实数_课件1
- 格式:ppt
- 大小:1.48 MB
- 文档页数:12
华东师大版八年级上册数学《实数》教学课件一、教学内容本节课选自华东师范大学出版社八年级上册数学教材,《实数》章节。
详细内容包括实数的定义、分类、性质及其在数轴上的表示,特别是无理数的概念和性质,着重介绍开平方根、π等无理数的理解,并探讨实数的运算规则。
二、教学目标1. 理解实数的概念,掌握实数的分类,能够区分有理数和无理数。
2. 能够在数轴上正确表示实数,理解实数与数轴之间的对应关系。
3. 掌握实数的运算规则,并能够应用于解决实际问题。
三、教学难点与重点教学难点:无理数的理解和运算,特别是开平方根和π的处理。
教学重点:实数的定义和性质,实数在数轴上的表示,以及实数的运算规则。
四、教具与学具准备1. 教具:多媒体教学课件、黑板、实数教学挂图。
2. 学具:直尺、圆规、计算器(仅用于探索无理数时使用)。
五、教学过程1. 导入新课:通过展示日常生活中的测量问题,如圆形花坛的面积计算,引出无理数的概念。
2. 新知探究:a. 通过数轴介绍实数的定义,对比有理数和无理数。
b. 例题讲解:求解2的平方根,解释无理数的性质。
c. 小组讨论:探讨π的值及其在数学中的应用。
3. 知识巩固:a. 随堂练习:在数轴上表示给定的实数。
b. 例题讲解:实数的加减乘除运算,特别是无理数的运算。
4. 应用拓展:a. 解决导入中提出的问题,应用实数进行计算。
b. 探讨实数在实际问题中的应用,如黄金分割比例。
六、板书设计1. 实数的定义与分类。
2. 数轴上的实数表示。
3. 实数的运算规则。
4. 无理数的性质与运算。
七、作业设计1. 作业题目:a. 列出五个有理数和五个无理数,并在数轴上表示它们。
b. 计算:(1)√2 + √3;(2)π × (3 + √5)。
2. 答案:a. 略。
b. (1)结果是无理数,只需保留根号形式;(2)结果为π乘以一个无理数,可以简化为无理数表达式。
八、课后反思及拓展延伸1. 反思:学生对实数概念的理解程度,以及他们在实数运算中的困难。