幂函数的图像与性质
- 格式:docx
- 大小:193.32 KB
- 文档页数:8
幂函数的图像与性质一: 核心梳理、茅塞顿开1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且;②正数的负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质①a r a s =a r+s (a>0,r 、s ∈Q);②(a r )s =a rs (a>0,r 、s ∈Q); ③(ab)r =a r b s (a>0,b>0,r ∈Q);.n 为奇数 n 为偶数例2 (1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aaab b ba a ⋅⋅⨯-÷++--变式:(2007执信A )化简下列各式(其中各字母均为正数):(1);)(65312121132b a ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)100.256371.5()86-⨯-+(三)幂函数 1、幂函数的定义形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。
例题、(1). 下列函数中不是幂函数的是( )A.y = B .3y x = C .2y x = D .1y x -=答案:C例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =- 变式训练:已知函数()()2223m m f x m m x--=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。
根据幂函数的图像性质知识点及题型归纳
总结
一、幂函数的定义和性质
幂函数是指形如y = x^n的函数,其中n为实数且n≠0.
幂函数的图像性质包括:
- 当n为正数时,函数的图像呈现单调递增或单调递减的曲线,取决于n的奇偶性。
- 当n为负数时,函数的图像在第一象限和第三象限中单调递减,而在第二象限和第四象限中单调递增。
- 当n为正偶数时,函数的图像在第一象限中单调递增,而在
第二、三、四象限中单调递减。
- 当n为正奇数时,函数的图像在第一、二象限中单调递增,
而在第三、四象限中单调递减。
二、幂函数的题型归纳
1.求函数的定义域和值域。
2.求函数的单调性和极值点。
3.求函数的图像关于坐标轴的对称性。
4.求函数在某个区间上的最值。
5.根据函数的图像绘制函数的对称轴、渐近线等特征。
6.解方程和不等式中涉及到的幂函数。
以上是根据幂函数的图像性质所归纳总结的知识点和题型。
请在研究和解题过程中注意相关的特性和规律,并灵活运用于实际问题的解决中。
幂函数分数指数幂正分数指数幂的意义是:m na =0a >,m 、n N ∈,且1n >)负分数指数幂的意义是:mn a-=(0a >,m 、n N ∈,且1n >)1、 幂函数的图像与性质幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当112,1,,,323n =±±±的图像和性质,列表如下.从中可以归纳出以下结论:① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 任何两个幂函数最多有三个公共点.0n <幂函数基本性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横",即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型.2、 幂函数的应用OxyOx yOxy例1、 幂函数n my x =(m 、n N ∈,且m 、n 互质)的图象在第一,二象限,且不经过原点,则有( ) ()A m 、n 为奇数且1mn<()B m 为偶数,n 为奇数,且1m n > ()C m 为偶数,n 为奇数,且1mn <()D m 奇数,n 为偶数,且1mn>例2、 右图为幂函数y x α=,,,a b c d 的大小关系是 ( )()A a b c d >>> ()B b a d c >>> ()C a b d c >>>()D a d c b >>>解:取12x =, 由图像可知:11112222cdba⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,a b d c ⇒>>>,应选()C .例3、 比较下列各组数的大小:(1)131.5,131.7,1;(2)()37,(37,()37;(3)23-⎛ ⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1--.解:(1)底数不同,指数相同的数比大小, 可以转化为同一幂函数,不同函数值的大小问题. ∵13y x =在()0,+∞上单调递增,且1.7 1.51>>,∴11331.7 1.51>>.(2)底数均为负数,可以将其转化为()3377=-,()3377=-,()3377=-.∵37y x =在()0,+∞上单调递增,且>b c∴)333777>>,即))333777-<-<-,∴(()()333777<<.(3)先将指数统一,底数化成正数.2233--⎛= ⎝⎭⎝⎭,2233101077--⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,()()42331.1 1.21---=. ∵23y x -=在()0,+∞上单调递减,且7 1.21102<<,∴()2232337 1.21102---⎛⎛⎫>> ⎪ ⎝⎭⎝⎭,即:()2234337 1.1102---⎛⎫⎛⎫->>- ⎪ ⎪⎪⎝⎭⎝⎭.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例4、 若()()1133132a a --+<-,求实数a 的取值范围.分析:若1133x y --<,则有三种情况0x y <<,0y x <<或0y x <<. 解:根据幂函数的性质,有三种可能:10320a a +<⎧⎨->⎩或10320132a a a a +<⎧⎪-<⎨⎪+>-⎩或10320132a a a a+>⎧⎪->⎨⎪+>-⎩,解得:()23,1,32a ⎛⎫-∞- ⎪⎝∈⎭.例3.已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.解:∵幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点, ∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称, ∴223m m --是奇数,∴0m =或2m =.f (x )=x 3, (1)求它的反函数;(2)分别求出f -1(x )=f (x ),f -1(x )>f (x ),f -1(x )<f (x )的实数x 的范围. 解析:(1)由y =x 3两边同时开三次方得x =3y ,∴f -1(x )=x 31. (2)∵函数f (x )=x 3和f -1(x )=x 31的图象都经过点(0,0)和(1,1). ∴f -1(x )=f (x )时,x =±1及0;在同一个坐标系中画出两个函数图象,由图可知 f -1(x )>f (x )时,x <-1或0<x <1; f -1(x )<f (x )时,x >1或-1<x <0.点评:本题在确定x 的范围时,采用了数形结合的方法,若采用解不等式或方程则较为麻烦.y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法. 【同步练习】1. 下列函数中不是幂函数的是( )A.y = B.3y x = C.2y x = D.1y x -= 答案:C2. 下列函数在(),0-∞上为减函数的是( )A.13y x = B.2y x = C.3y x = D.2y x -= 答案:B3. 下列幂函数中定义域为{}0x x >的是( )A.23y x = B.32y x = C.23y x -= D.32y x -= 答案:D4.函数y =(x 2-2x )21-的定义域是( )A .{x |x ≠0或x ≠2}B .(-∞,0) (2,+∞)C .(-∞,0)] [2,+∞]D .(0,2)解析:函数可化为根式形式,即可得定义域. 答案:B5.函数y =(1-x 2)21的值域是( )A .[0,+∞]B .(0,1)C .(0,1)D .[0,1] 解析:这是复合函数求值域问题,利用换元法,令t =1-x 2,则y =t . ∵-1≤x ≤1,∴0≤t ≤1,∴0≤y ≤1. 答案:D6.函数y =52x 的单调递减区间为( )A .(-∞,1)B .(-∞,0)C .[0,+∞]D .(-∞,+∞) 解析:函数y =52x 是偶函数,且在[0,+∞)上单调递增,由对称性可知选B . 答案:B 7.若a 21<a21-,则a 的取值范围是( )A .a ≥1B .a >0C .1>a >0D .1≥a ≥0 解析:运用指数函数的性质,选C .答案:C8.函数y =32)215(x x -+的定义域是 。
幂函数9种图像总结幂函数是数学中的常见函数,定义如下:f(x) = x^n (n为实数)由于幂函数的图像有很多种,它们的图像类型主要有以下9种:一、指数函数图像如果n是正数,则幂函数称为指数函数。
它的图像表示为以x轴正半轴为起点向右曲线,曲线上的点接近线段。
二、平行于x轴的函数图像如果n为0,则幂函数的图像是一条平行于x轴的直线。
x轴正方向为函数的上升方向,x轴负方向为函数的下降方向。
三、单调递减函数图像如果n为负数,则幂函数可以表示为单调递减函数,也就是说曲线上的点是从右到左依次递减的。
四、交叉递增函数图像如果n为偶数,则幂函数可以表示为交叉递增函数,也就是说曲线上的点是从左到右依次递增的。
五、不规则曲线函数图像当n是奇数时,幂函数的图像就是一条不规则的曲线,曲线的形状随着n的增加而变化。
六、抛物线函数图像如果n为正奇数,则幂函数的图像表示为以x轴正半轴为焦点的抛物线,即x轴正方向为函数上升方向,x轴负方向为函数下降方向。
七、抛物线函数图像如果n为负奇数,幂函数的图像表示为以x轴负半轴为焦点的抛物线,即x轴正方向为函数下降方向,x轴负方向为函数上升方向。
八、椭圆函数图像如果n取任意实数值,幂函数的图像表示为一个椭圆,椭圆的长轴与x轴的负半轴平行,而短轴则与x轴的正半轴平行。
九、双曲线函数图像如果n为负偶数,则幂函数的图像表示为一条双曲线,双曲线一端接近x轴正半轴,另一端接近x轴负半轴。
以上就是幂函数的9种图像总结,它们分别可以用于不同环境中诸多数学问题的求解。
例如,如果要求某个函数图像的最高点,则可以使用抛物线函数图像来判断最高点的位置;如果要求某个函数的单调性,则可以使用单调递减函数图像来判断函数的单调性。
由此可见,幂函数的9种图像都具有其独特的特征,在不同的环境下都有不同的应用,其重要性不言而喻。
因此,对于学习数学知识的人来说,要掌握幂函数的9种图像是非常重要的。
只有彻底掌握这些图像,才能更好地理解数学知识,为解决数学问题提供有效的帮助。
学习幂函数,图像是关键。
y=xa(a≠0、1)在第一象限的图像可以分为三类:
只要掌握了这三种情况,然后根据幂函数的奇偶性,就可作出y=xa(a≠0、1)在其定义域内的完整图像,这时它的一切属性将是直观、显然的。
幂函数的图像一定经过第一象限,且一定不经过第四象限。
幂函数y=xa。
α只能从(±3,±2,±1,±1/2,±1/3)中取值。
幂函数y=x的图像表(见右表):
在记忆这个表时要记住两点:
其一,图像的形态:
当n/m<1时,y=x在第一象限的图像下凹,呈上升趋势。
当0<n/m时,y=x在第一象限的图像下凸,呈上升趋势。
当n/m<0时,y=x在第一象限的图像下凹,呈下降趋势。
其二,图像所在的象限。
用一句话可以简单概括为:奇偶图在第一象限,偶奇图在第一、二象限,奇奇图在第一、三象限。
幂函数的图像与性质 Prepared on 22 November 2020【知识结构】1.有理数指数幂 (1)幂的有关概念①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质①a r a s =a r+s (a>0,r 、s ∈Q );②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );.例2 (1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aaab b ba a ⋅⋅⨯-÷++--变式:(2007执信A )化简下列各式(其中各字母均为正数):(1);)(65312121132b a ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)100.256371.5()86-⨯-+(三)幂函数 1、幂函数的定义形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。
例1.下列函数中不是幂函数的是( )A.y = B .3y x = C .2y x = D .1y x -=例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数;变式 已知幂函数2223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数y =_______. 2.幂函数的图像幂函数y =x α的图象由于α的值不同而不同.α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立;3、幂函数的性质例3.比较大小:(1)11221.5,1.7 (2)33( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.530.5,3,log 0.54.幂函数的性质及其应用 幂函数y =x α有下列性质:(1) 单调性:当α>0时,函数在(0,+∞)上单调递增;当α<0时,函数在(0,+∞)上单调递减.(2)奇偶性:幂函数中既有奇函数,又有偶函数,也有非奇非偶函数,可以用函数奇偶性的定义进行判断.例4.已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.例5.已知幂函数2()m y x m -=∈N 的图象与x y ,轴都无交点,且关于y 轴对称,求m 的值,并画出它的图象.变式:已知幂函数f(x)=x 322--m m (m ∈Z )为偶函数,且在区间(0,+∞)上是单调减函数.(1)求函数f(x);(2)讨论F (x )=a)()(x xf bx f -的奇偶性. 5.规律方法(1).幂函数y =x α(α=0,1)的图象 (2).幂函数(,,,a q qy x a p q N p p*==∈为最简分式)的图象 6.性质:(1)幂函数的图象都过点 ;任何幂函数都不过 象限; (2)当0a >时,幂函数在[0,)+∞上 ;当0a <时,幂函数在(0,)+∞上 ;(3)当2,2a =-时,幂函数是 ;当11,1,3,3a =-时,幂函数是 .例6右图为幂函数y x α=在第一象限的图像,则,,,a b c d 的大小关系是( ) 例7 若点在幂函数的图象上,点在幂函数的图象上,定义,试求函数的最大值以及单调区间。
例8 若函数在区间上是递减函数,求实数的取值范围。
【巩固练习】1.在函数22031,3,,y y x y x x y x x===-=中,幂函数的个数为 ( ) A .0B .1C .2D .32、幂函数的图象都经过点( )A .(1,1)B .(0,1)C .(0,0)D .(1,0)3、幂函数25-=xy 的定义域为( )A .(0,+)B .[0,+)C .RD .(-,0)U (0,+)4.若幂函数()a f x x =在()0,+∞上是增函数,则 ( ) A .a >0 B .a <0 C .a =0 D .不能确定5.若幂函数()1m f x x -=在(0,+∞)上是减函数,则 ( ) A .m >1 B .m <1C .m =lD .不能确定xOy6.若函数f (x )=x 3(x ∈R),则函数y =f (-x )在其定义域上是( )A .单调递减的偶函数B .单调递减的奇函数C .单调递增的偶函数D .单调递增的奇函数 7.已知幂函数f (x )=x α的部分对应值如下表:x 1 f (x )1则不等式f (|x |)≤2的解集是( ) A .{x |-4≤x ≤4} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |0<x ≤2}8.如果幂函数y =(m 2-3m +3) 的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =19、当x ∈(1,+∞)时,函数)y =a x 的图象恒在直线y =x 的下方,则a 的取值范围是 A 、a <1B 、0<a <1C 、a >0D 、a <0二、填空题: 11、若21)1(-+a <21)23(--a ,则a 的取值范围是____;12.函数23-=xy 的定义域为___________.(A ) (B ) (C ) (D ) (E ) (F )13.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.14.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m , n 的大小关系为________.幂函数的性质与图像测试一、填空题1.若幂函数()y f x =的图像过点22⎛⎫⎪ ⎪⎝⎭,则函数()y f x =的解析式为__________.2.已知函数()()22144m m f x m m x --=--是幂函数,则实数m 的值为__________.3.幂函数223nn y x --=()n N ∈的图像与两坐标无交点且关于y 轴对称,则n 的值等于_________.4.设1112,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,已知幂函数()f x x α=是偶函数,且在区间()0,+∞上是减函数,则满足要求的α值的个数是__________.5.已知函数()1a xf x x a -=--的图像的对称中心是()3,1-,则函数()f x 的单调递减区间是_________.6.已知幂函数()y x R αα=∈的图像当01x <<时,在直线y x =的上方;当1x >时在直线y x =的下方,则α的取值范围是__________.7.函数y =12y x =的图像向__________平移________个单位. 8.已知()()1133132x x --+<-,则实数x 的取值范围是_________.二、选择题9.如图,M 、N 、P 、Q 分别为幂函数图像上的点,且他们的纵坐标相同,若四个幂函数为①3y x -=;②2y x -=;③23y x -=;④13y x -=,则M 、N 、P 、Q 与四个函数序号的对应顺序只可能是( ).(A )①②③④ (B)②③④① (C)②①③④(D)③②①④10.下列函数中,是奇函数且在()0,+∞上是增函数的是( ). (A)53y x -= (B) 53y x = (C)54y x =(D)43y x =11.当()1,x ∈+∞时,下列函数的图像全在直线y x =下方且为偶函数的是( ). (A)12y x =(B) 4y x -= (C)4y x = (D)1y x -=12.设()y f x =和()y g x =是两个不同的幂函数,集合()(){}|M x f x g x ==,则集合M 中元素的个数是( ) (A)1或2或0 (B) 1或2或3 (C)1或2或3或4 (D)0或1或2或3三、解答题13.研究函数23y x =的定义域、值域、奇偶性和单调性,并画出其大致图像.。