空间向量知识点归纳(期末复习).doc
- 格式:doc
- 大小:565.48 KB
- 文档页数:18
空间向量知识点归纳总结知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+ ;BA OA OB a b =-=- ;()O P a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
当我们说向量a 、b 共线(或a //b )时,表示a、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。
注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立] ④若a 为非零向量,则00=⋅a .(√)[这里用到)0(≠bb λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(,≠bb a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的条件是存在实数,x y 使p xa yb =+ 。
注:①②是证明四点共面的常用方法.5. 空间向量基本定理:如果三个向量,,a b c不共面,那么对空间任一向量p,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量知识点与题型归纳总结(总26页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除空间向量知识点与题型归纳总结知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB .2.零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,0AB =. 模为1的向量称为单位向量. 3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-.如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反. a λ的长度是a 的长度的λ倍.2.空间向量的数乘运算满足分配律及结合律()a b a b λλλ+=+,()()a a λμλμ=.3.共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作//a b .4.共线向量定理对空间中任意两个向量a ,b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ=. 5.直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+①,其中向量a 叫做直线l 的方向向量,在l 上取AB a =,则式①可化为()()1OP OA t AB OA t OB OA t OA tOB =+=+-=-+②①和②都称为空间直线的向量表达式,当12t =,即点P 是线段AB 的中点时,()12OP OA OB =+,此式叫做线段AB 的中点公式. 6.共面向量如图8-154所示,已知平面α与向量a ,作OA a =,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.7.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+.推论:(1)空间一点P 位于平面ABC 内的充要条件是存在有序实数对(),x y ,使AP xAB y AC =+;或对空间任意一点O ,有OP OA x AB y AC -=+,该式称为空间平面ABC 的向量表达式.(2)已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP xOA yOB zOC =++(其中1x y z ++=)的点P 与点A ,B ,C 共面;反之也成立. 三、空间向量的数量积运算1.两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b ,通常规定0,a b π≤≤,如果,2a b π=,那么向量a ,b 互相垂直,记作a b ⊥.Aaaα图 8-154O2.数量积定义已知两个非零向量a ,b ,则cos ,a b a b 叫做a ,b 的数量积,记作a b ⋅,即cos ,a b a b a b ⋅=.零向量与任何向量的数量积为0,特别地,2a a a ⋅=.3.空间向量的数量积满足的运算律:()()a b a b λλ⋅=⋅,a b b a ⋅=⋅(交换律); ()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标运算及应用(1)设()123,,a a a a =,()123,,b b b b =,则()112233,,a b a b a b a b +=+++;()112233,,a b a b a b a b -=---;()123,,a a a a λλλλ=; 112233a b a b a b a b ⋅=++;()112233//0,,a b b a b a b a b λλλ≠⇒===; 1122330a b a b a b a b ⊥⇒++=.(2)设()111,,A x y z ,()222,,B x y z ,则()212121,,AB OB OA x x y y z z =-=---.这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标. (3)两个向量的夹角及两点间的距离公式. ①已知()123,,a a a a =,()123,,b b b b =,则221a a a ==+221b b b ==+;112233a b a b a b a b ⋅=++;cos ,a b =;②已知()111,,A x y z ,()222,,B x y z ,则(AB x =,或者(),d A B AB =.其中(),d A B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的射影为cos ,a b a a b b⋅=.(5)设()0n n ≠是平面M 的一个法向量,AB ,CD 是M 内的两条相交直线,则0n AB ⋅=,由此可求出一个法向量n (向量AB 及CD 已知).(6)利用空间向量证明线面平行:设n 是平面的一个法向量,l 为直线l 的方向向量,证明0l n ⋅=,(如图8-155所示).已知直线l (l α⊄),平面α的法向量n ,若0l n ⋅=,则//l α.(7)利用空间向量证明两条异面直线垂直:在两条异面直线中各取一个方向向量a ,b ,只要证明a b ⊥,即0a b ⋅=.(8)利用空间向量证明线面垂直:即证平面的一个法向量与直线的方向向量共线.(9)证明面面平行、面面垂直,最终都要转化为证明法向量互相平行、法向量互相垂直. (10)空间角公式.①异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,a b a b a bθ⋅==.②线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,a n a n a nθ⋅==.③二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,n n θ=或12,n n π-(需要根据具体情况判断相等或互补),其中1212cos n n n n θ⋅=.(11)点A 到平面α的距离为d ,B α∈,n 为平面α的法向量,则AB n d n⋅=.题型归纳及思路提示题型1 空间向量及其运算 思路提示空间向量的运算包括空间向量的加法、减法、数乘、数量积的几何意义及坐标运算,可以类比平面向量的运算法则.一、空间向量的加法、减法、数乘运算例 如图8-156所示,已知空间四边形OABC ,点,M N 分别为OA ,BC 的中MN = .点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则解析 1122OM OA a ==,()()1122ON OB OC b c =+=+,()()111222MN ON OM b c a b c a =-=+-=+-.变式1 如图8-157所示,已知空间四边形OABC ,其对角线为OB ,AC ,M 和N 分别是对边OA 和BC 的中点,点G 在线段MN 上,且2MG GN =,现用基向量OA ,OB ,OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( ).A 111,,333x y z === .B 111,,336x y z ===.C 111,,363x y z === .D 111,,633x y z ===变式2 如图8-158所示,在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).变式3 在空间四边形ABCD 中,连接对角线,AC BD ,若BCD ∆是正三角形,且E 为其重心,则1322AB BC DE AD +--的化简结果为 .变式4 如图8-159所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).A 1122a b c -++ .B 1122a b c ++ .C 1122a b c --+ .D 1122a b c -+二、空间共线向量定理的应用空间共线向量定理:()//0a b b a b λ≠⇔=. 利用此定理可解决立体几何中的平行问题.例 已知3240m a b c =--≠,()182n x a b yc =+++,且,,a b c 不共面,若//m n ,求,x y 的值. 解析 因为//m n 且0m ≠,所以n m λ=,即()()182324x a b yc a b c λ+++=--.又因为,,a b c 不共面,所以138224x y λλλ+=⎧⎪=-⎨⎪=-⎩,解得138x y =-⎧⎨=⎩.二、空间向量的数量积运算121212cos ,a b a b a b x x y y z z ⋅==++;求模长时,可根据2222111a a x y z ==++;求空间向量夹角时,可先求其余弦值cos ,a b a b a b⋅=.要判断空间两向量垂直时,可以求两向量的数量积是否为0,即0a b a b ⋅=⇔⊥.,a b 为锐角0a b ⇒⋅>;,a b 为钝角0a b ⇒⋅<.由此,通常通过计算a b ⋅的值来判断两向量夹角是锐角还是钝角.例 已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,AE ⋅AF 的值为( )..A 2a .B 21.2B a 21.4C a 23.4D a 解析 依题意,点,EF 分别是,BC AD 的中点,如图8-160所示,AE ⋅AF ()1122AB AC AD =+⋅()14AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a =︒+︒=. 故选C . 变式1 如图8-161所示,已知平行六面体1111ABCD A B C D -中,1160A AD A AB DAB ∠=∠=∠=︒,且11A A AB AD ===,则1AC = .变式2 如图8-162所示,设,,,A B C D 是空间不共面的4个点,且满足0AB AC ⋅=,0AD AC ⋅=,0AD AB ⋅=,则BCD ∆的形状是( )..A 钝角三角形 .B 直角三角形 .C 锐角三角形 .D 无法确定例 如图8-163所示,在45︒的二面角l αβ--的棱上有两点,A B ,点,C D 分别在,αβ内,且AC AB ⊥,45ABD ∠=︒,1AC BD AB ===,则CD 的长度为 .分析 求CD 的长度转化为求空间向量CD 的模.解析 因为CD CA AB BD =++,故()22CD CA AB BD =++ 222222CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅1110211cos1352CA BD =++++⨯⨯⨯︒+⋅,设点C 在β内的射影为H ,则HA AB ⊥,,135HA BD =︒.故()CA BD CH HA BD CH BD HA BD⋅=+⋅=⋅+⋅10cos1351cos 45cos1352HA BD =+︒=⨯︒︒=-.故222CD =,则22CD =-变式1 已知二面角l αβ--为60︒,动点,P Q 分别在面,αβ内,P 到β3,Q 到α的距离为3,P Q 两点之间距离的最小值为( )..2.2B .23C .4D变式2 在直角坐标系中,设()3,2A ,()2,3B --,沿y 轴把坐标平面折成120︒的二面角后,AB 的长为( )..6A .42B .23C .211D例 如图8-164所示,设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.解析 由题设可知,以1,,DA DC DD 为单位正交基底,建立如图8-165所示的空间直角坐标系D xyz -,则有()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D . 由()11,1,1D B =-,()11,,D P D B λλλλ==-,()()()111,0,1,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---. 显然APC ∠不是平角,所以APC ∠为钝角,cos cos ,0PA PC APC PA PC PA PC⋅∠==<,等价于0PA PC ⋅<,即()()()()()21110λλλλλ--+--+-<,得113λ<<.因此,λ的取值范围是1,13⎛⎫⎪⎝⎭.评析 利用向量知识将APC ∠为钝角转化为cos ,0PA PC <求解是本题的关键.变式1 已知正方体1111ABCD A B C D -的棱长为1,点P 在线段1BD 上,当APC ∠最大时,三棱锥P ABC -的体积为( ).1.24A 1.18B 1.9C 1.12D 例 如图8-166所示,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( ).解析 取AD 的中点O ,以OA 为x 轴,垂直于OA 的OE 为y 轴,OP 为z 轴,建立空间直角坐标系如图8-167所示.设(),,0M x y ,正方形的边长为a ,30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭,,,02a C a ⎛⎫- ⎪⎝⎭,则()222a MC x y a ⎛⎫=++- ⎪⎝⎭,22234MP x y a =++,MP MC =,得()22222324a a x y a x y ⎛⎫++-=++ ⎪⎝⎭,即202a x y -+=.所以点M 在正方形ABCD 内的轨迹为一条线段,且过D 点和AB 的中点.故选A .评注 本题利用空间线面位置关系求解也很快.由题意知空间内与两定点距离相等的点均在线段中垂面内,即M 在线段PC 的中垂面内.又M 为底面ABCD 内一动点,则M 的轨迹为两平面的交线落在底面内的部分,排除C 、D .又BP BC >,故排除B .故选A .变式1 到两互相垂直的异面直线距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )..A 直线 .B 椭圆 .C 抛物线 .D 双曲线变式2 空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离,已知平面α,β,γ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是点P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( )..33A - .323B - .63C - .3D题型2 空间向量在立体几何中的应用 思路提示用向量法可以证点共线、线共点、线(或点)共面、两直线(或线与面、面与面)垂直的问题,也可以求空间角和距离.因此,凡涉及上述类型的问题,都可以考虑利用向量法求解,且其解法一般都比较简单.用向量法解题的途径有两种:一种是坐标法,即通过建立空间直角坐标系,确定出一些点的坐标,进而求出向量的坐标,再进行坐标运算;另一种是基底法,即先选择基向量(除要求不共面外,还要能够便于表示所求的目标向量,并优先选择相互夹角已知的向量作为基底,如常选择几何体上共点而不共面的三条棱所在的向量为基底),然后将有关向量用基底向量表示,并进行向量运算. 一、证明三点共线(如A ,B ,C 三点共线)的方法先构造共起点的向量AB ,AC ,然后证明存在非零实数λ,使得AB AC λ=.例 如图8-168所示,已知在长方体1111ABCD A B C D -中,点M 为1DD 的中点,点N 在AC 上,且:2:1AN NC =,点E 为BM 的中点.求证:1A ,E ,N 三点共线.解析 以D 为坐标原点建立空间直角坐标系-D xyz ,如图8-169所示.不妨设DA a =,DC b =,1DD c =,则0,0,2c M ⎛⎫ ⎪⎝⎭,(),,0B a b ,,,224a b c E ⎛⎫ ⎪⎝⎭,()1,0,A a c ,2,,033a b N ⎛⎫⎪⎝⎭,则13,,224a b c A E ⎛⎫=-- ⎪⎝⎭,122,,33a b A N c ⎛⎫=-- ⎪⎝⎭,因为1143A N A E =,故1A ,E ,N 三点共线.变式1 在正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 和1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )..A 不存在 .B 有且只有两条 .C 有且只有三条 .D 有无数条变式2 如图8-170所示,在空间四边形ABCD 中,M ,N 分别是AB 和CD的中点,P 为线段MN 的中点,Q 为BCD ∆的重心.求证:,,A P Q 三点共线.二、证明多点共面的方法要证明多点(如A ,B ,C ,D )共面,可使用以下方法解题.先作出从同一点出发的三个向量(如AB ,AC ,AD ),然后证明存在两个实数,x y ,使得AD x AB y AC =+.例 如图8-171所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,1//2BC AD ,1//2BE AF .求证:,,,C D E F 四边共面.解析 由平面ABEF ⊥平面ABCD ,又AF AB ⊥,平面ABEF 平面ABCD AB =,得AF ⊥平面ABCD ,以A 为坐标原点,建立空间直角坐标系A xyz -,如图8-172所示.设AB a =,BC b =,BE c =,则(),0,0B a ,(),,0C a b ,()0,2,0D b ,(),0,E a c ,()0,0,2F c .()0,,CE b c =-,()0,2,2DF b c =-,因为2DF CE =,所以//DF CE ,则,CE DF 确定一个平面,即,,,C D E F 四点共面.变式1 如图8-173所示,已知平行六面体1111ABCD A B C D -,,,,E F G H 分别是棱11111,,,A D D C C C AB 的中点.求证:,,,E F G H 四点共面.三、证明直线和直线平行的方法将证线线平行转化为证两向量共线.设,a b 是两条不重合的直线,它们的方向向量分别为,a b ,则()//,0a b a b R λλλ⇔=∈≠.例 如图8-174所示,在正方体1111ABCD A B C D -中,MN 是异面直线1A D 与AC 的公垂线段.求证:1//MN BD .解析 以点D 为坐标原点,建立空间直角坐标系D xyz -,如图8-175所示.设正方体的棱长为a ,则()1,0,A a a ,(),0,0A a ,()0,,0C a ,(),,0B a a ,()10,0,D a .设(),,z MN x y =,由MN 是异面直线1A D 与AC 的公垂线段,得1MN A D ⊥,MN AC ⊥,又()1,0,A D a a =--,(),,0AC a a =-,故100MN A D MN AC ⎧⋅=⎪⎨⋅=⎪⎩,00ax az ax ay --=⎧⎨-+=⎩,令1x =,则1z =-,1y =,所以()1,1,1MN =-,()1,,BD a a a aMN =--=-,即1//BD MN .因此1//MN BD .四、证明直线和平面平行的方法(1)利用共面向量定理.设,a b 为平面α内不共线的两个向量,证明存在两个实数,x y ,使得l xa yb =+,则//l α.(2)转化为证明直线和平面内的某一直线平行.(3)转化为证明直线的方向向量与平面的法向量垂直(此方法最常用).例 如图8-176所示,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC ,E 是DC 的中点.求证:1//D E 平面1A BD .解析 因为11D E DE DD =-,11DD AA =,E 是DC 的中点,12DE DC AB ==,所以111D E AB AA A B =-=.又因为1D E ⊄平面1A BD ,11//D E A B ,所以1//D E 平面1A BD .评注 利用空间向量证明线面平行,已知直线的方向向量为a ,只要在平面内找到一条直线的方向向量为b ,问题转化为证明a b λ=即可.变式1 如图8-177所示,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是PA 、 BD 上的点,且::5:8PM MA BN ND ==.求证:直线//MN 平面PBC .五、证明平面与平面平行的方法(1)证明两平面内有两条相交直线分别平行.(2)转化为证两平面的法向量平行(常用此方法).例 如图8-178所示,在正方体1111ABCD A B C D -中,,,M N P 分别是11111,,C C B C C D 的中点.求证:平面//MNP 平面1A BD .解析 解法一:以1D 为坐标原点,11D A 为x 轴,11D C 为y 轴,1D D 为z 轴,建立空间直角坐标系1D xyz -,如图8-179所示.设正方体的棱长为a ,则()1,0,0A a ,()0,0,D a ,()10,,0C a ,()0,,C a a ,()1,,0B a a ,0,,2a M a ⎛⎫ ⎪⎝⎭,0,,02a P ⎛⎫ ⎪⎝⎭,,,02a N a ⎛⎫⎪⎝⎭,()1,0,A D a a =-,11,0,222aa MN A D ⎛⎫=-=- ⎪⎝⎭,所以1//MN A D ,即1//MN A D ,(),,0BD a a =--,1,,0222a a PN BD ⎛⎫==- ⎪⎝⎭,所以//PN BD ,即//PN BD .因为MNPN N =,1A DBD D =,所以平面//MNP 平面1A BD .解法二:设平面MNP 的法向量为()1111,,n x y z =,由1MN n ⊥,1PN n ⊥,得1111022022a a x z a a x y ⎧-=⎪⎪⎨⎪+=⎪⎩,令11z =,得111111x y z =⎧⎪=-⎨⎪=⎩, 所以()11,1,1n =-.设平面1A BD 的法向量为()2222,,n x y z =,由12A D n ⊥,2BD n ⊥,得222200ax az ax ay -+=⎧⎨--=⎩,令21z =,得222111x y z =⎧⎪=-⎨⎪=⎩, 所以()21,1,1n =-.因为12//n n ,所以平面//MNP 平面1A BD .变式1 如图8-180所示,在平行六面体1111ABCD A B C D -中,,,E F G 分别是11111,,A D D D D C 的中点. 求证:平面//EFG 平面1AB C .六、证明直线与直线垂直的方法设直线12,l l 的方向向量为,a b ,则a b ⊥0a b ⇔⋅=.这里要特别指出的是,用向量法证明两直线尤其是两异面直线垂直是非常有效的方法.例 如图8-181所示,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =.求证:AD CE ⊥.分析 平面ABC ⊥平面BCDE ,在平面ABC 内作AO BC ⊥AO ⇒⊥平面BCDE ,以点O 为坐标原点建立空间直角坐标系.解析 作AO BC ⊥,垂足为O ,则AO ⊥平面BCDE ,且O 为BC 的中点,以O 为坐标原点,OC 为x 轴,建立如图8-182所示的直角坐标系O xyz -.设()0,0,A a ,由已知条件知()1,0,0C ,()1,2,0D ,()1,2,0E -,()2,2,0CE =-,()1,2,AD a =-.因为0CE AD=⋅,所以CE AD ⊥。
-@>% )一空间向量的概念1.空间向量的有关概念及线性运算(1)空间向量的定义:在空间内具有大小和方向的量叫作空间向量.(2)空间向量的表示:空间向量可用有向线段来表示.(3)零向量:起点与终点重合的向量叫作零向量.(4)空间向量的模(或长度):表示空间向量的有向线段的长度叫作向量的模(或长度).(5)共线向量(或平行向量):基线互相平行或重合的向量叫作共线向量(或平行向量).(6)共面向量:向量所在的直线与平面平行或在平面内,称向量与平面平行,平行于同一平面的向量叫作共面向量.(7)空间向量的加法㊁减法㊁数乘向量运算的定义㊁92.空间向量的有关定理(1)共线向量定理:对空间向量aң,bң(bңʂ0ң),aңʊbң的充要条件是存在实数k,使aң=k bң.推论:①对于空间任一点O,点P在直线A B上的充要条件是存在实数t,使O Pң=(1-t)O Aң+t O Bң或O Pң=xO Aң+y O Bң(其中x+y=1).②如果l为经过已知点A且平行于已知非零向量aң的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足关系式O Pң=O Aң+t aң,该方程称为直线方程的向量表达式.(2)共面向量定理:如果两个向量aң,bң不共线,则向量cң与向量aң,bң共面的充要条件是存在唯一的一对实数x,y,使cң=x aң+y bң.推论:空间一点P位于平面A B C内的充要条件是:存在有序实数对x,y,使C Pң=xC Aң+y C Bң,或对空间任一定点O,有O Pң=O Cң+xC Aң+y C Bң,该式称为平面C A B的向量表示式.(3)空间向量分解定理:如果三个向量aң,bң,cң不共面,那么对于空间任意一个向量pң,存在唯一的有序实数组x,y,z,使pң=x aң+y bң+z cң.其中不共面的三个向量aң,bң,cң叫作空间的一个基底,每一个向量aң,bң,cң叫8作基向量.3.空间向量的数量积(1)两个向量的夹角:对于两个非零向量aң,bң,在空间任取一点O,作O Aң=aң,O Bң=bң,则øA O B叫作向量aң,bң的夹角,记作<aң,bң>.注意:两个向量的夹角的取值范围是:0ɤ<aң,bң>ɤπ.(2)两个向量的数量积的定义:aң㊃bң=|aң||bң|㊃c o s<aң,bң>.二空间向量的坐标运算若向量aң=(a1,a2,a3),bң=(b1,b2,b3),则有:(1)aң+bң=(a1+b1,a2+b2,a3+b3);(2)aң-bң=(a1-b1,a2-b2,a3-b3);(3)λaң=(λa1,λa2,λa3);(4)aң㊃bң=a1b1+a2b2+a3b3;(5)距离公式:|aң|=aң2=a21+a22+a23;(6)夹角公式:c o s<aң,bң>=a1b1+a2b2+a3b3a21+a22+a23㊃b21+b22+b23;9(7)aңʊbң(bңʂ0ң)⇔a1=λb1,a2=λb2,a3=λb3(λɪR)或aңʊbң(bң与三条坐标轴都不平行)⇔a1b1=a2b2=a3b3;(8)aңʅbң⇔a1b1+a2b2+a3b3=0.三利用空间向量证明空间中的位置关系1.直线的方向向量与平面的法向量(1)直线的方向向量:基线和直线平行的向量叫作这条直线的方向向量.(2)平面的法向量:基线和平面垂直的向量叫作这个平面的法向量.2.利用空间向量证明空间中的位置关系(1)证明直线与直线平行的方法是:若直线l1和l2的方向向量分别为vң1和vң2,则l1ʊl2⇔vң1ʊvң2.(2)证明直线与平面平行的方法有两种:若直线l 的方向向量为vң,平面α内的两个不共线向量是vң1和vң2,平面α的法向量为nң,则有:①lʊα⇔存在实数x,y,使vң=x vң1+y vң2;②lʊα⇔vңʅnң.(3)证明平面与平面平行的方法是将其转化为直线与直线平行或直线与平面平行,然后利用向量方法证明.也可以用如下方法:若平面α和β的法向量分别为nң1和0010 n ң2,则αʊβ⇔n ң1ʊn ң2.(4)证明直线与直线垂直的方法是:若直线l 1和l 2的方向向量分别为v ң1和v ң2,则l 1ʅl 2⇔v ң1ʅv ң2.(5)证明直线与平面垂直的方法是:若直线l 的方向向量为v ң,平面α的法向量为n ң,则l ʅα⇔v ңʊn ң.(6)证明平面与平面垂直的方法是:若平面α和β的法向量分别为n ң1和n ң2,则αʅβ⇔n ң1ʅn ң2.四利用空间向量求空间角1.有关角的概念(1)空间角主要包括两条异面直线所成的角㊁直线与平面所成的角㊁二面角.(2)斜线与平面所成的角:平面的一条斜线和它在这个平面内的射影的夹角叫作斜线和平面所成的角.规定:若一条直线与一个平面平行或在平面内,则这条直线和平面所成的角为0;若一条直线与一个平面垂直,则这条直线和平面所成的角为π2.因此,斜线和平面所成的角的范围是0,π2();直线和平面所成的角的范围是0,π2[].(3)二面角的定义:从一条直线出发的两个半平面二面角的平面角:在二面角α-l-β的棱l上任取一点O,在两个半平面内分别作射线O Aʅl,O Bʅl,则øA O B叫作二面角α-l-β的平面角.直二面角:平面角是直角的二面角叫作直二面角,互相垂直的两个平面相交所形成的二面角就是直二面角.二面角的取值范围是[0,π].(4)最小角原理:斜线和平面所成的角,是斜线和这个平面所有直线所成角中的最小的角.(5)从角的顶点出发的一条直线,如果它和这个角的两条边所成的角相等,那么它在这个角所在平面内的射影是这个角的平分线.这个结论常用于确定一条直线在一个平面内的射影.(6)利用射影面积公式:S'=S㊃c o sθ,也可以求一些二面角的大小.2.利用空间向量求空间角的方法(1)若异面直线l1和l2的方向向量分别为vң1和vң2,它们所成的角为θ,则c o sθ=|c o s<vң1,vң2>|.(2)利用空间向量求直线与平面所成的角,可以有两种办法:一是分别求出直线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补02(3)利用空间向量方法求二面角,也有两种办法:一是分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小;二是通过平面的法向量来求:设二面角的两个面的法向量分别为nң1和nң2,则二面角的大小等于<nң1,nң2>(或π-<nң1,nң2>).五利用空间向量求点到平面的距离1.定义一个点到它在一个平面内的正射影的距离叫作这个点到平面的距离.2.求法一是根据定义,按照作(或找) 证 求的步骤求解;二是利用空间向量,首先求出平面的单位法向量nң0,再任意找一个从该点出发的平面的斜线段对应的向量vң,则点到平面的距离为d=|nң0㊃vң|.10。
空间向量知识点归纳总结知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。
6. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。
空间向量知识点总结及典型题一、空间向量知识点总结。
(一)空间向量的概念。
1. 定义。
- 在空间中,具有大小和方向的量叫做空间向量。
2. 表示方法。
- 用有向线段表示,如→AB,其中A为起点,B为终点;也可以用字母→a,→b,→c·s表示。
3. 向量的模。
- 向量的大小叫做向量的模,对于向量→AB,其模记为|→AB|;对于向量→a,其模记为|→a|。
(二)空间向量的运算。
1. 加法。
- 三角形法则:→AB+→BC=→AC;平行四边形法则:对于不共线的向量→a 和→b,以→a和→b为邻边作平行四边形,则这两个向量之和为平行四边形的对角线所对应的向量。
- 运算律:→a+→b=→b+→a(交换律);(→a+→b)+→c=→a+(→b+→c)(结合律)。
2. 减法。
- →a-→b=→a+(-→b),其中-→b是→b的相反向量。
3. 数乘向量。
- 实数λ与向量→a的乘积λ→a仍是一个向量。
- 当λ> 0时,λ→a与→a方向相同;当λ<0时,λ→a与→a方向相反;当λ = 0时,λ→a=→0。
- 运算律:λ(μ→a)=(λμ)→a;(λ+μ)→a=λ→a+μ→a;λ(→a+→b)=λ→a+λ→b。
(三)空间向量的坐标表示。
1. 坐标定义。
- 在空间直角坐标系O - xyz中,设→i,→j,→k分别是x,y,z轴正方向上的单位向量。
对于空间向量→a,若→a=x→i+y→j+z→k,则(x,y,z)叫做向量→a的坐标,记为→a=(x,y,z)。
2. 坐标运算。
- 设→a=(x_1,y_1,z_1),→b=(x_2,y_2,z_2),则→a+→b=(x_1+x_2,y_1+y_2,z_1+z_2);→a-→b=(x_1-x_2,y_1-y_2,z_1-z_2);λ→a=(λx_1,λ y_1,λ z_1)。
- 向量的模|→a|=√(x^2)+y^{2+z^2}。
- 设A(x_1,y_1,z_1),B(x_2,y_2,z_2),则→AB=(x_2-x_1,y_2-y_1,z_2-z_1)。
空间向量知识点归纳总结知识要点。
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2.空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r运算律:⑴加法交换律:a b b a ϖϖϖρ+=+⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)( 3.共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρϖ//。
当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。
4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b r r 不共线,p r与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r。
5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r。
若三向量,,a b c r r r不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量及其运算知识总结精品文档收集于网络,如有侵权请联系管理员删除空间向量及其运算1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a AB OA OB ;b a OB OA BA ;)(R a OP运算律:⑴加法交换律:a b b a⑵加法结合律:)()(c b a c b a⑶数乘分配律:b a b a )( 3.平行六面体:平行四边形ABCD 平移向量a 到D C B A 的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A 它的六个面都是平行四边形,每个面的边叫做平行六面体的棱 4. 平面向量共线定理方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .要注意其中对向量a的非零要求. 5 共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.6. 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP a .其中向量a叫做直线l 的方向向量. 空间直线的向量参数表示式:t OA OP a或)(OA OB t OA OP OB t OA t )1(,中点公式.)(21OB OA OP aC'B'A'D'D A CA 'pb aOPA B M精品文档收集于网络,如有侵权请联系管理员删除yk i A(x,y,z)O jxz 7.向量与平面平行:已知平面 和向量a r,作OA a u u u r r ,如果直线OA 平行于 或在内,那么我们说向量a r 平行于平面 ,记作://a r.通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的8.共面向量定理:如果两个向量,a b r r 不共线,p r与向量,a b r r 共面的充要条件是存在实数,x y 使p xa yb r r r推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB u u u r u u u r u u u r ①或对空间任一点O ,有OP OM xMA yMB u u u r u u u u r u u u r u u u r ②或,(1)OP xOA yOB zOM x y z u u u r u u u r u u u r u u u u r③ 上面①式叫做平面MAB 的向量表达式9 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc r r r r若三向量,,a b c r r r不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC u u u r u u u r u u u r u u u r10 空间向量的夹角及其表示:已知两非零向量,a b rr ,在空间任取一点O ,作,OA a OB b u u u r u u u r r r ,则AOB 叫做向量a r 与b r的夹角,记作,a b r r ;且规定0,a b r r ,显然有,,a b b a r r r r ;若,2a b r r ,则称a r 与b r互相垂直,记作:a b r r .11.向量的模:设OA a u u u r r ,则有向线段OA u u u r 的长度叫做向量a r的长度或模,记作:||a r .12.向量的数量积:已知向量,a b r r ,则||||cos ,a b a b r r r r 叫做,a b rr 的数量积,记作a b r r ,即a b r r ||||cos ,a b a b r rr r .已知向量AB a u u u r r 和轴l ,e r是l 上与l 同方向的单位向量,作点A 在l 上的射影A ,作点B 在l 上的射影B ,则A B u u u u r 叫做向量AB u u u r 在轴l 上或在e r上的正射影. 可以证明A B u u u u r 的长度||||cos ,||A B AB a e a e u u u u r u u u r r r r r. 13.空间向量数量积的性质:(1)||cos ,a e a a e r r r r r.(2)0a b a b r r r r .(3)2||a a a r r r .14.空间向量数量积运算律: (1)()()()a b a b a b r r r r r r .(2)a b b a r r r r(交换律).(3)()a b c a b a c r r r r r r r空间向量的直角坐标及其运算精品文档收集于网络,如有侵权请联系管理员删除1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k r r r,以点O 为原点,分别以,,i j k r r r的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz ,点O 叫原点,向量 ,,i j k r r r都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标:在空间直角坐标系O xyz 中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk u u u r r r,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz 中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 常见坐标系①正方体:如图所示,正方体''''ABCD A B C D 的棱长为a ,一般选择点D 为原点,DA 、DC 、'DD 所在直线分别为x轴、y 轴、z 轴建立空间直角坐标系D xyz ,则各点坐标为亦可选A 点为原点.在长方体中建立空间直角坐标系与之类似②正四面体:如图所示,正四面体A BCD 的棱长为a ,一般选择A 在BCD 上的射影为原点,OC 、OD (或OB )、OA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz ,则各点坐标为③正四棱锥:如图所示,正四棱锥P ABCD 的棱长为a ,一般选择点P 在平面ABCD 的射影为原点,OA (或OC )、OB(或OD )、OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz ,则各点坐标为④正三棱柱:如图所示,正三棱柱 '''ABC A B C 的底面边长为a ,高为h ,一般选择AC 中点为原点,OC (或OA )、OB 、OE (E 为O 在''A C 上的射影)所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz ,则各点坐标为3.空间向量的直角坐标运算律:(1)若123(,,)a a a a r ,123(,,)b b b b r,则112233(,,)a b a b a b a b r r ,112233(,,)a b a b a b a b r r ,123(,,)()a a a a R r, 112233a b a b a b a b r r ,112233//,,()a b a b a b a b R r r ,x C精品文档收集于网络,如有侵权请联系管理员删除1122330a b a b a b a b r r.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z u u u r.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4 模长公式:若123(,,)a a a a r ,123(,,)b b b b r,则||a r||b r5.夹角公式:cos ||||a ba b a b rr r r r .6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则||AB u u u r,A B d空间向量应用一、直线的方向向量把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.在空间直角坐标系中,由111(,,)A x y z 与222(,,)B x y z 确定直线AB 的方向向量是212121(,,)AB x x y y z z u u u r.平面法向量 如果a r ,那么向量a r叫做平面 的法向量.二、证明平行问题1.线线平行:证明两直线平行可用112233//,,()a b a b a b a b R r r 或312123//aa a ab b b b r r .2.线面平行:直线l 的方向向量为a r ,平面 的法向量为n r ,且l ,若a n r r 即0a n r r则//a r.3.面面平行:平面 的法向量为1n u r ,平面 的法向量为2n u u r ,若12//n n u r u u r 即12n n u r u u r则// .三、证明垂直问题1.线线垂直:证明两直线垂直可用1122330a b a b a b a b a b r r r r2.线面垂直:直线l 的方向向量为a r ,平面 的法向量为n r ,且l ,若//a n r r即a n r r 则a r.3.面面垂直:平面 的法向量为1n u r ,平面 的法向量为2n u u r ,若12n n u r u u r 即120n n u r u u r则 .四、求夹角1.线线夹角:设123(,,)a a a a r 123(,,)b b b b r(0,90] 为一面直线所成角,则:||||cos ,a b a b a b r r r r r r;cos ,||||a b a b a br rr r r r ;cos |cos ,|a b r r. 2.线面夹角:如图,已知PA 为平面 的一条斜线,n 为平面 的一个法向量,过P 作平面精品文档收集于网络,如有侵权请联系管理员删除的垂线PO ,连结OA 则PAO 为斜线PA 和平面 所成的角,记为 易得sin |sin(,)|2OP APu u u r u u u r|cos ,|OP AP u u u r u u u r|cos ,|n AP r u u u r |cos ,|n PA r u u u r ||||||n PA n PA r u u u rr u u u r . 3. 面面夹角:设1n u r 、2n u u r分别是二面角两个半平面 、 的法向量,当法向量1n u r 、2n u u r同时指向二面角内或二面角外时,二面角 的大小为12,n n u r u u r;当法向量1n u r 、2n u u r一个指向二面角内,另一外指向二面角外时,二面角 的大小为12,n n u r u u r .五、距离1.点点距离:设111(,,)A x y z ,222(,,)B x y z,,A B d||AB u u u r 2.点面距离:A 为平面 任一点,已知PA 为平面 的一条斜线,n r为平面 的一个法向量,过P 作平面 的垂线PO ,连结OA 则PAO 为斜线PA 和平面 所成的角,记为 易得||||sin |||cos ,|PO PA PA PA n u u u r u u u r u u u r u u u r r ||||||||PA n PA PA n u u u r r u u u r u u u r r ||||PA n n u u u r rr . 3.线线距离:求异面直线间的距离可以利用向量的正射影性质直接计算.设两条异面直线a 、b的公垂线的方向向量为n r , 这时分别在a 、b 上任取A 、B 两点,则向量在n r上的正射影长就是两条异面直线a 、b 的距离.即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.直线a 、b 的距离||||||||n AB n d AB n n r uuu r r uuu r r r .4.线面距离:一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离叫做这条直线到这个平面的距离.直线到平面的距离可转化为求点到平面的距离.5.面面距离:和两个平行平面同时垂直的直线叫做两个平行平面的公垂线.公垂线夹在这两个平行平面间的部分叫做两个平行平面的公垂线段.公垂线段的长度叫做两个平行平面间的距离.。
空间向量知识点归纳总结知识要点。
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2.空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)( 3.共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
当我们说向量a 、b 共线(或a //b )时,表示a、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a//b 存在实数λ,使a=λb 。
4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
5.空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。
6.空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。
空间向量知识点归纳总结知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a //。
当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。
4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。
空间向量期末复习知识要点:1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示•同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2.空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
运算律:⑴加法交换律:a + h =b +ci⑵加法结合律:(N + T) + E = N + 0 + e)⑶数乘分配律:= +3.共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,&平行于5 ,记作allb o当我们说向量N、T共线(或a//b)时,表示万、5的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量万、b(方工6), allb存在实数2,使a=kb o4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量方,5不共线,"与向量刁,5共面的条件是存在实数x^y\^p = xa-\-yb。
5.空间向量基本定理:如果三个向量a.b.c不共面,那么对空间任一向量存在一个唯一的有序实数组x,y,z ,使0 = xN + y5 + zC。
若三向量万不共面,我们把{a.b.c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共而的向量都可以构成空间的一个基底。
推论:设O ,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x, y, z ,使OP = xOA + yOB + zOC。
6.空间向量的数量积。
(1)空I'可向量的夹角及其表示:已知两非零向量a.b,在空间任取一点0,作0A = a,0B = b ,则厶叫做向量N与方的夹角,记作且规定OM a9b><7T, 显然有<丽>=<歸>;若<云伍>=仝,则称万与5互相垂直,记作:N丄方。
(2)向量的模:设0A = a,则有向线段刃的长度叫做向量万的长度或模,记作:\a\o(3)向量的数量积:已知向量丽,贝ij|5|-|6|-cos<5^>叫做乳方的数量积,记作a-b ,即方・5 = \a\-\h\-cos<a,b>o(4)空间向量数量积的性质:① 3-e =| 5 | cos < a,e > o②万丄h <^=> a -h = 0 o③ \a^= a • a o(5)空间向量数量积运算律:©(25)-b = 2(3-b) = a-(Ab)o②a b =b -a (交换律)。
@a-(b+c) = a-b + a-c (分配律)。
7.空I'可向量的坐标运算:(1).向量的直角坐标运算设a = (a^a29a3)f b =(b x,b2,b3)则(1) a +b =(勺 +勺卫2 +〃2,。
3 +伏);(3)入万=(加],加2,加3)(入WR);• , • , •(2)•设A(x p y p Zj) , B(x2,y2,z2),则AB = OB-OA= (x2-x{,y2-y},z2-z}).丄丄(3).设a = (X],必,Z]), b = (x2,y2,z2),贝】J7 ——9 ? 2_ = a • a =石 + 片 + Zj丄丄丄ii i 丄丄丄丄aPb a = ^b(b HO); d 丄boa・b = 0o x}x2 + y}y2 + z,z2= 0 •⑷.夹角公式设云=(坷“吗),方=(4,2厶),则cos <a,b>= /砒+警+小+ Q;+ ci; Jb; + b; + b;(5).异面直线所成角丨兀內+儿儿+么乓!J*/ + J/, + 可2 •&: +旳? + Z?2(6).直线和平面所成的角的求法如图所示,设直线/的方向向量为0,平面G的法向量为弘直线/与平面G所成的角(1)如图①,AB, CQ是二面角a・1中的两个面内与棱/垂直的直线,则二面角的大小0=〈乔,CD).(2)如图②③,Hz,心分别是二面角a-l-fi的两个半平面a, ”的法向量,则二面角的大小&= 51,刃2〉或兀—51,兀2〉・(2) a —b = (a】-b^a2 -b2,a3-b3);—e(4) a 9 b = a A b} + a2b2 + a3b3;则有sin 0 = |cos 〃| =I心Ii«ikrcos&=| cos 仏b1 1两向暈0与證的夹角为0,COS&] = COS < /?!n2> =练习题:1-己知a=(—3,2,5), b=(l, x,•1)且a・b=2,则x的值是(2. 已知 a = (2,4,5), b=(3, x, y),若 a 〃b,贝9() A. x=6,尹=15B. x=3, y = 2C. x=3,y=15D.兀=6, y= 2 3.已知空间三点/(0,2,3), 5(-2,1,6), C(l, -1,5).若阀=羽,且a 分别与乔,花垂 直,则向量。
为()A.(1,1,1) B.(-1, -1, -1) C.(1,1,1)或(一1, —1, — 1) D. (1, —1,1)或(-1,1, -1)4. 若 a=(2, 一3,5), *=(-3,1, 一4),贝也一2切= _____________ .5. 如图所示,已知正四面体ABCD 4E=*B, CF=^CD,则直线DE 和3F 所成角的余弦值为4.A/258 解析 Va-2ft=(8, -5,13), ・•・ \a~2b\ =^82 + (-5)2+ 132 =^258.5 土亠13解析 因四面体ABCD 是正四面体,顶点/在底面BCQ 内的射影为△BCQ 的垂心,所 以有BC 丄D4, ABLCD.设正四面体的棱长为4,则亦赤=(貶+拆)•(茹+屁)= O+BGAE+CF-DA+O=4XlXcos 120°+lX4Xcos 120。
=一4,BF= DE=y^^+12-2 X 4 X 1 X cos 60° =匹,所以异面直线DE 与3F的夹角0的余弦值为:cos 0= 6. 如图所示,在平行六面体 ABCD-A }B\C\D X 屮,设 AA } =a, AB =b, AD=c, M, N, P 分别是AA ]f BC, GD 的中点,试用a, d c 表示以下各向量:⑴乔;(2)4^;A. 3B. 4C. 5D. 6_4_=1? A(3)MP+ NC,.解:(1)VP是CQi的中点,:.AP = AA{+孫 + D^P一1 ---------=a+ AD +^Z)]Ci=a+c+^AB=a+c+如.(2)・.・N是3C的中点,:.A^N = A^A + AB + BN= -a+b+^BC1 一1= ~a+b+^AD =—a+b+^c.(3)TM是曲i的中点,:.MP = MA+JP =*命 + ~AP=-*a+(d+c+*»=*a+如+c, 又NC}=7jC +CC{ ^BC + AA,=〒D + AA} pc+a,~MP + NC、=©+如+ c) + (a+*c)3 1 3=严+卫+㊁c.7.己知直三棱柱ABC-A[B l C[中,N4BC为等腰直角三角形,ZBAC=90。
,且AB=AA if D, E, F分别为BS,CiC, BC的中点.(1)求证:DE〃平面MC;(2)求证:3|F丄平面/EF.证明:以/为原点,4B, AC,所在直线为x轴,尹轴,z轴,建立如图所示的空间直角坐标系A-xyz,令力〃=/川=4,则力(0,0,0), E(0,4,2), F(2,2,0), 3(4,0,4), D(2,0,2), 4(0,0,4),(1) D£ =(-2A0),平面 的法向量为 AA } =(0,0,4), ':~DE ~AA X =0, DEG 平而 ABC,•••DE 〃平面 ABC.(2) 8f =(_2,2, -4), EF =(2, -2, -2),乔 ・ EF =(-2)X2 + 2X(-2) + (-4)X(-2) = 0,••• B 、F 丄 EF, B 、F 丄EF,乔•乔=(-2)X2 + 2X2 + (-4)X0 = 0,:.B^F 丄乔,:.B }F 丄/F.•••4FCEF=F,:・B\F 丄平面 AEF.8•如图所示,在四棱锥P-ABCD 中,PC 丄平面ABCD, PC=2.在四边形 ABCD 中,Z^=ZC=90°, AB=4, CD=\,点 M 在刖上,(1)CM 〃平面 PAD ;(2)平面刃B 丄平面PAD.证明:以C 为坐标原点,C8为X 轴,CQ 为y 轴,CP 为Z 轴建立如图所示的空间直角 坐标系C ・xyz.•:PC 丄平面ABCD,:.乙PBC 为PB 与平面ABCD 所成的角,••• ZPBC= 30°,9:PC=2, •••BC=2E PB=4,PB=4PM ,与平面MCD 成30。
的角.求证:Al・・・Q(0,l,0), BQ晶 0,0), A(2y/3t 4,0),尸(0,0,2), •••丽=(0, -1,2), DA =(2^3, 3,0),CM =,o, I)⑴设〃 = (x,“ z)为平面刊D的一个法向量,—y+2z=0,2伍+3y=0,令丁=2,得"=(—^3, 2,1).*:n CM =-^3>< 2 +2X0+1X2 = 0,・•・〃丄而.又CMQ平面PAD,:.CM〃平面PAD.(2)如图,取力尸的中点E,连接BE,则E©, 2,1),匪=(一点2,1).•・・PB=AB, ・・・BE丄PA.又•: ~BE DA =(-A/3, 2,1) (2萌,3,0)=0,・・・BE丄DA . BE丄D4.5LPAr}DA=A f :.BE丄平面B4D.又・:BE U平面R4B,・•・平面/MB丄平面PAD.9.如图,在正方体人BCD・A\B、C\D\中,E为的中点.(1)求直线/D和直线5C所成角的大小;(2)求证:平面EEQ丄平面B、CD.解:不妨设正方体的棱长为2个单位长度,以DA, DC, 建立DD\分别为x轴、尹轴、z轴,如图所示的空间直角坐标系D-xyz.根据已知得:£>(0,0,0), J(2,0,0), 8(2,2,0), C(0,2,0),耳(2,2,2).⑴・・•可=(2,0,0),画=(2,0,2),・・・cos〈可,西〉=巴迅=半1 1| DA || CB, | 27T・;直线力D和直线所成角为才.(2)证明:取3Q的中点F,得F(l,l,l),连接EF.TE 为力3 的中点,£(2,1,0),A EF =(-1,0,1), 5C =(0,2,0),・•・丽反=0, EF CB} =0,:.EF丄DC, EF丄CB\.•:DCCCB\ = C,・・・EF丄平面B\CD.又TEFU平面EB、D,・•・平面EBQ丄平面B\CD.10.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB//CD, MB丄BC, AB=2CD=2BC, EA丄EB.⑴求证:MB丄DE;(2)求直线EC与平而ABE所成角的正弦值;⑶线段以上是否存在点F,使EC〃平面FBD?若存在,求出徐若不存在,请说明理由.解:(1)证明:取力3的中点O,连接EO, DO. 因为EB=EA,所以EO丄MB.因为四边形ABCD为直角梯形.AB=2CD=2BC, AB丄BC,所以四边形OBCD为正方形,所以丄OD 因为EOODO=O,所以力〃丄平面EOD,所以力3丄ED.(2)因为平面/BE丄平面ABCD,且EO丄4B, 所以EO丄平面ABCD,所以EO丄OD由OB, OD, OE两两垂直,建立如图所示的空间直角坐标系O-xyz.A因为三角形EAB 为等腰直角三角形,所以 OA = OB=OD=OE,设 OB=1,所以 0(0,0,0), 1,0,0), 3(1,0,0), C(1 丄0),D(0,l,0), E(0,0,l).所以丽=(1,1, -1), 平面ABE 的一个法向量为筋 =(0,1,0). 设直线EC 与平面所成的角为0,即直线EC 与平面ABE 所成角的正弦值为誓.11.(12分)如图,在底面是矩形的四棱锥P —/BCD 中,刃丄平面 =4,E 是PD 的中点.(1)求证:平面PQC 丄平面刊D⑵求点B 到平面PCD 的距离.21. ⑴证明如图,间直角坐标系,则依题意可知力(0,0,0), 3(0,2,0), C(4,2,0),£>(4,0,0), P(0,0,2).・••励=(4,0, -2),励=(0, -2,0),场=(0,0, -2). 设平面PDC 的一个法向量为n =(X. y,l),所以平面尸CQ 的一个法向量为仕,0, 1)•・•丹丄平面ABCD, :.PALAB,又 ':ABLAD, PA^AD=A 9 :.AB 丄平面刊 D・•・平面PAD 的法向量为乔=(0,2,0).':n-AB=0,・•・聽丄乔・•・平面PDC 丄平面PAD.所以 sin<9=|cos <£C,OD) | = \ECOD\_y[3 \EC\\OD\~ 3 -2v=0 4x-2 = 0P4=AB=2f BCy 轴、z 轴建立空⑵解 由⑴知平面PCD 的一个单位法向量为侖=(平,0, 芈j.-n'■ T(4' O' °)梓'O'爭)1 普'・••点B 到平面PCD 的距离为攀.12. 如图所示,在多面体ABCD-AyB x CyD\中,上、下两个底面A }B }C }D }和力3CQ 互相平行,且都是正方形,DQ 丄底面ABCD, AB=2A 、B\=2DD\=2a.(1) 求界面直线与DD X 所成角的余弦值;(2) 已知F 是40的中点,求证:Mi 丄平面BCC\B\;(3) 在⑵的条件下,求二面角F-CCi-5的余弦值.解:以D 为坐标原点,分别以D4, DC, DDi 所在直线为兀轴、y 轴、z 轴建立如图所示的空间直角坐标系D-xyz,则A(2a f 0,0), B(2a,2d,0), B\(a, a, a), C )(0, a, a).・••异面直线/ B i 与QD i 所成角的余弦值为¥•FB 、・BB\ =0,耳祝=0,•••FB 』BB\, FB 』BC ・•:BB\CBC=B, ・・・FBi 丄平面 BCC/i.C(0,2Q ,0), D(0,0, a), F(Q ,O,O),(1)V AB } =(—a 9 a, a),DD 、=(0O a), /• |cos 〈 AB 、,DD } > | =AB 、・ DD 、⑷|・|DQ|(2”正明:V BB } =(~a 9—a, a), FB 、=(0, a, a),=(-267,0,0),(3)由(2)知,FB}为平面BCC\B\的一个法向量.设n = (x lf zj 为平面FCG 的法向量,V cq =(0, -a, a)f FC =(-a,2a,0)f ~ay\ +Q Z] =0,~ax\+2ay\=0. 令尹1 = 1,则"=(2丄1),向量为加=(—3, —2,1).面CEC 、的一个法向量.n CC } =0,rvFC=0f 得丿〈陌,71 > = FB 、nI 两|啊 •・•二面角F-CCi-B 为锐角,・•・二面角F ・CC\・B 的余弦值为¥• 13. 如图,四棱柱 ABCD-AxB x C {D xAB CD, AB "DC,肋丄 AD, AD=CD=\, 的中点.(1) 证明:B 、C 」CE;(2) 求二面角B\・CE ・C\的正弦值.(3) 设点M 在线段C 、E 上,且直线AM 与平面ADD.A,所成角的正弦值为習,求线段的长.解:法一:如图,以点力为原点建立空间直角坐标系,依题 意得力(0,0,0), 3(0,0,2), C(l,0,l),厲(0,2,2), G(l,2,l), E(0,l,0).(1) 证明:易得荫=(1,0, -1), CE=(-1,1, -1),于是 瓦可•圧=0,所以5C|丄CE(2) 莊=(1, -2, -1).设平面5CE 的法向量m=(x, y, z),m BQ =0,一即“ in CE =0,x —2y —z=0f —x+y —z=0. 消去x,得y+2z=0, 不妨令z=l,可得一个法 由(1)次口,BC 丄 CE,又 CC]丄B]C], 可得5G 丄平面CEC l9故B.C. =(1,0, 一1)为平2A /77 ,于是 cos {tn, EC 〉 m- BQS,昭 > =罕从而sinG)疋=(0 丄0), EC} =(1,1,1).设EM =A£Q =(A, A,久),0W&W1, 有AM = AE +所以二面角B、・CE・C\的正弦值为警IEM =(x,久+1, X).可取AB =(0,0,2)为平面ADD}A}的一个法向量•设0为直线/M与平' ■ ' •面ADM所成的角‘则sin 0=|c°s <AM, AB > |=摞隅=诃誌养旷回2爲+1•于是©昇2卄广寻解得所以AM=^'法二:⑴证明:因为侧棱CC1丄底面力/iCQi, B]C]U平面AxB x C\D\,所以CCi 丄5C].经计算可得B、E=^, B\C、=也,EC\ =晶从而B^=B X C\+EC\,所以在△ B X EC X中,BiC\ 丄C\E,又CG, GEU平面CC、E, CC]QCE=C],所以5G丄平面CC\E.又CEU平面CC\E,故B\C」CE.(2)过厲作0G丄CE于点G,连接GG.由(1)知,B\C」CE,故CE丄平面B\C\G,得CE丄C|G,所以ZB I GC I为二面角B\・CE・C\的平面角.在ZkCCiE中,由CE=C\E=羽, CC|=2,可得C】G=爭.在RtZ\5C|G 中,B】G=攀,所以sin ZBg=^,即二面角B\・CE・C\的正弦值为厚.(3)连接D、E,过点M作MH丄ED于点H,可得加丄平® ADD}A Xy连接/H, AM, 则ZMAH为直线与平面ADD X A X所成的角.、Q A/34AM=x,从而在Rt△昇HM 中,有MH=AH=〒£在RtACQiE 中,CQ】= 1, ED\=y[i,得EH=y/2MH=jx.在中,Z4EH= \35。