磨削
- 格式:ppt
- 大小:3.52 MB
- 文档页数:53
螺纹是在圆柱工件表面上,沿着螺旋线所形成的,具有相同剖面的连续凸起和沟槽。
在机械制造业中,带螺纹的零件应用得十分广泛。
对于螺纹加工,在机械生产中,最长使用的方法是磨削。
特别是在加工精密螺纹的时候,多用于加工丝杆、蜗杆、丝锥、螺纹塞规、螺纹环规、螺纹铣刀、螺纹梳刀和已淬火零件螺纹等;也用于大批量生产的汽车变速器零件。
一、螺纹的磨削方法根据磨螺纹使用砂轮的形式和进给方式的不同,常用的加工方法有以下三种:1、单线砂轮磨削法磨削前将砂轮修成牙形相符的形状,并使砂轮轴线相对工件轴线倾斜一个螺旋升角。
螺纹磨削时,工件的旋转运动和工作台的移动保持一定的展成关系,即工件每转一周,工作台相对应移动一个导程。
2、多线砂轮切入磨削法磨削前用滚轮将砂轮圆柱面修成和弓箭牙形相同的多线环形槽。
采用切入法磨削,当砂轮完全切入牙深后,工件回转二周即可。
工件和工作台之间也应保持展成关系。
多线法磨削螺纹生产率较高,但加工精度较低。
多线砂轮切入磨削时,砂轮的宽度应大于螺纹面总长度,适合成批磨削普通螺纹。
3、多线砂轮纵向磨削法将砂轮修整成多线环形槽,用纵向法展成磨削螺纹表面。
前面的环形槽主要起粗磨作用,后部的环形槽则起半精磨、精磨作用,采用较大的背吃刀量在一次纵向进给中磨去工件的全部磨削余量,将螺纹磨至精度要求。
这种磨削法的特点是将环形砂轮再修整成台阶形,其类同于外圆深度磨削法所使用的台阶砂轮,使砂轮前部至后部的吃刀量逐渐减小,最后的台阶则将螺纹磨削至尺寸。
多线砂轮纵向磨削法具有极高的生产效率,加工精度也较高。
对于螺距大于3mm的螺纹,应先进行螺纹预加工后再磨螺纹;对于距螺小于3mm的螺纹,不需预加工而可直接磨出螺纹,这种方法适于加工小螺距,且螺纹长度小于砂轮宽度的工件。
二、磨削机床的安装和使用1、机床的安装(1)磨螺纹是在专用螺纹磨床上进行的,若是加工单件和小批量的精密螺纹,机床应安装在恒温室内,温度控制在20±1摄氏度,若是加工大批量的螺纹,机床可安装在条件比较好的普通车间内。
成形磨削的加工原理
成形磨削是一种通过磨削砂轮的旋转来加工工件的方法。
它的加工原理主要包括以下几个步骤:
1. 砂轮进给:砂轮被安装在磨床的主轴上,并以高速旋转。
工件被安装在工作台上,然后由工作台控制移动。
砂轮和工件之间有一个逐渐减小的间隙。
2. 磨粒切削:砂轮的旋转会使磨粒与工件接触并切削工件表面。
磨粒是在砂轮上固定的砂粒,具有尖锐的边缘。
当磨粒与工件接触时,通过切削和抛光的作用,将工件表面的材料去除。
3. 磨屑去除:在磨削过程中,被去除的工件材料以磨屑的形式产生。
这些磨屑会被冲洗液或喷气等方法及时清除,以防止堵塞磨削过程并影响加工质量。
4. 磨削力的形成:在磨削过程中,磨粒对工件表面施加力,使其发生变形和剥离。
这些力包括切削力、磨削力和垂向力。
切削力是指磨粒对工件的切割力,垂向力是指砂轮对工件施加的垂直力,磨削力是指切削力和垂向力的合力。
总的来说,成形磨削通过砂轮的旋转和磨粒的切削作用,将工件表面的材料去除,从而达到精加工和改善工件表面质量的目的。
加工原理的关键在于砂轮和工件之间的切削作用和力的相互作用。
简述磨削加工的工艺特点。
磨削加工是一种利用磨削轮将工件表面削除材料的加工方法,其工艺特点如下:
1. 精度高:磨削加工可以实现高精度的加工,能够满足对工件精度要求较高的应用领域。
2. 表面质量好:磨削加工可以获得较好的表面光洁度和粗糙度,可以满足对工件表面平滑度和光洁度要求较高的应用。
3. 切削力小:相比其他切削加工方法,磨削加工的切削力较小,能够减少工件表面的热变形和机械变形。
4. 加工材料广泛:磨削加工适用于各种硬度的材料,包括金属、非金属和复合材料等。
5. 适用于复杂形状:磨削加工适用于各种复杂形状的工件加工,可以实现对工件的各种内外轮廓的加工。
6. 适用于批量生产:磨削加工可以实现对大批量工件的连续加工,提高生产效率。
总之,磨削加工具有高精度、好表面质量、切削力小、适用于各种材料和形状的优点,是一种广泛应用于工业生产中的高效加工方法。
磨削加工中的磨削力分析磨削加工是一种高精度的加工方式,可以用于加工各种材料的零部件。
其原理是使用磨料与加工物体之间的相对运动来去除材料表面的毛刺和瑕疵,制造出精密的表面和形状。
磨削加工的质量和效率与磨削力大小有着密切关系,因此对磨削力的分析和计算是磨削加工过程中极为重要的一环。
一、磨削加工的基本原理磨削加工是利用磨料与工件之间的相对运动,在压力的作用下,去除工件表面的毛刺和瑕疵,进而达到加工目的的过程。
在磨削加工中,磨料既是一个加工工具,也是一种加工介质。
其磨削力主要由切削力、磨合力和磨料轴向力三部分组成。
其中,切削力是主要作用力,因其大小和方向对于磨削加工的影响最为显著。
二、磨削力分析的原则磨削力是磨削加工过程中产生的一种重要力,其大小和方向对于成形精度、加工效率和工件表面质量等方面都有着显著的影响。
因此,了解磨削力的大小和方向,对于进行磨削加工质量的保证和高效率的实现都具有非常重要的作用。
在磨削力分析中,我们需要掌握以下几个基本原则:1.磨削力的大小和方向是磨削加工过程中的重要指标之一,需要进行精确的测量和分析。
2.在磨削加工过程中,应尽量降低磨削力的大小,实现高效率、高精度的加工目标。
3.在磨削力分析中,需要考虑到各个因素的综合影响,不能简单地直接计算或估算。
4.针对不同的磨削加工过程和实际需要,需要采用不同的磨削力分析方法和手段。
三、磨削力的计算方法磨削力的计算方法可以分为两种:经验计算法和基于力学原理的计算方法。
在实际应用中,一般采用经验计算和力学原理相结合的方法进行磨削力的估算。
一般情况下,磨削力的计算方法根据材料的硬度和材料的粘合程度分为两种:理论计算法和实验计算法。
其中,理论计算法以理论分析为基础,通过分析材料硬度和材料粘合程度之间的关系,计算出磨削力的大小和方向。
而实验计算法则以实验结果为依据,通过不同实验条件下的测量结果,计算出磨削力的大小和方向。
在实际应用中,常采用理论计算法和实验计算法相结合的方法,进行磨削力的估算。
常见的3种磨削方法介绍磨削过程就是砂轮表面上的磨粒对工件表面的切削、划沟和滑擦的综合作用过程。
(一)外圆磨削外圆磨削可以在普通外圆磨床或万能外圆磨床上进行,也可在无心磨床上进行,通常作为半精车后的精加工。
1、纵磨法磨削时,工件随工作台作圆周进给运动和纵向进给运动,使砂轮能磨削所有表面。
在每个纵向行程或往复行程后,砂轮进行横向进给,逐渐磨掉磨削余量。
它可以磨削较长的表面,具有良好的磨削质量。
特别是在单件、小批量生产和细磨时,一般采用纵向磨削法。
2、横磨法(切入磨法)采用交叉磨削方式,工件无纵向进给运动。
使用比待磨削表面(或与磨削表面一样宽)宽的砂轮以非常低的进给速度横向进给工件,直到磨掉所有加工余量。
交叉磨削法主要用于磨削长度较短的柱面和两侧有台阶的表面3、深磨法其特点是所有磨削余量(直径一般为0.2~0.6mm)均在纵向刀具中磨掉。
磨削过程中,工件的周向进给速度和纵向进给速度非常慢,砂轮前端被修整成阶梯形或锥形。
深度磨削法的生产率约为纵向磨削法的两倍,可达到IT6水平,表面粗糙度Ra值在0.4~0.8之间。
然而,修整砂轮很复杂,只适合大规模生产。
磨削允许砂轮超出工件,与加工表面两端保持较大距离。
4、无心外圆磨削法工件放置在砂轮和导轮之间,其下方有一支撑板。
砂轮(也称为工作轮)旋转并起切割作用。
导向轮是一个橡胶粘合轮,带有非常细的磨粒。
工件和导轮之间的摩擦力很大,因此工件以接近导轮的线速度旋转。
无心外圆磨削是在无心外圆磨床上进行的。
无心外圆磨床生产率高,但调整复杂;孔与套筒零件外圆的同轴度误差无法修正;带有长轴向槽的零件不能磨削,以防止外圆圆度误差过大。
因此,无心外圆磨削主要用于批量生产细长光轴、轴销、小套筒等零件的轴径。
(二)内圆磨削除了在普通内圆磨床或万能外圆磨床上进行内圆磨削外,无心内圆磨削也可用于大型薄壁零件;对于重量大、形状不对称的零件,可采用行星内圈磨削。
此时,应首先完成工件的外圆。
内圆磨削由于砂轮轴刚性差,一般都采用纵磨法。
磨削的加工范围磨削是一种常见的加工方法,广泛应用于各种材料的加工工艺中。
磨削的加工范围非常广泛,可以用于金属、非金属、硬质合金等各种材料的加工,可以实现高精度、高表面质量的加工要求。
本文将从不同角度探讨磨削的加工范围,以及磨削在工业生产中的重要性。
磨削的加工范围涵盖了各种不同形状和尺寸的工件。
无论是平面、曲面、内孔、外圆、内螺纹等复杂形状的工件,都可以通过磨削加工来实现精密加工。
磨削可以用于对工件表面进行粗糙度、平整度、圆度、圆柱度等各项指标的加工和控制,从而满足不同工件的加工要求。
磨削的加工范围还包括了各种不同硬度和性质的材料。
金属材料如钢铁、铝合金等,非金属材料如陶瓷、玻璃、塑料等,硬质合金、陶瓷等超硬材料,都可以通过磨削加工来实现高精度加工。
磨削可以有效地去除材料表面的氧化层、氧化皮、毛刺等缺陷,提高工件的表面质量和精度。
磨削的加工范围还包括了不同的加工精度要求。
从数微米到数十微米的加工精度要求,都可以通过磨削来实现。
磨削可以实现对工件表面粗糙度的控制,可以实现高精度的尺寸、形状和位置公差要求,可以实现对工件表面质量的要求,如镜面光洁度、光泽度等。
磨削的加工范围还包括了不同的加工环境和条件。
无论是手动磨削、半自动磨削,还是全自动磨削;无论是常规磨削、高速磨削,还是超精密磨削,都可以根据不同的加工要求和条件来选择适合的磨削方法和设备。
磨削可以在常温、高温、低温、真空、无尘等不同环境条件下进行加工,可以适应不同的工件材料和加工要求。
总的来说,磨削的加工范围非常广泛,可以满足各种不同形状、尺寸、硬度、性质、精度和环境条件的工件加工要求。
磨削作为一种重要的加工方法,在工业生产中发挥着不可替代的作用。
通过不断改进磨削技术和设备,提高磨削效率和质量,可以进一步拓展磨削的加工范围,满足不断增长的加工需求。
希望本文对读者对磨削的加工范围有所启发,对磨削技术的发展和应用有所促进。
磨削加工1. 磨削加工的概述磨削加工是一种通过研磨工具对工件表面进行切削的加工方法。
它通过切削工具与工件之间的相对运动,在切削、研磨和磨痕的共同作用下,将工件表面不平整层次的高点消除,从而得到平整、光滑的表面。
2. 磨削加工的原理磨削加工的原理是力学切削。
在磨削过程中,磨粒对工件表面的切削作用类似于多个微小切削刃对工件表面的切削作用,因此磨削可以看成是由许多微小切削刃共同作用的切削过程。
3. 磨削加工的分类磨削加工根据磨粒的尺寸和磨粒与工件之间的相对运动情况可以分为不同的类型,主要包括:3.1 粗磨粗磨是指在切削速度较低、磨粒尺寸较大的条件下进行的磨削加工,主要目的是迅速去除工件表面的大量金属,使其达到一定的粗糙度,为后续磨削过程提供条件。
3.2 精磨精磨是指在切削速度适中、磨粒尺寸适当的条件下进行的磨削加工,主要目的是进一步消除工件表面的细小凹坑和凸起,提高工件表面的精度和光洁度。
3.3 超精磨超精磨是指在切削速度较高、磨粒尺寸小的条件下进行的磨削加工,主要用于加工高精度、高光洁度的工件,以提高工件表面的质量。
4. 磨削加工的过程磨削加工通常包括以下几个基本工序:4.1 磨削前准备在进行磨削加工之前,需要对磨削工具进行选择和准备,包括选用合适的磨粒、绑定磨料和磨具、选择适当的磨削液等。
4.2 磨削磨削是磨削加工的核心过程,主要包括以下几个步骤:固定工件,调整磨削参数,启动磨削机床,进行磨削操作。
4.3 表面质量检测在磨削加工完成后,需要对工件表面的质量进行检测。
常用的表面质量检测方法有视觉检测、触觉检测和测量仪器检测等。
4.4 后续处理在完成磨削加工后,还需要进行一些后续处理工序,例如清洗工件、除去残留物和保护处理等,以确保工件表面的质量和性能满足要求。
5. 磨削加工的优点和局限性磨削加工具有以下优点:•可加工具有复杂形状的工件•可加工高硬度材料•可获得高精度的加工结果•可提高工件表面的质量和光洁度然而,磨削加工也存在一些局限性:•生产效率低,加工速度较慢•工艺过程较为复杂,需要一定的技术和经验•磨具和磨料的消耗较大,成本较高6. 磨削加工的应用领域磨削加工在各个制造行业中都得到广泛应用,特别是对高精度、高光洁度的工件加工需求较高的领域,例如:•汽车制造业:发动机缸体、曲轴等零部件的加工•刀具制造业:高精度刀具的生产加工•航空航天业:航空发动机叶片、轴承等零部件的加工•电子制造业:半导体芯片、磁头等精密元件的加工7. 磨削加工的未来发展趋势随着制造技术和加工要求的不断提高,磨削加工也在不断发展和改进。
成形磨削的概念成形磨削是一种精密磨削加工方法,通过使用特殊形状的砂轮将工件的外形加工成所需形状和尺寸的技术。
它广泛应用于精密磨削领域,如航空航天、汽车制造、模具制造、工具制造等。
成形磨削相比传统的磨削方法具有许多优势。
首先,其砂轮可以根据需要制作成各种形状,如平面、圆柱、球形、齿轮等,因此可以实现各种复杂外形的加工。
这使得成形磨削成为高精度、高效率的加工方法,尤其适用于要求外形特殊的零部件的制造。
其次,成形磨削可以实现无心磨削,即砂轮可以根据工件的轮廓形成相应的磨削轮廓,从而使得加工后的工件轮廓与模具或砂轮的轮廓一致。
这种特性使得成形磨削可以用于加工各种非圆形的工件,如凸轮、槽孔、齿轮等。
与其他加工方法相比,成形磨削具有更高的精度和更好的表面质量。
第三,成形磨削具有较大的自适应能力。
由于砂轮可以根据工件轮廓变形,因此在加工时可以自动调整切削参数,使得加工过程更加稳定和可靠。
这种自适应能力使得成形磨削能够应对工件形状复杂、切削条件发生变化等情况,提高加工效率和质量。
成形磨削的加工过程主要包括以下几个步骤:首先,选择合适的砂轮,并安装在磨床主轴上。
其次,根据工件的轮廓形状调整砂轮的位置和方向,并固定在磨床上。
然后,通过调节磨床的进给量和转速,使得砂轮与工件表面接触,并开始进行磨削。
在磨削过程中,砂轮会根据工件的轮廓变形,从而使得磨削的切削条件逐渐适应工件的形状。
最后,根据需要进行润滑和冷却处理,以保证加工质量。
成形磨削还可以与其他加工方法结合使用,如电火花加工、齿轮加工等。
这种组合加工可以进一步提高加工的精度和效率。
此外,成形磨削还可以与数控技术相结合,实现自动化和智能化加工,提高生产效率和质量。
总之,成形磨削是一种重要的精密磨削加工方法,其特点是可以根据工件的轮廓形状来磨削,并具有较高的精度、表面质量和自适应能力。
在工业生产中,成形磨削广泛应用于各种外形复杂、精度要求高的零部件的制造,对提高飞机、汽车、机床等行业产品的质量和性能具有重要意义。
精密磨削和超精密磨削概述精密磨削和超精密磨削是现代机械加工中的高级技术,主要用于高精度、高效率的零件加工。
以下是关于这两种磨削技术的概述:1. 精密磨削:精密磨削是一种采用高精度磨具和磨削液,在精确控制磨削条件下进行的磨削工艺。
其目的是在保持高效率的同时,实现高精度、低表面粗糙度的磨削效果。
精密磨削的主要特点包括:* 高精度:磨削后的零件尺寸精度和表面粗糙度要求较高,通常达到微米甚至纳米级别。
* 高效率:精密磨削可实现高速磨削和高进给速度,提高生产效率,降低加工成本。
* 低损伤:磨具材质和磨削工艺能够减小对工件表面的损伤,延长零件使用寿命。
* 环保:精密磨削通常采用干式磨削和绿色制造技术,减少加工过程中的环境污染。
精密磨削广泛应用于航空航天、汽车、电子、光学等领域,特别适用于难加工材料和高精度零件的加工。
2. 超精密磨削:超精密磨削是一种在极高的工艺精度和极低的表面粗糙度下进行的磨削工艺。
它通过采用先进的磨具制造技术、高精度磨床和环境控制技术,实现微米甚至亚微米级别的加工精度和纳米级别的表面粗糙度。
超精密磨削的主要特点包括:* 高精度:超精密磨削的加工精度可达到微米甚至亚微米级别,满足高精度零件的加工要求。
* 超低表面粗糙度:超精密磨削能够实现纳米级别的表面粗糙度,提高零件的表面完整性,延长零件使用寿命。
* 高材料去除率:超精密磨削可实现高速磨削和高进给速度,提高材料去除率,缩短加工时间。
* 高度集成:超精密磨削技术通常与其他先进制造技术相结合,实现零件的高效制造和整体集成。
超精密磨削技术在航空航天、汽车制造、微电子、光学等领域具有广泛应用前景。
它特别适用于高效制造高精度零件,如精密轴承、齿轮、高速电机等。
总之,精密磨削和超精密磨削是现代机械加工中的重要技术,能够实现高精度、高效率、低损伤的零件制造。
随着制造业的不断发展,这些技术将在未来发挥更加重要的作用,为先进制造和高精度零件的生产提供有力支持。
机械制造中的磨削与抛光技术磨削与抛光技术在机械制造行业中扮演着重要的角色。
这些技术能够提高零部件的表面质量和精度,增加产品的功能性和附加值。
本文将探讨机械制造中常用的磨削与抛光技术,以及它们在提升产品性能方面的应用。
一、磨削技术1. 磨削原理磨削是通过磨削工具与工件表面的相互作用,削除工件表面的一层材料,从而使工件表面光洁度和精度得到提高的工艺。
常用的磨削工具包括砂轮、磨削头等。
通过选择合适的磨削工具和加工参数,可以实现对不同材料的磨削加工。
2. 磨削方法在机械制造中,常用的磨削方法包括平面磨削、外圆磨削、内圆磨削、曲面磨削等。
各种磨削方法适用于不同形状和尺寸的工件。
例如,平面磨削适用于具有平坦表面的工件,而外圆磨削适用于轴类零件等。
3. 磨削技术的应用磨削技术广泛应用于汽车、航空航天、船舶、机械设备等领域。
通过磨削技术,可以实现零件的高精度加工和表面处理,提高产品的耐磨性、耐腐蚀性和美观度。
例如,在汽车发动机制造中,磨削技术用于曲轴、凸轮轴等重要零件的加工,以提高其表面精度和耐磨性。
二、抛光技术1. 抛光原理抛光是通过磨料与工件表面的相互作用,去除表面微小凹凸和瑕疵,使工件表面光洁度得到提高的工艺。
抛光是磨削的一种延伸,常用的磨料包括研磨液、研磨膏等。
抛光通常在磨削之后进行,以进一步提升工件的表面质量。
2. 抛光方法在机械制造中,常用的抛光方法包括机械抛光、电解抛光、化学抛光等。
不同的抛光方法适用于不同材料和表面要求的工件。
机械抛光适用于较大尺寸和坚硬的工件,而电解抛光适用于金属材料的光洁度要求较高的工件。
3. 抛光技术的应用抛光技术在钟表、电子、光学等行业中得到广泛应用。
通过抛光技术,可以实现对工件表面质量的提升,提高产品的外观质量和功能性。
例如,在光学仪器制造中,抛光技术用于光学镜片和光学器件的加工,以提高其光学性能和表面光洁度。
总结:磨削与抛光技术是机械制造中不可或缺的工艺技术。
它们能够提高工件的表面质量和精度,增加产品的附加值和竞争力。
磨削加工的特点是什么?磨削是一种常用的半精加工和精加工方法,砂轮是磨削的切削工具,磨削是由砂轮表面大量随机分布的磨粒在工件表面进行滑擦、刻划和切削三种作用的综合结果。
磨削的基本特点如下:1.磨削的切削速度高,导致磨削温度高。
普通外圆磨削时v=35m/s,高速磨削v >50m/s。
磨削产生的切削热80%~90%传入工件(10%~15%传入砂轮,1%~10%由磨屑带走),加上砂轮的导热性很差,易造成工件表面烧伤和微裂纹。
因此,磨削时应采用大量的切削液以降低磨削温度。
2.能获得高的加工精度和小的表面粗糙度值加工精度可达IT6-IT4,表面粗糙度值可达Ra0.8-0.02μm。
磨削不但可以精加工,还可以粗磨、荒磨、重载荷磨削。
3.磨削的背向磨削力大因磨粒负前角很大,且切削刃钝圆半径rn较大,导致背向磨削力大于切向磨削力,造成砂轮与工件的接触宽度较大。
会引起工件、夹具及机床产生弹性变形,影响加工精度。
因此,在加工刚性较差的工件时(如磨削细长轴),应采取相应的措施,防止因工件变形而影响加工精度。
4.砂轮有自锐作用在磨削过程中,磨粒有破碎产生较锋利的新棱角,及磨粒的脱落而露出一层新的锋利磨粒,能够部分地恢复砂轮的切削能力,这种现象叫做砂轮的自锐作用,有利于磨削加工。
5.能加工高硬度材料磨削除可以加工铸铁、碳钢、合金钢等一般结构材料外,还能加工一般刀具难以切削的高硬度材料,如淬火钢、硬质合金、陶瓷和玻璃等。
但不宜精加工塑性较大的有色金属工件。
残阳渐逝,血红冲天。
半是夕阳余光,半是狰狞血雨。
是的,血,到处都是冷腥的鲜血。
整个皇宫之内,血流成河,白玉理石全被洗涮成黑红之色,到处是断壁残肢,尸横一片,到处是厮杀后的痕迹。
“为什么?”百里冰左手紧捂着胸口,瞪大着眼睛看着对面十米敌对方处,挥手点兵之人。
那是她的未婚夫,她倾尽一生所爱之人。
亦是绝杀她百里一族,将她迫入绝境之人。
她不懂,为何倾尽所有的爱,换来的是百里一族的灭顶之灾。
用砂轮或涂覆磨具以较高的线速度对工件表面进行加工的方法称为磨削加工。
一般在磨床上进行。
磨削加工可分为普通磨削、无心磨削、高效磨削、低粗糙度磨削和砂带磨削等。
一、普通磨削(1)机床:普通磨床(2)加工范围:外圆、内圆、锥面、平面(3)按照砂轮粒度号和切削用量的不同,普通磨削可分为粗磨和精磨。
粗磨的尺寸公差等级为IT8~IT7,表面粗糙度Ra值为0.8~0.4μm;精磨的尺寸公差等级为IT6~IT5,表面粗糙度Ra值为0.4~0.2μm。
1.磨外圆(1)机床:普通外圆磨床、万能外圆磨床(2)磨削方法:纵磨法和横磨法纵磨法:加工精度高,Ra值较小,生产率低,广泛用于各种类型的生产中;横磨法:加工精度低,Ra值较大,生产率高,只适用于大批量生产中磨削刚度较好、精度较低、长度较短的轴类零件上的外圆表面和成形面。
2.磨内圆(包括内锥面)(1)机床:内圆磨床、万能外圆磨床(2)特点:①由于磨内圆砂轮受孔径限制,切削速度难以达到磨外圆的速度;②砂轮轴直径小,悬伸长,刚度差,易弯曲变形和振动,且只能采用较小的背吃刀量;③砂轮与工件成内切圆接触,接触面积大,磨削热多,散热条件差,表面易烧伤;④磨内圆比磨外圆生产率低,加工精度和表面质量难以控制。
3.磨平面(1)机床:平面磨床(2)加工方法:周磨法、端磨法①周磨法:加工精度高,表面粗糙度Ra值小,但生产率较低,多用于单件小批生产中,大批大量生产中亦可使用。
②端磨法:生产率较高,但加工质量略差于周磨法,多用于大批大量生产中磨削精度要求不太高的平面。
(1)机床:无心磨床(2)加工方法:纵磨法、横磨法1.无心纵磨法大轮为工作砂轮,起切削作用。
小轮为导轮,无切削能力。
两轮与托板构成V形定位面托住工件。
由于导轮的轴线与砂轮轴线倾斜β角(β=1°~6°),v导分解成v工和v 进。
v工带动工件旋转,v进带动工件轴向移动。
为使导轮与工件直线接触,把导轮圆周表面的母线修整成双曲线。
平面磨床磨削时的三个阶段磨削时,由于背向力Fp很大,引起工艺系统的弹性变形,使实际磨削深层与平面磨床刻度盘上所显示的数值有差别。
所以一般磨削的实际磨削过程分为三个阶段。
1、初磨阶段:当砂轮刚开始接触工件时,由于工艺系统的弹性变形,实际磨削比平面磨床刻度盘显示的径向进给量小。
工艺系统刚性越差,初磨阶段越长。
2、清磨阶段:在磨去重要加工余量后,可以削减径向进给量或全部不进给再磨一段时间。
这时,由于工艺系统的弹性变形渐渐恢复,实际磨削深3、稳定阶段.:在稳定阶段,当工艺系统的弹性变形到达一些程度后,连续径向进给时,实际磨削深层基本优良于径向进给量。
平面磨床关键用以对平面图产品工件开展切削生产加工。
平面磨床的原理以下:1、进给运动竖向进给运动:操作台沿床体竖向导轨的平行线往复式运动。
横着进给运动:磨头沿操作台的水准导轨所做的横着间歇性进给,在操作台往复式行程布置结束时开展。
2、数控车床的主运动:切削砂轮由同是安裝在磨头外壳内的电动机立刻推动转动,它是工具磨床的行为主体运动。
3、竖直进给运动由磨头双翘板沿数控车床立杆的竖直导轨挪动,用于调整磨头的多少部位,操纵切削深层进给。
数控车床的各类运动除主轴的转动运动外,别的进给运动均由液压传动系统系统软件来完成,与此同时还可以手动式开展。
实际操作注意事项,精准定位数控车床应在大运动室内空间外再预埋300mm之上,各个支脚螺钉告急,台眼前后及上下水准在0.04/1000mm之内。
(安裝变频调速器的规定需高些)每三个月检查,调整工作中橱柜台面水准,告急各个支脚螺钉。
导致平面磨床主轴轴向颤抖超差的关键原因有:1、主轴撞击或者承受力形变。
2、主轴的适用轴瓦的内孔同心度超差。
磨头主轴能够沿双翘板的水准导轨可作横着进给运动,该双翘板还能够沿立杆的导轨做竖直挪动,用于调整磨头的竖直部位及进行竖直进给运动。
在工具磨床的工作中台子上一般安裝电磁铁吸盘用以上卡具备铁磁性材料的零件,还可以拆卸电磁铁吸盘,改装别的工装夹具或在工作中台子上立刻上卡待生产加工的产品工件。
圆周磨削和端面磨削的特点圆周磨削和端面磨削是金属加工中常用的两种磨削方式。
它们有着不同的特点和适用范围。
圆周磨削是一种采用砂轮对工件进行磨削的方法,砂轮沿着工件的轴线旋转,将工件上的材料削去,使工件达到所需的形状和尺寸。
圆周磨削有以下特点:1. 高精度:由于砂轮的高速旋转和磨削力的集中作用,圆周磨削可以达到很高的精度要求。
尤其适用于对工件的尺寸和形状要求较高的加工。
2. 平滑表面:圆周磨削可以获得较好的表面质量,砂轮的高速旋转和磨削力的集中作用可以将工件表面的凹凸不平进行修整,使表面更加平滑。
3. 高效率:圆周磨削可以一次性对工件进行大面积的磨削,砂轮的高速旋转可以提高磨削效率,节约时间和成本。
4. 广泛适用性:圆周磨削适用于各种材料的加工,包括金属、非金属等。
并且可以对各种形状的工件进行加工,如圆柱形、锥形、曲面等。
端面磨削是一种将砂轮垂直于工件表面进行磨削的方法,将工件的端面磨平或加工成特定的形状。
端面磨削有以下特点:1. 高精度:由于砂轮的旋转和磨削力的集中作用,端面磨削可以获得较高的精度要求。
尤其适用于对工件的垂直度、平行度等要求较高的加工。
2. 平整表面:端面磨削可以使工件的端面变得平整,砂轮的旋转可以将工件端面的不平整进行修整,使表面更加平整。
3. 高效率:端面磨削可以对工件的端面进行一次性的磨削,砂轮的旋转可以提高磨削效率,节约时间和成本。
4. 适用性有限:端面磨削一般只适用于工件的端面加工,对于其他形状的加工,需要采用其他方式。
并且适用于各种材料的加工,包括金属、非金属等。
圆周磨削和端面磨削是金属加工中常用的两种磨削方式,它们分别适用于不同的加工要求和工件形状。
圆周磨削适用于对工件尺寸和形状要求较高的加工,可以获得高精度和平滑的表面;端面磨削适用于对工件端面进行加工,可以获得高精度和平整的表面。
在实际应用中,根据不同的加工要求和工件形状,选择合适的磨削方式可以提高加工效率和质量。
简述磨削加工的特点
磨削加工是一种高精度加工方式,主要是通过磨料对工件进行切削,使其表面达到理想的精度、平滑度和形状精度。
它的特点如下:
一、高精度:通过磨削可以获得很高的表面精度和形状精度,最高可达0.1微米以下。
二、高效率:磨削加工可以同时加工多个表面,且一般能够满足光洁度要求,大大提高了加工效率。
三、材料选择范围广:磨削加工适用于各种材料的加工,包括各种金属、陶瓷、玻璃、塑料等。
四、适用于各种形状的工件:磨削加工可以加工各种形状的工件,包括平面、曲面、凸轮、齿轮等。
五、表面质量好:磨削加工可以消除工件表面原有的瑕疵和毛刺,使表面更加光滑、平整。
六、磨削精度可调:磨削加工可以根据需要调整磨料的硬度、颗粒度等参数,以达到不同的磨削精度和表面质量。
七、工艺复杂度高:磨削加工需要控制多种参数,包括磨料粒度、磨料硬度、磨削速度、进给量等,相对于其他加工方式,工艺复杂度更高。
综上所述,磨削加工具有高精度、高效率、适用性广、表面质量好等特点,但也存在工艺复杂度高的问题。
磨削加工中的磨削参数优化磨削加工是制造业中重要的一环,磨削加工的质量和效率对产品的质量和成本有很大的影响。
磨削参数优化是磨削加工中提高质量和效率的关键。
磨削参数优化主要包括磨削参数的选择和磨削条件的调整。
一、磨削参数的选择磨削参数的选择对磨削加工的质量和效率都有很大的影响。
磨削参数包括磨削速度、磨削深度、磨削宽度、进给量等。
1、磨削速度磨削速度是磨削加工中最基本的参数之一。
磨削速度过低会导致磨削效率低下,磨削速度过高则会产生过多的热量,使磨削面产生热裂纹和变形。
正确选择磨削速度可以提高磨削效率和质量。
选择磨削速度要根据磨削材料的硬度、磨削件的形状和尺寸等因素进行判断。
2、磨削深度磨削深度是指在一次磨削中,磨削轮的坐标和工件轴线的偏离量。
磨削深度越大,磨削时磨屑的排除越困难,因而对磨削的质量和效率会产生不利影响。
磨削深度的选择与磨削速度密切相关。
在确定最佳磨削速度的前提下,磨削深度应尽量小。
3、磨削宽度磨削宽度是指磨削轮和工件相互接触的长度。
磨削宽度的大小影响磨削的力和温度分布。
磨削宽度过小,容易产生表面质量差和热裂纹等问题。
磨削宽度过大,则容易产生磨削面的擦伤和变形。
正确选择磨削宽度可以保证磨削件的精度和表面质量。
4、进给量进给量是指工件和磨削轮之间相对运动距离的大小,即磨削轮在单位时间内对工件的磨削深度。
进给量的大小对于磨削加工中的表面质量、精度和效率都有很大的影响。
进给量过大可以提高磨削效率,但会降低表面精度。
进给量过小可以提高表面精度,但会降低磨削效率。
因此,选择进给量需要综合考虑磨削件的形状、材料和表面精度要求等因素。
二、磨削条件的调整磨削条件的调整是磨削参数优化的重要手段,正确的磨削条件可以提高磨削质量和效率。
磨削条件包括液压压力、冷却液喷射量、冷却液类型等。
1、液压压力液压压力是指对磨削件施加的压力,它直接影响磨削的力和温度分布。
不同的磨削件需要施加不同的液压压力,对于硬度较高的磨削件,需要适当提高液压压力,以避免磨削面出现裂纹和变形。
磨削加工的特点和应用范围
磨削加工是一种利用砂轮进行磨削的加工方法,其特点和应用范围如下:
特点:
1. 高精度:磨削加工可以实现较高的加工精度,尤其是对于硬度高、表面粗糙度要求较高的工件来说,磨削是一种更加适合的加工方法。
2. 高表面质量:磨削加工能够实现很好的表面光洁度和粗糙度控制,使得工件表面更加平整光滑。
3. 广泛适应性:磨削加工适用于各种材料的加工,如金属、非金属、硬质合金等。
4. 有效性好:磨削加工可以同时实现多种工件形状和孔的加工需求,具有较高的灵活性和效率。
应用范围:
1. 精密加工:由于磨削加工能够实现高加工精度和良好的表面质量,因此广泛应用于精密零件、模具等的加工制造中。
2. 表面修整:通过磨削加工可以修整工件表面的形状和尺寸,提高工件的精度和表面质量。
3. 刀具制造:磨削加工可以用于刀具的加工和修整,提高刀具的刃口质量和效率。
4. 零件修复:对于已经磨损或损坏的零件,可以通过磨削加工进行修复和修整,使其恢复到正常使用状态。
总之,磨削加工是一种高精度、高表面质量的加工方法,广泛应用于精密加工、表面修整、刀具制造和零件修复等领域。
外圆和平面磨削时磨削力的计算公式磨削过程中的磨削力是指砂轮与工件之间的相互作用力,它是砂轮将工件材料去除的力量。
在外圆和平面磨削中,磨削力的计算涉及到很多因素,如切削速度、进给速度、切削深度、切削宽度、砂轮特性等,因此并没有一种普适的公式可以适用于所有情况。
下面将针对外圆和平面磨削中常见的一些情况进行力的计算和估算。
1.外圆内径磨削在外圆磨削中,砂轮与工件接触的长度为πd,其中d为工件直径。
当切削深度为a时,可将磨削力分解为切向力和径向力两个方向。
切向力的计算可以使用下面的公式:Ft = Kt ×ae × ν其中Kt为切向力系数,ae为切向力系数的修正值,ν为切削速度。
对于径向力的计算可以使用下面的公式:Fr = Kr × ae × ae × ν其中Kr为径向力系数,ae为于径向力系数的修正值,ν为切削速度。
2.平面磨削在平面磨削中,工件的尺寸通常为L×W×H,L和W分别为工件的长度和宽度,H为磨削后的高度。
切削深度为a时,磨削力可以分解为切向力和径向力两个方向。
切向力的计算可以使用下面的公式:Ft=Kt×a×W×ν其中Kt为切向力系数,a为切削深度,W为工件的宽度,ν为切削速度。
对于径向力的计算可以使用下面的公式:Fr=Kr×a×L×ν其中Kr为径向力系数,a为切削深度,L为工件的长度,ν为切削速度。
需要注意的是,上述公式中的切削力系数Kt和Kr以及修正值ae的具体数值需要根据具体的工艺条件和机械设备来确定,一般需要通过试验和经验来进行估算和调整。
此外,还有一些其他因素也会对磨削力产生影响,比如刃口形状、切削液的使用以及砂轮磨损等。
因此,在实际应用中,还需要综合考虑这些因素来准确计算磨削力。