,故答案为:45°.17.解:∵△ABC中,AC=5.5米,BC=4.5米,AB=3.2米;∴AC2=30.25,BC2=20.25,AB2=10.24;∵30.25≠20.25+10.24,∴不能做帐篷的支撑竿.18.解:过点A作AE⊥BC于点E,如图所示.∵AD=AC,AE⊥BC,∴∠AEB=90°,DE=CE.∵∠ABC=45°,∴∠BAE=45°,∴AE=BE.在Rt△ABE中,AB2=32,∴AE2+BE2=AB2,即BE2+BE2=32,∴BE=4,∴BD+DC=4.又∵BD﹣DC=1,∴DC+1+DC=4,∴DC=2.19.(1)证明:∵∠ACB=90°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×90°=45°,∵BD∥AC,∴∠D=∠ACD=45°,∴∠D=∠BCD,∴BC=BD;(2)解:在Rt△ACB中,BC===3,∴BD=3,∵∠BCD=∠D=45°,∴∠CBD=90°,∴CD===3.20.解:(1)如图,连接AC,在直角三角形ABC中,∵∠ABC=90°,BC=6m,AB=8m,∴AC=10m,∵AC2+CD2=102+242=676=AD2,∴∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=,答:空地ABCD的面积是144m2.(2)144×100=14400(元),答:总共需投入14400元.21.解:(1)△ABC为直角三角形,理由:由图可知,AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,解得,h=2,即AB边上的高为2.22.解:(1)由表中数据可得:a=2n+1,b=2n(n+1),c=2n(n+1)+1,故答案为:2n+1,2n(n+1),2n(n+1)+1;(2)a2+b2=c2,理由是:∵a=2n+1,b=2n(n+1),c=2n(n+1)+1,∴a2+b2=(2n+1)2+[2n(n+1)]2=[2n(n+1)]2+4n(n+1)+1c2=[2n(n+1)+1]2=[2n(n+1)]2+4n(n+1)+1∴a2+b2=c2;(3)当2n+1=2019时,n=1009,∴当n=1009时,a2=20192,b2=[2n(n+1)]2=20202×10092,c2=[2n(n+1)+1]2=[2020×1009+1]2,∵a2+b2=c2;∴20192+20202×10092﹣(2020×1009+1)2=0.23.解:(1)证明:∵∠ABC=∠EBD=90°,∴∠ABD+∠CBD=∠ABD+∠ABE,∴∠CBD=∠ABE,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴∠EAB=∠BAC,∴AB平分∠EAC;(2)∵AD=1,CD=3,∴AC=4.∵BA=BC,∠ABC=90°,∴AB=BC,∠C=45°,过点B作BF⊥AC于点F,如图:则△BCF为等腰直角三角形,∴BF=CF=2,∴DF=CD﹣CF=1,在Rt△BFD中,由勾股定理得:BD2=5∴BD的平方等于5.24.(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴大正方形的面积=(a+b)2,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(2)证明:∵△ABC≌△CDE,∴∠BAC=∠DCE,∵∠ACB+∠BAC=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°;(3)证明:∵∠B=∠D=90°,∴∠B+∠D=180°,∴AB∥DE,即四边形ABDE是梯形,∴四边形ABDE的面积=(a+b)(a+b)=ab+c2+ab,整理得:a2+b2=c2.。
2024-2025学年北师大版八年级数学上册(第1—2章)第一次阶段性综合练习题(附答案)一、选择题(共30分)1.下列各数:,﹣,,,0.3030030003,无理数有()A.2个B.3个C.4个D.5个2.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c23.下列说法不正确的是()A.±0.3是0.09的平方根,即±=±0.3B.的平方根是±8C.正数的两个平方根的积为负数D.存在立方根和平方根相等的数4.下列各式计算正确的是()A.+=B.4﹣3=1C.2×2=4D.÷=35.下列二次根式中,化简后能与合并的是()A.B.C.D.6.若△ABC的三边a、b、c满足(﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为()A.2.5B.C.D.﹣18.若一个正数的两个平方根为a+1和2a﹣7,则这个正数是()A.6B.7C.8D.99.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14B.14或4C.8D.4或810.如图是一个长、宽、高分别为4cm,3cm,5cm的长方体,一只蚂蚁从顶点A出发,沿长方体的表面爬行至点B,爬行的最短路程是()cm.A.5B.C.4D.12二、填空题(共15分)11.比较大小:0.5.12.计算:|=.13.已知x、y都是实数,且y=+4,则y x=.14.如图,矩形纸片ABCD中,AB=18cm.把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13cm,则AD的长为cm.15.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于.三、解答题(75分)16.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c 的算术平方根.17.计算下列各题:(1)+﹣;(2)+|;(3)﹣﹣(+(4).18.实数a、b、c在数轴上的对应点位置如图所示,化简:+|a﹣b|+﹣|b﹣c|19.如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.20.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.21.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.22.阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:(2+)(2﹣)=1,(+)(﹣)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:,.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4﹣的有理化因式可以是,分母有理化得.(2)计算:①已知x =,y =,求x 2+y 2的值;②+++...+20222021123.如图1,Rt △ABC 中,AC ⊥CB ,AC =15,AB =25,点D 为斜边上动点.(1)如图2,过点D 作DE ⊥AB 交CB 于点E ,连接AE ,当AE 平分∠CAB 时,求CE ;(2)如图3,在点D 的运动过程中,连接CD ,若△ACD 为等腰三角形,求AD .参考答案一、选择题(共30分)1.解:0.3030030003,是分数,属于有理数;=7,是整数,属于有理数;无理数有:,﹣,共2个.故选:A.2.解:A、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;B、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形;C、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形.D、由b2﹣a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;故选:B.3.解:A、∵(±0.3)2=0.09,±0.3是0.09的平方根,故本选项正确;B、∵=8,∴的平方根为±2,故本选项错误;C、正数的平方根有两个,互为相反数,其积为负数,故本选项正确;D、0的立方根和平方根相等,故本选项正确.故选:B.4.解:A、与Z不是同类二次根式,不能合并成一项,故本选项计算错误,不符合题意;B、4﹣3=,故本选项计算错误,不符合题意;C、2×2=12,故本选项计算错误,不符合题意;D、÷==3,故本选项计算正确,符合题意;故选:D.5.解:A、=,能与合并,故本选项正确;B、不能与合并,故本选项错误;C、=2,不能与合并,故本选项错误;D、=,不能与合并,故本选项错误.故选:A.6.解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.7.解:∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=3,AD=BC=1,∴AC===,∵AM=AC=,OA=1,∴OM=﹣1,∴点M表示点数为﹣1.故选:D.8.解:根据题意得:a+1+2a﹣7=0,解得:a=2,则这个正数是(2+1)2=9.故选:D.9.解:此图中有两个直角三角形,利用勾股定理可得:CD2=152﹣122=81,∴CD=9,同理得BD2=132﹣122=25∴BD=5∴BC=14,此图还有另一种画法.即当是此种情况时,BC=9﹣5=4故选:B.10.解:因为平面展开图不唯一,故分情况分别计算,进行大小比较,再从各个路线中确定最短的路线.(1)展开前面、右面得到长方形的两边为5+4=9cm和3cm,由勾股定理得AB2=(5+4)2+32=90(cm);(2)展开前面、上面得到长方形的两边为4+3=7cm和5cm,由勾股定理得AB2=(3+4)2+52=74(cm);(3)展开左面、上面得到长方形的两边为5+3=8cm和4cm,由勾股定理得AB2=(3+5)2+42=80(cm);所以最短路径长为cm,故选:B.二、填空题(共15分)11.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.12.解:|=2+1﹣=+1,故答案为:+1.13.解:∵y=+4,∴,解得x=3,∴y=4,∴y x=43=64.故答案为:64.14.解:由折叠得:∠EAC=∠BAC,AE=AB=1cm8,∵四边形ABCD为长方形,∴DC∥AB,∴∠DCA=∠BAC,∴∠EAC=∠DCA,∴FC=AF=13cm,∵AB=18cm,AF=13cm,∴EF=18﹣13=5(cm),∵∠E=∠B=90°,∴EC==12(cm),∵AD=BC=EC,∴AD=12cm,故答案为:12.15.解:连接AD,∵△ABC中,AB=AC=13,BC=10,D为BC中点,∴AD⊥BC,BD=BC=5,∴AD==12,又∵DE⊥AB,∴BD•AD=AB•ED,∴ED=,故答案为:三、解答题(75分)16.解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又有7<<8,可得c=7;则a+2b+c=16;则16的算术平方根为4.17.解:(1)+﹣=2=5;(2)+|=3﹣2+﹣1=;(3)﹣﹣(+=3﹣2﹣(3﹣2)=3﹣2+1﹣1=3﹣2;(4)=2+3+2=5+.18.解:原式=|﹣c|+|a﹣b|+a+b﹣|b﹣c|,=c+(﹣a+b)+a+b﹣(﹣b+c=c﹣a+b+a+b+b﹣c,=3b.19.解:(1)△ABC的面积=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5.故△ABC的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形.20.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=800米,AC=600米,所以,根据勾股定理有AB==1000(米).=AB•CD=BC•AC因为S△ABC所以CD===480(米).由于400米<480米,故没有危险,因此AB段公路不需要暂时封锁.21.解:在Rt△ABD中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC2=BD2+CD2,∴∠BDC=90°,=S△ABD+S△DCB=×2×2+×4×4=4+8.∴S四边形ABCD22.解:(1)4﹣的有理化因式可以是4+,,故答案为:4+,;(2)①当x==,y==时,x2+y2=(x+y)2﹣2xy=(2++2﹣)2﹣2×(2+)×(2﹣)=16﹣2×1=14.②+++...+202220211=﹣1+﹣+﹣+…+2022﹣2021=2022﹣123.解:(1)∵AC ⊥CB ,AC =15,AB =25∴BC =20,∵AE 平分∠CAB ,∴∠EAC =∠EAD ,∵AC ⊥CB ,DE ⊥AB ,∴∠EDA =∠ECA =90°,∵AE =AE ,∴△ACE ≌△ADE (AAS ),∴CE =DE ,AC =AD =15,设CE =x ,则BE =20﹣x ,BD =25﹣15=10在Rt △BED 中∴x 2+102=(20﹣x )2,∴x =7.5,∴CE =7.5.(2)①当AD =AC 时,△ACD 为等腰三角形∵AC =15,∴AD =AC =15.②当CD =AD 时,△ACD 为等腰三角形∵CD =AD ,∴∠DCA =∠CAD ,∵∠CAB +∠B =90°,∠DCA +∠BCD =90°,∴∠B =∠BCD ,∴BD =CD ,∴CD =BD =DA =12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则•AB•CH=•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH==9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.。
八年级数学第一章《勾股定理》复习练习一、选择题:1、下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是()A.3,5,6 B.2,4,5 C.6,7,8 D.1.5,2,2.52、如梯子的底端离建筑物5米,那么13 米长的梯子可以达到建筑物的高度是( ) A.12 米 B.13 米 C.14 米 D.15 米3、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米4、若△A B C的三边长 a ,b ,c满足(a-b )2+|a 2+b2-c2|=0,则△ABC是( ) A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形5、如图,有一个圆锥,高为8cm,底面直径为12cm.在圆锥的底边B点处有一只蚂蚁,它想吃掉圆锥顶部A处的食物,则它需要爬行的最短路程是( )A.8cmB.9cmC. 10cmD. 11cm6、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题:7、测得一块三角形稻田的三边长分别是30m,40m,50m,则这块稻田的面积为______.8、《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.9、在一棵树的10米高B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高________米.10、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是 .11、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为 .12、如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为 .三、解答题:13、设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,试判断以c+h,a+b,h为边的三角形的形状14、已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,求BC的长15、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,求离开港口2小时后,两船相距多少海里?16、已知:如图,在四边形ABCD中,AD∥BC,AB=4,BC=6,CD=5,AD=3.求四边形ABCD的面积.17、如图,小丽荡秋千,秋千架高2.4m,秋千座位离地0.4m,小红荡到最高时,座位离地0.8m.此时小红荡出的水平距离是多少?(荡到秋千架两边的最高点之间的距离)参考答案一、选择题:1、D2、 A3、A4、C5、 C6、 D二、填空题:7、600m28、x2+32=(10﹣x)29、1510、10 cm11、1.512、40m三、解答题:13、直角三角形14、2或215、40海里16、1817、2.4m。
2021-2022学年北师大版八年级数学第一学期期末复习综合练习题(附答案)1.在下列实数中,无理数是()A.B.C.0.10D.3.142.下列各组数据中不能作为直角三角形的三边长的是()A.3,4,5B.1.5,2,2.5C.15,8,17D.12,13,73.8的立方根为()A.±2B.2C.4D.±44.已知直线y=﹣2x+3不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知点P(a,2)与点Q(﹣3,2)关于y轴对称,则a的值为()A.3B.﹣3C.2D.﹣26.已知关于x、y的二元一次方程2nx﹣y=2有一组解是,则n的值是()A.1B.2C.0D.﹣17.如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°8.下列命题中是真命题的是()A.内错角相等B.三边长为,,的三角形是直角三角形C.等腰三角形的高,中线,角平分线互相重合D.三角形三边垂直平分线的交点到三角形三个顶点的距离相等9.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的速度是250米/分钟,步行的速度是80米/分钟.他家离学校的距离是2900米.若他骑车和步行的时间分别为x分钟和y分钟,则列出的方程组是()A.B.C.D.10.已知一次函数y1=ax+b和y2=bx+a(ab≠0且a≠b),这两个函数的图象可能是()A.B.C.D.11.比较大小:3(填写“<”或“>”).12.已知a,b满足|a+4|+=0,则a+b=.13.如图,在△ABC中,AB=AC=10,BD是边AC上的高,CD=2,则BD=.14.如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD 是等边三角形,∠A=24°,则∠1=°.15.已知y=﹣+2,则x y=.16.平面直角坐标系中,点A坐标为(2,3),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=﹣2x的图象上,则a的值为.17.如图,点E是BA延长线上一点,在下列条件中:①∠1=∠3;②∠5=∠B;③∠1=∠4且AC平分∠DAB;④∠B+∠BCD=180°,能判定AB∥CD的有.(填序号)18.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P'为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4).即P′(9,6).则点P(﹣2,3)的“4属派生点”P′的坐标为;若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的3倍,则k的值为.19.在长方形ABCD中,AB=,BC=4,CE=CF,延长AB至点E,连接CE,CF平分∠ECD,则BE=.20.计算下列各题.(1)()﹣2+(π﹣3.14)0﹣6×;(2)×+(1﹣)(+1).21.解方程组:;22.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于x轴对称图形为△A1B1C1,画出△A1B1C1的图形;(2)将△ABC向右平移4个单位,再向下平移3个单位,得到图形为△A2B2C2,画出△A2B2C2的图形;(3)求△ABC的面积.23.疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D:95≤x≤100)七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:94,90,92.七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级92b c52八年级929310050.4根据以上信息,解答下列问题:(1)这次比赛中年级成绩更平衡,更稳定;(2)直接写出上述a、b、c的值:a=,b=,c=;(3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是多少?24.如图,一次函数y=kx+b的图象经过点A(﹣1,5),与x轴交于点B,与正比例函数y =3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式.(2)若点D在y轴负半轴,且满足S△COD=S△BOC,求点D的坐标.(3)若kx+b<3x,请直接写出x的取值范围.25.在Rt△ABC中,∠ACB=90°,AC=BC,点D、F是线段AB上两点,连接CD,过A作AE⊥CD于点E,过点F作FM⊥CD于点M.(1)如图1,若点E是CD的中点,求∠CAE的大小;(2)如图2,若点D是线段BF的中点,求证:CE=FM;(3)如图3,若点F是线段AB的中点,AE=,CE=1,求FM的值.26.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案;(3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m元,要使(2)中所有方案获利相同,则m的值应为多少?27.如图,已知直线y=x﹣4分别与x轴,y轴交于A,B两点,直线OG:y=kx(k<0)交AB于点D.(1)求A,B两点的坐标;(2)如图1,点E是线段OB的中点,连接AE,点F是射线OG上一点,当OG⊥AE,且OF=AE时,①求EF的长;②在x轴上找一点P,使PE+PD的值最小,求出P点坐标.(3)如图2,若k=﹣,过B点BC∥OG,交x轴于点C,此时在x轴上是否存在点M,使∠ABM+∠CBO=45°,若存在,求出点M的坐标;若不存在,请说明理由.参考答案1.解:A、=3,3是整数,属于有理数,故此选项不符合题意;B、是无理数,故此选项符合题意;C、0.10是循环小数,属于有理数,故此选项不符合题意;D、3.14是有限小数,属于有理数,故此选项不符合题意.故选:B.2.解:A.∵32+42=52,∴以3,4,5为边能组成直角三角形,故本选项不符合题意;B.∵1.52+22=2.52,∴以1.5,2,2.5为边能组成直角三角形,故本选项不符合题意;C.∵152+82=172,∴以15,8,17为边能组成直角三角形,故本选项不符合题意;D.∵122+72≠132,∴以12,7,13为边不能组成直角三角形,故本选项符合题意;故选:D.3.解:∵2的立方是8,∴8的立方根为2,故选:B.4.解:∵直线y=﹣2x+3,k=﹣2,b=3,∴该直线经过第一、二、四象限,不经过第三象限,故选:C.5.解:点P(a,2)与点Q(﹣3,2)关于y轴对称,则a的值为3,故选:A.6.解:把代入方程2nx﹣y=2,得2n﹣2=2,解得n=2.故选:B.7.解法一:如图,∵∠2是△ABC的外角,∴∠A=∠2﹣∠1=100°﹣60°=40°,解法二:如图,∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°,∴∠5=180°﹣∠4=80°,∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°,故选:A.8.解:A、两直线平行,内错角相等,原命题是假命题,不符合题意;B、∵,所以三边长为,,的三角形不是直角三角形,原命题是假命题,不符合题意;C、等腰三角形的底边上的高,中线和顶角的角平分线互相重合,原命题是假命题,不符合题意;D、三角形三边垂直平分线的交点到三角形三个顶点的距离相等,是真命题,符合题意;故选:D.9.解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:C.10.解:当a>0,b>0时,一次函数y1=ax+b的图象经过第一、二、三象限,y2=bx+a的图象经过第一、二、三象限,故选项A错误,选项B错误,选项D正确;当a<0,b>0时,一次函数y1=ax+b的图象经过第一、二、四象限,y2=bx+a的图象经过第一、三、四象限,故选项C错误;故选:D.11.解:∵7<9,∴<3.故答案为:<.12.解:由题意得,a+4=0,b﹣2=0,∴a=﹣4,b=2,∴a+b=﹣4+2=﹣2.故答案为:﹣2.13.解:由已知得:AD=AC﹣CD=8,AB=10,∴△ADB是直角三角形,∴BD2+AD2=AB2,∴BD==6.14.解:∵a∥b,∴∠1=∠ACD,∵△BCD是等边三角形,∴∠BDC=60°,∵∠BDC=∠A+∠ACD,∴∠ACD=∠BDC﹣∠A=60°﹣24°=36°,∴∠1=36°.故答案为36.15.解:根据题意得,解得x=3,当x=3时,y=2,∴x y=32=9,故答案为:9.16.解:∵点A坐标为(2,3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2﹣a,3),∵恰好落在正比例函数y=﹣2x的图象上,∴(2﹣a)×(﹣2)=3,解得:a=.故答案为:.17..解:①中,∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不合题意;②中,∵∠5=∠B,∴AD∥BC(同位角相等,两直线平行),不合题意;③中,∵∠1=∠4且AC平分∠DAB,∴∠2=∠4,∴AB∥CD,故此选项符合题意;④中,∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故此选项符合题意;故答案为:③④.18.解:由定义可知:a=﹣2,b=3,k=4,∴a+kb=﹣2+4×3=10,ka+b=4×(﹣2)+3=﹣5,∴P′的坐标为(10,﹣5),∵点P在x轴的正半轴上,∴P点的纵坐标为0,设P(m,0),则点P的“k属派生点”P′点为(m,km),∴PP'=|km|,PO=|m|,∵线段PP′的长度为线段OP长度的3倍,∴|km|=3|m|,∴k=±3.故答案为(10,﹣5),±3.19.解:如图,延长CF,BA交于点G,连接EF,过点F作FH⊥CE于H,过点E作EM ⊥CF于M,∵四边形ABCD是矩形,且AB=,BC=4,∴AB∥CD,AB=CD=,∠D=∠ABC=∠CBE=90°,∴∠DCF=∠G,∵CF平分∠ECD,∴∠DCF=∠FCE,FH=DF,∴∠G=∠ECF,∴EC=EG,∴△ECG是等腰三角形,∴CM=MG,∵CE=CF,∴△ECF是等腰三角形,∵EM⊥CF,FH⊥CE,∴EM和FH是等腰三角形腰上的高,∴EM=FH=DF,∴Rt△CDF≌Rt△CME(HL),∴CM=CD=,∴CG=5,Rt△CBG中,BG===3,设BE=x,则EC=EG=3+x,Rt△CBE中,(3+x)2=x2+42,解得:x=,∴BE=.故答案为:.20.解:(1)原式=9+1﹣2=10﹣2;(2)原式=×3+1﹣5=﹣4.21.解:,①×2+②,得11x=22,解得:x=2,把x=2代入①,得:6﹣2y=7,解得:y=﹣,∴方程组的解为;22.解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2即为所求作.(3)S△ABC=2×3﹣×1×1﹣×2×2﹣×1×3=2.23.解:(1)∵七年级成绩的方差为52,八年级成绩的方差为50.4,∴八年级成绩的方差小于七年级成绩的方差,∴八年级成绩更平衡,更稳定;故答案为:八;(2)∵八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,∴a%=1﹣(20%+10%+30%)=40%,即a=40;将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,则这组数据的中位数b==93,c=96,故答案为:40、93、96;(3)估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是1200×(1﹣20%﹣10%)=840(人).24.解:(1)当x=1时,y=3x=3,∴C(1,3),将A(﹣1,5),C(1,3)代入y=kx+b,得,解得,∴直线AB的解析式是y=﹣x+4;(2)y=﹣x+4中,令y=0,则x=4,∴B(4,0),设D(0,m)(m<0),S△BOC=×OB×|y C|==6,S△COD=×OD•|x C|=|m|×1=﹣m,∵S△COD=S△BOC,∴﹣m=,解得m=﹣4,∴D(0,﹣4);(3)观察图象可知,kx+b<3x,则x的取值范围是x>1.25.(1)解:∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°,∵AE⊥CD,EC=ED,∴AC=AD,∴∠CAE=∠DAE=22.5°,∴∠CAE=22.5°.(2)证明:过点B作BN⊥CD交CD的延长线于点N.∴∠BNC=90°,∵AE⊥CD,∴∠CEA=∠BNC=90°,∴∠CAE+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCN=90°,∴∠CAE=∠BCN,在△AEC和△CNB中,,∴△AEC≌△CNB(AAS),∴CE=BN,∵FM⊥CD,BN⊥CD,∴∠FMD=∠BND=90°,∵点D是线段BF的中点,∴FD=BD,在△FMD和△BND中,,∴△FMD≌△BND(AAS),∴FM=BN,∴CE=FM.(3)解:在线段AE上取点G,使得AG=CE,连接CF、EF,如图3所示:∵AF=FB,AC=BC,∠ACB=90°,∴CF⊥AB,CF=AF,∵∠F AG+∠ADE=90°,∠ADE+∠FCE=90°,∴∠GAF=∠ECF,在△AGF和△CEF中,,∴△AGF≌△CEF(SAS),∴FG=EF,∠AFG=∠CFE,∴∠EFG=∠AFC=90°∴△EFG是等腰直角三角形,∴EG=EF,∠GEF=45°,∴∠MEF=90°﹣45°=45°,∴△EFM是等腰直角三角形,∴EF=FM,∴AE﹣CE=AE﹣AG=EG=EF=2FM=﹣1,∴FM=.26.解:(1)设每台甲型微波炉的进价为x元,每台乙型微波炉的进价为y元,依题意得:,解得:.答:每台甲型微波炉的进价为1000元,每台乙型微波炉的进价为800元.(2)设购进甲型微波炉a台,则购进乙型微波炉(20﹣a)台,依题意得:,解得:7≤a≤10,又∵a为正整数,∴a可以为7,8,9,10,∴共有4种进货方案,方案1:购进甲型微波炉7台,乙型微波炉13台;方案2:购进甲型微波炉8台,乙型微波炉12台;方案3:购进甲型微波炉9台,乙型微波炉11台;方案4:购进甲型微波炉10台,乙型微波炉10台.(3)设获得的总利润为w元,则w=(1400×0.9﹣1000)a+(800×45%﹣m)(20﹣a)=(m﹣100)a+7200﹣20m,∵获得的利润与a值无关,∴m﹣100=0,∴m=100.答:m的值应为100.27.解:(1)∵直线y=x﹣4分别与x轴,y轴交于A,B两点,∴令y=0,则x﹣4=0,∴x=4,令x=0,则y=﹣4,∴A(4,0),B(0,﹣4).(2)①∵A(4,0),B(0,﹣4),∴OA=OB=4,∵点E是线段OB的中点,∴OE=2,过F作FB′⊥y轴于B′,∴∠AOE=∠OB′F=90°,∵OG⊥AE,∴∠OAE+∠AOF=∠B′OG+∠AOF=90°,∴∠OAE=∠B′OF,∵OF=AE,∴△AOE≌△OB′F(AAS),∴FB'=OE=2,OB′=OA=4,∵OB=4,∴点B与点B′重合,∴EF===2.②由①可知,F(2,﹣4),∴直线OF的解析式为y=﹣2x,由,解得,∴D(,﹣),作点E关于x轴的对称点E′,连接DE′交x轴于P,连接PE,此时PE+PD的值最小,∵E′(0,2),∴直线DE′的解析式为y=﹣x+2,令y=0,可得x=,∴P(,0).(3)存在,∵k=﹣,∴直线OG:y=﹣x(k<0),∵BC∥OG,∴设直线BC的解析式为y=﹣x﹣4,当y=0时,即﹣x﹣4=0,∴x=﹣3,∴C(﹣3,0),如图,当点M在点A的左侧,∵∠ABO=45°,∠ABM+∠CBO=45°,∠ABM+∠MBO=45°,∴∠MBO=∠CBO,∵∠COB=∠MOB=90°,OB=OB,∴△BCO≌△BMO(ASA),∴OM=OC=3,∴M(3,0);当点M在点A的右侧时,∵∠OAB=∠AM′B+∠ABM′=45°,∠ABM'+∠CBO=45°,∴∠AM′B=∠OBC,∵∠CBO=∠OM′B,∴∠CBO+∠OBM′=90°,设OM′=a,∴BM′=,∵S△CBM′=OB×CM′=BC•BM′,∴4×(3+a)=×,解得:a=,∴M′(,0),综上所述,点M的坐标为:(3,0),(,0).。
八年级上册综合复习(十一)动点问题(北师版)一、单选题(共7道,每道14分)1.如图,直线:与x,y轴分别交于A,B两点,直线:与x轴交于点C,与直线交于点P.动点M从点A出发,以每秒1个单位的速度沿折线AP—PC 向点C匀速运动(点M不与点A,C重合),设△OMC的面积为S,运动时间为t秒,则S 与t之间的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一次函数动点问题2.如图,在△AOB中,以点O为原点建立平面直角坐标系,A(16,0),B(8,6).动点P从点A出发以每秒3个单位的速度沿AO向终点O运动,同时点Q从点O出发以每秒2个单位的速度沿OB—BA向终点A运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为t秒,则△OPQ的面积S与t之间的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一次函数之动点问题3.如图,过A(8,0),B两点的直线与直线交于点C,平行于y轴的直线从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;分别交线段BC,OC于点D,E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S (平方单位),直线的运动时间为t(秒).(1)C点坐标是( ),根据S表达的不同,t的分段是( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:一次函数动点问题4.(上接第3题)(2)S与t的函数关系式是( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:一次函数动点问题5.如图,直线y=-x+18分别与x轴、y轴交于A,B两点;直线y=2x分别与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位长度的速度沿x 轴向左运动,过点E作x轴的垂线,分别交直线AB,OD于点P,Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分的面积为S(平方单位),点E的运动时间为t (秒).当0<t<12时,则S与t之间的函数关系式为()<12时,则s与t之间的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一次函数动点问题6.如图,已知一次函数y=-x+7与正比例函数的图象交于点A,且与x轴交于点B.过点A作AC⊥y轴于点C.动点P从点O出发,以每秒1个单位长度的速度,沿OC-CA的路线向点A运动;同时动点R从点B出发,以相同速度向左平移.当点P到达点A时,点P 和点R都停止运动.在运动过程中,设动点P运动的时间为t秒,△APR的面积为S,则S 关于t的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一次函数动点问题7.如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4),∠DAB=45°.动点P从点A出发以每秒2个单位的速度向终点B运动,同时动点Q从点B出发以每秒5个单位的速度沿折线BC-CD的方向向点D运动,过点P作PM垂直于x轴,与折线AD-DC相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.则点Q与点M相遇前S与t之间的函数关系式为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:一次函数动点问题。
2021-2022学年北师大版八年级数学上册《第7章平行线的证明》期末综合复习训练1(附答案)1.若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行2.两条直线相交所成的四个角都相等时,这两条直线的位置关系是()A.平行B.相交C.垂直D.不能确定3.下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有交点,那么这两条线段所在直线也没有交点;(3)邻补角的两条角平分线构成一个直角;(4)同一平面内,过一点有且只有一条直线与已知直线垂直;(5)同一平面内,过一点有且只有一条直线与已知直线平行.其中正确的是()A.1个B.2个C.3个D.4个4.如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠ABC=∠ADC,∠3=∠4D.∠BAD+∠ABC=180°5.如图,“因为∠1=∠2,所以a∥b”,其中理由依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行6.如图,在△ABC中,AD是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC 于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个B.3个C.2个D.1个7.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=60°,∠B=48°,则∠CDE的大小为()A.72°B.36°C.30°D.188.若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形9.如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()A.25°B.50°C.65°D.70°10.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.011.在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是.12.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.13.“有两角及其中一角的平分线对应相等的两个三角形全等”是命题(填“真”或“假”).14.如图,要得到AB∥CD,只需要添加一个条件,这个条件可以是.(填一个你认为正确的条件即可)15.如果△ABC的两条高线BE和CF所在的直线相交于点O,且∠A=50°,那么∠BOC =.16.如图所示,∠ABC的内角平分线与∠ACB的外角平分线交于点P,已知∠A=50°,∠P=.17.学校开展象棋大赛,A、B、C、D四队进入决赛,赛前,甲猜测比赛成绩的名次顺序是:从第一名开始,依次是B、C、D、A;乙猜测的名次依次是D、B、C、A,比赛结果,两人都只猜对了一个队的名次,已知第四名是B队,则第一名是队.18.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人“项目比赛,该项目只设置一个一等奖,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学只有两位预测结果是对的,则获得一等奖的团队是.19.(原创题)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?20.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.21.如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.22.如图,∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC外,若∠AEC'=22°,求∠BDC'的度数.23.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.参考答案1.解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.2.解:两条直线相交所成的四个角都相等时,则每一个角都为90°,所以这两条直线垂直.故选:C.3.解:(1)两点之间的距离是两点间的线段长度,故(1)错误;(2)如果两条线段没有交点,那么这两条线段所在直线不一定没有交点,故(2)错误;(3)邻补角的两条角平分线一定构成一个直角,故(3)正确;(4)同一平面内,过一点有且只有一条直线与已知直线垂直,故(4)正确;(5)同一平面内,过直线外一点有且只有一条直线与已知直线平行,故(5)错误.其中正确的是2个.故选:B.4.解:A、∵∠1=∠2,∴AD∥CB,故本选项错误;B、∵∠BAD=∠BCD,不能得出AB∥CD,故本选项错误;C、∵∠ABC=∠ADC,∠3=∠4,∴∠ABD=∠BDC,∴AB∥CD,故本选项正确;D、∵∠BAD+∠ABC=180°,∴AD∥BC,故本选项错误;故选:C.5.解:因为∠1=∠2,所以a∥b(内错角相等,两直线平行),故选:B.6.解:∵AD⊥BC,∴∠ADC=90°,∴∠C+∠CAD=90°,∵∠BAD=∠C,∴∠BAD+∠CAD=90°,∴∠CAB=90°,故①正确,∵∠BAE=∠BAD+∠DAE,∠DAE=∠CAE,∠BAD=∠C,∴∠BAE=∠C+∠CAE=∠BEA,故③正确,∵EF∥AC,∴∠AEF=∠CAE,∵∠CAD=2∠CAE,∴∠CAD=2∠AEF,∵∠CAD+∠BAD=90°,∠BAD+∠B=90°,∴∠B=∠CAD=2∠AEF,故④正确,无法判定EA=EC,故②错误.故选:B.7.解:∵∠A=60°,∠B=48°,∴∠ACB=180°﹣∠A﹣∠B=72°,∵CD平分∠ACB,∴∠BCD=∠ACB=36°,∵DE∥BC,∴∠CDE=∠BCD=36°;故选:B.8.解:设三角形的三角的度数是x°,2x°,3x°,则x+2x+3x=180,解得x=30,∴3x=90,即三角形是直角三角形,故选:A.9.解:由三角形的内角和定理可知:∠CAB=50°,∵AD是∠BAC的平分线,∴∠DAC=25°,∴∠ADC=90°﹣∠DAC=65°故选:C.10.解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.11.解:∵a⊥b,b⊥c,∴a∥c.故答案为a∥c.12.解:在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.13.已知:△ABC和△A′B′C′中,∠A=∠A',∠B=∠B′,∠B、∠B′的角平分线,BD=B′D′,求证:△ABC≌△A′B′C′.证明:∵∠B=∠B'且∠B、∠B′的角平分线分别为BD和B′D′,∴∠ABD=∠A′B′D′=∠B,∵BD=B'D',∠A=∠A′,∴△ABD≌△A′B′D′,∴AB=A′B′,∵∠A=∠A′,∠B=∠B′,∴△ABC≌△A′B′C′.∴“有两角及其中一角的平分线对应相等的两个三角形全等”是真命题,故答案为:真.14.解:可以添加条件∠B=∠DCN(答案不唯一).理由如下:∵∠B=∠DCN,∴AB∥CD.故答案为:∠B=∠DCN(答案不唯一).15.解:本题要分两种情况讨论如图:①当交点在三角形内部时(如图1),在四边形AFOE中,∠AFC=∠AEB=90°,∠A=50°,根据四边形内角和等于360°得,∠EOF=180°﹣∠A=180°﹣50°=130°,故∠BOC=130°;②当交点在三角形外部时(如图2),在△AFC中,∠A=50°,∠AFC=90°,故∠1=180°﹣90°﹣50°=40°,∵∠1=∠2,∴在△CEO中,∠2=40°,∠CEO=90°,∴∠EOF=180°﹣90°﹣40°=70°,即∠BOC=50°,综上所述:∠BOC的度数是130°或50°.故答案为:130°或50°.16.解:∵∠PCD=∠P+∠PBC,∠ACD=∠ABC+∠A,BP平分∠ABC,PC平分∠ACD,∴∠ACD=2∠PCD,∠ABC=2∠PBC,∴2∠P+2∠PBC=∠ABC+∠A,∴2∠P=∠A,即∠P=∠A.∵∠A=50°,∴∠P=25°.故答案为:25°.17.解:由于甲、乙两队都猜对了一个队的名次,且第四名是B队.可得甲只有可能猜对了C,D的名次,当D的名次正确,则乙将全部猜错,故甲一定猜对了C的名次,故乙猜对了D的名次,那么甲、乙的猜测情况可表示为:甲:错、对、错、错;乙:对、错、错、错.因此结合两个人的猜测情况,可得出正确的名次顺序为:D,C,A,B.故答案为:D.18.解:①若获得一等奖的团队是甲团队,则小张、小李、小赵预测结果是对的,与题设矛盾,即假设错误,②若获得一等奖的团队是乙团队,则小张预测结果是对的,与题设矛盾,即假设错误,③若获得一等奖的团队是丙团队,则四人预测结果都是错的,与题设矛盾,即假设错误,④若获得一等奖的团队是丁团队,则小李、小王预测结果是对的,与题设相符,即假设正确,即获得一等奖的团队是:丁.故答案为:丁.19.解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.20.解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.21.解:∵∠1=∠2,∴CE∥BF,∴∠4=∠AEC,又∵∠3=∠4,∴∠3=∠AEC,∴AB∥CD.22.解:如图设AE交DC′于F.在△ABC中,∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,由折叠可知∠C'=40°,∴∠DFE=∠AEC'+∠C=22°+40°=62°,∴∠BDC'=∠DFE+∠C=62°+40°=102°.23.已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D。
例1. (1)如图1是一个外轮廓为矩形的机器零件 平面示意图,根据图中的尺寸(单位: mm ),计算两圆孔中心A 和B 的距离为(2)如图2,直线I 上有二个正方形a, b, 的面积分别为5和11,则b 的面积为( C . 16D . 55点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一 起考查,在中考试卷中的常见题型为填空题、选择题和简单的解答题典例剖析分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90, BC=180-60=120,由勾股定理得:AB 2=902+1202=22500,所以 AB=150 (mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .60]15060c)图2三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求Z AE2A2 Z A4E2C4 Z A4E5C4 的度数.、图3解:连A3E2. Q A3A2A]A2, A2E2A2E2,A3A2E2 AA2E2 90o,Rt △ A3A2E2如Rt △ A1A2E2(SAS).5 A-I E2A3 E2 A2由勾股定理,得:C4E5 22 12 ,5 C3E2 , A4E5 、42 12 ,17 A3E2 ,2Q A4C4AC B 2 , △ A4C4E5◎△ A3C3E2 (SSS).A3 E2C3A4 E5C4A1E2 A2A4E2C4 A4 E5C4 A3E2C4 A4 E2C4 A3E2C3 A2E2C4 •由图可知△ E2C2C4为等腰直角三角形. A2E2C4 45o.即A,E2A2A4E2C4 A4E5C4 45° .点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如45°、90°、135°, 便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力.专练一:〔、△ ABC 中,/ A :/ B:/ C=2 : 1: 1, a,b,c分别是/ A、/ B、/ C 的对边,则下列各等式中成立的是( )(A) a2b2c2; (B) a22b2; (C) c22a2; (D) b22a22、若直角三角形的三边长分别为2, 4, X,则x的可能值有( )(A) 1 个;(B) 2 个;(C) 3个;(D) 4 个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A) 10.5 米; ( B) 7.5 米; (C) 12 米; (D) 8 米4、下列说法中正确的有( )(1)如果/ A+ / B+Z C=3: 4: 5,则厶ABC是直角三角形;(2) 如果/ A+Z B= Z C,那么△ ABC是直角三角形;(3)如果三角形三边之比为6: 8:10,则ABC是直角三角形;(4)如果三边长分别是n21,2n,n21(n 1),则ABC是直角三角形。