正方体11种展开图,可打印让学生操作
- 格式:pdf
- 大小:22.32 KB
- 文档页数:6
. . kszl 正方体的十一种侧面展开图 我上立体几何课时,为了激发学生的兴趣,让学生手工制作立方体,然后总结研究它的侧面展开图有多少种情形,现总结如下:
1. 141型,中间一行4个作侧面,上下两个各作为上下底面,共有六种基本图形
2. 132型,中间3个作侧面,共3中基本图形
3. 222型,两行只能有1个正方形相连 . . kszl 4. 33型,两行只能有一个正方形相连 5 正方体的十一种平面展开图可记忆成下面口诀: 一三二,一四一,一在同层可任意,两个三,日状连,三个二,成阶梯,相邻必有日,整体没有田。 .
. kszl 七年级下册数学动点题!急需,3题以上的啊! 七年级下册几何动点! 2010-7-20 09:56 最佳答案 1.矩形ABCD中,AB=6,BC=8,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,PE+PF的值是多少? 解:4.8 2.在正方形ABCD中,P为BC边上一点,Q为CD边上一点。若PQ=BP+DQ,求角PAQ的度数 解:方法一:延长QD至E,使DE=BP,易知△ABP≌△ADE,则AP=AE,所以△APQ≌△AEQ,因为角PAE=90度,所以角PAQ=45度. 方法二:作三角形APQ中PQ边上的高,交PQ于E点。因QD垂直与AD,QE垂直于AE,所以AQ是角DAE的平分线,同理,AP是角BAE的平分线。因此得角PAB+角QAD=角PAE+角QAE=1/2角BAD=45度 如图,直线y=-(3分之根号3)x+1与x轴y轴分别交于B、A两点,以AB为直角边的等腰直角三角形ABC的顶点C在第一象限且∠ABC=90度 (1)求A、B点坐标 (这问不用做,答案是A(0,1)B(根号3,0)) (2)将△ABC以每秒1个单位长度的速度延x轴平行移动,移动时间为t(秒)平移后三角形记作△AtBtCt,设平移过程中△AtBtCt与四边形AOBC重叠部分面积为S。试探究S与t的关系式并写出自变量t的取值范围(有三种情况)
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
中间没有面,三三连一线(1种摆法-33)。