第十六届“华罗庚金杯”少年数学邀请赛决赛试卷a(小学组)
- 格式:doc
- 大小:180.07 KB
- 文档页数:15
第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 计算 313615176413900114009144736543++++++=_________.2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC ,则三角形ABF 的面积等于_________.3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。
则这段时间有_______天,其中全天天晴有_______天。
二. 解答题:(共3题,每题10分,写出解答过程)4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。
求所有满足条件的(a ,b ,c )。
5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。
那么k 最大是多少?6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个圆圈恰填一个数,满足下列条件:1) 正三角形各边上的数之和相等;2) 正三角形各边上的数之平方和除以3的余数相等。
问:有多少种不同的填入方法?( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )总决赛 小学组二试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。
如果买1支的人数是其余人数的2倍,则买2支的人数是_________.2. 右图中,四边形ABCD 的对角线AC 与BD 相交于O ,E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。
第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。
答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。
一个字节由8个“位”组成,记为B。
常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。
现将240MB的教育软件从网上下载,已经下载了70%。
如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。
(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。
答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。
答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。
现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。
答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。
图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。
2011年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)一、填空题(共3题,每题10分)1.(10分)某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支.如果买1支的人数是其余人数的2倍,则买2支铅笔的人数是.2.(10分)如图中,四边形ABCD的对角线AC与BD相交于O,E为BC的中点,三角形ABO的面积为45,三角形ADO的面积为18,三角形CDO的面积为69.则三角形AED的面积等于.3.(10分)一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是.二、解答题(共3题,每题10分,写出解答过程)4.有57个边长等于1的小等边三角形拼成一个内角都不大于180的六边形,小等边三角形之间既无缝隙,也没有重叠部分.则这个六边形的周长至少是多少?5.(10分)黑板上写有1,2,3,…,2011一串数.如果每次都擦去最前面的16个数,并在这串数的最后再写上擦去的16个数的和,直至只剩下1个数,则:(1)最后剩下的这个数是多少?(2)所有在黑板上出现过的数的总和是多少?6.(10分)试确定积(21+1)(22+1)(23+1)…(22011+1)的末两位的数字.2011年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)参考答案与试题解析一、填空题(共3题,每题10分)1.(10分)某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支.如果买1支的人数是其余人数的2倍,则买2支铅笔的人数是10 .【分析】买1支的人数是其余人数的2倍,也就是说全班人数相当于其余人数的1+2=3倍,先根据除法意义,求出买2支和3支铅笔的人数,再设买2支铅笔的有x人,进而用x表示出买3支铅笔的人数,最后依据买笔总数=人数×买笔支数,用x表示出买笔总人数,根据铅笔总数是50支列方程,依据等式的性质即可求解.【解答】解:36÷(1+2)=36÷3=12(人);设买2支铅笔的人数是x人12×2×1+2x+(12﹣x)×3=5024+2x+36﹣3x=5060﹣x+x=50+x60﹣50=50+x﹣50x=10;答:买2支铅笔的人数是10.故答案为:10.2.(10分)如图中,四边形ABCD的对角线AC与BD相交于O,E为BC的中点,三角形ABO的面积为45,三角形ADO的面积为18,三角形CDO的面积为69.则三角形AED的面积等于75 .【分析】若将AD作为底边,因为点E为BC的中点,那么△ADB,△ADE,△ADC的高为等差数列(可以认为中间三角形的高是两边三角形的高的平均数),所以面积也呈等差数列(可以认为中间三角形的面积是两边三角形的面积的平均数).据此可解.【解答】解:若将AD作为底边,因为点E为BC的中点,所以△ADE的高为△ADB和△ADC的高的平均数,因此△ADE的面积就等于△ADB和△ADC的面积的平均数.所以,S△ADE=(S△ADB+S△ADC)÷2=(45+18+18+69)÷2=75;答:三角形AED的面积等于75.3.(10分)一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是3028 .【分析】根据题意,列出这个数列是:1、7、8、0、3、3、2、0、1、3、0、0、3、3、2、0、1、3、0、0…易见,从第4个数开始每8个数一个循环.由于前面还有3个数,所以需用2011减去3的得数除以8,求出有多少组,再相加即可解答.【解答】解:这个数列:1、7、8、0、3、3、2、0、1、3、0、0、3、3、2、0、1、3、0、0…(2011﹣3)÷8=251(0+3+3+2+0+1+3+0)×251+1+7+8=12×251+16=3028故答案为:3028.二、解答题(共3题,每题10分,写出解答过程)4.有57个边长等于1的小等边三角形拼成一个内角都不大于180的六边形,小等边三角形之间既无缝隙,也没有重叠部分.则这个六边形的周长至少是多少?【分析】在面积不变的情况下,要使得这些等边三角形堆成的边长最短,则使它们堆城一个六边形,且六边形的每个内角都是120度.然后构建一个大三角形:把大三角形每条边n等分,连结各边n等分点一共构成n×n个小等边三角形解答即可.【解答】解:我们把一个等边三角形每条边2等分,可以连结各边中点一共构成2×2=4个小等边三角形;如果把每条边3等分,连结各边三等分点一共构成3×3=9个小等边三角形;以此类推,把每条边n等分,连结各边n等分点一共构成n×n个小等边三角形.7×7<57<8×8<9×9,8×8=64,64﹣57=7,7不能分解成为3个完全平方数之和的形式,9×9=81,81=4+4+16,所以我们就可以把这57个小三角形放在如图所示的等边三角形中,每条边被9等分,△ABC的边长为9,三个角各被切除一部分,此时DE=5,EF=2,FG=3,GH=4,HI=3,DI=2,则DE+EF+FG+GH+HI+DI=19,即这个六边形的周长至少是19.答:这个六边形的周长至少是19.故答案为:19.5.(10分)黑板上写有1,2,3,…,2011一串数.如果每次都擦去最前面的16个数,并在这串数的最后再写上擦去的16个数的和,直至只剩下1个数,则:(1)最后剩下的这个数是多少?(2)所有在黑板上出现过的数的总和是多少?【分析】(1)每操作一次,不影响黑板上所有数的总和,因此最后剩下的和=1+2+3+…+2011,根据高斯求和公式完成即可.(2)由于倒数第2次操作,黑板上就16个数,总和是2023066,这16个数来源于16×16=256个数,这256个数的和也同上.2011﹣(16﹣1)x=256,x=117次显然,从开始,只要117次操作,黑板上就剩256个数.据此依据规则分析即可.①原有2011个数,和2023066②操作117次,黑板剩余256个数:1873到2011,新出现117个和.这117个和=2023066﹣(1873+2011)*139/2=1753128③操作16次,黑板剩余16个数都是新出现,和=2023066④操作1次,黑板剩余1个数=2023066;综上,所有出现过的数=2023066+1753128+2023066+2023066=7822326 【解答】解:(1)1+2+3+…+2011=(1+2011)×2011÷2=2012×2011÷2=2023066答:最后剩下的这个数是2023066.(2)由于倒数第2次操作,黑板上就16个数,总和是2023066,这16个数来源于16×16=256个数,这256个数的和也同上.2011﹣(16﹣1)x=256,x=117次,显然,从开始,只要117次操作,黑板上就剩256个数.①原有2011个数,和2023066②操作117次,黑板剩余256个数:1873到2011,新出现117个和.这117个和=2023066﹣(1873+2011)×139÷2=1753128③操作16次,黑板剩余16个数都是新出现,和=2023066④操作1次,黑板剩余1个数=2023066综上,所有出现过的数=2023066+1753128+2023066+2023066=7822326.6.(10分)试确定积(21+1)(22+1)(23+1)…(22011+1)的末两位的数字.【分析】首先判断出积能被25整除,由于各因数均为奇数,则判断积的末两位数字为25或75,结合各因数被4整除的余数特点判断积的余数,进而判断出末两位数字为75.【解答】解:设n=(21+1)×(22+1)×(23+1)×…×(22011+1),由于各因数2k+1均为奇数,其中22+1=5,26+1=65=5×13,所以n≡0(mod25),此时知n的末两位数字要么为25,要么为75.又21+1≡3(mod4),对k≥2,都有2k+1≡1(mod4),所以n≡3(mod4),即n的末两位数字被4除余3,而25≡1(mod4),75≡3(mod4),所以n 的末两位数字为75.答:(21+1)(22+1)(23+1)…(22011+1)的末两位的数字75.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:51:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
华罗庚金杯少年数学邀请赛口试试题第01届华罗庚金杯少年数学邀请赛口试试题1. 这是七巧板拼成的正方形,正方形边长20厘米,问七巧板中平行四边形的一块(如右图中阴影部分)的面积是多少?2.从所有分母小于10的真分数中,找出一个最接近0.618的分数。
3.有49个小孩子,每人胸前有一个号码,号码从1到49各不相同,请你挑选出若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,你最多能挑选出多少个小孩子?4.有一路公共汽车,包括起点和终点站共有15个车站,如果有一辆车,除终点到站外,每一站上车的乘客中,恰好各有一位乘客从这一站到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?5.正方形的树林每边长1000米,里面有白杨树和榆树,小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰见一株榆树就往正东走,最后他走了东北角上,问:小明一共走了多少米的距离?6.自然数按从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯……问拐第二十个弯的地方是哪一个数?第02届华罗庚金杯少年数学邀请赛口试试题1、如下图是一个对称的图形,黑色部分面积大还是阴影部分面积大?2、你能不能将自然数1到9分别填入右面的方格中,使得每个横格中的三个数之和都是偶数?3、司机开车按顺序到五个车站接学生到学校(如下图),每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,车到学校时,车上最少有多少学生?4、如图中五个正方形的边长分别是1米、2米、3米、4米、5米。
问:白色部分面积与阴影部分面积之比是多少?5、用1、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积,问乘积中是偶数多还是奇数多?6、7、将右边的硬纸片沿虚线折起来,便可作成一个正方体,问:这个正方体的2号面对面是几号面?(如下图)8、下面是一个11位数,它的每三个相邻数之和都是20,你知道打“?”的数字是几?9、有八张卡片,右图分别写着自然数1到8,从中取出三张,要使这三张卡片上的数字之和为9,问有多少种不同的取法?第03届华罗庚金杯少年数学邀请赛团体决赛口试1.一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如右图阴影所示部分,红条宽都是2厘米.问:这条手帕白色部分的面积是多少?2.伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到1991时,你数在那个手指上?3.有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份.问:一共有多少种不同的订法?4.图上有两条垂直相交的直线段AB、CD,交点为E(如下图).已知:DE=2CE,BE=3AE.在AB和CD上取3个点画一个三角形.问:怎样取这3个点,画出的三角形面积最大?5.如下图中有两个红色的圆,两个蓝色的圆,红色圆的直径分别是1992厘米和1949厘米,蓝色圆的直径分别是1990厘米和1951厘米.问:红色二圆面积大还是蓝色二圆面积大?6.在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来(如下图),填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?7.能不能在下式:1□2□3□4□5□6□7□8□9=10的每个方框中,分别填入加号或减号,使等式成立?8.把一个时钟改装成一个玩具钟(如右图),使得时针每转一圈,分针转16圈,秒针转36圈.开始时3针重合.问:在时针旋转一周的过程中,3针重合了几次?(不计起始和终止的位置).9.将1,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍.问:最小的和是多少?10.这是一个棋盘,将一个白子和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上.问:共有多少种不同的放法(如下图)?11.这是两个圆,它们的面积之和为1991平方厘米,小圆的周长是大圆周长的90%(如右图).问:大圆的面积是多少?12.有一根1米长的木条,第一次去掉它的,第二次去掉余下木条的;第三次又去掉第二次余下木条的,等等;这样一直下去,最后一次去掉上次余下木条的.问:这根木条最后还剩下多长?13.这是一个楼梯的截面图(如下图),高2.8米,每级台阶的宽和高都是20厘米.问:此楼梯截面的面积是多少?14.请找出6个不同的自然数,分别填入6个括号中,使这个等式成立.第04届华罗庚金杯少年数学邀请赛团体决赛口试1.2×3×5×7×11×13×17这个算式中有七个数连乘,请回答:最后得到的乘积中,所有数位上的数字和是多少?请讲一讲你是怎样算的?2.这是一个中国象棋盘(图中小方格都是相等的正方形,“界河”的宽等于小正方形边长),黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12, 13,14中的两个位置.问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种形状的短管(加工损耗忽略不计)问:剩余部分的管子最少是多少厘米?4.乙两人同时从A出发向B行进,甲速度始终不变,乙在走前面路程时,速度为甲的2倍,而走后面路程时,速度是甲的,问甲、乙二人谁选到B?请你说明理由。
第十六届华罗庚金杯少年数学邀请赛决赛试题(深圳赛区小学组)(时间: 2011年4月16日)一、填空(每题 10 分, 共80分)1.11122181819 .2320320192020⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.甲车从A 出发驶向B,往返来回;乙车从B 同时出发驶向A,往返来回.两车第一次相遇后,甲车继续行驶4小时到达B ,乙车继续行驶1小时到达A. 若A,B 两地相距100千米,那么当甲车第一次到达B 时,乙车的位置距离A 千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下15个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共2011个,排版完成后有剩余.那么,这本书最多有页.最少剩余 个铅字.4. 一列数:8,3,1,4,.….., 从第三个开始,每个数都是最靠近它前两个数的和的个位数.那么第2011个数是 .5.编号从1到50的50个球排成一行,现在按照如下方法涂色:1)涂2个球;2)被涂色的2个球的编号之差大于2.如果一种涂法被涂色的两个球与另一种涂法被涂色的两个球至少有一个是不同号的,这两种涂法就称为”不同的”.那么不同的涂色方法有种.6. A,B两地相距100千米。
甲车从A到B要走m个小时,乙车从A 到B要走n个小时,m ,n是整数.现在甲车从A,乙车从B同时出发,相向而行,经过5小时在途中C点相遇。
若甲车已经走过路程的一半,那么C到A路程是千米。
7. 自然数b与175的最大公约数记为d. 如果176(111)51⨯-⨯+=⨯+,b d d则b = .8. 如右图. ABCD为平行四边形.AE=2EB.若三角形CEF的面积=1.那么,平行四边形ABCD的面积= .二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.三位数的十位数字与个位数字的和等于百位数字的数,称为”好数”.共有多少个好数?10.在下列2n 个数中,最多能选出多少个数,使得被选出的数中任意两个数的比都不是2或12?2345213, 32, 32, 32, 32, 32,, 32.n -⨯⨯⨯⨯⨯⨯11 .一个四位数abcd 和它的反序数dcba 都是65 的倍数.求这个数.12. 用写有+1和-1的长方块放在10n方格中,使得每一列和每一行的数的乘积都是正的,n的最小值是多少?三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13. 十五个盒子,每个盒子装一个白球或一个黑球.,且白球不多于 12个.你可以任选三个盒子来提问:“这三个盒子中的球是否有白球?”并得到真实的回答. 那么你最少要问多少次,就能找出一个或更多的白球?14. 求与2001互质,且小于2001的所有自然数的和。
第十六届华罗庚金杯少年数学邀请赛决赛试题A 参考答案(小学组)一、 填空题 (每小题 10分,共80分)二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案: 2011平方厘米.解答. 连接FD 的直线与AE 的延长线相交于H . 则△DFG 绕点D 逆时针旋转180o 与△DHE 重合,DF=DH , ADH AFD S S ∆∆=.梯形AEGF 的面积=△AFH 的面积=2×△AFD 的面积=长方形ABCD 的面积 =2011(平方厘米).10. 答案:13种可能.解答. 分几种情形考虑.第一种情形: 线路号的数字中没有荧光管坏了. 只有351一个可能线路号. 第二种情形: 线路号的数字中有1支荧光管坏了.坏在第一位数字上, 可能的数字为9, 线路号可能是951;坏在第二位数字上, 可能的数字为6,9, 线路号可能是361, 391;坏在第三位数字上, 可能的数字为7, 线路号可能是357.第三种情形: 线路号的数字中有2支荧光管坏了.都坏在第一位数字上, 可能的数字为8, 线路号可能是851;都坏在第二位数字上, 可能的数字为8, 线路号可能是381;都坏在第三位数字上, 可能的数字为4, 线路号可能是354;坏在第一、二位数字上, 第一位数字可能的数字为9,第二位数字可能的数字为6,9, 线路号可能是961, 991;坏在第一、三位数字上, 第一位数字可能的数字为9,第三位数字可能的数字为7, 线路号可能是957;坏在第二、三位数字上,第二位数字可能的数字为6,9, 第三位数字可能的数字为7,线路号可能是367, 397.所以可能的线路号有13个:351,354,357,361,367,381,391,397,851,951,957,961,991.11. 答案: 3, 5.解答. 设这个月的第一个星期日是a 日(71≤≤a ), 则这个月内星期日的日期是a k +7, k 是自然数, 317≤+a k . 要求有三个奇数.当a =1时, 要使7k +1是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时,177+=+k a k 分别为1, 15, 29, 这时20号是星期五.当a =2时, 要使7k +2是奇数, k 为奇数, 即k 可取1, 3两个值, 7k +2不可能有三个奇数.当a =3时, 要使7k +3是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时377+=+k a k 分别为3, 17, 31, 这时20号是星期三.当74≤≤a 时, a k +7不可能有三个奇数.12. 答案: 253.解:令k m 15=, k 是自然数, 首先考虑满足下式的最大的m ,.201115151153152151≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡m m 于是.2011213152)1(1515)1(152151150151511531521512≤-=+-=+⨯-++⨯+⨯+⨯=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡k k k k k kk m m 因此.402213152≤-k k 又40224114171317152>=⨯-⨯, 40223632161316152<=⨯-⨯,得知k 最大可以取16. 当16=k 时, m =240. 注意到这时312161952363220112131520112+⨯==-=--k k . 注意到20112024131618161513151615121516152151615115161515161511516152151>=⨯+=⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡-⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 而201120081216181615121516153152151<=⨯+=⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ .所以253 是满足题目要求的n的最小值.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.答案: 312解答. 由于2+0+1+1=4 且0+1+2+3+4+6+7+8+9=40, 4≡40(mod 9), 所以, 九个不同的汉字代表的数字:0, 1, 2, 3, 4, 6, 7, 8, 9.易知:40-4=36, 36÷9=4(次), 说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1, “4=2+2”无解②华=1, “4=1+1+2”有解A:28+937+1046=2011, 可组成算式36种(6×6×1=36)B:69+738+1204=2011, 可组成算式48种(6×4×2=48)C:79+628+1304=2011, 可组成算式48种(6×4×2=48)③华=1, “4=1+2+1”有解A:46+872+1093=2011, 可组成算式36种(6×6×1=36)B:98+673+1240=2011, 可组成算式72种(6×6×2=72)C:97+684+1230=2011, 可组成算式72种(6×6×2=72)总计:72×3+96=216+96=312(种).14.解答. 如左下图, 设M, N, P分别为棱GC, GF, GH的中点, 'M, 'N, 'P 分别为棱AE, AD, AB的中点, O为正方体的中心(长方形BDHF的中心).(1)第一只蜘蛛甲可以把爬虫控制在右上图所示的范围内.首先蜘蛛甲做与爬虫关于点O的对称方向的移动, 不妨设爬虫由G沿棱GC 向点M移动, 蜘蛛甲由A沿棱AE向点'M移动, 爬虫被限制在GM上. 当爬虫到达点M时, 蜘蛛甲也同时到达点'M. 然后蜘蛛甲改变策略, 做与爬虫关于平面BDHF对称的方向移动.a) 当爬虫到达点B, D, F, H时, 蜘蛛甲捉住爬虫.b) 当爬虫未到达点B, D, F, H时, 爬虫被控制在左上图所示的范围内.(2) 蜘蛛乙先移动到点G, 由于右上图无环路, 蜘蛛乙可以跟在爬虫后面, 总可以捉住爬虫.。
第十六届华罗庚金杯少年数学邀请赛决赛试题与解答(小学组)一、填空(每题 10 分, 共 80 分)1. ⎛ 11 1 ⎫ ⎛2 2 ⎫ ⎛ 18 18 ⎫19++ +⎪ ++ +⎪ + ++⎪ +=.2 3 20 20 20 ⎝ 20 ⎭ ⎝ 3 ⎭⎝ 19 ⎭解。
⎛ 1 11 ⎫ ⎛2 2 ⎫ ⎛ 18 18 ⎫ 19++ +⎪ + + +⎪ + + +⎪+2 3 3 20 20 ⎝ 20 ⎭ ⎝ 20 ⎭ ⎝ 19 ⎭1 ⎛ 12 ⎫ ⎛ 1 23 ⎫ ⎛ 1 2 18 ⎫ ⎛ 1 219 ⎫=++⎪ +++⎪ + + ++ +⎪ + ++ +⎪2 ⎝3 3 ⎭ ⎝4 4 4 ⎭ ⎝ 19 19 19 ⎭ ⎝ 20 20 20 ⎭=12 + 1 + 1 12 + + 9 + 9 12 = 12 ⨯ (1 + 2 +3 + + 19)= 952.甲车从 A 出发驶向 B,往返来回;乙车从 B 同时出发驶向 A,往返来回.两车第一次相遇后,甲车继续行驶 4 小时到达 B ,乙车继续行驶 1 小时到达 A.若 A,B 两地相距 100 千米,那么 当甲车第一次到达 B 时,乙车的位置距离 A 千米。
解.设甲车车速为 v 1 ,乙车车速为 v 2 . 如图,第一次相遇在 C 点,则AC = v 1 , 而AC = v , BC = 4 v , v 2 = v 1 , BC 4vv 2 2 1 v 21v 2 = 2v 1.所以, 当甲车第一次到达 B 时,乙车的位置 在 B 处.距离 A100 千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下 15 个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共 2011 个,排版完成后有剩余.那么,这本书最多有 页.最少剩余 个铅字. 解.前9 页用9个铅字;从第10页到99 页, 每页用2 个铅字, 前99 页共用189 个铅字.从第100页到999 页, 每页用3 个铅字, 前k 页,100 ≤ k ≤ 999, 共用189+3( k - 99) 个铅字. 189 + 3(k - 99) < 2011, 3k < 2011 + 297 - 189 = 2119 = 3⨯ 706 +1. 答。
2011年第十六届“华罗庚金杯”少年数学邀请赛决赛试卷A(小学组)一、填空题(每小题3分,共80分)1.(3分)1+3+5+7=.2.(3分)工程队的8个人用30天完成了某项工程的,接着增加了4个人完成了其余的工程,那么完成这项工程共用了天.3.(3分)甲乙两人骑自行车同时从A地出发去B地,甲的车速是乙的车速的1.2倍.乙骑了5 千米后,自行车出现故障,耽误的时间可以骑全程的.排除故障后,乙的速度提高了60%,结果甲乙同时到达B地.那么A,B两地之间的距离为千米.4.(3分)在火车站的钟楼上装有一个电子报时钟,在圆形钟面的边界,每分钟的刻度处都有一个小彩灯,晚上9时35分20秒时,在分针与时针所夹的锐角内有个小彩灯.5.(3分)在边长为1厘米的正方形ABCD中,分别以A、B、C、D为圆心,1厘米为半径画四分之一圆,交点E、F、G、H,如图,则中间阴影部分的周长为厘米.(取圆周率π=3.141)6.(3分)用40元钱购买单价分别为2元、5元和11元的三种练习本,每种至少买一本,而且钱恰好花完.则不同的购买方法有种.7.(3分)已知某个几何体的三视图如右图,根据图中标示的尺寸(单位:厘米),这个几何体的体积是(立方厘米)8.(3分)将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数),在形成的11个分数中,分数值为整数的最多能有个二、解答下列各题(每题10分,共40分,要求写出简要过程)9.长方形ABCD的面积是2011平方厘米.梯形AFGE的顶点F在BC上,D 是腰EG的中点.试求梯形AFGE的面积.10.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.某公交车的数字显示器有两支坏了的荧光管不亮,显示的线路号为“351”,则该公交车的线路号有哪些可能?11.设某年中有一个月里有三个星期日的日期为奇数,则这个月的20日可能是星期几?12.以[x]表示不超过x的最大整数,设自然数n满足[]+[]+[]+…+[]+[]>2011,则n的最小值是多少?三、解答下列各题(每小题0分,共30分,要求写出详细过程)13.在如图的加法竖式中,不同的汉字代表不同的数字.问:满足要求的不同算式共有多少种?14.如图,两只蜘蛛同处在一个正方体的顶点A,而一只爬虫处在A的体对顶点G,假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动,任何时候它们都知道彼此的位置,蜘蛛能预判爬虫的爬行方向,试给出一个两只蜘蛛必定捉住爬虫的方案.2011年第十六届“华罗庚金杯”少年数学邀请赛决赛试卷A(小学组)参考答案与试题解析一、填空题(每小题3分,共80分)1.(3分)1+3+5+7=18.【分析】根据加法结合律和加法交换律进行计算.【解答】解:1+3+5+7=1++3++5++7+=(1+3+5+7)+(+++)=16+2=18故答案为:18.2.(3分)工程队的8个人用30天完成了某项工程的,接着增加了4个人完成了其余的工程,那么完成这项工程共用了70 天.【分析】把这项工程看作单位“1”,用“÷30÷8=”求出1人1天的工作效率,则12个人工作效率和为×12=,求出剩下的工作总量,然后根据:工作总量÷工作效率=工作时间“求出后来用的时间,进而求出完成这项工程共用的时间.【解答】解:一个人的工作效率是÷30÷8=,12个人的工作效率和为×12=,共需:(1﹣)÷+30=40+30=70(天)答:一共用了70天.故答案为:70.3.(3分)甲乙两人骑自行车同时从A地出发去B地,甲的车速是乙的车速的1.2倍.乙骑了5 千米后,自行车出现故障,耽误的时间可以骑全程的.排除故障后,乙的速度提高了60%,结果甲乙同时到达B地.那么A,B两地之间的距离为45 千米.【分析】根据题意可知,甲乙的车速比是1.2:1=6:5,所以所用时间比为5:6,不妨设甲用时5t,则乙原定时间为6t,乙因故障耽误的时间为×6t=t,而最后全程用时5t,所以故障排除后,乙的提速使它节省了2t 的时间.提速后的速度与原来速度比为1.6:1=8:5,所以时间比为5:8,节省了三份的时间,所以每份为t,所以这段路原计划用时t×8=t,所以一开始的5千米原计划用时是6t﹣t=t,所以A、B之间的距离为5×(6t÷t),然后计算即可.【解答】解:甲乙的车速比是1.2:1=6:5,所以所用时间比为5:6;设甲用时5t,则乙原定时间为6t;乙因故障耽误的时间为×6t=t,而最后全程用时5t,所以故障排除后,乙的提速使它节省了2t的时间.提速后的速度与原来速度比为1.6:1=8:5,所以时间比为5:8,节省了三份的时间,所以每份为t,所以这段路原计划用时t×8=t,所以一开始的5千米原计划用时是6t﹣t=t,所以A、B之间的距离为:5×(6t÷t),=5×9,=45(千米);故答案为:45.4.(3分)在火车站的钟楼上装有一个电子报时钟,在圆形钟面的边界,每分钟的刻度处都有一个小彩灯,晚上9时35分20秒时,在分针与时针所夹的锐角内有12 个小彩灯.【分析】先求出晚上9时35分20秒时针与分针所夹的角;再根据表盘共被分成60小格,每一大格所对角的度数为30°,每一小格所对角的度数为6°,即可求出晚上9时35分20秒时针与分针间隔的分钟的刻度,从而求出晚上9时35分20秒时,时针与分针所夹的角内装有的小彩灯个数.【解答】解:晚上9时35分20秒时,时针与分针所夹的角为:9×30°+35×0.5°+20×0.5°÷60﹣(7×30°+20×6°÷60)=270°+17.5°+10°÷60﹣210°﹣2°=(75)°(75)°÷6≈12(个).故在分针与时针所夹的锐角内有12个小彩灯.故答案为:12.5.(3分)在边长为1厘米的正方形ABCD中,分别以A、B、C、D为圆心,1厘米为半径画四分之一圆,交点E、F、G、H,如图,则中间阴影部分的周长为 2.094 厘米.(取圆周率π=3.141)【分析】如图所示:由题意很容易就可以得出△ABF为等边三角形,则弧为圆,同理弧也为圆,所以弧=+﹣=圆,同理其余三段也为圆,故周长=圆,再据圆的周长公式即可得解.【解答】解:依题易知△ABF为等边三角形,故弧为圆,同理弧也为圆,所以弧=+﹣=圆,同理其余三段也为圆,故阴影部分的周长=圆×4=圆==2.094(厘米);答:中间阴影部分的周长为 2.094厘米.6.(3分)用40元钱购买单价分别为2元、5元和11元的三种练习本,每种至少买一本,而且钱恰好花完.则不同的购买方法有 5 种.【分析】每种先都减去1本,剩余40﹣2﹣5﹣11=22元.然后根据剩余的钱数,分类解答,解决问题.【解答】解:每种先都减去1本,剩余40﹣2﹣5﹣11=22元.如果再买2本11元的,恰好用完,计1种方法;如果再买1本11元的,剩余11元,可以买1本5元和3本2元,计1种方法;如果不再买11元的,22元最多买4本5元的,5元的本数可以是4,2,0,计3种方法.共有1+1+3=5种方法.答:不同的购买方法有5种.7.(3分)已知某个几何体的三视图如右图,根据图中标示的尺寸(单位:厘米),这个几何体的体积是2666(立方厘米)【分析】由三视图可知,该几何体为四棱锥,分别确定底面积和高,利用锥体的体积公式求解即可.【解答】解:由三视图可知,该几何体为四棱锥,底面ABCD为边长为20cm 的正方体,OE⊥CD且E是CD的中点,所以棱锥的高OE=20cm.所以四棱锥的体积为×202×20=×400×20=2666(cm3).答:这个几何体的体积是2666cm3.故答案为:2666.8.(3分)将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数),在形成的11个分数中,分数值为整数的最多能有10 个【分析】分值为整数,说明分母是分子的约数.大于11的质数13、17、19要想构成分值为整数的分数,只能做1的分子.然后写出这几个数即可.【解答】解:根据分析可知,22个数最多能构成的整数为:,,,,,,,,,.所以分数值为整数的最多能有10个.故答案为:10.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.长方形ABCD的面积是2011平方厘米.梯形AFGE的顶点F在BC上,D 是腰EG的中点.试求梯形AFGE的面积.【分析】根据题意可连接DF,三角形ADF和长方形ABCD是同底等高的,因此可知三角形ADF的面积是长方形ABCD面积的一半,因为点D是EG的中点,AE平行与FG,所以三角形ADF也是梯形AFGE面积的一半,因为点D是线段EG的中点,所以三角形ADE和三角形DGF的面积就为梯形AFGE 面积的一半,即梯形的面积等于长方形的面积,据此解答即可.【解答】解:如图,连接DF.三角形ADF=2011÷2=1005.5(平方厘米),因为点D为EG的中点,所以三角形AED+三角形DFG=1005.5(平方厘米),梯形AFGE的面积:1005.5+1005.5=2011(平方厘米),答:梯形AFGE的面积是2011平方厘米.10.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.某公交车的数字显示器有两支坏了的荧光管不亮,显示的线路号为“351”,则该公交车的线路号有哪些可能?【分析】显示的百位数字3有一处坏,可能是9,有两处坏可能是8;十位数字5,有一处坏,可能是6和9,有两处坏,可能是8;个位数字1,有一处坏可能是7,有两处坏可能是4;在不亮的灯管中可能应该都不亮,可能有一处该亮却没亮,可能有2处该亮却没亮,分三种可能情况,细致分析,即可得解.【解答】解:分三种情形考虑.第一种情形:线路号的数字中没有荧光管坏了.只有351 一个可能线路号.第二种情形:线路号的数字中有1 支荧光管坏了.坏在第一位数字上,可能的数字为9,线路号可能是951;坏在第二位数字上,可能的数字为6,9,线路号可能是361,391;坏在第三位数字上,可能的数字为7,线路号可能是357.第三种情形:线路号的数字中有2 支荧光管坏了.都坏在第一位数字上,可能的数字为8,线路号可能是851;都坏在第二位数字上,可能的数字为8,线路号可能是381;都坏在第三位数字上,可能的数字为4,线路号可能是354;坏在第一、二位数字上,第一位数字可能的数字为9,第二位数字可能的数字为6,9,线路号可能是961,991;坏在第一、三位数字上,第一位数字可能的数字为9,第三位数字可能的数字为7,线路号可能是957;坏在第二、三位数字上,第二位数字可能的数字为6,9,第三位数字可能的数字为7,线路号可能是367,397.所以可能的线路号有13 个:351,354,357,361,367,381,391,397,851,951,957,961,991.答:则该公交车的线路号有13种可能.11.设某年中有一个月里有三个星期日的日期为奇数,则这个月的20日可能是星期几?【分析】有三个星期日的日期为奇数,这三个星期日应是不相邻的.并且两个奇数周日之间应相隔14天.故可设第一个周日为x,那么第二个周日为x+14,则第三个周日为x+28,第三个周日的日期应不大于31.【解答】解:因为每个周日的间隔是7日,所以若一个月中有三个星期日为奇数,则这三个星期日必定不会是连续的,而是两个奇数周日间间隔14日,一个月最多31日,设第一个周日为x,那么第二个周日为x+14,则第三个周日为x+28,所以x+28≤31,解得x≤3;这样第一个星期日可以是1号或3号.如果第一个星期日是1号,那么该月的20号是星期五;如果第一个星期日是3号(此时本月有31天),那么该月的20号是星期三.故这个月的20日可能是星期五或星期三(此时本月有31天).12.以[x]表示不超过x的最大整数,设自然数n满足[]+[]+[]+…+[]+[]>2011,则n的最小值是多少?【分析】观察:[]=0,[]=0,…,[]=0,前14个数的和为0 []=1,[]=[1]=1,…,[]=[1]=1,这15个数都是1,之和为1×15=15,[]=2,[]=[2]=2,…,[]=[2]=2,这15个数都是2,之和为2×15=30,…观察可以得到,规律是间隔15个增加1,(1+2+3+…+15)×15=1800,(1+2+3+…+15+16)×15=2040,2040>2011,因此整数部分加到15,只是达到1800,继续往下到达整数部分是16,2011﹣1800=211,211÷16=13.1875,那么要取14个,即最少取到16,才能保证大于2011,则n最下值是:16×15+13=253.【解答】解:(1+2+3+…+15)×15=1800,(1+2+3+…+15+16)×15=2040,2040>2011,那么整数部分到16,2011﹣1800=211,211÷16=13.1875,即最少取到16,才能保证大于2011,则n最下值是:16×15+13=253.答:自然数n的最小值是253.三、解答下列各题(每小题0分,共30分,要求写出详细过程)13.在如图的加法竖式中,不同的汉字代表不同的数字.问:满足要求的不同算式共有多少种?【分析】由于2+0+1+1=4 且 0+1+2+3+4+6+7+8+9=40,4≡40(mod 9),所以,九个不同的汉字代表的数字:0,1,2,3,4,6,7,8,9.易知:40﹣4=36,36÷9=4(次),说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1,“4=2+2”无解②华=1,“4=1+1+2”有解,据此分析讨论即可解答问题.【解答】解:由于2+0+1+1=4 且 0+1+2+3+4+6+7+8+9=40,4≡40(mod 9),所以,九个不同的汉字代表的数字:0,1,2,3,4,6,7,8,9.易知:40﹣4=36,36÷9=4(次),说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1,“4=2+2”无解②华=1,“4=1+1+2”有解A:28+937+1046=2011,可组成算式36 种(6×6×1=36)B:69+738+1204=2011,可组成算式48 种(6×4×2=48)C:79+628+1304=2011,可组成算式48 种(6×4×2=48)③华=1,“4=1+2+1”有解A:46+872+1093=2011,可组成算式36 种(6×6×1=36)B:98+673+1240=2011,可组成算式72 种(6×6×2=72)C:97+684+1230=2011,可组成算式72 种(6×6×2=72)总计:72×3+96=216+96=312(种).答:一共有312种.14.如图,两只蜘蛛同处在一个正方体的顶点A,而一只爬虫处在A的体对顶点G,假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动,任何时候它们都知道彼此的位置,蜘蛛能预判爬虫的爬行方向,试给出一个两只蜘蛛必定捉住爬虫的方案.【分析】根据题意,可假设一只蜘蛛先不动另一只蜘蛛去追击沿着棱去追击虫子,不论虫子如何逃跑,虫子和追击的蜘蛛始终能保持的最大距离为2个棱的长度,随着爬虫的移动,爬虫必然和等待的蜘蛛会出现最小距离为1个棱的长度,此时即可抓到虫子.【解答】解:其中一只蜘蛛先不动,控制正方体的其中一个面,我们定义这个面为A1面,另一只蜘蛛开始向A1面的相对的面爬行,我们定义这个相对的面为A2面;这时2只蜘蛛,每个蜘蛛控制一个面,不论虫子如何移动,必然会移动到A1面或者A2面;于是必然有一个蜘蛛和虫子处于一个面,这时处于一个面的蜘蛛(设追击的蜘蛛为B1)开始追击虫子,另一个面的蜘蛛则不动,不论虫子如何逃跑,虫子和追击的蜘蛛始终能保持的最大距离为2个棱的长度,随着爬虫的移动,爬虫必然和等待的蜘蛛会出现最小距离为1个棱的长度,这时等待的蜘蛛出击,必然能抓到虫子.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:54:16;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。