圆锥曲线轨迹方程经典例题
- 格式:doc
- 大小:1.46 MB
- 文档页数:12
经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】① .②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
专题:圆 锥 曲 线 之 轨 迹 问 题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。
这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。
3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。
二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =- ∴点P 的轨迹一定是线段MN 的延长线。
故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x ,圆O '的方程为010822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为 析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =3.已知椭圆)0(12222>>=+b a by a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+=-,0),21(λλ,则点P 的轨迹一定过三角形ABC 的 重 心。
知识导航有关圆锥曲线的题型较多,有求圆锥曲线的离心率、轨迹方程、判定两图形的位置关系、求弦长等,其中,求动点的轨迹方程比较常见.本文总结了求圆锥曲线中动点的轨迹方程的三种方法,供大家参考.一、直接法直接法主要应用于解答题目中所给的有关动点的几何条件较为明显的问题.运用直接法求动点的轨迹方程的主要步骤是:(1)建立合适的直角坐标系,设出所求动点的坐标;(2)根据题意,列出相关关系式;(3)将相关的点代入,化简并整理关系式即可得到动点的轨迹方程.例1.已知点Q (2,0)在圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程并说明它是什么曲线.分析:通过分析可知,动点M 到圆C 的切线长与|MQ |的比等于常数λ,所以可以考虑运用直接法求解.设出动点M 的坐标,根据题设建立关系式,化简便可得到动点的轨迹方程.解:设M (x ,y ),由直线MN 切圆于N ,MN|MQ |=λ,可得22=λ,整理得则(λ1)x 2+(λ2-1)y 2-4λ2x +(1+4λ2)=0,若λ=1,方程可化为x =54,它代表过点(54,0),与x 轴垂直的一条直线;若λ≠1,方程可化为æèçöø÷x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2,它代表以æèçöø÷2λ2λ2-1,0为半径的圆.二、代入法若动点M 依赖已知曲线上的另一动点N 而运动,就可以运用代入法来求动点的轨迹方程.首先设出两动点的坐标,建立两动点的关系式,然后将转化后的动点N 的坐标代入已知曲线的方程或条件中,从而得到动点M 的轨迹方程.例2.已知点B 是椭圆x 2a 2+y 2b2=1上的动点,A (2a ,Q )为定点,求线段AB 的中点M 的轨迹方程.分析:动点M 是线段AB 的中点,M 随着动点B 而运动,本题需采用代入法来求解.解:设动点M 的坐标为(x ,y ),B 点坐标为(x 0,y 0),由M 为线段AB 的中点,可得ìíîïïïïx 0+2a2=x ,y 0+02=y ,则点B 的坐标为(2x -2a ,2y ),则(2x -2a )2a 2+(2y )2b2=1,故动点M 的轨迹方程为4(x -a )2a 2+4y 2b2=1.三、参数法参数法是指通过引入一些新变量(参数)为媒介来解答问题的方法.运用参数法求圆锥曲线中动点的轨迹方程的基本思路是,设出合适的参数,根据题意列出参数方程,通过消参将方程化为普通方程即可解题.但在解题的过程中需注意参数的取值范围.例3.如图,过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB的中点M 的轨迹方程.解:设M (x ,y ),直线l 1的方程为y -4=k (x -2),(k ≠0),由l 1⊥l 2,得直线l 2的方程为y -4=-1k(x -2),∴l 1与x 轴焦点A 的坐标为(2-4k,0),l 2与y 轴焦点B 的坐标为(0,4+2k),∵M 为AB 的中点,∴ìíîïïïïx =2-4k 2=1-2k ,y =4+2k 2=2+1k ,消去k ,得到x +2y -5=0,当k =0时,AB 的中点为M (1,2),满足上述方程,当k 不存在时,AB 的中点为M (1,2),也满足上述方程,综上所述,M 的轨迹方程为x +2y -5=0.这里通过引入参数k ,得到两条直线的方程,然后结合题意建立关于k 的关系式,通过消参得到动点的轨迹方程.相比较而言,直接法较为简单,是最常用也是适用范围最广的方法;代入法的适用范围较窄,只适用于两个动点相关的题型;运用参数法解题的运算量较大.无论采用什么方法求动点的轨迹方程,都要关注轨迹方程中变量的取值范围.(作者单位:江苏省南通市海门四甲中学)蒋秋霞39Copyright©博看网 . All Rights Reserved.。
圆锥曲线轨迹方程的解法目录一题多解 (3)一.直接法 (5)二. 相关点法 (9)三. 几何法 (14)四. 参数法 (17)五. 交轨法 (19)六. 定义法 (21)一题多解设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ ,求所对弦的中点P 的轨迹方程。
一.直接法设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0,设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=41(x ≠0),即点P的轨迹方程是(x -21)2+y 2=41(0<x ≤1)。
二.定义法∵∠OPC =90°,∴动点P 在以M (0,21)为圆心,OC 为直径的圆(除去原点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=41(0<x ≤1) 三.相关点法设P (x,y ),Q (x 1,y 1),其中x 1≠0, ∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0,∴x ≠0,即(x -21)2+y 2=41(0<x ≤1) 四.参数法①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,∴.12221k x x +=+ 设点P (x,y )22211],1,0(112kkkx y k x x x +==∈+=+=消去k 得(x 21)2+y 2=41(0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+=y x 消去θ得(x -21)2+y 2=41(0<x ≤1)一.直接法课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标),(y x 后,就可根据命题中的已知条件研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x 、y 的关系式。
图8-8-1轨迹方程的若干求法一、直接法直接根据等量关系式建立方程.例1 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =·,则点P 的轨迹是( ) A.圆 B.椭圆C.双曲线D.抛物线【对点练习2】已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0). (1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.二.定义法【例2】已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.【对点练习2】如图8-8-1所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).图8-8-2图8-8-5如图8-8-2所示,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |. (1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.【对点练习2】(2014·合肥模拟)如图8-8-5所示,以原点O 为圆心的两个 同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于点Q ,P 在y 轴上的射影为M .动点N 满足PM →=λPN →且PM →·QN→=0.(1)求点N 的轨迹方程;(2)过点A (0,3)作斜率分别为k 1,k 2的直线l 1,l 2与点N 的轨迹分别 交于E ,F 两点,k 1·k 2=-9.求证:直线EF 过定点.如果不易直接找出动点的坐标之间的关系,可考虑借助中间变量(参数),把x,y联系起来.例4已知线段2AA a'=,直线l垂直平分AA'于O,在l上取两点P P',,使有向线段OP OP',满足4OP OP'=·,求直线AP与A P''的交点M的轨迹方程.五、待定系数法当曲线的形状已知时,一般可用待定系数法解决.例5已知A,B,D三点不在一条直线上,且(20)A-,,(20)B,,2AD=,1()2AE AB AD=+.(1)求E点轨迹方程;(2)过A作直线交以A B,为焦点的椭圆于M N,两点,线段MN的中点到y轴的距离为45,且直线MN与E点的轨迹相切,求椭圆方程.图8-8-4【达标训练】一、选择题1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线 B .椭圆 C .圆 D .抛物线 3. (2014·天津模拟)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线4. (2014·合肥模拟)如图8-8-4所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线5.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →, 且OQ →·AB →=1,则点P 的轨迹方程是 ( ) A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)6.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1二、填空题7.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB→⊥BC →,则动点C 的轨迹方程是_______________________.8.动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹是_______________________.9.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为_______________________.10.(2014·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是_____________. 三、解答题11.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于P ,Q 两点,交直线l 1于点R ,求RP →·RQ →的最小值.12.(2011·课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C . (1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.13.(2013·课标全国卷Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为2 3.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.。
圆锥曲线轨迹的例题和练习(优秀)专题:圆锥曲线轨迹首先,准备第一场战斗。
直接法(五部分法):如果运动点所满足的几何条件本身是某些几何量的等价关系,或者这些几何条件简单、明了、易于表达,我们只需要将这种关系“转化”为包含方程,就可以得到曲线的轨迹方程。
这种寻找轨迹的方法叫做直接法。
2.定义方法:如果运动点轨迹的条件满足基本轨迹的定义(如圆、椭圆、双曲线和抛物线的定义),则运动点的轨迹方程可以根据定义直接计算。
3.坐标转移法(替代法):在一些问题中,移动点满足的条件不容易在方程中列出,但是移动点随着另一个移动点(称为相关点)移动。
如果相关点满足的条件是明显的或可分析的,那么我们可以用移动点的坐标来表示相关点的坐标。
根据相关点所满足的方程,我们可以得到运动点的轨迹方程。
这种寻找轨迹的方法也称为坐标转移法或替代法。
4.参数方法: 有时很难找出一个运动点应该满足的几何条件,并且没有明显的相关点,但是更容易发现(或者可以通过分析找到)这个运动点的运动经常受到另一个变量(角度、斜率、比率、截距或时间等)的限制。
),也就是说,移动点的坐标随着另一个变量的变化而变化。
我们可以将这个变量设置为一个参数,并建立轨迹的参数方程。
这种方法称为参数方法。
如果我们需要得到轨迹的一般方程,我们只需要消除参数变量。
5.钢轨穿越方法:在寻找运动点轨迹的过程中,有时会出现需要两条运动曲线相交的轨迹问题。
这类问题通常可以通过求解方程来获得带参数的交点坐标,然后消除参数来获得期望的轨迹方程来解决。
这个方法被称为交集方法。
(2)小型试验手术刀1把。
已知的M轨迹(-圆锥曲线)首先,准备第一场战斗。
直接法(五部分法):如果运动点所满足的几何条件本身是某些几何量的等价关系,或者这些几何条件简单、明了、易于表达,我们只需要将这种关系“转化”为包含方程,就可以得到曲线的轨迹方程。
这种寻找轨迹的方法叫做直接法。
2.定义方法:如果运动点轨迹的条件满足基本轨迹的定义(如圆、椭圆、双曲线和抛物线的定义),则运动点的轨迹方程可以根据定义直接计算。
轨迹问题类型一:定义法类型二:直接法类型三:相关点法类型四:参数法类型一:定义法方法讲解:运用有关曲线的定义求轨迹方程.圆锥曲线的基本定义解题 注意:求轨迹方程时要注意轨迹的纯粹性与完备性.【范例1-1】【12年九江一中入学考试】1(1,0)F -,2(1,0)F ,12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程( )A .221169x y +=B .2211612x y += C .22143x y += D .22134x y+=【变式1-1】【10莲塘一中期末】点M 到点F (2,0)的距离比它到直线3x =-的距离小1,求点M 满足的方程。
【范例1-2】【10莲塘一中期末】已知一个动圆P 与定圆C :032422=-++y y x 内切且过定圆内的一个定点A(0,2),则动圆圆心P 的轨迹方程是 。
【变式1-2】【11年湖南师大附中期中考】已知定圆221:(2)49C x y ++=,定圆222:(2)1C x y -+=,动圆M 与圆1C 内切且和圆2C 外切,则动圆圆心M 的轨迹方程为 。
【范例1-3】如图,已知圆O 的方程为x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上的任意一点,AM 的垂直平分线交OM 于点P,则点P 的轨迹方程( )A.x 225 +y 216 =1错误!未指定书签。
B. x 225 -y 216 =1 C.(x+3)225 + y 216=1D. (x+3)225 - y 216=1【变式1-3】在ABC △中,24BC AC AB ,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.类型二:直接法方法讲解:直接根据等量关系式建立方程【范例2-1】【10年吉安一中第三次月考】已知A(-1,0).B(1,0),动点P(x,y)满足.4AP BP k k =,则动点的轨迹方程为 。
【变式2-1】【2006湖北卷4】设过点(,)P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = 且1OQ AB =,则点P 的轨迹方程是( )A .22331(0,0)2x y x y +=>>B .22331(0,0)2x y x y -=>> C .22331(0,0)2x y x y -=>> D .22331(0,0)2x y x y +=>>【范例2-2】设F (1,0),M 点在x 轴上,P 点在y 轴上,且.PF PM ,M P 2M N ———————→→→→--⊥=当点P 在y 轴上运动时,求N 点的轨迹C 的方程.【变式2-2】【山东省济宁市2011年3月高三第一次模拟理科】已知点(,0)(0)F a a >,动点M .P 分别在x .y 轴上运动,满足0PM PF ⋅=,N 为动点,并且满足0PN PM +=.(1)求点N 的轨迹C 的方程;【范例2-3】【2009山东卷文】设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥ ,动点(,)M x y 的轨迹为E.(1)求轨迹E 的方程,并说明该方程所表示曲线的形状;【变式2-3】【江西省新余市2011年高三第二次模拟理科】已知直线l 与抛物线24x y =相切于点P (2,1),且与x 轴交于点A ,定点B 的坐标为(2,0). (1)若动点M 满足20AB BM AM ⋅+= ,求点M 的轨迹C 的方程;类型三:相关点法方法讲解:动点随已知曲线上点的变化而变化的轨迹问题【范例3-1】【11年衡阳八中期中】若点P 在曲线022=-y x 上移动,则点A (0,1-)与点P 连线中点M 的轨迹方程是( )A. 22x y =; B. 28x y =; C. 1822-=x y ; D. 1822+=x y ;【变式3-1】【10年湖南衡阳八中期末】已知圆C 的方程为:922=+y x ,过圆C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON =+ ,则动点Q的轨迹方程是 。
圆锥曲线之轨迹方程的求法(一)【复习目标】□1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤;□2. 会用直接法、定义法、相关点法(坐标代换法)求方程。
【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y x =B .||y x =C .22y x =D .220x y +=2.已知点(,)P x y 4,则动点P 的轨迹是( )A .椭圆B .双曲线C .两条射线D .以上都不对3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a+=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________.【例题精选】一、直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。
即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。
例1.已知ABC ∆中,2,AB BC m AC==,试求A 点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。
点P 的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。
例1.⊙C :22(16x y +=内部一点0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于BQ R A P o yx P ,求点P 的轨迹方程.例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12。
记点P 的轨迹为曲线C 求点P 的轨迹方程;练习.若动圆与圆1)2(:221=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 .三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。
圆锥曲线之轨迹问题例题习题(精品)专题:圆锥曲线之轨迹问题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y的等式就得到曲线的轨迹方程。
这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。
3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。
二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN=- ∴点P 的轨迹一定是线段MN 的延长线。
故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x,圆O '的方程为10822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为 析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x = 3.已知椭圆)0(12222>>=+b a b y a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为 析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a by a x 上∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++=4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P是动点,若[)+∞∈+=-,0),21(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。
圆锥曲线-----轨迹一 基础热身1.点M 与点(4,0)F 的距离比它到直线:50l x +=的距离小1,则点M 的轨迹方程是______________.2.一动圆与圆221x y +=外切,而与圆22680x y x +-+=内切,则动圆圆心的轨迹方程是 _______3.已知椭圆13422=+y x 的两个焦点分别是F 1,F 2,P 是这个椭圆上的一个动点,延长F 1P 到Q ,使得|PQ |=|F 2P |,求Q 的轨迹方程是 .4.倾斜角为4π的直线交椭圆1422=+y x 于B A ,两点,则线段AB 中点的轨迹方程是 _______. 5.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC OA OB αβ=+,其中,R αβ∈,且1αβ+=,则点C 的轨迹方程为____________________.二 典例回放1.⊙C :16)3(22=++y x 内部一点A (3,0)与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程.2.一条曲线在x 轴上方,它上面的每一个点到点(0,2)A 的距离减去它到x 轴的距离的差都是2,求这条曲线的方程。
3.△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2=4x 上移动,求此三角形重心G 的轨迹方程.4.抛物线 y 2=2px(p>0),O 为坐标原点,A 、B 在抛物线上,且OA ⊥OB ,求弦AB 中点M的轨迹方程.三 水平测试1.与两点)0,3(),0,3(-距离的平方和等于38的点的轨迹方程是( )()A 1022=-y x ()B 1022=+y x ()C 3822=+y x ()D 3822=-y x2.过椭圆4x 2+9y 2=36内一点P(1,0)引动弦AB,则AB 的中点M 的轨迹方程是()(A)4x 2+9y 2-4x=0 (B)4x 2+9y 2+4x=0 (C)4x 2+9y 2-4y=0 (D)4x 2+9y 2+4y=03.若()()031322=+---++y x y x ,则点()y x M ,的轨迹是( )(A)圆 (B)椭圆 (C)双曲线 (D)抛物线4.已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是:()()A 双曲线 ()B 双曲线左支 ()C 一条射线 ()D 双曲线右支5.已知三角形ABC 中, 2,2,ABBC AC==则点A 的轨迹是________________.6.抛物线y=x 2+2mx+m 2+1-m 的顶点的轨迹方程为_________________________.7.线段AB 的两端点分别在两互相垂直的直线上滑动,且||2AB a =,求AB 的中点P 的轨迹方程。
圆锥曲线轨迹方程的求法一直以来,圆锥曲线这部分内容都是高考必考内容,作为解析几何中一个重要的部分,在历次考试中也是让相当一部分考生感到棘手。
现在,我就圆锥曲线的轨迹方程的问题作一个归纳总结。
在一般情况下,我们对于求圆锥曲线的轨迹方程采用的方法有:直接法,定义法,相关点法,参数法。
下面就以上几种方法作一下介绍。
一、用直接法求轨迹方程利用动点运动的条件作出等量关系,表示成x,y的等式。
例:已知点A(-2,0),B(3,0).动点P(x,y)满足PA·PB=x2,则点P 的轨迹是().A、圆B、椭圆C、双曲线D、抛物线解:PA=(-2-x,-y), PB=(3-x,-y), P A·PB=x2则(-2-x)(3-x)+(-y)(-y)=x2 整理得:y2=x+6所以P点的轨迹为抛物线。
答案:D.二、有定义法求轨迹方程根据圆锥曲线的基本定义解题。
例:如图,已知圆O的方程为x2+y2=100,点A的坐标为(-6,0),M 为圆O上的任意一点,AM的垂直平分线交OM于点P,则点P的轨迹方程()A.x225+y216=1 B.x225-y216=1C.(x+3)225+y216=1 D.(x+3)225-y216=1解:由于P为AM的垂直平分线上的点,|PA|=|PM| 所以|PA|+|PO|=|PM|+|PO|=|OM|=R=10>|OA|=6根据椭圆的定义知:P点轨迹方程为x225+y216=1.解答:A三、用相关点法求轨迹方程当动点M随着已知方程的曲线上另一动点C(x0,y0)运动时,找出点M与点C之间的坐标关系式,用(x,y)表示(x0,y0)再将x0,y0代入已知曲线方程,即可得到点M的轨迹方程。
例:如图所示从双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N,求线段QN的中点P的轨迹方程.解:设动点P 的坐标为(x,y),点Q 的坐标为(x 1,y 1),则N 点的坐标为(2x-x 1,2y-y 1).∵N 点在直线x+y=2上,∴2x-x 1+2y-y 1=2 ① 又∵PQ 垂直于直线x+y=2,∴y-y 1x-x 1 =1即x-y+y 1-x 1=0 ②①②联立得:x 1=32 x+12 y-1,x 2=12 x+32 y-1 又∵点Q 在双曲线上,∴x 12-y 12=1 ③ 将x1,x2代入③中,得动点P 的轨迹方程式为 2x 2-2y 2-2x+2y-1=0 四、 用参数法求轨迹方程选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程.例:(04.成都)过抛物线y 2=2px(p>0)的顶点O 作两条互相垂直的弦OA,OB,再以OA,OB 为邻边作矩形AOBM,如图,求点M 的轨迹方程.解:设M(x,y),A(x 1,y 1),B(x 2,y 2)OA 的斜率为k(显然k ≠0),则OB 的斜率为-1k . OA 所在直线方程为y=kx.代入y 2=2px 得x 1=2p k 2 ,y 1=2pkOB 所在直线方程为y=-1k x,代入y 2=2px 得x 2= 2pk 2,y 2=-2pk 即B(2pk 2, -2pk) ∴OB=(2pk 2, -2pk),OA=(2p k 2 , 2pk ) OM= OA+ OB =(2p k 2 +2pk 2, 2p k -2pk)所以有x=2p(1k -k)2+4p, y=2p(1k -k) 消去(1k -k)得:y 2=2p(x-4p)(p>0) 即求得M 点的轨迹方程。
圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.2.已知双曲线C:x2a2-y2b2=1a>0,b>0的离心率e=233,且经过点P3,1.(1)求双曲线C的方程;(2)设A,B在C上,PA⊥PB,过P点向AB引垂线,垂足为M,求M点的轨迹方程.3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.4.已知圆C与y轴相切,圆心C在直线x-2y=0上且在第一象限内,圆C 在直线y=x上截得的弦长为214.(1)求圆C的方程;(2)已知线段MN的端点M的横坐标为-4,端点N在(1)中的圆C上运动,线段MN与y轴垂直,求线段MN的中点H的轨迹方程.5.已知圆O:x2+y2=4与x轴交于点A(-2,0),过圆上一动点M作x轴的垂线,垂足为H,N是MH的中点,记N的轨迹为曲线C.(1)求曲线C的方程;作与x轴不重合的直线l交曲线C于P,Q两点,设直线AP,(2)过-65,0AS的斜率分别为k1,k2.证明:k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.,动点P到点F的9.在平面直角坐标系xOy中,已知直线l:x=1,点F4,0距离是它到直线l的距离的2倍,记P的轨迹为曲线C.(1)求曲线C的方程;(2)过点F且斜率大于3的直线交C于两点,点Q-2,0,连接QA、QB交直线l于M、N两点,证明:点F在以MN为直径的圆上.10.已知圆C:x2+y2-2x-2y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线,设切点为M.(1)若点P运动到(2,3)处,求此时切线l的方程;(2)求满足条件PM的点P的轨迹方程.=PO11.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1、l2分别交C于A、B两点,交C的准线于P、Q两点.(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ.(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.13.在平面直角坐标系xOy中,A(-3,0),B(3,0),C是满足∠ACB=π3的一个动点.(1)求△ABC垂心H的轨迹方程;(2)记△ABC垂心H的轨迹为Γ,若直线l:y=kx+m(km≠0)与Γ交于D,E两点,与椭圆T:2x2+y2=1交于P,Q两点,且|DE|=2|PQ|,求证:|k|> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.。
专题17 圆锥曲线中的轨迹问题1.(浙江省杭州市八县市区2021-2022学年高二下学期期末数学试题)已知椭圆C的离心率为2,其焦点是双曲线2213y x -=的顶点.(1)写出椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 有唯一的公共点M ,过点M 作直线l 的垂线分别交x 轴、y 轴于(),0A x ,()0,B y 两点,当点M 运动时,求点(),P x y 的轨迹方程,并说明轨迹是什么曲线.【答案】(1)2212x y +=(2)轨迹方程()2221,0,0x y x y +=≠≠,为椭圆2221x y +=除去4个顶点【解析】 【分析】(1)根据双曲线的顶点,结合椭圆离心率的公式与基本量的关系求解即可;(2)根据题意可得直线l 与椭圆C 相切,故联立直线与椭圆的方程,利用判别式为0可得,k m 的关系,再得到点M 坐标的表达式,从而得到过点M 作直线l 的垂线的方程,求得(),P x y ,结合椭圆的方程求解即可 (1)设椭圆C 的方程为()22221,0x y a b a b +=>>,()222,0a b c c =+>,由题意,双曲线2213y x -=的顶点为()1,0±,故1c =.又c a =,故a =2211b =-=,故椭圆C 的方程为2212x y +=(2)由题意,直线l 与椭圆C 相切,联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩得()222124220k x kmx m +++-=,故()()222216412220k m k m ∆=-+-=,即2221m k =+.设(),M M M x y ,则22212M km kx k m-==-+,故22221M k m k y k m m m m -⎛⎫=-+== ⎪⎝⎭,故21,k M m m ⎛⎫- ⎪⎝⎭.所以直线AB 的方程为112k y x m k m ⎛⎫-=-+ ⎪⎝⎭,即11y x k m =--,当0y =时,k x m =-,故,0k A m ⎛⎫- ⎪⎝⎭,当0x =时,1x m =-,故10,B m ⎛⎫- ⎪⎝⎭,故1,kP m m ⎛⎫-- ⎪⎝⎭.又21,k M m m ⎛⎫- ⎪⎝⎭,故(),P x y 则()2,M x y -,又()2,M x y -在2212x y +=上,故()()22212x y +-=,即2221x y +=,由题意可得0,0x y ≠≠,故点(),P x y 的轨迹方程为()2221,0,0x y x y +=≠≠,为椭圆2221x y +=除去4个顶点2.(2022·青海·海东市第一中学模拟预测(文))已知动圆E 过定点()2,0P ,且y 轴被圆E 所截得的弦长(1)求圆心E 的轨迹方程.(2)过点P 的直线l 与E 的轨迹交于A ,B 两点,()2,0M -,证明:点P 到直线AM ,BM 的距离相等. 【答案】(1)24y x = (2)证明见解析 【解析】 【分析】(1)设(),E x y ,由圆的弦长公式列式可得;(2)设()11,A x y ,()22,B x y ,设():2l y k x =-,直线方程代入抛物线方程,应用韦达定理得12x x +,12x x ,计算0AM BM k k +=,得直线PM 平分AMB ∠,从而得结论,再说明直线l 斜率不存在时也满足. (1)设(),E x y ,圆E 的半径r =E 到y 轴的距离d x =,由题意得224r d =+,化简得24y x =,经检验,符合题意. (2)设():2l y k x =-,与E 的方程联立,消去y 得,()22224440k x k x k -++=.设()11,A x y ,()22,B x y ,则1221244,4x x k x x ⎧+=+⎪⎨⎪=⎩, ()()()()()()()()12122112121212222222222222AM BM k x k x k x x k x x y yk k x x x x x x ---++-++=+=+=++++++∵()()()()()1221122222240k x x k x x k x x -++-+=-=,∵0AM BM k k +=,则直线PM 平分AMB ∠,当直线l 与x 轴垂直时,显然直线PM 平分AMB ∠. 综上,点P 到直线AM , BM 的距离相等.3.(2022·江西·上高二中模拟预测(理))已知圆心在y 轴上移动的圆经过点()0,4A -,且与x 轴、y 轴分别交于点()0,0B x ,()00,C y 两个动点,记点()00,D x y 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点()0,1F 的直线l 与曲线Γ交于P ,Q 两点,直线OP ,OQ 与圆E :()2224x y +-=的另一交点分别为M ,N (其中O 为坐标原点),求OMN 与OPQ △的面积之比的最大值. 【答案】(1)24x y = (2)6425【解析】(1)设动圆的圆心为H ,则040,2y H -⎛⎫ ⎪⎝⎭ ,半径为042y +,所以22220004422y y BH x -+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,化简整理即可;(2)分析可知直线斜率存在,设1y kx =+,()11,P x y ,()22,Q x y ,联立得124x x k +=,124x x =-,再求出直线OP 的方程为14x y x = ,直线OQ 的方程为24xy x =,分别与圆联立求出216416M x x =+,226416N x x =+,所以()()221210241616OMN OPQ OM ON S S OP OQ x x ⨯==⨯++△△,展开再代入韦达定理,分析求解即可.(1)设动圆的圆心为H ,则040,2y H -⎛⎫⎪⎝⎭ ,半径为042y +, 22220004422y y BH x -+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,化简得:0204x y = ,即Γ的方程为24x y = ; (2)当直线l 的斜率不存在时,直线l 为:0x =,此时与抛物线只有一个交点,不符合题意;当直线l 的斜率存在时,设过()0,1F 的直线方程为1y kx =+ , ()11,P x y ,()22,Q x y ,联立方程:241x yy kx ⎧=⎨=+⎩ ,得2440x kx --= ,124x x k +=,124x x =-, 则直线OP 的方程为1114y x y x x x == ,直线OQ 的方程为2224y xy x x x == , 联立方程:()221244x y x y x ⎧-+=⎪⎨=⎪⎩,解得216416M x x =+ ,同理226416N x x =+ ,OP x,OQ x ===,1OM ==2ON ==()()221210241616OMN OPQ OM ONS S OP OQx x ⨯===⨯++△△ ()()2222222121212121024102410246425640025162561625616216k k x x x x x x x x ====++⎡⎤+++++-+⎣⎦显然当0k =时最大,最大值为6425; 综上,Γ的方程为24y x =,OMN 与OPQ △ 的面积之比的最大值为:6425.4.(2022·河南省兰考县第一高级中学模拟预测(理))已知点)F ,平面上的动点S 到F 的距离是S40+=S 的轨迹为曲线C . (1)求曲线C 的方程;(2)过直线:2l y =上的动点()(),22P s s >向曲线C 作两条切线1l ,2l ,1l 交x 轴于M ,交y 轴于N ,2l 交x 轴于T ,交y 轴于Q ,记PNQ 的面积为1S ,PMT △的面积为2S ,求12S S ⋅的最小值.【答案】(1)2214x y +=(2)48 【解析】 【分析】(1)设(),S x y 是所求轨迹C 上的任意一点,根据题意列出方程,即可求解;(2)设直线12,l l 的方程分别为12()2,()2y k x s y k x s =-+=-+,求得,,,M N T Q 的坐标,求得22112122k k S S s k k ⋅=⋅+-,联立方程组求得0∆=,得到12122243,44s k k k k s s +==--,化简得到221224(12)3(4)s s S S s +⋅=-,令24(0)s t t -=>,结合基本不等式,即可求解. (1)解:设(),S x y 是所求轨迹C 上的任意一点, 由题意知动点S到)F的距离是S40+=x =,整理得2214x y +=, 即曲线C 的方程为2214x y +=.(2)解:设直线12,l l 的方程分别为12()2,()2y k x s y k x s =-+=-+,可得()()1212220,2,0,2,,0,,0N k s Q k s M s T s k k ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,所以12212111122=2224P P S S NQ x y MT s k s k s k k ⋅⋅⋅=⋅-⋅-22221211212()2k k k ks s k k k k -=⋅=⋅+-,联立方程组22()214y k x s x y =-+⎧⎪⎨+=⎪⎩,整理得222(41)8(2)4(2)40k x k ks x ks +--+--=,则222264(2)4(41)[4(2)4]0ks k k ks ∆=--+--=,整理得()224430s k ks --+=,所以12122243,44s k k k k s s +==--, 所以2221212()163(4)k k s k k s +=-,所以2212121623(4)k k s k k s +=--, 代入上式,可得22221222164(12)43(4)3(4)s s s S S s s s +⋅=-=--,令24(0)s t t -=>,124(4)(16)46442020)48333t t S S t t t ++⋅==++≥⋅=,当且仅当64t t=时,即8t =时,即s =12S S 的最小值为48.5.(2022·重庆南开中学模拟预测)已知点)F,动点(),M x y到直线:l x =d,且d =,记M 的轨迹为曲线C .(1)求C 的方程; (2)过M 作圆221:43O x y +=的两条切线MP 、MQ (其中P 、Q 为切点),直线MP 、MQ 分别交C 的另一点为A 、B .从下面∵和∵两个结论中任选其一进行证明. ∵PA PM ⋅为定值; ∵MA MB =.【答案】(1)22142x y += (2)条件选择见解析,证明见解析 【解析】 【分析】(1)根据已知条件可得出关于x 、y 的等式,化简后可得出曲线C 的方程;(2)设()00,M x y 、()11,A x y 、()22,B x y ,分2043x =、2043x ≠两种情况讨论,在第一种情况下,直接验证OM OA ⊥;在第二种情况下,设直线MA 的方程为y kx m =+,由直线与圆相切结合韦达定理可得出OM OA ⊥.选∵,分析出Rt Rt MOP AOP ∽,利用三角形相似可求得PA PM ⋅的值; 选∵,分析可知OA OB =,结合勾股定理可证得结论成立. (1)解:由题意知x =2224x y +=,所以,曲线C 的方程为22142x y +=.(2)证明:设()00,M x y 、()11,A x y 、()22,B x y ,当2043x =时,2043y =,则不妨设点M ⎝⎭,则点A ⎝⎭或A ⎛ ⎝⎭, 此时0OM OA ⋅=,则OM OA ⊥;当2043x ≠时,设直线:MA y kx m =+,由直线MA 与圆224:3O x y +=()22341m k =+, 联立2224y kx m x y =+⎧⎨+=⎩可得()222214240k x kmx m +++-=, ()()()()22222221616421248424103k m k m k m k ∆=-+-=+-=+>, 由韦达定理可得012421km x x k +=-+,21222421-=+m x x k ,则()()()()220101000101011OM OA x x y y x x kx m kx m k x x km x x m ⋅=+=+++=++++()()()()222222222212441234101212k m k m m k m k kk+--++-+===++,所以,OM OA ⊥,同理可得OM OB ⊥.选∵,由OM OA ⊥及OP AM ⊥可得Rt Rt MOP AOP ∽, 则PM OP OPPA=,所以,243PM PA OP =⋅=; 选∵,出OM OA ⊥及OM OB ⊥可得:A 、O 、B 三点共线,则OA OB =, 又222222MA OA OM OB OM MB =+=+=,因此,MA MB =.6.(2022·河南郑州·三模(理))在直角坐标系xOy 中,曲线1C 的方程为()2211x y +-=.P 为曲线1C 上一动点,且2OQ OP =,点Q 的轨迹为曲线2C .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线1C ,2C 的极坐标方程;(2)曲线3C 的极坐标方程为2221sin ρθ=+,点M 为曲线3C 上一动点,求MQ 的最大值.【答案】(1)2sin ρθ=;4sin ρθ= (2)5 【解析】 【分析】(1)利用直角坐标和极坐标的互化关系求1C 的极坐标方程,利用代入法求2C 的极坐标方程;(2)M 为2212x y +=上一点,Q 为()2224x y +-=上一点,可知max max 2MQ MN =+,即可求解.(1)由题意可知,将cos sin x y ρθρθ=⎧⎨=⎩代入()2211x y +-=得2sin ρθ=,则曲线1C 的极坐标方程为2sin ρθ=, 设点P 的极坐标为()00,ρθ,则002sin ρθ=,点Q 的极坐标为(),ρθ,由2OQ OP =得002ρρθθ=⎧⎨=⎩,即0012ρρθθ⎧=⎪⎨⎪=⎩, 将012ρρθθ⎧=⎪⎨⎪=⎩代入002sin ρθ=得4sin ρθ=, 所以点Q 轨迹曲线2C 的极坐标方程为4sin ρθ=;(2)曲线3C 直角坐标方程为2212x y +=,设点),sin Mϕϕ,曲线2C 的直角坐标方程为()2224x y +-=,则圆心为()0,2N ,max max 2MQ MN =+,即MN =当sin 1ϕ=-时,max 3MN = ,所以max 325MQ =+=.7.(2022·山东·肥城市教学研究中心模拟预测)在平面直角坐标系xOy 中,已知12,A A两点的坐标分别是(,直线,A B A B 12相交于点B ,且它们的斜率之积为13. (1)求点B 的轨迹方程;(2)记点B 的轨迹为曲线C ,,,,M N P Q 是曲线C 上的点,若直线MN ,PQ 均过曲线C 的右焦点F 且互相垂直,线段MN 的中点为R ,线段PQ 的中点为T . 是否存在点G ,使直线RT 恒过点G ,若存在,求出点G 的坐标,若不存在,说明理由. 【答案】(1)(2213x y x -=≠;(2)存在,()3,0. 【解析】 【分析】(1)根据直线斜率公式,结合已知等式进行求解即可;(2)设出直线方程与双曲线方程联立,根据一元二次方程根的判别式、根与系数关系、直线斜率公式进行求解即可. (1)设(,)M x y ,因为直线,A B A B 12相交于点B ,且它们的斜率之积为13,13=, 整理可得2213x y -=,所以点B的轨迹方程为(2213x y x -=≠.(2)因为曲线C的方程为(2213x y x -=≠,所以直线,MN PQ 的斜率都存在且不为0.设直线MN :(2)y k x =-,则直线PQ :1(2)y x k=--,设()()1122,,,,M x y N x y由()(22233y k x x y x ⎧=-⎪⎨-=≠⎪⎩可得:()222231121230k x k x k --++=, 当2310k -=时,即213k =,方程为470x -+=,此时只有一解,不符合题意,当2310k -≠时,42221444(31)(123)12(1)0k k k k ∆=--+=+>,由韦达定理可得:21221231k x x k +=-,所以点R 的横坐标为()212216231R k x x x k =+=-,代入直线MN :(2)y k x =-可得:()22262223131R Rk ky k x k k k ⎛⎫=-=-= ⎪--⎝⎭, 所以线段MN 的中点22262,3131k k R k k ⎛⎫⎪--⎝⎭, 用1k -替换k 可得22266331T k x k k ==--,2222331T k k y k k --==--,所以线段PQ 的中点2262,33k T k k -⎛⎫ ⎪--⎝⎭,当1k ≠±时,()()()()()2222222222222232312313666363131313RTk k k k k k k k k k k k k k k k k ---+---===-------, 直线RT 的方程为:222226()33(1)3k k y x k k k+=----, 整理可得:222222623(1)3(1)33k k k y x k k k k =-⋅-----2222222222622932(1)(3)3(1)33(1)3(1)33(1)3(1)k k k k k kx x x k k k k k k k -=-+=-=--------, 此时直线RT 过定点G ()3,0, 若1k =±时,则()3,1R , ()3,1T -,或()3,1R -,()31T ,,直线RT 的方程为3x =, 此时直线RT 也过点G ()3,0, 综上所述:直线RT 过定点G ()3,08.(2022·河北张家口·三模)已知0b a >>,点)A,B ⎛⎫⎪ ⎪⎝⎭,动点P满足|||PA PB =,点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线y kx m =+与曲线C 相切,与曲线2222:1x yE a b-=交于M 、N 两点,且π2MON ∠=(O 为坐标原点),求曲线E 的离心率. 【答案】(1)222x y b +=;【解析】 【分析】(1)根据两点间距离距离公式,结合已知等式进行求解即可;(2)根据曲线切线的性质,结合一元二次方程根的判别式、根与系数关系、平面向量垂直的性质、双曲线的离心率公式进行求解即可. (1)设(,)P x y,由|||PA PB ==222x y b +=即为曲线C ; (2)y kx m =+与曲线C相切,b ∴=2221m b k=+.设()11,M x y ,()22,N x y ,将y kx m =+代入曲线E 整理得:222222222()2(0)b a k x a kmx a m a b ---+=,2220b a k -≠,222222()40a b m b a k ∆=+->,2122222a km x x a k b -∴+=-,222212222a m a b x x a k b +=-.π2MON ∠=,0OM ON ∴⋅=,即12120x x y y +=. 222222212121212222()()()k a b m b y y kx m kx m k x x km x x m a k b -=++=+++=-, 2222222222222220a m a b k a b m b a k b a k b +-∴+=--,整理得2222221m a b k b a =+-, 22222a b b b a∴=-,即222b a =,223c a =,e 故曲线E9.(2022·河南·南阳中学三模(文))已知点D 为圆O :221x y +=上一动点,过点D 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,连接BA 并延长至点P ,使得1PA =,点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)设直线l 与曲线C 交于不同于右顶点Q 的M ,N 两点,且QM QN ⊥,求QM QN ⋅的最大值.【答案】(1)2214x y +=(2)3225【解析】 【分析】(1) 注意到A 为BP 的中点,由相关点法,即可求得曲线C 的方程;(2) 先判断直线l 恒过点6,05T ⎛⎫⎪⎝⎭,而QM QN ⋅即为∵QMN 面积的两倍,故将问题转化为求∵QMN 面积的最大值. (1)设点P (x ,y ),D 00(,)x y ,则A 0(,0)x 、B 0(0,)y ,由题意的1AB =,因为1PA =, 所以BA AP = 而00(,)BA x y =-,0(,)AP x x y =-,所以002x x y y ⎧=⎪⎨⎪=-⎩代入圆O :221x y +=得曲线C 的方程为2214x y += . (2)由题意知,直线l 的斜率不为0,则不妨设直线l 的方程为()2x ky m m =+≠.联立得2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x 得()2224240k y kmy m +++-=,()()222244440k m k m ∆=-+->,化简整理,得224k m +>.设()11,M x y ,()22,N x y ,则12224km y y k -+=+,212244m y y k -=+.因为QM QN ⊥,所以0QM QN ⋅=.因为()2,0Q ,所以()112,QM x y =-,()222,QN x y =-,得()()1212220x x y y --+=,将11x ky m =+,22x ky m =+代入上式,得()()()()2212121220k y y k m y y m ++-++-=,得()()()2222242122044m km k k m m k k --+⋅+-⋅+-=++,解得65m =或2m =(舍去), 所以直线l 的方程为65x ky =+,则直线l 恒过点6,05T ⎛⎫⎪⎝⎭,所以12114822525QMNS QT y y =⋅-=⨯△ 设214t k =+,则14t <≤,825QMN S =△ 易知825y =10,4⎛⎤⎥⎝⎦上单调递增,所以当14t =时,QMNS取得最大值为1625. 又12PMN S QM QN =⋅△,所以()()maxmax32225QMN QM QN S ⋅==△. 10.(2022·河南·宝丰县第一高级中学模拟预测(理))已知点1,0A ,动点M 到直线4x =的距离与到点A 的距离的比为2,设动点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)若点()1,0B -,点P ,Q 为曲线C 上位于x 轴上方的两点,且PA QB ∥,求四边形PABQ 的面积的最大值.【答案】(1)22143x y += (2)3 【解析】 【分析】(1)直接法求点的轨迹方程 ;(2) 由已知得A ,B 为所求椭圆C 的焦点,通过计算=PE QF ,可得四边形PEFQ 为平行四边形,将所求四边形PABQ 的面积转化为求三角形POE的面积,从而得到2POEPABQS S ==四边形△,利用换元法及导数法即可求出面积的最大值. (1)设(),M x y2=,所以4x -=两边平方,得()()2224414x x y -=-+,化简,得22143x y +=,即曲线C 的方程为22143x y +=.(2)如图,由(1)知曲线C 为椭圆,A ,B 为其焦点,延长PA 与椭圆相交于另一点E ,延长QB 与椭圆相交于另一点.F设直线PE 的方程为1x my =+,()11,P x y ,()22,E x y ,联立方程221,431x y x my ⎧+=⎪⎨⎪=+⎩消去x 并化简,得()2234690,m y my ++-=, 所以122634m y y m +=-+,122934y y m =-+,所以PE()22121.34m m +=+ 因为//PA QB ,所以//PE QF ,设QF 的方程为1x my =-, 同理可求()2212134m QF m +=+,所以PE QF =,所以四边形PEFQ 为平行四边形,所以四边形PABQ 的面积 2PQE POE PABQ S S S ==四边形△△. 点O 到直线PE的距离d ==所以()22121112234POEm S PE d m +=⋅=⨯=+△所以2POEPABQ S S ==四边形△()1t t ≥,所以212121313PABQ t S t t t==++四边形,令13y t t =+,则2221313t y t t -=-=',显然当1t ≥时,0y '>,所以13y t t=+在[)1,+∞上单调递增,所以当1t =,即0m =时,y 取得最小值,且min 4y =, 所以()max3PABQS =四边形,即四边形PABQ 的最大值为3.11.(2022·全国·模拟预测(理))已知(2,0)A -,(2,0)B ,动点(,)M x y 满足AM 与BM 的斜率之积为14-,记M 的轨迹为曲线C . (1)求点M 的轨迹方程;(2)点P ,Q 在C 上,且AP AQ ⊥,求APQ 面积的取值范围.【答案】(1)221(2)4x y x +=≠±(2)160,25⎛⎤ ⎥⎝⎦【解析】 【分析】(1)设点(),M x y ,由坐标分别求出直线AM 、BM 的斜率,结合斜率之积为14-,得到关于x ,y 得方程,化简即可,注意考虑斜率不存在,得到取值范围;(2)直线AP 的斜率为k ,,由点斜式得到直线AP 的方程,联立椭圆C 消去y 得到关于x 的一元二次方程,联立韦达定理求得P x ,再由弦长公式求得AP ,因为AP AQ ⊥,则直线AQ 的斜率为1k-,同理可得AQ ,代入12APQ S AP AQ =△化简得到关于k 的式子,利用换元法和对勾函数得到取值范围. (1)直线AM 的斜率为(2)2AM y k x x =≠-+,直线BM 的斜率为(2)2BM y k x x =≠-, 由题意可知:22144224AM BM y y k k x y x x ⋅=⋅=-⇒+=+-(2)x ≠±, 故曲线C 的方程为:221(2)4x y x +=≠±.(2)不妨设P 在x 轴的上方,直线AP 的斜率为k ,则0k >.则直线AP 的方程为:()2y k x =+,联立椭圆22:14x C y +=,得2222(14)161640k x k x k +++-=,即()()()222216414164160k k k ∆=-+-=>,则由韦达定理得:22221648221414p p k k x x k k --+-=⇒=++,所以,2p AP +==由于AP AQ ⊥,所以AQ 的斜率为1k -,直线AQ 的方程为:1(2)y x k=-+,以1k -代替2||14()k AQ k⇒==+-,所以222218()118(1)||122(14)(4)4()9APQk k k k S AP AQ k k k k++====++++△‖, 令1t k k=+,由于0k >,所以2t ≥,2889494APQ t S t t t==++△.由于94t t+在2t ≥时单调递增,所以2t =时面积最大,此时1625APQ S =△. 综上:160,25APQ S ⎛⎤∈ ⎥⎝⎦△,故APQ 面积的取值范围为160,25⎛⎤⎥⎝⎦.12.(2022·四川·石室中学三模(理))已知点(0,M,(0,N -,(4,R ,(4,0)Q ,动点S ,T 满足RS RQ λ→→=,2()MT MR λλ→→=∈R ,直线MS 与NT 交于一点P .设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线1:320l x y -=与曲线C 交于A ,B 两点,G 为线段AB 上任意一点(不与端点重合),倾斜角为α的直线2l 经过点G ,与曲线C 交于E ,F 两点.若2||||||EF GA GB ⋅的值与点G 的位置无关,求证:||||GE GF =.【答案】(1)2211612x y +=;(2)证明见解析. 【解析】 【分析】(1)设(),P x y ,由M ,P ,S 三点共线,得(4y x -=-,由N ,P ,T 三点共线,得8(y λ+=,消去λ即得解;(2)不妨设点A 在第一象限,设点(2,3)G m m ,其中11m -<<,若直线2l 的斜率不存在,则直线2l 的方程为2x m =,故2||||||EF GA GB ⋅不为定值. 若直线2l 的斜率存在,设直线2l 的斜率为k ,则直线2l 的方程为(23)y kx k m =--.将直线2l 的方程代入曲线C 的方程化简、整理得到韦达定理计算即得证.(1)解:由题意,知(0,RQ →=-,从而)()4,1S λ-,则()4,MS →=-. 设(),P x y,则(,M x P y →=-,(,N x P y →=+. 由M ,P ,S三点共线,得(4y x -=-. 由()4,0MR →=,得(8,T λ,从而(8NT λ→=.由N ,P ,T三点共线,得8(y λ+=,消去λ得()22321224y x -=-,整理得2211612x y +=,即曲线C 的方程为2211612x y +=.(2)证明:由题意并结合(1)易知(不妨设点A 在第一象限),(2,3)A ,(2,3)B --. 设点(2,3)G m m ,其中11m -<<,则||)GA m =-,||)GB m =+,所以()2||||131GA GB m ⋅=-.若直线2l 的斜率不存在,则直线2l 的方程为2x m =,此时(2E m,(2,F m ,故()()222124||||||131m EF GA GB m -=⋅-不为定值.若直线2l 的斜率存在,设直线2l 的斜率为k ,则直线2l 的方程为(23)y kx k m =--.将直线2l 的方程代入曲线C 的方程化简、整理,得()2222438(23)4(23)480k x km k x k m +--+--=.设()11,E x y ,()22,F x y ,则1228(23)43km k x x k -+=+,221224(23)4843k m x x k --=+, 所以()()22212||1EF kx x =+-()(){}()222222222164(23)1643(23)1243k k m k k k m k ⎡⎤+--+--⎣⎦=+()()()222222481(23)161243k k m k k⎡⎤+--+⎣⎦=-+,故()()()()22222222481(23)1612||||||13431k k m k EF GA GB k m ⎡⎤+--+⎣⎦=⋅+-. 因为2||||||EF GA GB ⋅的值与m 的值无关,所以22(23)1612k k -=+,解得12k =-,所以1224(23)2243x x km k m k +-==+, 所以G 是EF 的中点,即||||GE GF =.13.(2022·福建三明·模拟预测)如图,在平面直角坐标系中,O 为原点,()1,0F ,过直线l :4x =左侧且不在x 轴上的动点P ,作PH l ⊥于点H ,HPF ∠的角平分线交x 轴于点M ,且2PH MF =,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知曲线C 与x 轴正半轴交于点1A ,过点()4,0S -的直线1l 交C 于A ,B 两点,AS BS λ=,点T 满足AT TB λ=,其中1λ<,证明:12ATB TSO ∠=∠. 【答案】(1)()221043x y y +=≠(2)证明见解析 【解析】 【分析】(1)根据条件,代入动点()(),0P x y y ≠的坐标,化简即可; (2)注意到S 点在x 轴上,所以12y y λ=,将λ作为桥梁,合理利用,即可求解. (1)设()(),0P x y y ≠,因为PH x ∥轴,所以HPM PMF ∠=∠, 因为PM 为HPF ∠的角平分线,所以HPM FPM ∠=∠, 所以FPM PMF ∠=∠,即MF PF =,所以12PF MF PHPH==.12=,化简整理得22143x y +=,因为P 不在x 轴上,即曲线C 的方程为()221043x y y +=≠(2)易知直线1l 的斜率存在且不为0,设1l 的方程为()40x my m =-≠.联立方程组221434x y x my ⎧+=⎪⎨⎪=-⎩,消x 整理得()223424360m y my +-+=, 所以()()2224434360m m ∆=--⨯+⨯>,得2m >或2m <-,设()11,A x y ,()22,B x y ,则1222434m y y m +=+,1223634y y m =+. 由AS BS λ=得12y y λ-=-,所以12y y λ=, 设()00,T x y ,由AT TB λ=,得()0120y y y y λ-=-,所以21211201122236222334241134y y y y y m y y m y y my m λλ⨯++=====++++, 所以003441x my m m=-=⨯-=-, 所以点31,T m ⎛⎫- ⎪⎝⎭在直线1x =-上,且00y ≠,又因为()4,0S -与()12,0A 关于直线1x =-对称,所以1TSA △是等腰三角形, (或者证明直线TS 与直线1TA 的斜率互为相反数)所以11TSA TA S ∠=∠,因为111ATB TSA TA S ∠=∠+∠,所以12ATB TSO ∠=∠, 综上所述,12ATB TSO ∠=∠.14.(2022·江苏·南京市宁海中学模拟预测)已知平面上一动点P 到定点()1,0F 的距离与它到定直线1x =-的距离相等,设动点P 的轨迹为曲线C . (1)求曲线C 的轨迹方程(2)已知点(2,B ,过点B 引圆()()222:402M x y r r -+=<<的两条切线BP ;BQ ,切线BP 、BQ 与曲线C 的另一交点分别为P 、Q ,线段PQ 中点N 的纵坐标记为λ,求λ的取值范围.【答案】(1)24y x =;(2)λ的取值范围为(--. 【解析】 【分析】(1)根据曲线轨迹方程的定义求解;(2) 设切线BP的方程为12y k x +=(﹣)BQ的方程为22y k x +=(﹣)1224k k r +=-, 212284r k k r =--,再求出12228y y t r +==--,即得解.(1)设(,)P x y ,|1|x =+, 化简得()222(1)1x y x -+=+, 所以24y x =,所以曲线C 的方程为24y x =, (2)由已知2B(,所以切线,BP BQ 的斜率存在, 设切线BP的方程为12y k x -+=() 则圆心40M (,)到切线AP的距离d r ==,所以22211480r k r -++()﹣=, 设切线BQ的方程为22y k x -+=()同理可得22222480r k r -++()﹣=,所以12k k ,是方程222480r k r -++()﹣=的两根,所以12k k += 212284r k k r =--,设1122(,),(,)P x y Q x y ,联立12(2)4y k x y x ⎧=-+⎪⎨=⎪⎩211048k y y k =+﹣﹣,所以11=所以114y k =-,同理224y k =-,所以121244(=22y y k k λ-+-++=12112k k ⎛⎫⋅+ ⎪⎝⎭=﹣12122k k k k +⋅=﹣224284r r r -=-⋅--=- 因为02r <<,所以2111884r <<-所以--<- 所以λ的取值范围为(--.15.(2022·四川·内江市教育科学研究所三模(文))已知点()2,0A -,()2,0B ,直线PA 与直线PB 的斜率之积为12-,记动点P 的轨迹为曲线C(1)求曲线C 的方程;(2)设D 为曲线C 上的一点,线段AD 的垂直平分线交y 轴于点E ,若ADE 为等边三角形,求点D 的坐标﹒【答案】(1)()220421x y y +=≠;(2)25⎛- ⎝⎭或2,5⎛-⎝⎭﹒ 【解析】 【分析】(1)设P (x ,y )(y ≠0),根据12PA PB k k ⋅=-即可求C 的方程;(2)设()00,D x y (00y ≠),根据D 在C 上列出一个方程,用D 表示出E ,根据ADE 为等边三角形的AD AE =,由此可得第二个方程,两根方程联立即可求出D 的坐标. (1)设点P 的坐标为()(),0x y y ≠,∵直线PA 与直线PB 的斜率之积为12-,∵12PA PBk k ⋅=-,即1222y y x x ⨯=-+-,化简得22142x y +=, ∵曲线C 的方程为()220421x y y +=≠;(2)设()00,D x y (00y ≠),()0,E t ,线段AD 的中点为002,22x y Q -⎛⎫⎪⎝⎭, 则直线AD 的斜率002AD y k x =+,直线QE 的斜率00222QEy t k x -=-, 由题可知1AD QEk k ⋅=-,∵000021222y t y x x -⨯=--+,整理得2000422y x y t -⎛⎫-= ⎪⎝⎭,又∵2200142x y +=,∵20002y y t y ⎛⎫-=- ⎪⎝⎭,得02y t =-,故00,2y E ⎛⎫- ⎪⎝⎭.又∵ADE 为等边三角形,有AD AE =,220003404y x x ++=,∵20532120x x ++=,解得025x =-或06x =-(舍去), 将025x =-代入2200142x y+=,解得0y0y = ∵点D的坐标为25⎛- ⎝⎭或2,5⎛-⎝⎭. 16.(2022·河南平顶山·模拟预测(理))在平面直角坐标系xOy 中,一动圆经过点F (2,0)且与直线2x =-相切,设该动圆圆心的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点M (m ,0)(m >0)作两条互相垂直的直线12,l l ,且1l 与曲线Γ交于A ,B 两点,2l 与曲线Γ交于C ,D 两点,点P ,Q 分别为AB ,CD 的中点,求△MPQ 面积的最小值. 【答案】(1)28y x = (2)16 【解析】 【分析】(1)设出圆心坐标,列出等量关系,整理得到轨迹方程;(2)设出直线方程,与第一问求出的抛物线联立,得到两根之和,两根之积,从而表达出点P ,Q 的坐标,表达出△MPQ 面积,利用基本不等式求出面积的最小值. (1)设圆心为(),A x y ,2=+x ,两边平方,整理得:28y x =,故曲线Γ的方程为28y x =.(2)显然直线12,l l 斜率均存在,不妨设1:l x ky m =+,(0k >)与28y x =联立得:2880y ky m --=,设()()1122,,,A x y B x y ,则12128,8y y k y y m +==-,则()21212282x x k y y m k m +=++=+,故21242x x k m +=+,1242y y k +=,所以()24,4P k m k +,由于直线12,l l 互相垂直,故244,Q m kk ⎛⎫+- ⎪⎝⎭,所以2MPQSk m m m m =+--1816k k ⎛⎫=+≥= ⎪⎝⎭,当且仅当1k k ,即1k =时等号成立,所以△MPQ 面积的最小值为16.17.(2021·福建省德化第一中学三模)在平面直角坐标系中,∵ABC 的两个顶点A ,B 的坐标分别为()1,0-,()1,0,平面内两点G ,M 同时满足以下3个条件:∵G 是∵ABC 三条边中线的交点:∵M 是∵ABC 的外心;∵//GM AB(1)求∵ABC 的顶点C 的轨迹方程;(2)若点P (2,0)与(1)中轨迹上的点E ,F 三点共线,求||PE PF ⋅的取值范围【答案】(1)221(0)3y x y +=≠;(2)93,2⎛⎫ ⎪⎝⎭. 【解析】 【分析】(1)设出点的坐标,利用两点间的距离公式即可求得轨迹方程;(2)设出三点所在的直线方程,与(1)中的轨迹方程联立,由判别式大于0求出2k 的范围,利用韦达定理得到E ,F 两点横坐标的和与积,将PE PF ⋅表示为k 的关系式,进一步得到PE PF ⋅的取值范围. (1)设C (x ,y ),G (0x ,0y ),M (M x ,M y ), 因为M 是∵ABC 的外心,所以MA MB = 所以M 在线段AB 的中垂线上,所以1102M x -+==, 因为/GM AB ,所以0M y y =,又G 是∵ABC 三条边中线的交点,所以G 是∵ABC 的重心, 所以0011003333x x y yx y -++++====,, 所以03M yy y ==, 又MA MC =,=化简得()22103y x y +=≠,所以顶点C 的轨迹方程为()22103y x y +=≠;(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0, 设所在直线的方程为()2y k x =-,联立()222,1,3y k x y x ⎧=-⎪⎨+=⎪⎩得()222234430k x k x k +-+-=.由()()()2222443430k k k ∆=-+->,得21k <.设()11,E x y ,()22,F x y ,则212221224,343.3k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩所以()()2121212142PE PF x x k x x x x ⋅=--=+⋅-++⋅()()()222224384313k k k k k +-+-=+⋅+()2229118933k k k +==-++.又201k <<,所以2334k <+<, 所以932PE PF <⋅<. 故PE PF ⋅的取值范围为93,2⎛⎫⎪⎝⎭.18.(2022·广西柳州·三模(理))已知点(A ,点(2,B -,点M 与y 轴的距离记为d ,且点M 满足:214d MA MB ⋅=-,记点M 的轨迹为曲线W . (1)求曲线W 的方程;(2)设点P 为x 轴上除原点O 外的一点,过点P 作直线1l ,2l ,1l 交曲线W 于点C ,D ,2l 交曲线W 于点E ,F ,G ,H 分别为CD ,EF 的中点,过点P 作x 轴的垂线交GH 于点N ,设CD ,EF ,ON 的斜率分别为1k ,2k ,3k 的,求证:()312k k k +为定值.【答案】(1)22186x y +(2)证明见解析 【解析】 【分析】(1)设(),M x y ,则d x =,根据平面向量数量积的坐标表示化简计算即可;(2)设()0,0P x 和直线GH 的方程,进而求出点G 的坐标,设(,)C C C x y 、(,)D D D x y ,利用点差法和弦中点坐标公式计算化简可得()2401014330k x m k x k m +++=,同理可得()2402024330k x m k x k m +++=,根据韦达定理可得()124034x k k k x m +=-+,代入()312k k k +计算化简即可. (1)设(),M x y ,由题意得d x =,()2MA x y =-,()2,MB x y =--由214d MA MB ⋅=-,∵()()222,14d x y x y -⋅--=-∵2224314x x y -+-=-.∵22364x y +=, 即M 的轨迹方程为22186x y +;(2)显然GH 斜率存在,设()0,0P x ,设GH 的方程为:4y k x m =+ 由题意知CD 的方程为:()10y k x x =-联立方程()104y k x x y k x m⎧=-⎨=+⎩ 解得:()101414014k x m x k k k k x m y k k +⎧=⎪-⎪⎨+⎪=⎪-⎩ 可得:()140101414,k k x m k x m G k k k k +⎛⎫+ ⎪--⎝⎭设(,)C C C x y ,(,)D D D x y ,C ,D 都在曲线W 上,则有22186C Cx y +=∵22186D D x y +=∵ ∵-∵得:2222086C D C D x x y y --+=则有:134C D C DC D C Dy y x x k x x y y -+==-⋅-+又G 为CD 中点,则有;()10114034C D C D y y k x m k x x k k x m -+==-⋅-+可得:()2401014330k x m k x k m +++= 同理可得:()2402024330k x m k x k m +++=故1k ,2k 为关于k 的方程()24004330k x m k x k m +++=的两实根由韦达定理得:()124034x k k k x m +=-+,将0x x =代入直线GH 中得:40y k x m =+ 可得:()040,N x k x m +故有:4030k x mk x += 则()()4003120403344k x m x k k k x k x m ⎡⎤++=⋅-=-⎢⎥+⎣⎦,故()312k k k +为定值34- 19.(2022·全国·模拟预测(理))已知圆22:2O x y +=与x 轴交于A ,B 两点,动点P 满足直线AP 与直线BP 的斜率之乘积为12-.(1)求动点P 的轨迹E 的方程;(2)过点()1,0的直线l 与曲线E 交于M ,N 两点,则在x 轴上是否存在定点Q ,使得QM QN ⋅的值为定值?若存在,求出点Q 的坐标和该定值;若不存在,请说明理由.【答案】(1)2212x y +=,(x ≠;(2)存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-,理由见解析;【解析】 【分析】(1)设出动点(),P xy (x ≠,利用直接法求解轨迹方程;(2)先求出直线l 斜率为0时不合题意,得到直线斜率不等于0,从而设出直线l 的方程1x ky =+,联立第一问求出的轨迹方程,利用韦达定理得到两根之和,两根之积,设出(),0Q m ,求解QM QN ⋅,化简整理得到QM QN ⋅()224522m m k -=--+,从而得到存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-.(1)令0y =得:x =()),A B ,(),P x y (x ≠,则12PA PB k k ⋅==-,整理得:2212x y +=,(x ≠;动点P 的轨迹方程E 为2212x y +=,(x ≠;(2)存在点(),0Q m ,使得QM QN ⋅为定值,理由如下:当直线l 斜率为0时,则直线l 为0y =,此时与2212xy +=,(x ≠无交点,故不合题意,舍去,即直线l 斜率不为0设(),0Q m ,直线l 设为1x ky =+,则与2212x y +=,(x ≠联立得:()222210k y ky ++-=,设()()1122,,,M x y M x y ,则12122221,22k y y y y k k +=-=-++,所以()()()()11221212,,QM QN x m y x m y x m x m y y ⋅=-⋅-=--+()()()()221212121212121111x x m x x m y y ky ky m ky ky m y y =-+++=++-+++++()()()()22121211k y y k mk y y m =++-++-()224522m m k -=--+ 当450m -=即54m =时,QM QN ⋅为定值,即存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-; 综上:存在点5,04Q ⎛⎫⎪⎝⎭使得QM QN ⋅为定值716-.20.(2022·全国·高考真题)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面∵∵∵中选取两个作为条件,证明另外一个成立:∵M 在AB 上;∵PQ AB ∥;∵||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)2213y x -= (2)见解析 【解析】 【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k , M (x 0,y 0),由∵|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由∵//PQ AB 等价转化为003ky x =,由∵M 在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可. (1)右焦点为(2,0)F ,∵2c =,∵渐近线方程为y =,∵ba=∵b =,∵222244c a b a =+==,∵1a =,∵b =∵C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由∵∵推∵或选由∵∵推∵:由∵成立可知直线AB 的斜率存在且不为零;若选∵∵推∵,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符; 总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件∵M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--, 设()00,M x y ,则条件∵AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM的斜率为直线QM∵由))10102020,y y x x y y x x -=--=-,∵)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==---,直线)00:PM y x x y =-+,即00y y =, 代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦, 解得P的横坐标:100x y ⎛⎫=⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∵0012012002222000033,2,33y x x x y x x x x y x y x ⎫-++-=--⎪--⎭∵03x m y =, ∵条件∵//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件∵M 在AB 上,等价于()2002ky k x =-;条件∵//PQ AB 等价于003ky x =;条件∵AM BM =等价于200283k x ky k +=-;选∵∵推∵:由∵∵解得:2200002228,433k k x x ky x k k =∴+==--,∵∵成立; 选∵∵推∵:由∵∵解得:20223k x k =-,20263k ky k =-,∵003ky x =,∵∵成立; 选∵∵推∵:由∵∵解得:20223k x k =-,20263k ky k =-,∵02623x k -=-,∵()2002ky k x =-,∵∵成立.。
圆锥曲线题型汇编题型一:轨迹方程的求法【例题1】已知线段AB=6,直线AM,BM 相交于M,且它们的斜率之积是49,求点M 的轨迹方程。
【巩固1】已知动点P 与平面上两定点(0),0)A B 连线的斜率的积为定值12-.(1)试求动点P 的轨迹方程C.(2)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=324时,求直线l 的方程.【例题2】已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.【巩固2】在直角坐标系0x y 中,点P 到两点(10,F 、(2F 的距离之和等于4,设点P 的轨迹为曲线C ,直线1y kx =+与曲线C 交于A 、B 两点.(1)求出C 的方程;(2)若k =1,求AOB ∆的面积;(3)若OA OB ⊥ ,求实数k 的值。
题型二:数形结合判断直线与圆锥曲线位置关系【例题3】若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是【例题4】已知直线:1l y kx =+与椭圆22:14x y C m+=始终有交点,求m 的取值范围思路点拨:直线方程的特点是过定点(0,1),椭圆的特点是过定点(-2,0)和(2,0),和动点04m ±≠(,且。
【巩固3】过点P(3,2)和抛物线232--=x x y 只有一个公共点的直线有条。
类型三:中点弦问题【例题5】过椭圆141622=+y x 内一点M(2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。
【巩固4】已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为________.【例题6】过椭圆1366422=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。
1 轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P124B组2:长为2a的线段的两个端点在x轴和y轴上移动,求线段AB的中点M的轨迹方程:
必修2课本P124B组:已知M与两个定点(0,0),A(3,0)的距离之比为21,求点M的轨迹方程;(一般地:必修2课本P144B组2:已知点M(x,y)与两个定点21,MM的距离之比为一个常数m;讨论点M(x,y)的轨迹方程(分m=1,与m1进行讨论)
2、 必修2课本P122例5:线段AB的端点B的坐标是(4,3),端点A在圆1)1(22yx上运动,求AB的中点M的轨迹。
在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为32。 (1)求圆心的P的轨迹方程;
(2)若P点到直线xy的距离为22,求圆P的方程。
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
MBA2
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)又
|AR|=|PR|=22)4(yx所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动. 设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=20,241yyx,代入方程x2+y2
-4x-10=0,得244)2()24(22xyx-10=0整理得:x2+y2=56,这就是所求的轨迹方程.
在平面直角坐标系xOy中,点)3,0(A,直线42:xyl.设圆C的半径为1,圆心在l上. (1)若圆心C也在直线1xy上,过点A作圆C的切线,求切线的方程; (2)若圆C上存在点M,使MOMA2,求圆心C的横坐标a的取值范围.
(2013陕西卷理20)已知动圆过定点)0,4(A,且在y轴上截得弦MN的长为8. (1) 求动圆圆心的轨迹C的方程; (2) 已知点)0,1(B,设不垂直于x轴的直线l与轨迹C交于不同的两点QP,,若x轴
是PBQ的角平分线,证明直线l过定点。
二、椭圆类型: 3、 定义法:(选修2-1P50第3题)点M(x,y)与定点F(2,0)的距离和它到定直线8x
的距离之比为21,求点M的轨迹方程.(圆锥曲线第二定义) 讨论:当这个比例常数不是小于1,而是大于1,或等于1是的情形呢?(对应双曲线,抛物线)
MF1F
23
4、 圆锥曲线第一定义:(选修2-1P50第2题)一个动圆与圆05622xyx外切,同时与圆091622xyx内切,求动圆的圆心轨迹方程。
5、 圆锥曲线第一定义:点M(00,yx)圆1F9)1(22yx上的一个动点, 点2F(1,0)为定点。线段2MF的垂直平分线与1MF相交于点Q(x,y),求点Q的轨迹方程;(注意点2F(1,0)在圆内)
6、 其他形式:(选修2-1P50例3)设点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且他们的斜率的乘积为94,求点M的轨迹方程:(是一个椭圆)
(讨论当他们的斜率的乘积为94时可以得到双曲线)
(2013新课标1卷20)已知圆:M1)1(22yx,圆:N9)1(22yx,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C。 (1)求C的方程; (2)l是与圆P,圆M都相切的一条直线,l与曲线C交于BA,两点,当圆P的半径最长时,求AB
(2013陕西卷文20)已知动点),(yxM到直线4:xl的距离是它到点)0,1(N的距离的2倍。 (1)求动点M的轨迹C的方程
(2)过点)3,0(P的直线m与轨迹C交于BA,两点,若A是PB的中点,求直线m的斜率。
QF1
F
2
M4
三、双曲线类型: 8、圆锥曲线第一定义:点M(00,yx)圆1F1)1(22yx上的一个
动点, 点2F(1,0)为定点。线段2MF的垂直平分线与1MF相交于点Q(x,y),求点Q的轨迹方程;(注意点2F(1,0)在圆外)
定义法:(选修2-1P59例5)点M(x,y)与定点F(5,0)的距离和它到定直线516x的距离之比为45,求点M的轨迹方程.(圆锥曲线第二定义)
四、抛物线类型:10、定义法:(选修2-1)点M(x,y)与定点F(2,0)的距离和它到定直线2x的距离相等,求点M的轨迹方程。(或:点M(x,y)与定点F(2,0)的距离比它到定直线3x的距离小1,求点M的轨迹方程。) (2013陕西卷文20)已知动点),(yxM到直线4:xl的距离是它到点)0,1(N的距离的2
倍。 (1)求动点M的轨迹C的方程 (2)过点)3,0(P的直线m与轨迹C交于BA,两点,若A是PB的中点,求直线m的斜率 已知三点(0,0)O,(2,1)A,(2,1)B,曲线C上任意一点(,)Mxy满足
||()2MAMBOMOAOBuuuruuuruuuuruuuruuur。
(1)求曲线C的方程;
)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值. (Ⅰ)求曲线C1的方程; 设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1)。当点A在圆上运动时,记点M的轨迹为曲线C。
QF1
F
2
M5 (I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
如图,椭圆0C:22221(0xyabab,a,b为常数),动圆22211:Cxyt,1bta。点12,AA分别为0C的左,右顶点,1C与0C相交于A,B,C,D四点。 (Ⅰ)求直线1AA与直线2AB交点M的轨迹方程;
(四川)如图,动点M到两定点(1,0)A、(2,0)B构成MAB,且2MBAMAB,设动点M的轨迹为C。 (Ⅰ)求轨迹C的方程; (Ⅱ)设直线2yxm与y轴交于点P, 与轨迹C相交于点QR、,且||||PQPR,
求||||PRPQ的取值范围。
1.(★★★★)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线
2.(★★★★)设A1、A2是椭圆4922yx=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为( ) A.14922yx B.14922xy C.14922yx D.14922xy 二、填空题 3.(★★★★)△ABC中,A为动点,B、C为定点,B(-2a,0),C(2a,0),且满足条件sinC-
sinB=21sinA,则动点A的轨迹方程为_________. 4.(★★★★)高为5 m和3 m的两根旗杆竖在水平地面上,且相距10 m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 6
三、解答题 5.(★★★★)已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.
6.(★★★★)双曲线2222byax=1的实轴为A1A2,点P是双曲线上的一个动点,引A1Q⊥A1P,A2Q⊥A2P,A1Q与A2Q的交点为Q,求Q点的轨迹方程.
7.(★★★★★)已知椭圆2222byax=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R.
(1)当P点在椭圆上运动时,求R形成的轨迹方程; (2)设点R形成的曲线为C,直线l:y=k(x+2a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值. 7
一、1.解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆. 2.解析:设交点P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)∵A1、P1、P共线,
∴300xyxxyy∵A2、P2、P共线,∴300xyxxyy解得
x0=149,149,3,92220200yxyxxyyx即代入得
二、3.解析:由sinC-sinB=21sinA,得c-b=21a,∴应为双曲线一支,且实轴长为2a,
故方程为)4(1316162222axayax. 答案:)4(1316162222axayax 4.解析:设P(x,y),依题意有2222)5(3)5(5yxyx,化简得P点轨迹方程为4x2+4y2-85x+100=0. 答案:4x2+4y2-85x+100=0 三、5.解:设过B、C异于l的两切线分别切⊙O′于D、E两点,两切线交于点P.由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC| =|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知,点P的轨迹是以B、C为两焦点的椭圆,以l所在的直线为x轴,以BC的中点为原点,建立坐标系,可求得动点P的轨
迹方程为728122yx=1(y≠0) 6.解:设P(x0,y0)(x≠±a),Q(x,y). ∵A1(-a,0),A2(a,0).
由条件yaxyaxxxaxyaxyaxyaxy220000000)( 11得 而点P(x0,y0)在双曲线上,∴b2x02-a2y02=a2b2. 即b2(-x2)-a2(yax22)2=a2b2 化简得Q点的轨迹方程为:a2x2-b2y2=a4(x≠±a). 8.解:(1)∵点F2关于l的对称点为Q,连接PQ, ∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2| 又因为l为∠F1PF2外角的平分线,故点F1、P、Q在同一直线上,设存在