人教版初中数学课标版九年级上册21.3一元二次方程的应用面积问题(导学案)(无答案)
- 格式:doc
- 大小:56.00 KB
- 文档页数:2
21.3.1 实际问题与一元二次方程(1)导学案
备课人:编号:
学习目标:
1. 会列出一元二次方程解决传播类、增长率类等实际问题,
【自主探究】
1:有一人患了流感,经过两轮传染后共有121人患了流感,
(1)每轮传染中平均一个人传染了几个人?
(2)如果按照这样的传染速度,三轮后有多少人患流感?
2:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?
【尝试应用】
3:两年前生产1吨甲种药品的成本是5000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,请问药品成本的年平均下降率多大?(精确到0.001)
4:青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产9000kg,求水稻每公顷产量的年平均增长率.
【拓展延伸】
5. 某次会议中,参加的人员每两人握一次手,共握手190次,求参加会议共有多少人?
6. 一个菱形两条对角线长的和是10cm,面积是12 cm2,求菱形的周长。
教后(学后)反思:
21.3.1 实际问题与一元二次方程(1)补偿作业
姓名:
1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,试问全组有多少名同学?
2.为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?
教师评价。
21.3 实际问题与一元二次方程(第二课时)导学探究阅读教材P19-20,回答下列问题:1.请根据你对“变化额”“变化率”的理解,填空:(1)某工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份比一月份增产______个,增长率是______;若三月份生产零件1140个,那么三月份比二月份减产____个,下降率是________.(2)某厂今年一月份的总产量为100吨,设平均每月增长率是x,则二月份总产量为_____吨;三月份总产量为_________吨.(用含x的代数式表示).(3)某种商品原价是100元,平均每次降价的百分率为x,则第一次降价后的价格是_____元;第二次降价后的价格是______元.(用含x的代数式)2.我市前年有汽车3万辆,据统计平均每年的增长率为x.(1)去年我市汽车有万_______辆; (用含x的代数式表示)(2)今年我市汽车有万_______辆; (用含x的代数式表示)(3)若我市今年有汽车12万辆,根据题意,可列出方程___________________________.3.请你总结:(1) 增长率问题: 若原来的量为a,平均增长率是x,则第一次增长后的量为________;第二次增长后的量为__________;若两次增长后的量为A,则可列方程__________________.(2)下降率问题:若原来的量为a,平均下降率是x,则第一次下降后的量为__________;第二次下降后的量为___________;若两次下降后的量为A,则可列方程_________________.归纳梳理1.本节课我们将讨论平均变化率问题,变化率有增长率和________率.2.有关变化率的公式:(1)增长后的量= 原来的量+_________= 原来的量×(1+________);下降后的量= 原来的量-________ = 原来的量×(1-_______).(2)单位时间增长量=增长后的量一_______=原来的量×__________;单位时间下降量=原来的量一__________=原来的量×__________(3)如果某个量原来的值是a,每次增长的百分率是x, 则增长1次后的值是________,增长2次后的值是_________,…,增长n次后的值是______________.如果某个量原来的值是a,每次下降的百分率是x,则下降1次后的值是__________,下降2次后的值是_________,…,下降n次后的值是____________.3.如果设平均每次增长(或下降)的百分数为x,则原来的量a, 经过两次增长(或下降)到A,可列方程为______________(或)_______________.典例探究【例1】(·湖北随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8总结:增长率问题会涉及到最后产量、基数、平均增长率或平均降低率.若平均增长(或降低)百分率为x,增长(或降低)前基数为a,增长(或降低)n次后的最后产量是b,则它们的数量关系可表示为a(1±x)n=b,其中增长取“+”,降低取“-”,注意1与x的位置不能调换.增长率问题中,解方程一般用直接开平方法,注意方程根的取舍问题.练1:(•珠海)白溪镇有绿地面积57.5公顷,该镇近几年不断增加绿地面积,达到82.8公顷.(1)求该镇至绿地面积的年平均增长率;(2)若年增长率保持不变,该镇绿地面积能否达到100公顷?练2. (·青海西宁·10分)青海新闻网讯:2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出到市政府配置公共自行车数量的年平均增长率.夯实基础1.(秋•丹江口市校级月考)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?2.(•泰安模拟)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x% D.(2+x%)•x%3.(•江岸区校级模拟)为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元 B.36元 C.64元 D.80元4.(春•富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是.5.(·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169.6.(•泗县校级模拟)某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?7.(春•淮阴区校级月考)前一阶段,我校成功的举办了首届数学节,某种活动所需材料经过两次降价后,从原来的20元减少到12.8元,若两次降价的百分率相同,请你求出降价的百分率.8.(•香洲区校级一模)据媒体报道,我国公民出境旅游总人数约5000万人,公民出境旅游总人数约7200万人,若、公民出境旅游总人数逐年递增,请解答如下问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果仍保持相同的年平均增长率,请你预测我国公民出境旅游总人数约多少万人?9、(贵州毕节)为进一步发展基础教育,自以来,某县加大了教育经费的投入,该县投入教育经费6000万元.投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算该县投入教育经费多少万元.典例探究答案【例1】(·湖北随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8【考点】由实际问题抽象出一元二次方程.【分析】设这两年观赏人数年均增长率为x,根据“约为20万人次,约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.练1:(•珠海)白溪镇有绿地面积57.5公顷,该镇近几年不断增加绿地面积,达到82.8公顷.(1)求该镇至绿地面积的年平均增长率;(2)若年增长率保持不变,该镇绿地面积能否达到100公顷?分析:(1)设每绿地面积的年平均增长率为x,就可以表示出的绿地面积,根据的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解答:解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8,解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36(万元)答:该镇绿地面积不能达到100公顷.点评:本题考查了增长率问题的数量关系的运用,关键是运用增长率的数量关系建立一元二次方程求解.练2. (·青海西宁·10分)青海新闻网讯:2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出到市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用配置720辆公共自行车,结合增长率为x,进而表示出配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设到市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:到市政府配置公共自行车数量的年平均增长率为75%.夯实基础1.(秋•丹江口市校级月考)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?分析:设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是60(1﹣x),第二次后的价格是60(1﹣x)2,据此即可列方程求解.解答:解:设平均每次降价的百分率是x,依题意得:60(1﹣x)2=48.6,解方程得:x1=0.1=10%,x2=1.9(舍去),答:平均每次降价的百分率是10%.故答案为:10%.点评:此题主要考查了一元二次方程的应用﹣﹣增长率(下降率)问题,关键是读懂题意,掌握公式:“a(1±x)n=b”,理解公式是解决本题的关键.2.(•泰安模拟)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x% D.(2+x%)•x%解:根据题意得:第三季度的产值比第一季度增长了(2+x%)•x%,故选D3.(•江岸区校级模拟)为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元 B.36元 C.64元 D.80元解:∵原价为100元的药品经过两次降价后下降了36%,∴降价后的药品价格为100(1﹣36%)=64元,设平均每次降价的百分率是x,依题意得:100(1﹣x)2=64,解方程得:x1=0.2=20%,x2=1.8(舍去),第一次降价的价格为100×(1﹣20%)=80元.故选D.4.(2015春•富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是20% .解:设平均每次下调的百分率是x.由题意,得5(1﹣x)2=3.2.解得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.故答案为:20%.5.(2016·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169.【分析】根据年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.设该公司这两个月住房销售量的增长率为x,可以列出相应的方程.【解答】解:由题意可得,100(1+x)2=169,故答案为:100(1+x)2=169.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出形应的方程.6.(2014•泗县校级模拟)某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?解:设该公司二、三月份营业额平均增长率是x.根据题意得100+100(1+x)+100(1+x)2=331,解得x1=0.1,x2=﹣3.1(不合题意,舍去).答:该公司二、三月份营业额平均增长率是10%.7.(2014春•淮阴区校级月考)前一阶段,我校成功的举办了首届数学节,某种活动所需材料经过两次降价后,从原来的20元减少到12.8元,若两次降价的百分率相同,请你求出降价的百分率.解:设平均每次降价的百分率为x,根据题意得:20(1﹣x)2=12.8解得:x1=0.2,x2=1.8(不符合题意舍去).答:每次降价的百分率为:20%.8.(2014•香洲区校级一模)据媒体报道,我国2011年公民出境旅游总人数约5000万人,2013年公民出境旅游总人数约7200万人,若2012年、2013年公民出境旅游总人数逐年递增,请解答如下问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2014年仍保持相同的年平均增长率,请你预测2014年我国公民出境旅游总人数约多少万人?解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2=7200,解得x1=0.2=20%,x2=﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2014年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为 7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2014年我国公民出境旅游总人数约8640万人次.9、(2016贵州毕节)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x=0.2=20%,答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.。
人教版九年级数学上册教案本《一元二次方程实际问题-面积问题》一. 教材分析本节课的内容是《一元二次方程实际问题-面积问题》,是人教版九年级数学上册的教学内容。
这部分内容是在学生已经掌握了一元二次方程的基本概念和解法的基础上进行教学的,旨在让学生能够将一元二次方程应用到实际问题中,特别是在面积问题的计算中。
通过本节课的学习,学生将能够进一步理解和掌握一元二次方程的实际应用,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一元二次方程的概念和解法有一定的了解。
但是,学生在应用一元二次方程解决实际问题时,可能会遇到一些困难,比如对实际问题的理解不够深入,对一元二次方程在解决实际问题中的应用方法不够清晰等。
因此,在教学过程中,需要帮助学生深入理解实际问题,引导学生将一元二次方程应用到实际问题中,提高解决问题的能力。
三. 教学目标1.知识与技能目标:使学生能够理解一元二次方程在解决面积问题中的应用,能够运用一元二次方程计算一些简单的面积问题。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力,提高学生的数学素养。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在实际生活中的重要性,培养学生的责任感和使命感。
四. 教学重难点1.教学重点:一元二次方程在面积问题中的应用。
2.教学难点:如何引导学生将实际问题转化为数学问题,如何帮助学生理解和掌握一元二次方程在解决面积问题中的应用方法。
五. 教学方法本节课采用问题驱动的教学方法,通过引导学生解决实际问题,激发学生的学习兴趣,提高学生的学习积极性。
同时,采用小组合作学习的方法,培养学生的团队合作意识和沟通能力。
在教学过程中,教师注重启发式教学,引导学生主动思考,提高学生的解决问题的能力。
六. 教学准备1.教师准备:教师需要提前准备一些面积问题的实际案例,以便在课堂上进行教学演示和练习。
2.学生准备:学生需要预习一元二次方程的基本概念和解法,以便能够更好地理解和掌握本节课的内容。
6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.作业布置教材第21-22页习题21.3第2-7题.课堂总结.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际..传播问题解决的关键是传播源的确定和等量关系的建立..若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2)..成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小..利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系..根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.。
21.3 实际问题与一元二次方程(3)1. 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一 个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.2. 列一元二次方程解有关特殊图形问题的应用题.重点:根据面积与面积之间的等量关系建立一元二次方程的数学模型并运用它解决实际 问题.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.一、自学指导.(10 分钟)问题:如图,要设计一本书的封面,封面长 27 cm ,宽 21 cm ,正中央是一个与整个封 面长宽比例相同的矩形.如果要使四周的阴影边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽 度?(精确到 0.1 cm )分析:封面的长宽之比是 27∶21=__9∶7,中央的长方形的长宽之比也应是__9∶7__, 若设中央的长方形的长和宽分别是__9a_cm __和__7a_cm __,由此得上下边衬与左右边衬的宽 度之比是__(27-9a)∶(21-7a)=9∶7__.探究:怎样设未知数可以更简单的解决上面的问题?请试一试.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5 分钟)在一幅长 8 分米,宽 6 分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成 一幅矩形挂图(如图②).如果要使整个挂图的面积是 80 平方分米,求金色纸边的宽.解:设金色纸边的宽为 x 分米,根据题意,得(2x +6)(2x +8)=80.解得 x 1=1,x 2=-8(不合题意,舍去).答:金色纸边的宽为 1 分米.点拨精讲:本题和上题一样,利用矩形的面积公式做为相等关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8 分钟)4如图,某小区规划在一个长为 40 m 、宽为 26 m 的矩形场地 ABCD 上修建三条同样宽度 的马路,使其中两条与AB 平行,另一条与 AD 平行,其余部分种草.若使每一块草坪的面积 都是 144 m 2,求马路的宽.解:假设三条马路修在如图所示位置.设马路宽为 x ,则有(40-2x)(26-x)=144×6,化简,得 x 2-46x +88=0,解得 x 1=2,x 2=44,由题意:40-2x >0,26-x >0, 则 x <20.故 x 2=44 不合题意,应舍去,∴x=2.答:马路的宽为 2 m .点拨精讲:这类修路问题,通常采用平移方法,使剩余部分为一完整矩形.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10 分钟)1.如图,要设计一幅宽 20 cm 、长 30 cm 的图案,其中有两横两竖的彩条(图中阴影部 分),横、竖彩条的宽度比为 3∶2,如果要使彩条所占面积是图案面积的四分之一,应如何 设计彩条的宽度.(精确到 0.1 cm )解:设横彩条的宽度为 3x cm ,则竖彩条的宽度为 2x cm .1 根据题意,得(30-4x)(20-6x)=(1- )×20×30.解得 x 1≈0.6,x 2≈10.2(不合题意,舍去).故 3x =1.8,2x =1.2.答:横彩条宽为 1.8 cm ,竖彩条宽为 1.2 cm .2.用一根长 40 cm 的铁丝围成一个长方形,要求长方形的面积为 75 cm 2.(1)求此长方形的宽是多少?(2)能围成一个面积为 101 cm 2 的长方形吗?若能,说明围法.(3)若设围成一个长方形的面积为 S(cm 2),长方形的宽为 x(cm ),求 S 与 x 的函数关系 式,并求出当 x 为何值时,S 的值最大?最大面积为多少?解:(1)设此长方形的宽为 x cm ,则长为(20-x) cm .根据题意,得 x(20-x)=75,解得 x 1=5,x 2=15(舍去).答:此长方形的宽是5cm.(2)不能.由x(20-x)=101,即x2-20x+101=0,知Δ=202-4×101=-4<0,方程无解,故不能围成一个面积为101cm2的长方形.(3)S=x(20-x)=-x2+20x.由S=-x2+20x=-(x-10)2+100知,当x=10时,S的值最大,最大面积为100cm2.点拨精讲:注意一元二次方程根的判别式和配方法在第(2)(3)问中的应用.学生总结本堂课的收获与困惑.(2分钟)用一元二次方程解决特殊图形问题时,通常要先画出图形,利用图形的面积找相等关系列方程.学习至此,请使用本课时对应训练部分.(10分钟)。
课题:实际问题与一元二次方程(面积问题)学习目标:通过审题训练,使能够将较复杂的面积问题转化数学问题.【预习案】1.一根长22cm的铁丝.(1)能否围成面积是30cm2的矩形?(2)能否围成面积是32 cm2的矩形?并说明理由.2.如图,在矩形ABCD中,AB=6cm,BC=3cm.点P沿边AB从点A开始向点B以2cm/s的速度移动,点Q沿边DA从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤3).那么,当t为何值时,△QAP的面积等于2cm2?(只列方程)【探究案】探究一:要设计一本书的封面,封面长27 cm ,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度.探究二:如图所示,要用防护网围成长方形花坛,其中一面利用现有的一段墙,且在与墙平行的一边开一个2米宽的门,现有防护网的长度为91米,花坛的面积需要1080平方米,若墙长50米,求花坛的长和宽.(1)一变:若墙长46米,求花坛的长和宽;(2)二变:若墙长40米,求花坛的长和宽;(3)通过对上面三题的讨论,你觉得墙长对题目有何影响?探究三:已知:如图在△ABC中,∠B=90°,AB=5cm,BC=7cm..点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P、Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.【训练案】1.用20厘米长的铁丝能否折成面积为30平方厘米的矩形,若能够,求它的长与宽;若不能,请说明理由.2.如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为504m2,道路的宽为多少?3.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,花圃ABCD的面积为S米2,(1)S与x的函数关系式为;(2)如果要围成面积为45米2的花圃,AB的长是.。
21.3实际问题与一元二次方程第1课时一、教学目标【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度与价值观】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.五、课前准备课件六、教学过程(一)导入新课有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?(出示课件2)你能解决这个问题吗?(出示课件4)(二)探索新知出示课件5:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:(1)第一轮传染后共有人患了流感;(2)第二轮传染后共人患了流感.根据示意图,列表如下:(出示课件6)第1轮传染后的人数第2轮传染后的人数传染源人数1最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,列方程为1+x+(1+x)·x=121提取公因式,得(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.教师强调:一元二次方程的解有可能不符合题意,所以舍去.想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?(出示课件7)师生共同分析:第一轮传染后的人数第二轮传染后的人数第三轮传染后的人数生1口答:第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).生2口答:第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?(出示课件8)师生共同分析:传染源新增患者人数本轮结束患者总人数第一轮第二轮第三轮第n轮达成共识:经过n轮传染后共有(1+x)n人患流感.出示课件9:例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?师生共同分析后解答如下:解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,应舍去),答:每个支干长出9个小分支.出示课件10:引导学生思考并解答如下问题:1.在分析引例和例1中的数量关系时它们有何区别?答案:每个树枝只分裂一次,每名患者每轮都传染.2.解决这类传播问题有什么经验和方法?答案:(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.教师问:运用一元二次方程模型解决实际问题的步骤有哪些?(出示课件11)学生自主思考后,教师归纳如下:出示课件12:电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?学生思考后自主解决.解:设每轮感染中平均一台电脑会感染x台电脑.依题意得6+6x+6x(1+x)=2400.6(1+x)²=2400.解得x1=19或x2=-21(舍去).答:每轮感染中平均一台电脑会感染19台电脑.出示课件13:例2一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?引导学生积极思考,寻求出实际问题中所蕴含的等量关系,最后师生共同完成解答过程.解:设这个小组共x人,根据题意列方程,得x(x-1)=72.化简,得x2-x-72=0.解方程,得x1=9,x2=-8(舍去).答:这个小组共9人.出示课件14:生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学?学生独立思考,自主探究,找出题目中的等量关系后自主解答:解:全组有x名同学,根据题意,得x(x-1)=182.解得x1=14,x2=-13(不合题意,舍去).答:全组有14名同学.(三)课堂练习(出示课件15-22)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4B.5C.6D.73.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980B.x(x+1)=1980C.x(x-1)=1980D.x(x-1)=19804.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73B.1+x+x2=73C.1+x2=73D.(1+x)²=735.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()?A.10B.9C.8D.76.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.7.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?参考答案:1.C2.C3.D4.B5.D6.107.解:初三有x个班,根据题意列方程,得1(1) 6.x x-=2化简,得x2-x-12=0.解方程,得x1=4,x2=-3(舍去).答:初三有4个班.8.分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌.传染源本轮分裂成有益菌数目本轮结束有益菌总数第一轮6060x60(1+x)第二轮60(1+x)60(1+x)x60(1+x)2第三轮60(1+x)260(1+x)2x60(1+x)3解:设每个有益菌一次分裂出x个有益菌.60+60x+60(1+x)x=24000.x1=19,x2=-21(舍去).因此每个有益菌一次分裂出19个有益菌.三轮后有益菌总数为24000×(1+19)=480000.(四)课堂小结通过这节课的学习,你对传播类的应用问题的处理有哪些体会和收获?谈谈你的看法.(五)课前预习预习下节课(21.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.。
人教版九年级数学上册《一元二次方程》导学案21.3 实际问题与一元二次方程(第一课时)【学习目标】1.能根据具体几何实际问题中的数量关系列出一元二次方程并求解;2.体会方程建模思想,培养数形结合意识.【知识梳理】列一元二次方程解应用题的步骤:(1):审题要弄清已知量和未知量,问题中的等量关系;(2):设未知数,有直接和间接两种设法,因题而异;(3):列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即方程;(4):求出所列方程的解;(5):检验方程的解是否正确,是否符合题意;(6):写出答案.【典型例题】知识点列一元二次方程解决几何实际问题1.在一长为40cm、宽为28cm的矩形铁皮的四角截去四个全等的小正方形后,折成一个无盖的长方形盒子,若已知长方形盒子的底面积为364cm2,求截取去的四个小正方形的边长?2.某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图1、图2和图3所示(阴影部分为草坪).请你根据这一问题,在每种方案中都只列出方程不解.①甲方案设计图纸为图1,设计草坪的总面积为600平方米.②乙方案设计图纸为图2,设计草坪的总面积为600平方米.③丙方案设计图纸为图3,设计草坪的总面积为540平方米.3.一间会议室,它的地面是长方形的,长为20m,宽为15m,现在准备在会议室地面的中间铺一块地毯,要求四周未铺地毯的部分宽度相等,而且地毯的面积是会议室地面面积的一半,则地面上未铺地毯的部分宽度是米。
【巩固训练】1.三角形一边的长是该边上高的2倍,且面积是32,则该边的长是( )A.8B.4C.4D.8 2.李萍要在一幅长90cm 、宽40cm 的风景画的四周外围,镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积占整个挂图面积的54%,设金色纸边的宽为xcm ,根据题意可列方程( )A .(90+x )(40+x )×54%=90×40;B .(90+2x )(40+2x )×54%=90×40;C .(90+x )(40+2x )×54%=90×40;D .(90+2x )(40+x )×54%=90×403.如图,矩形的周长是20cm ,以为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是( )A. B. C. D.4.如图,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,所截去的小正方形的边长是 。
(导学编号2111)一元二次方程的应用(四) 《面积问题》 姓名 教学目标:学习利用一元二次方程解决有关面积的问题,提升分析问题、解决问题的能力。
重点:一元二次方程在面积问题中的应用。
难点:分析问题,寻找问题中的等量关系。
教学过程:
一、完成下列问题:
1、如图,矩形的周长为20cm ,设它的长为,xcm 那么它的宽为 , 矩形的面积为 2cm 。
2、如图,用一条长为m 120的竹篱笆,一面
靠墙,围成一个矩形空地。
设矩形空地的长为
,xm
那么它的宽为 , 矩形空
地的面积为 2m 。
3、如图,在一个长为m 30,宽为m 12的矩形草地四周的外面修一条宽度均为xm 的小路。
则大矩形的长为 ,宽为 ,大矩形的面积为 。
4、如图,在一个长为m 50,宽为m 20的矩形草地四周的内部修一条宽度为xm 的小路。
则小矩形的长为 ,宽
为 ,小矩形的面积为 。
二、列方程解应用题:
例1:某中学为美化校园,准备在长32m ,宽20m 的长方形场地上,修筑若干条笔直等宽道路,余下部分作草坪,下面请同学们共同参与图纸设计,要求草坪面积为540m2,求出设计方案中道路的宽分别为多少米?
1、若设计方案图纸为如图,草坪总面积540m2
变式训练:在长方形钢片上冲去一个长方形,制成一
草 地
个四周宽相等的长方形框。
已知长方形钢片的长为30cm ,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的边宽。
2、设计方案图纸为如图,草坪总面积540m2
3、设计方案图纸为如图,草坪总面积540m2 方法小结:
拓展提升:
例2:(北京市崇文区中考题)如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?
教后反思: 32m
20m。