塑性计算方法及适用范围(精)
- 格式:ppt
- 大小:438.50 KB
- 文档页数:5
塑性设计和弯矩调幅法浙江大学童根树2013.10.18对GB17-88,GB50017-2003塑性设计的疑虑:•(1)可靠度会不会降低?(2)稳定设计方法是否合理:计算长度系数与弹性设计有什么差别?(3) 可操作性:如何计算?(4)对使用极限状态的影响如何?(5)宽厚比限制过严,影响了经济性,是否可以区别对待?10.1 一般规定•10.1.1本章规定适用于不直接承受动力荷载的结构,包括(1)固端梁、连续梁;(2)实腹构件组成的单层框架结构;(3)水平荷载参与的荷载组合不控制设计的2层-6层框架结构;(4)采用双重抗侧力结构的多层和高层建筑钢结构中的框架部分,结构下部1/3楼层的框架部分承担的水平力不大于该层总水平力20%,允许框架梁逐个进行塑性设计。
此时宜避免在框架柱中形成塑性铰。
(5)双重抗侧力结构的支撑(剪力墙)系统能够承担所有水平力时,其框架可以采用塑性设计•[本条极大地扩大了塑性设计的应用范围,并且有可能使得塑性设计实用化]•10.1.2 采用塑性设计的结构或构件,按承载能力极限状态设计时,应采用荷载的设计值,考虑构件截面内塑性的发展及由此引起的内力重分配,用简单塑性理论进行内力分析。
•进行正常使用极限状态设计时,采用荷载的标准值,并按弹性理论进行计算。
•连续梁以及双重抗侧力结构中的框架梁,当能够确保仅形成梁式塑性机构时,允许对竖向重力荷载产生的梁端弯矩往下调幅10~30%、梁跨中弯矩相应增大的简化方法,代替塑性机构分析,此时柱端弯矩不因梁端弯矩调幅而修正。
水平荷载产生的弯矩不得进行调幅。
•10.1.3 采用弯矩调幅设计时,框架柱不得产生塑性铰,水平荷载产生的弯矩及柱端弯矩不得进行调幅。
连续梁及框架梁可采用对竖向重力荷载产生的梁端弯矩往下调幅、梁跨中弯矩相应增大的简化方法,代替塑性机构分析。
[本条有条件允许采用弯矩调幅10~30%代替塑性机构分析,使得塑性设计能够结合到弹性分析的程序中去,将使得塑性设计实用化]。
弹性法和塑性法计算板的区别集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-弹性法和塑性法计算板的区别两个简单认识:1、塑性变形金属零件在外力作用下产生不可恢复的永久变形。
通过塑性变形不仅可以把金属材料加工成所需要的各种形状和尺寸的制品,而且还可以改变金属的组织和性能。
一般使用的金属材料都是多晶体,金属的塑性变形可认为是由晶内变形和晶间变形两部分组成。
2、弹性变形材料在受到外力作用时产生变形或者尺寸的变化,而且能够恢复的变形叫做弹性变形。
五种计算理论:1.线弹性分析方法。
我们结构设计大多数都是按线弹性分析的。
国内外所有设计软件在分析的时候,也都是作线弹性分析。
按弹性理论结构分析方法认为,结构某一截面达到承载力极限状态,结构即达到承载力极限状态。
2.塑性重分布方法。
我国规范和软件中,单向板、梁等,都是此种方法。
这种方法其实只是在线弹性分析结果上的一种内力调整。
结构承载力的可靠度低于按弹性理论设计的结构,结构的变形及塑性绞处的混凝土裂缝宽度随弯矩调整幅度增加而增大。
3.塑性极限方法。
双向板一般按这种方法设计。
但是双向板也可以按弹性分析结果设计,在PMCAD里可以选择。
按塑性理论结构分析方法认为,结构出现塑性绞后,结构形成几何可变体系,结构即达到承载力极限状态.机构设计从弹性理论过渡到塑性理论使结构承载力极限状态的概念从单一截面发展到整体结构4.非线性分析方法。
有几何非线性和材料非线性分析之分,原理及内容较多,需看相关书籍。
但一般设计很少做非线性分析,只有少数情形需要,如特殊结构特殊作用。
比如罕遇地震分析,p-delta分析,p u s h分析等。
5.试验分析方法。
国外对复杂结构一般进行模型试验分析。
国内很少做。
规范规定:各种双向板可按弹性进行计算(《混凝土结构设计规范》5.2.7规定),同时应对支座或节点弯矩进行调幅(5.3.1条规定的,其实这也是考虑塑性内力充分布);连续单向板宜按塑性计算(《混凝土结构设计规范》5.3.1条规定),同时尚应满足正常使用极限状态的要求或采取有效的构造措施。
塑性成形过程中的有限元法金属塑性成形技术是现代化制造业中金属加工的重要方法之一。
它是金属材料在模具和锻压设备作用下发生变形,获得所需要求的形状、尺寸和性能的制件的加工过程。
金属成形件在汽车、飞机仪表、机械设备等产品的零部件中占有相当大的比例。
由于其具有生产效率高,生产费用低的特点,适合于大批量生产,是现代高速发展的制造业的重要成形工艺。
据统计,在发达国家中,金属塑性成形件的产值在国民经济中的比重居行业之首,在我国也占有相当大的比例。
随着现代制造业的快速发展,对塑性成形工艺分析和模具设计提出了更高的要求。
如果工艺分析不完善、模具设计不合理或选材不当,产品将不符合质量要求,导致大量不良品和废品,增加模具的设计制造时间和成本。
为了防止缺陷,提高产品质量,降低产品成本,国内外许多大公司、企业、高校和研究机构对塑料成型件的性能进行了大量的理论分析、实验研究和数值计算,通过对成形过程中应力应变分布及变化规律的研究,试图找出各零件在产品成形过程中遵循的共同规律和机械失效所反映的共同特征。
由于影响塑性成形过程的因素很多,一些因素,如摩擦和润滑、变形过程中材料的本构关系等,还没有被人们充分理解和掌握。
因此,到目前为止,还无法对各种材料和形状零件的成形过程做出准确的定量判断。
由于大变形机理非常复杂,塑性成形研究领域一直是一个充满挑战和机遇的领域。
一般来说,产品研究与开发的目标之一就是确定生产高质量产品的优化准则,而不同的产品要求不同的优化准则,建立适当的优化准则需要对产品制造过程的全面了解。
如果不掌握诸如摩擦条件、材料性能、工件几何形状、成形力等工艺参数对成形过程的影响,就不可能正确地设计模具和选择加工设备,更无法预测和防止缺陷的生成。
在传统工艺分析和模具设计中,主要还是依靠工程类比和设计经验,经过反复试模修模,调整工艺参数以期望消除成形过程中的产品缺陷如失稳起皱、充填不满、局部破裂等。
仅仅依靠类比和传统的经验工艺分析和模具设计方法已无法满足高速发展的现代金属加工工业的要求。
关于弹性法和塑性法计算板的区别两个简单认识:1、塑性变形 金属零件在外力作用下产生不可恢复的永久变形。
通过塑性变形不仅可以把金属材料加工成所需要的各种形状和尺寸的制品,而且还可以改变金属的组织和性能。
一般使用的金属材料都是多晶体,金属的塑性变形可认为是由晶内变形和晶间变形两部分组成。
2、弹性变形 材料在受到外力作用时产生变形或者尺寸的变化,而且能够恢复的变形叫做弹性变形。
五种计算理论:1.线弹性分析方法。
我们结构设计大多数都是按线弹性分析的。
国内外所有设计软件在分析的时候,也都是作线弹性分析。
按弹性理论结构分析方法认为,结构某一截面达到承载力极限状态,结构即达到承载力极限状态。
2.塑性重分布方法。
我国规范和软件中,单向板、梁等,都是此种方法。
这种方法其实只是在线弹性分析结果上的一种内力调整。
结构承载力的可靠度低于按弹性理论设计的结构,结构的变形及塑性绞处的混凝土裂缝宽度随弯矩调整幅度增加而增大。
3.塑性极限方法。
双向板一般按这种方法设计。
但是双向板也可以按弹性分析结果设计,在PMCAD 里可以选择。
按塑性理论结构分析方法认为,结构出现塑性绞后,结构形成几何可变体系,结构即达到承载力极限状态.机构设计从弹性理论过渡到塑性理论使结构承载力极限H O O J I N G状态的概念从单一截面发展到整体结构4.非线性分析方法。
有几何非线性和材料非线性分析之分,原理及内容较多,需看相关书籍。
但一般设计很少做非线性分析,只有少数情形需要,如特殊结构特殊作用。
比如罕遇地震分析,p-delta 分析,push 分析等。
5.试验分析方法。
国外对复杂结构一般进行模型试验分析。
国内很少做。
规范规定:各种双向板可按弹性进行计算(《混凝土结构设计规范》5.2.7规定),同时应对支座或节点弯矩进行调幅(5.3.1条规定的,其实这也是考虑塑性内力充分布);连续单向板宜按塑性计算(《混凝土结构设计规范》5.3.1条规定),同时尚应满足正常使用极限状态的要求或采取有效的构造措施。
弹塑性力学论文学院:土木建筑学院专业:建筑与土木工程姓名:张硕学号:Z20129208 塑性力学理论与分析摘要:塑性力学又称塑性理论,是固体力学的一个分支,它主要研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律,及其相应的数值分析方法。
本文阐述了塑性力学中的基本概念、理论,以及塑性力学中的常用求解方法,对材料屈服极限和塑性本构关系作了较为详细的论述。
关键词:塑性,变形,屈服极限,本构关系一、塑性力学基本概念塑性力学是研究材料在塑性变形状态下应力和应变关系的一门基础学科。
物体受到足够大外力的作用后,它的一部或全部变形会超出弹性范围而进入塑性状态,外力卸除后,变形的一部分或全部并不消失,物体不能完全恢复到原有的形态。
塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化。
塑性力学是通过实验,找出受力物体超出弹性极限后的变形规律,从而提出合理的假设和简化模型,来确定应力超过弹性极限后材料的本构关系,从而建立塑性力学的基本方程。
解出这些方程,便可得到不同塑性状态下物体的应力和应变。
塑性力学的基本实验主要分两类:单向拉伸实验和静水压力实验。
通过单向拉伸实验可以获得加载和卸载时的应力- 应变曲线以及弹性极限和屈服极限的值;在塑性状态下,应力和应变之间的关系是非线性的且没有单值对应关系。
而对于静水压力实验,除岩土材料以外,静水压力只能引起金属材料的弹性变形且对材料的屈服极限影响很小。
为简化计算,根据实验结果,塑性力学采用的基本假设有:1 材料是各向同性并连续的;2 平均法向应力不影响材料的屈服,它只与材料的体积应变有关,且体积应变是弹性的,即静水压力状态不影响塑性变形而只产生弹性的体积变化;3 材料的弹性性质不受塑性变形的影响。
这些假设一般适用于金属材料;对于岩土材料则应考虑平均法向应力对屈服的影响。
塑性力学的应力-应变曲线通常有5 种简化模型:其一是理想弹塑性模型,用于低碳钢或强化性质不明显的材料。
编辑本段1. 引言《建筑抗震设计规范》5.5.2条规定,对于特别不规则的结构、板柱-抗震墙、底部框架砖房以及高度不大于150m的高层钢结构、7度三、四类场地和8度乙类建筑中的钢筋混凝土结构和钢结构宜进行弹塑性变形验算。
对于高度大于150m的钢结构、甲类建筑等结构应进行弹塑性变形验算。
《高层建筑混凝土结构技术规程》5.1.13条也规定,对于B级高度的高层建筑结构和复杂高层建筑结构,如带转换层、加强层及错层、连体、多塔结构等,宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。
历史上的多次震害也证明了弹塑性分析的必要性:1968年日本的十橳冲地震中不少按等效静力方法进行抗震设防的多层钢筋混凝土结构遭到了严重破坏,1971年美国San Fernando地震、1975年日本大分地震也出现了类似的情况。
相反,1957年墨西哥城地震中11~16层的许多建筑物遭到破坏,而首次采用了动力弹塑性分析的一座44层建筑物却安然无恙,1985年该建筑又经历了一次8.1级地震依然完好无损。
可以看出,随着建筑高度迅速增长,复杂程度日益提高,完全采用弹性理论进行结构分析计算和设计已经难以满足需要,弹塑性分析方法也就显得越来越重要。
2.现有弹塑性分析方法综述2.1 静力弹塑性分析1. 计算方法(1) 建立结构的计算模型、构件的物理参数和恢复力模型等;(2) 计算结构在竖向荷载作用下的内力;(3) 建立侧向荷载作用下的荷载分布形式,将地震力等效为倒三角或与第一振型等效的水平荷载模式。
在结构各层的质心处,沿高度施加以上形式的水平荷载。
确定其大小的原则是:水平力产生的内力与前一步计算的内力叠加后,恰好使一个或一批杆件开裂或屈服;(4) 对于开裂或屈服的杆件,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服;(5) 不断重复步骤(3)、(4),直至结构达到某一目标位移或发生破坏,将此时的结构的变形和承载力与允许值比较,以此来判断是否满足“大震不倒”的要求。