2011年七年级数学下册第六单元检测题及答案
- 格式:doc
- 大小:139.50 KB
- 文档页数:5
七年级数学(下)第六章《实数》达标测试卷时间:100分钟 满分:120分一、选择题(每题3分,共30分) 1.下列各数中为无理数的是( )A.9B .3.14C .πD .02.在实数-13,-1,0,3中,最小的实数是( )A .-1B .0C .-13D. 33.116的平方根是( )A .±12B .±14C.14 D.12 4.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间6.下列等式正确的是( )A.22=2B.33=3C.44=4D.55=57.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0 8.制作一个表面积为30 cm 2的无盖正方体纸盒,则这个正方体纸盒的棱长是( ) A. 6 cmB. 5 cmC.30 cmD .±5 cm9.已知x -1的立方根是1,2y +2的算术平方根是4,则x +y 的平方根是( )A .9B .±9C .±3D .310.已知实数a,b在数轴上对应的点的位置如图所示,则下列式子正确的是()(第10题)A.ab>0 B.a+b<0 C.|a|<|b| D.a-b>0二、填空题(每题3分,共24分)11.4的算术平方根是_______,9的平方根是_______,-8的立方根是_______.12.已知a为实数,若-a2有意义,则-a2=________.13.计算:|2-3|+2=________.14.一个正数的平方根分别是x+1和x-5,则x=________.15.实数28-2的整数部分是________.16.如图,数轴上A,B两点之间表示整数的点有________个.(第16题)17.已知 2 019≈44.93,201.9≈14.21,那么20.19≈__________.18.一个数值转换器,原理如图所示.当输入x为512时,输出y的值是________.(第18题)三、解答题(19题16分,20,22题每题8分,21,23题每题10分,24题14分,共66分)19.计算:(1)0.09+38-14;(2) 33-2(3-1);(3)|3-32|-32-(-5)2;(4)214-(-2)4+31-1927-(-1)2 019.20.求下列各式中x的值:(1)(x+2)3+1=7 8;(2)25(x2-1)=24.21.已知|2a+b|与3b+12互为相反数.(1)求2a-3b的平方根;(2)解关于x的方程ax2+4b-2=0.22.座钟的摆摆动一个来回所需的时间称为一个周期,其计算公式为T=2πl g,其中T表示周期(单位:s),l表示摆长(单位:m),g≈9.8 m/s2.假如一台座钟的摆长为0.5 m,它每摆动一个来回发出一次滴答声,那么在一分钟内,该座钟大约发出多少次滴答声(可利用计算器计算,其中π≈3.14)?23.如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2)2的值.(第23题)24.你能找出规律吗?(1)计算:9×16=________,9×16=________;25×36=________,25×36=________.(2)请按找到的规律计算:①5×125;②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.答案一、1. C 2. A 3. A 4. D 5. C 6. A7.A8. A9. C10.D点拨:根据a,b在数轴上对应的点的位置可知1<a<2,-1<b <0,∴ab<0,a+b>0,|a|>|b|,a-b>0.故选D.二、11. 2;±3;-212. 013. 314.215. 316. 417. 4.4918. 3 2三、19.解:(1)原式=0.3+2-12=1.8;(2)原式=33-23+2=3+2;(3)原式=32-3-32-5=-8;(4)原式=94-16+3827-(-1)=32-4+23+1=-56.20.解:(1)(x+2)3=-18,x+2=-12,x=-52;(2)x2-1=2425,x2=4925,x=±75.21.解:由题意,得2a+b=0,3b+12=0,解得b=-4,a=2.(1)2a-3b=2×2-3×(-4)=16,所以2a-3b的平方根为±4.(2)把b=-4,a=2代入方程,得2x2+4×(-4)-2=0,即x2=9,解得x=±3.22.解:由题意知l=0.5 m,g≈9.8 m/s2,∴T=2πlg≈2×3.14×0.59.8≈1.42(s).∴在一分钟内,该座钟大约发出601.42≈42(次)滴答声.23.解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,∴点B所表示的数比点A表示的数大2.∵点A表示-2,点B表示m,∴m=-2+2.(2)|m-1|+(m+2)2=|-2+2-1|+(-2+2+2)2=|-2+1|+4=2-1+4=2+3.24.解:(1)12;12;30;30(2)①原式=5×125=625=25;②原式=53×485=16=4.(3)40=2×2×10=2×2×10=a2b。
人教版七年级下数学第六章《实数》单元测试题及答案一、用心填一填,一定能填对:(每空1分,共53分)1. 在数轴上表示的点离原点的距离是 。
设面积为5的正方形的边长为x ,那么x =2. 如果x 2=4,则x 叫作4的 ,记作 .3.25-的相反数是 ,32-= 4. 491的算术平方根的相反数是 ,平方根的倒数是 ,平方根的绝对值是 .5. 24-的相反数的倒数是 ,这个结果的算术平方根是 .6. 当a 时,1-a 有意义,当a 时,1-a =0.7. 如果2x =5,则x = .8. 如果一个正数的一个平方根是m,那么这个数的另一个平方根是 ,这个数的算术平方根是 ,两个平方根的和是 .9. 当x >0时,x-表示x 的 ,当x <0时,3x -表示x的 . 10. 16 的负的平方根是 ,2)5(-的平方根是 . 11. 962+-x x 的平方根是 .12. 如果a x =3那么x 是a 的 ,a 是x 的 .13. 0.064的立方根是 ,1-的立方根是 ,3的立方根是 ,0的立方根是 ,9-的立方根是 .14.35是5的 ,一个数的立方根是2-,则这个数是 .15.=-364 ,=-327 ,=--3125 .16.=--33)0001.0( .17.当x 时,32-x 有意义.18、若22)3(-=a ,则a = ,若23)3(-=a ,则a = .19.=--32)125.0( .20.若12-x 是225的算术平方根,则x 的立方根是 . 21. 3343的平方根是 .22. 若x 是64125的立方根,则x 的平方根是 . 23.25-的相反数是 .24.若1.1001.102=,则=±0201.1 .25. 若x x -+有意义,则=+1x26. 1- ,-22 , 33 27. 数轴上离原点距离是5的点表示的数是 .28. 无理数a 满足14-<<-a , 请写出两个你熟悉的无理数a .二、你很聪明,一定能选对:(每小题1分,共10分)1. 0.0196的算术平方根是( )A 0.014B 0.14C 14.0-D ±0.142. 下列各式正确的是( ) A 5)5(2-=- B 15)15(2-=-- C 5)5(2±=- D 2121= 3. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是.)7(2-的算术平方根,即.7)7(2=-其中正确的是( )A ①③B ②③C ②④D ①④4. 下列说法错误的有( )①无限小数一定是无理数;②无理数一定是无限小数;③带根号的数一定是无理数;④不带根号的数一定是有理数.A ①②③B ②③④C ①③④D ①②④5. 3729--的平方根是( )A 9B 3C ±3D ±96. 若一个数的算术平方根与它的立方根相同,则这个数是( ) A 1 B 0或1 C 0 D 非负数7. 下列语句正确的是( )A 64的立方根是2.B -3是27的负的立方根。
七年级初⼀数学下册第六章单元测试卷(含答案解析)⼀、选择题(每题3分,共24分。
每题只有⼀个正确答案,请将正确答案的代号填在下⾯的表格中)题号 1 2 3 4 5 6 7 8 答案1. 下列运算正确的是()A .39±=B .33-=-C .39-=-D .932=- 2. 下列各组数中互为相反数的是()A .-2 2(2)-B .-2 38-C .-2 与12- D .2与2-3. 下列实数317,π-,14159.38,327-,21中⽆理数有()A.2个B.3个C.4个D.5个4. 实数a,b 在数轴上的位置如图所⽰,则下列结论正确的是()A . 0a b +>B . 0a b ->C . 0>abD .0>ba5. 有如下命题:①负数没有⽴⽅根;②⼀个实数的⽴⽅根不是正数就是负数;③⼀个正数或负数的⽴⽅根与这个数同号;④如果⼀个数的⽴⽅根是这个数本⾝,那么这个数是1或0。
其中错误的是()A .①②③B .①②④C .②③④D .①③④ 6. 若a 为实数,则下列式⼦中⼀定是负数的是()A .2a -B .2)1(+-aC .2a -D .)1(+--a 7. 2a a =-,则实数a 在数轴上的对应点⼀定在()A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧第六章《实数》综合测试题答题时间:90分钟满分:120分8. 请你观察、思考下列计算过程:因为112=121,所以121=11 ;因为1112=12321,所以11112321=;……,由此猜想76543211234567898= ( )A .111111B .1111111C .11111111D .111111111 ⼆、填空题(每题3分,共30) 9.81的平⽅根是。
10. _________。
11. 化简:332-= 。
12. 写出1到2之间的⼀个⽆理数___________。
第六章《实数》检测题 一、选择题(每小题只有一个正确答案) 1.4的平方根是( ).A. 2B. 2C. 2±D. 2± 2.下列运算正确的是( ) A. 9=±3 B. |﹣3|=﹣3 C. ﹣9=﹣3 D. ﹣32=93.在实数227, 3-, 32π, 39,3.14中,无理数有A. 2个B. 3个C. 4个D. 5个4.估计131+的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.如果一个实数的平方根与它的立方根相等,则这个数是( ).A. 0和1B. 正实数C. 0D. 16.对于实数a ,b ,给出以下4个判断:①若a b =,则a b =;②若a b <,则a b <; ③若281x =,则9x =;④若5m =-,则225m =,其中正确的判断有( )A. 4个B. 3个C. 2个D. 1个7.64的立方根等于( )A. 8B. 4C. 2D. ﹣28.下列说法不正确的是( )A. 214⎛⎫- ⎪⎝⎭的平方根是±14 B. -5是25的一个平方根 C. 0.9的算术平方根是0.3 D.3273-=- 9.若()225a =-, ()335b =-,则a b +的所有可能值为( ).A. 0B. -10C. 0或-10D. 0或±1010.若将三个数-3,7, 11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A. 3B. 7C. 11D. 71111.下列运算中,正确的个数是( )①25114451222-=﹣22﹣2111116442+=+ ()24-=±4;⑤3125-=﹣5.A. 0个B. 1个C. 2个D. 3个12.用计算器探索:已知按一定规律排列的20个数:1,, …, ,.如果从中选出若干个数,使它们的和<1,那么选取的数的个数最多是( ) A. 4个 B. 5个 C. 6个 D. 7个二、填空题13.计算: 101()(5)32π-----= .14.9的平方根是____;___的立方根为﹣2.15.已知a <b ,且a ,b 为两个连续整数,则a+b= __.16.若x ,y 为实数,且|x ﹣2|+(y+1)2=0的值是 __.17.观察下面的规律:0.1414≈0.4472≈,1.414≈ 4.472≈,14.14≈44.72≈≈ ;0.5477≈ 1.732≈,则≈ .三、解答题18.计算: ()201201723π-⎛⎫--- ⎪⎝⎭.19.计算:(1)201232-⎛⎫-+ ⎪⎝⎭ (2)((3)-(4)-(5)32224a ab b⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭(6)2221111a a a aa a a-+⎛⎫÷⋅ ⎪---⎝⎭20.求x的值:(1)(x-1)2=9;(2)8x3-27=021.已知某正数的两个平方根分别是2a﹣7和a+4,b﹣12的立方根为﹣2.( 1)求a、b的值;( 2)求a+b的平方根.22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?参考答案1.C 2.C 3.B 4.C 5.C 6.D 7.C 8.C 9.C 10.B 11.B 12.A13.2-14. ±3 ﹣8.15.91617.141.4;0.1732.18.9.19.解:(1)原式=214+5;(2)原式=((22- =4×3 - 9×2 =12 – 18 =-6;(3)原式=6-1+12(4)原式--=43- (5)原式= -368a b ÷2216a b = - 368a b ×2316b a = - 42a b; (6)原式=()()()111a a a a -+-• 1a a - •()()2211a a +-=()()()2111a a a -+-=11a a +-. 20. ()1 ()219,x -= 13x -=或1 3.x -=-14x =, 2 2.x =-()32827.x =3278x =3.2x == 21.(1)1a =, 4b =;(2)22.不同意李明的说法解:设面积为300平方厘米的长方形的长宽分为3x 厘米,2x 厘米,则3x •2x =300,x 2=50,解得x=400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.试题解析:解:不同意李明的说法.设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x∴长方形纸片的长为cm,∵50>49,∴7,∴21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不能用这块纸片裁出符合要求的长方形纸片.可以编辑的试卷(可以删除)。
人教版七年级数学下第六章检测题及答案解析(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分) 1. 有下列说法:(1)开方开不尽的数的方根是无理数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 2.下列结论正确的是( ) A.6)6(2-=-- B.9)3(2=-C.16)16(2±=-D.251625162=⎪⎪⎭⎫ ⎝⎛-- 3. 已知=-1,=1,=0,则的值为( )A.0 B .-1 C. D.4. 在0,2,,5这四个数中,最大的数是( )A.0B.2D. 55.下列说法正确的是( ) A. 有理数都是有限小数 B. 无限小数都是无理数 C. 无理数都是无限小数 D. 有限小数是无理数6. 若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A. 2B. 4C.±2D. ±4 7.若901k k <<+ (k 是整数),则k =( ) A. 6 B. 7 C.8 D. 98.下列各式成立的是( )A.B.C.D.9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )A .2B .8C .3D .210. 若均为正整数,且,,则的最小值是( )A.3B.4C.5D.6 二、填空题(每小题3分,共24分)11. 4的平方根是_________;4的算术平方根是__________. 12. 比较大小:________.(填“>”,“<”或“=”)13. 已知5-a +3+b ,那么.14.在中,________是无理数.15.的立方根的平方是________. 16. 若5+的小数部分是,5-的小数部分是b ,则+5b = .17. 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= . 18.若a 、b 互为相反数,c 、d 互为负倒数,则=_______.三、解答题(共46分) 19.(6分)计算:(-1)3+-12×2-2;20. (6分)已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根,求N M +的平方根.21.(6分)求出符合下列条件的数: (1)绝对值小于的所有整数之和; (2)绝对值小于的所有整数.21. (8分)求下列各数的平方根和算术平方根:.1615289169,22. (6分)求下列各数的立方根:.64,729.02718125,,-23. (6分)已知,求的值.25.(8分)先阅读下面的解题过程,然后再解答: 形如n m 2±的化简,只要我们找到两个数,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简347+.解:首先把347+化为1227+,这里7=m ,12=n , 由于,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述例题的方法化简:42213-.答案1. C 解析:本题考查对无理数的概念的理解.由于0是有理数,所以(3)应为无理数包括正无理数和负无理数.2.A 解析:选项B 中,错误;选项C 中,错误;选项D 中251625162-=⎪⎪⎭⎫ ⎝⎛--,错误; 只有A 是正确的.3. C 解析:∵∴,∴.故选C .4. B 解析:因为=1,所以在0,2,,-5这四个数中,根据正数大于0,0大于负数得,2最大,所以B 选项正确.5.C 解析:无理数是指无限不循环小数,也就是说无理数都是无限小数.6. C 解析:因为169的算术平方根为13, 所以 =13.又121的平方根为,所以 =-11, 所以4的平方根为,所以选C. 7. D 解析:∵ 81<90<100,∴ ,即910,∴ k =9.8.C 解析:因为所以,故A 不成立;因为 所以,故B 不成立;因为故C 成立; 因为所以D 不成立.9.D 解析:由题图得,64的算术平方根是8,8的算术平方根是2.故选D .10.C 解析:∵均为正整数,且,,∴ 的最小值是3,的最小值是2, ∴ 的最小值是5.故选C .11. 2± 2 解析:()2224,24,=-=∴Q 4的平方根是2±,4的算术平方根是2.12. < 解析:为黄金数,约等于0.618,=0.625,显然前者小于后者.13.8 解析:由5-a +3+b ,得,所以.14. 解析:因为所以在中,是无理数.15.解析:因为的立方根是,所以的立方根的平方是. 16. 2 解析:∵ 2<<3,∴ 7<5+<8,∴ =-2.又可得2<5-<3,∴ b =3-.将、b 的值代入+5b 可得+5b =2.故答案为2.17. 1 解析:[2☆(-4)]×[(-4)☆(-2)]=2-4×(-4)2=×16=1.18.-119. 解:原式=-1+3-12×=-1+3-3=-1. 20. 解:因为是的算术平方根, 所以又是的立方根,所以解得所以M =3,N =0,所以M + N =3. 所以M + N 的平方根为 21.解:(1)因为所以.所以绝对值小于的所有整数为所以绝对值小于的所有整数之和为(2)因为所以绝对值小于的所有整数为.22.解:因为所以平方根为因为所以的算术平方根为.因为所以平方根为因为所以的算术平方根为.因为28916917132=⎪⎭⎫⎝⎛±所以289169平方根为;1713±因为28916917132=⎪⎭⎫⎝⎛,所以289169的算术平方根为.1713 ,16811615= 因为1681492=⎪⎭⎫ ⎝⎛±所以1615平方根为;49±因为1681492=⎪⎭⎫⎝⎛,所以1615的算术平方根为.4923.解:因为8125253=⎪⎭⎫ ⎝⎛,所以8125的立方根是25.因为,271313-=⎪⎭⎫⎝⎛-所以271-的立方根是31-.因为,所以的立方根是.因为,所以的立方根是.24.解:因为,所以,即,所以.故,从而, 所以, 所以. 25.解:可知,由于,所以.。
人教版七年级数学下册第六章检测卷(含答案解析)第六章检测卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)127的立方根是()A. —3 B . 3C. ±3 D .均2. 下列实数中:倔,0, 1.414, 22耳9, n无理数有()A. 2个B . 3个C. 4个D. 5个3. 面积为2的正方形的边长在()A. 0和1之间B. 1和2之间C. 2和3之间D . 3和4之间4. 如图,四个实数m, n, p, q 在数轴上对应的点分别为M , N , P, Q.若n+ q = 0,则m, n, p, q四个实数中,绝对值最大的一个是()A. pB. qC. mD. n---- ?------- ? ---------------- ■—?------ ?P N M Q5. 若m, n满足(m—1)2+ , n—15= 0,则冷"m+ n的平方根是()A. ±4 B . ±C . 4D . 26. 下列命题中:①立方根等于它本身的数有一1, 0, 1;②负数没有立方根;③3 6= 2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1?真命题的个数有()A . 1个B . 2个C . 3个D . 4个二、填空题(本大题共6小题,每小题3分,共18分)7. _______________________ 化简:—= ______________________ ,|3—师| + ( 2 —低)= ________________________________ .&若a= b2—3,且a的算术平方根为1,则b的值是________________ .9.能够说明“ V X2= x不成立”的x的值是___________ (写出一个即可).10 .若引莎是一个正整数,则满足条件的最小正整数n = _______ .11 .若它2016~ 44.90 , 7201.6~ 14.20,则Q20.16 ~ _________ .12 .已知|x|=Q6, y是4的平方根,且|y —x|= x—y,贝U x+ y的值为_________________ .三、(本大题共5小题,每小题6分,共30分)13. 将下列各数填入相应的集合内.—7 0.32, 3, 0,品寸2,筋25, n o.ioiooioooi…(每两个1之间依次增加0)①有理数集合{…};②无理数集合{…};③负实数集合{…}.14. 计算:(1) ( —2)2—(3 —4) —L 3 —2|;(2) ( —1严7 + 3 27+ |1—,2|—.2.15 .求下列各式中x的值.2(1) (x—3) —4= 21;3(2) 27(x+ 1) + 8= 0.3 316. 若2—a=- - b—3,求b —a+ 3 的平方根.17. 一个长方体冰箱包装盒的体积为则它的长、宽、高分别为多少分米?四、(本大题共3小题,每小题8分,共24分)18. 已知表示实数a,b的点在数轴上的位置如图所示,化简19 .已知|2a+ b与 . 3b + 12互为相反数.⑴求2a—3b的平方根;1024立方分米,它的长、宽、高的比是 1 : 1 : 2,|a —b| + \ (a+ b).⑵解关于x的方程ax2+ 4b—2 = 0.20. —个正数x的两个不同的平方根分别是2a —1和一a + 2.(1)求a和x的值;⑵化简:2|a + ,2|+ |x— 2 ,2|—|3a+ x|.五、(本大题共2小题,每小题9分,共18分) 21?如图是一个数值转换器.⑴当输入的x值为16时,求输出的y值;(2) 是否存在输入的x值后,始终输不出y值?如果存在,请直接写出所有满足要求的x 值;如果不存在,请说明理由;(3) 输入一个两位数x,恰好经过两次取算术平方根才能输出y值,则x= __________ (写出一个即可).22. (1)小明将一个底面长25cm、宽16cm的长方体玻璃容器中装满水,现将一部分水倒入另一个正方体铁桶中,当铁桶装满时,玻璃容器中的水面下降了20cm,请问这个正方体铁桶的棱长是多少?(2)已知2a —1的算术平方根是3, 3a+ b —1的平方根是±4, c是,73的整数部分,求a + 2b —c2的平方根.六、(本大题共12分)23. 你能找出规律吗?(1) 计算:羽x{9= __________ ,寸4 X 9 = _______尿 X ^25= _________ ,^16 X 25 = _________ ;(2) 请按找到的规律计算:①5X 125;⑶已知a= .2, b= TO,用含a, b的式子表示40.参考答案与解析3I. A 2.B 3.B 4.A 5.B 6.A 7?—孑—1 8. ±9?—2(答案不唯一,x为负数均可)10. 3 解析:T寸72n =唇3 X 2n ,满足条件的最小正整数n= 3.II. 4.4912. 6+ 2或6 —2 解析:由凶=6, y是4的平方根,得x= , 6或x=—6, y = 2或y=—2. v |y —x| = x—y,:x= ,6, y= 2 或y= —2.当y= 2 时,x + y=^6 + 2,当y =—2 时,x+ y= 乖—2,故答案为V6+ 2或{6— 2.13. 解:①有理数集合{ —7, 0.32, 3, 0, 3 125…} . (2分)②无理数集合{{8,寸|, n 0.1010010001…每两个1之间依次增加1个o…}.(4分)③负实数集合{ —7…}. (6分)14. 解:(1)原式=4 —3+ 4 —2+ . 3= 3 + .3.(3 分)(2)原式=—1 + 3 + 2—1—,2 = 1.(6 分)15. 解:(1)移项得(x—3)2= 25 , ? x—3= 5 或x—3=—5, ? x= 8 或—2.(3 分)8 2 5⑵移项整理得(x+1)3= —2, ? x+1 = —3, ? x= — 3.(6 分)16 .解J2 —a = —b —3, ? ? ■ ■?寸2 —a = \/3 —b , (2 分)?- 2 —a = 3 —b, ?- b —a = 3 —2= 1, (4 分)? b—a + 3 = 1+ 3= 4, ? b —a+ 3 的平方根是±2.(6 分)17. 解:设长方体包装盒的长、宽、高分别是x分米、x分米、2x分米,(2分)由题意得x x -2x= 1024,解得x= 8, ? 2x= 16.(5 分)答:长方体包装盒的长、宽、高分别为8分米、8分米、16分米.(6分)18. 解:由图知b<a0 , a + b<0.(3 分)? |a —b|= a —b, . (a+ b)</a2=—(a + b)=—a— b , (6 分).??原式=a — b —a—b= —2b.(8 分)19. 解:由题意得3b+ 12= 0 , 2a+ b= 0,解得b=—4,代入2a + b= 0 得a = 2.(2 分)(1)2a —3b= 2 X 2 — 3 X (—4)= 16 , ? 2a —3b 的平方根为±4.(5 分)(2)把 b = — 4 , a = 2 代入方程,得2x2+ 4X (—4)—2= 0,即 /= 9,解得x= ±3.(8 分)2 220. 解:(1)由题意得(2a—1)+ (—a + 2)= 0,解得a =—1.(3 分)? x= (2a—1)= (—3)=9.(4 分)(2)原式=2|— 1 + .2+ |9— 2 .2|—|3X (—1)+ 9| = 2 2 —2+ 9 — 2 2 — 6 = 1.(8 分)21. 解:(1) .16= 4 , .4 = 2,则y= .2.(3 分)(2)存在.(4分)x = 0或1时,始终输不出y值.(6分)(3)25(答案不唯一)(9分)22. 解:(1)引25X 16X 20 = 38000 = 20(cm). (3 分)答:这个正方体铁桶的棱长是20cm.(4分)(2)由题意可得2a— 1 = 9 , 3a + b — 1 = 16 , c= 3 , (6 分)? a= 5 , b = 2 , (8 分)? a+ 2b —c2= 5+ 2 X 2 —32= 0,即a+ 2b —c2的平方根为0.(9 分)23 .解:(1)6 6 20 20(4 分)⑵①原式=.5 X 125 = 25.(6分)②原式=";3乂¥ = 4.(8分)⑶.40= 2X 2X 10 = 2X 2X ■_ 10= a2b.(12 分)。
一、选择题1.下列事件中,为必然事件的是()A.明天早晨,大家能看到太阳从东方冉冉升起B.成绩一直优秀的小华后天的测试成绩也一定优秀C.从能被2整除的数中,随机抽取一个数能被8整除D.从10本图书中随机抽取一本是小说2.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大3.下列事件为必然事件的是()A.掷一枚硬币,正面朝上B.打开电视机,正在播放动画片C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形D.两角及一边对应相等的两个三角形全等4.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数5.下列事件是必然事件的是()cm cm cm的三根木条能组成一个三角形A.长度分别是3,5,6B.某彩票中奖率是1%,买100张一定会中奖C.2019年女足世界杯,德国队一定能夺得冠军D.打开电视机,正在播放动画片6.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件 B.不可能事件 C.随机事件 D.无法确定7.下列事件中,是必然事件的是()A.任意掷一枚骰子一定出现奇数点 B.彩票中奖率20%,买5张一定中奖C.晚间天气预报说明天有小到中雪 D.在13同学中至少有2人生肖相同8.下列说法中正确的是()A.367人中至少有两人是同月同日生B.某商场抽奖活动的中奖率为1‰,说明每抽1000张奖券,一定有一张能中奖C.“打开电视机,正在播放《动物世界》”是必然事件D.“明天降雨的概率是80%”表示明天有80%的时间降雨9.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是()A.15B.25C.14D.32010.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球11.下列事件是必然事件的是().A.购买一张彩票中奖B.通常加热到100℃时,水沸腾C.明天一定是晴天D.任意一个三角形,其内角和是360°12.在七年(1)与七年(2)班举行拔河比赛前,根据双方的实力,环环预测:“七年(1)获胜的机会是80%”,那么下面四个说法正确的是()A.七年(2)班肯定会输掉这场比赛B.七年(1)班肯定会赢得这场比赛C.若比赛10次,则七年(1)班会赢得8次D.七年(2)班也有可能会赢得这场比赛二、填空题13.写出一个你认为的必然事件_________.14.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是()A.转盘②与转盘③B.转盘②与转盘④C.转盘③与转盘④D.转盘①与转盘④15.如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为_____.16.在一个不透明的袋子中共装有红球、黄球和蓝球320个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25 %,则估计这只袋子中有红球________.17.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是_______.18.一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有________个蓝球.19.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为_______枚.20.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为____.三、解答题21.口袋里有红,黄,绿,三种颜色的球,这些球除颜色外完全相同,其中有红球4个,绿球5个,从中任意摸出一个球是绿色的概率是14.求:(1)口袋里黄球的个数;(2)任意摸出一个球是黄球的概率.22.一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个.从袋中任意摸出1球,请问:(1)“摸出的球是白球”的概率是多少?(2)“摸出的球是黄球”的概率是多少?23.小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.24.甲,乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的三个数值为-7,-1,3.乙袋中的三张卡片上所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上的数值,把x,y分别作为点P的横坐标和纵坐标.(1)请用列表法或画树状图的方法写出点P(x,y)的所有情况;(2)求点P落在双曲线6yx=-上的概率.25.大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?26.有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.平行四边形,B.菱形,C.矩形,D.正方形,将这四张卡片背面朝上洗匀后.(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是轴对称图形的概率,并用树状图或列表法加以说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】必然发生的事件是必然事件,根据定义解答A.【详解】A、明天早晨,大家能看到太阳从东方冉冉升起是必然事件;B、成绩一直优秀的小华后天的测试成绩也一定优秀是随机事件;C、从能被2整除的数中,随机抽取一个数能被8整除是随机事件;D、从10本图书中随机抽取一本是小说是随机事件;故选:A.【点睛】此题考查必然事件定义,熟记定义、理解必然事件与随机事件发生的可能性的大小是解题的关键.2.D解析:D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是223,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.D解析:D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.掷一枚硬币,正面朝上是随机事件,;B.打开电视机,正在播放动画片是随机事件;C.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件;D.两角及一边对应相等的两个三角形全等是必然事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.5.A解析:A【解析】【分析】必然事件是一定会发生的事件,据此求解即可.【详解】A、长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,是必然事件;B、某彩票中奖率是1%,买100张一定会中奖是随机事件;C、2019年女足世界杯,德国队一定能夺得冠军,是随机事件;D、打开电视机,正在播放动画片,是随机事件,故选:A.【点睛】此题考查了概率的意义及随机事件的知识,必然事件是一定会发生的事件.6.A解析:A【解析】【分析】根据勾股定理逆定理和必然事件的概念即可求解.【详解】“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选A.【点睛】本题考查了勾股定理的逆定理及随机事件,解题的关键是掌握勾股定理逆定理和随机事件与必然事件的概念.7.D解析:D【解析】【分析】根据概率的相关知识,判断出一定会发生的事情即可解出本题答案.【详解】A. 任意掷一枚骰子一定出现奇数点,可能出现偶数点,错误;B. 彩票中奖率20%,买5张一定中奖,是总票数的20%,那五张有可能在80%不中奖的里面,错误;C. 晚间天气预报说明天有小到中雪,天气预报预测的是可能的天气,并不确定,错误;D. 在13同学中至少有2人生肖相同,生肖一共十二个,正确.故答案为:D.【点睛】本题考查了概率的相关知识,熟练掌握该知识点是本题解题的关键.8.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、367人中至少有两人是同月同日生,正确;B、某商场抽奖活动的中奖率为1‰,是随机事件,不一定每抽1000张奖券,一定有一张能中奖,故本选项错误;C、“打开电视机,正在播放《动物世界》”是随机事件,故本选项错误;D、“明天降雨的概率是80%”表示明天降雨的可能性大,但不一定是明天有80%的时间降雨,故本选项错误;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.B解析:B【解析】【分析】根据条形统计图可得,选体育的学生总人数的比值,从而可以解答本题.【详解】由条形统计图可得,选体育的学生的可能性是:162=8+16+10+65,故选B.【点睛】本题考查可能性大小,解题的关键是明确题意,找出所求问题需要的条件.10.A解析:A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.第II卷(非选择题)请点击修改第II卷的文字说明11.B解析:B【分析】根据随机事件的分类,对各个选项逐个分析,即可得到答案.【详解】购买一张彩票中奖,是不确定事件,故选项A错误;通常加热到100℃时,水沸腾,是必然事件,故选项B正确;明天一定是晴天,是不确定事件,故选项C错误;任意一个三角形,其内角和是360°,是不可能事件,故选项D错误;故选:B.【点睛】本题考查了随机事件的知识;解题的关键是熟练掌握随机事件的分类,从而完成求解.12.D解析:D【分析】根据概率的意义和题意分析“获胜的机会是80%”的意义,逐项作出判断即可求解.【详解】解:80%的机会获胜是说明机会发生机会的大小,80%的机会并不是说明比赛胜的场数一定是80%.七年(1)获胜的机会是80%,七年级(1)班有可能会赢得比赛,也有可能输掉比赛,只不过获胜的可能性大,而七年(2)班有可能会赢得比赛,也有可能输掉比赛,,只不过获胜的可能性小,故A、B、C选项均不正确,只有D选项符合题意.故选:D.【点睛】本题考查了对概率的理解,正确理解概率的意义是解题关键.二、填空题13.瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可【详解】必然事件就是一定会发生的例如:瓮中捉鳖等故答案:瓮中捉鳖(答案不唯一)【点睛】此题考查事件的可能性:必然事件的概念解析:瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.14.D【解析】【分析】分别计算转盘1到4出现白色区域的概率选择相同的概率即可【详解】解:转盘1指针指向白色区域的概率为:转盘2指针指向白色区域的概率为:转盘3指针指向白色区域的概率为:转盘4指针指向白色解析:D【解析】【分析】分别计算转盘1到4出现白色区域的概率,选择相同的概率即可.【详解】解:转盘1指针指向白色区域的概率为:1 4转盘2指针指向白色区域的概率为:21 = 63转盘3指针指向白色区域的概率为:42= 105转盘4指针指向白色区域的概率为:21 = 84所以转盘1和4指向白色区域的概率相同.故选D.【点睛】本题主要考查概率的计算,这是中考的必考题,应当熟练掌握计算方法.15.【解析】【分析】由在4×4正方形网格中任选取一个白色的小正方形并涂黑共有12种等可能的结果使图中黑色部分的图形构成轴对称图形的有3种情况直接利用概率公式求解即可求得答案【详解】解:如图若要使得黑色部解析:1 4【解析】【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有12种等可能的结果,使图中黑色部分的图形构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【详解】解:如图,若要使得黑色部分的图形构成轴对称图形有如图所示的三种可能,∴使得黑色部分的图形构成轴对称图形的概率为31=124,故答案为:14.【点睛】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.16.80【解析】【分析】用频率乘以总数=个数【详解】因为摸到红球的频率是25所以估计这只袋子中有红球:320×25=80(个)故答案为:80【点睛】理解频率的意义用频率表示概率解析:80【解析】【分析】用频率乘以总数=个数.【详解】因为摸到红球的频率是25 %,所以,估计这只袋子中有红球:320×25 %=80(个)故答案为:80【点睛】理解频率的意义,用频率表示概率.17.【解析】试题分析:抽出的数字可能是1234总共有4种结果其中是奇数的结果有2种所以抽出的数字是奇数的概率是故答案为考点:概率的计算解析:【解析】试题分析:抽出的数字可能是1,2,3,4,总共有4种结果,其中是奇数的结果有2种,所以抽出的数字是奇数的概率是12.故答案为12. 考点:概率的计算.18.8【解析】【分析】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比【详解】解:设袋子里有x 个蓝球则=08解得x=8即有8个蓝球【点睛】本题考查概率能够根据公式列出式子是解答本题解析:8 【解析】 【分析】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 【详解】解:设袋子里有x 个蓝球,则2xx +=0.8, 解得x=8.即有8个蓝球. 【点睛】本题考查概率,能够根据公式列出式子是解答本题的关键.19.40【解析】【分析】根据表格中的数据求出摸出黑棋的概率然后求出棋子的总个数再减去黑棋子的个数即可【详解】黑棋子的概率==棋子总数为10÷=50所以白棋子的数量=50﹣10=40(枚)故答案为:40【解析:40 【解析】 【分析】根据表格中的数据求出摸出黑棋的概率,然后求出棋子的总个数,再减去黑棋子的个数即可. 【详解】黑棋子的概率=13023421131010+++++++++⨯=15,棋子总数为10÷15=50,所以,白棋子的数量=50﹣10=40(枚). 故答案为:40. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.20.【分析】可运用相似三角形的性质求出GFMN 从而求出OFOM 进而可求出阴影部分的面积【详解】解:如图∵GF ∥HC ∴△AGF ∽△AHC ∴∴同理MN=则有OM=故答案为:【点睛】本题主要考查了相似三角形的解析:1112 【分析】可运用相似三角形的性质求出GF 、MN ,从而求出OF 、OM ,进而可求出阴影部分的面积. 【详解】 解:如图,∵GF ∥HC , ∴△AGF ∽△AHC ,∴1,2GF AG HC AH ⋅== ∴13,22GF HC ==312.22OF OG GF =-=-= 同理MN=23,则有OM=131111,22312OFM S ∆=⨯⨯=1111.1212S =-=阴影 故答案为:1112【点睛】本题主要考查了相似三角形的判定与性质、三角形的面积公式,求得△OFM 的面积是解决本题的关键.三、解答题21.(1)口袋中黄球有11个;(2)1120. 【解析】 【分析】(1)设有x个黄球,用绿球的个数除总数等于14,即可解答(2)用黄球个数除总数即可解答【详解】(1)设有x个黄球,根据题意,得:51 544x=++,解得:x=11,即口袋中黄球有11个;(2)∵袋子中共有11+4+5=20个小球,其中黄球有11个,∴任意摸出一个球是黄球的概率为1120.【点睛】此题考查概率公式,难度不大22.(1)0;(2)25.【解析】【分析】(1)由一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,可知没有白球,即可求得“摸出的球是白球”的概率;(2)由一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,直接利用概率公式求解即可求得答案.【详解】解:(1)∵一个袋中装有除颜色外都相同的红球和黄球共10个,其中红球6个,∴“摸出的球是白球”的概率是:0;(2)“摸出的球是黄球”的概率是:1062 105-=.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.23.【解析】试题分析:先画出树状图展示所有可能的6种结果,找出取出红色水笔和白色橡皮占1种,然后根据概率公式求解即可.画树状图如图所示:共有6种等可能的结果,其中取出红色水笔和白色橡皮占1种,∴出红色水笔和白色橡皮配套的概率为.考点:概率的求法点评:解的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.24.(1)列表见解析;(2)点P落在双曲线6yx=-上的概率是29.【解析】试题分析:(1)列表得出所有等可能的情况数即可;(2)判断落在双曲线上点的情况数,求出所求的概率即可.试题(1)列表如下:﹣7﹣13﹣2(﹣7,﹣2)(﹣1,﹣2)(3,﹣2)1(﹣7,1)(﹣1,1)(3,1)6(﹣7,6)(﹣1,6)(3,6)所有等可能的情况有9种;(2)落在双曲线6yx=-上的点有:(3,﹣2),(﹣1,6)共2个,则P=29.考点:列表法与树状图法.25.(1)120;(2)1320.【解析】试题分析:(1)求出第二次转到95的可能性,即为两次数字之和为100的可能性;(2)求出转到数字在35以上的总个数,利用所求情况数(35以上的总个数)与总情况数(20)作比即可.(1)由题意分析可得:要使他两次数字之和为100,则第二次必须转到95,因为总共有20个数字,所以他两次数字之和为100的可能性为1 20.(2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,因为总共有20个数字,所以“爆掉”的可能性为13 20.点睛:本题考查了可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.26.(1)34;(2)12.【解析】试题分析:(1)判断菱形、平行四边形、矩形、正方形中轴对称图形的个数,即可得到所求的概率;(2)找出四个图形中轴对称图形的个数,列表得出所有等可能的情况数,找出两张都为轴对称图形的情况数,即可求出所求的概率.试题(1)平行四边形,不是轴对称图形;菱形,轴对称图形;矩形,轴对称图形;正方形,轴对称图形,则P(随机抽取一张卡片图案是轴对称图形)=34;故答案为:34;(2)列表如下:则P=612=12.。
人教版数学七年级下册第六章检测卷一、选择题1.(3分)4的平方根是( ) A .2B .16C .±2D .±162.(3分)下列实数中是无理数的是( ) A .B .C .π0D .3.(3分)下列四个数中,是负数的是( ) A .|﹣2| B .(﹣2)2C .﹣D .4.(3分)下列说法不下确的是( ) A .6是36的平方根B .(﹣6)2的平方根是6C .(﹣6)2的平方根是±6 D .﹣6是36的平方根5.(3分)一个数的立方根等于这个数的算术平方根,则此数是( ) A .0或1 B .0,﹣1和1C .0或﹣1D .﹣1和16.(3分)下列命题中正确的是( ) A .有限小数不是有理数B .无限小数是无理数有限小数不是有理数C .数轴上的点与有理数一一对应D .数轴上的点与实数一一对应 8.(3分)如图,在数轴上表示实数的点可能是( )学校: 班级: 姓名: 考号:A.点P B.点Q C.点M D.点N9.(3分)数字中无理数的个数为()A.1 B.2 C.3 D.410.(3分)设,a在两个相邻整数之间,则这两个整数之和是()A.6 B.7 C.8 D.911.(3分)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.2712.(3分)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是()A.加号 B.减号C.乘号 D.除号二、填空题13.(3分)写一个比﹣小的整数.14.(3分)2﹣的相反数是,绝对值是.15.(3分)在数轴上表示﹣的点到原点的距离为.16.(3分)我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为.17.(3分)王老师在讲实数时,画了图(如图所示).即“以数轴的单位长线段为边作一个正方形,然后以点O为圆心,以正方形的对角线长为半径画弧交数轴上一点A”,则点A表示的数是,作这样的图是说明,因此,实数与数轴上的点.18.(3分)数轴上A 、B 两点对应的实数分别是和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为 .19.(3分)已知一个正数的平方根是3x ﹣2和5x+6,则这个数是 . 20.(3分)若(x 1,y 1)•(x 2,y 2)=x 1x 2+y 1y 2,则= .21.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x 的平方根与y 的算术平方根之积为 .22.(3分)1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有 个.23.(3分)已知a 、b 为两个连续的整数,且,则a+b= .24.(3分)计算:﹣|2﹣π|= .三、计算题 25.计算: (1)(2)(3)(4);(5);(6).26.求下列各式中的x的值:(1);(2)27x2=12;(3)(x﹣1)3=5.四、解答题27.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?28.若a、b互为相反数,c、d互为倒数,m的绝对值是2,求.29.已知a,b,c在数轴上如图所示,化简:.30.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案与试题解析一、选择题1.(3分)4的平方根是()A.2 B.16 C.±2 D.±16【考点】21:平方根.【分析】根据正数的平方根的求解方法求解即可求得答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选C.【点评】此题考查了平方根的意义.题目比较简单,解题的关键是熟记定义.2.(3分)下列实数中是无理数的是()A.B. C.π0D.【考点】26:无理数;6E:零指数幂.【专题】11 :计算题.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.【解答】解:A、=2,是有理数,故本选项错误;B、=2,是有理数,故本选项错误;C、π0=1,是有理数,故本选项错误;D、是无理数,故本选项正确.故选D.【点评】此题考查了无理数的定义,属于基础题,熟练掌握无理数的三种形式是解答本题的关键.3.(3分)下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2 C.﹣D.【考点】2C:实数的运算;11:正数和负数.【专题】11 :计算题.【分析】根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.【解答】解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选C.【点评】本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.4.(3分)下列说法不下确的是()A.6是36的平方根B.(﹣6)2的平方根是6C.(﹣6)2的平方根是±6 D.﹣6是36的平方根【考点】21:平方根.【分析】根据平方根的定义直接解答即可.【解答】解:A、6和﹣6都是36的平方根,故本选项正确;B、(﹣6)2的平方根是±6,故本选项错误;C、(﹣6)2的平方根是±6,故本选项正确;D、6和﹣6都是36的平方根,故本选项正确;故选B.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(3分)一个数的立方根等于这个数的算术平方根,则此数是()A.0或1 B.0,﹣1和1 C.0或﹣1 D.﹣1和1【考点】24:立方根;22:算术平方根.【分析】根据立方根的定义和算术平方根的定义得到0和1的立方根等于它们的算术平方根.【解答】解:一个数的立方根等于这个数的算术平方根,则这个数为0或1.故选A.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了算术平方根.6.(3分)下列命题中正确的是()A.有限小数不是有理数B.无限小数是无理数有限小数不是有理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应【考点】29:实数与数轴.【分析】A、根据有理数的定义即可判定;B、根据无理数的定义即可判定;C、D、根据数轴与实数的对应关系即可判定.【解答】解:由有理数的定义:正整数、0、负整数、正分数、负分数通称有理数.A、有限小数是有理数,故选项错误;B、无限不循环小数是无理数有限小数是有理数,故选项错误;C、根据数轴的性质:数轴上的点与实数一一对应,故选项错误;D、数轴上的点与实数一一对应,故选项正确.故选D.【点评】本题主要考查了实数与数轴之间的对应关系,解题的关键利用有理数、无理数的定义及实数与数轴的关系.8.(3分)如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【考点】2B:估算无理数的大小;29:实数与数轴.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.9.(3分)数字中无理数的个数为()A.1 B.2 C.3 D.4【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,π,共有2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.(3分)设,a在两个相邻整数之间,则这两个整数之和是()A.6 B.7 C.8 D.9【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】由于16<19<25,根据算术平方根得到4<<5,则3<a<4.【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4,即3<a<4.∴3+4=7.故选B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.11.(3分)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据互为相反数的和等于0列式,再根据非负数的性质列出关于x、y 的二元一次方程组,求解得到x、y的值,然后代入进行计算即可得解.【解答】解:∵与|x﹣y﹣3|互为相反数,∴+|x﹣y﹣3|=0,∴,②﹣①得,y=12,把y=12代入②得,x﹣12﹣3=0,解得x=15,∴x+y=12+15=27.故选D.【点评】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.12.(3分)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是()A.加号B.减号C.乘号D.除号【考点】2C:实数的运算;2A:实数大小比较.【专题】11 :计算题.【分析】分别把加、减、乘、除四个符号填入括号,计算出结果即可.【解答】解:当填入加号时:()+()=﹣;当填入减号时:()﹣()=0;当填入乘号时:()×()=;当填入除号时:()÷()=1.∵1>>0>﹣,∴这个运算符号是除号.故选D.【点评】本题考查的是实数的运算及实数的大小比较,根据题意得出填入加、减、乘、除四个符号的得数是解答此题的关键.二、填空题13.(3分)写一个比﹣小的整数﹣2(答案不唯一).【考点】2A:实数大小比较;2B:估算无理数的大小.【分析】先估算出﹣的大小,再找出符合条件的整数即可.【解答】解:∵1<3<4,∴﹣2<﹣<﹣1,∴符合条件的数可以是:﹣2(答案不唯一).故答案为:﹣2(答案不唯一).【点评】本题考查的是实数的大小比较,根据题意估算出﹣的大小是解答此题的关键.14.(3分)2﹣的相反数是﹣2 ,绝对值是2﹣.【考点】28:实数的性质.【分析】一个数a的相反数是﹣a,而正数的绝对值就是这个数本身,负数的绝对值是它的相反数,据此即可求解.【解答】解:﹣(2﹣)=﹣2∵2﹣>0∴2﹣的绝对值是2﹣.故答案是:﹣2和2﹣.【点评】本题主要考查了相反数与绝对值的性质,都是需要熟练掌握的内容.15.(3分)在数轴上表示﹣的点到原点的距离为.【考点】29:实数与数轴.【分析】由于数轴上的点到原点的单位长度即为它到原点的距离,由此即可解决问题.【解答】解:∵表示﹣的点距离原点有个单位长度,∴它到原点的距离为.【点评】此题主要考查了实数和数轴是一一对应的关系以及点在数轴上的几何意义.16.(3分)我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为40 .【考点】25:计算器—数的开方.【专题】11 :计算题;2A :规律型.【分析】根据被开方数扩大100倍,算术平方根扩大10倍,直接解答即可.【解答】解:∵=4,∴==40.故答案为:40.【点评】本题主要考查数的开方,根据题意找出规律是解答本题的关键.17.(3分)王老师在讲实数时,画了图(如图所示).即“以数轴的单位长线段为边作一个正方形,然后以点O为圆心,以正方形的对角线长为半径画弧交数轴上一点A”,则点A表示的数是,作这样的图是说明无理数可以用数轴上的点表示出来,因此,实数与数轴上的点一一对应.【考点】29:实数与数轴.【分析】根据勾股定理求出正方形的对角线长,再根据圆的特点得出点A的数,从而得出无理数可以用数轴上的点表示出来,实数与数轴上的点是意义对应的.【解答】解:数轴上正方形的对角线长为:=,由图中可得:点A表示的数是;作这样的图是说明:无理数可以用数轴上的点表示出来,因此,实数与数轴上的点一一对应;故答案为:,无理数可以用数轴上的点表示出来,一一对应.【点评】本题考查了实数和数轴,根据勾股定理求出A点所表示的数,从而得出无理数与数轴的关系.18.(3分)数轴上A、B两点对应的实数分别是和2,若点A关于点B的对称点为点C,则点C所对应的实数为4﹣.【考点】29:实数与数轴.【专题】2B :探究型.【分析】设点A关于点B的对称点为点C为x,再根据A、C两点到B点的距离相等即可求解.【解答】解:设点A关于点B的对称点为点C为x,则=2,解得x=4﹣.故答案为:4﹣.【点评】本题考查的是实数与数轴,即任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.19.(3分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【考点】21:平方根.【专题】11 :计算题.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.20.(3分)若(x1,y1)•(x2,y2)=x1x2+y1y2,则=﹣2 .【考点】2C:实数的运算.【专题】23 :新定义.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:原式=×(﹣)+(﹣)×=﹣1﹣1=﹣2.故答案为:﹣2.【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.21.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为±.【考点】22:算术平方根;21:平方根;I7:展开图折叠成几何体.【分析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.【解答】解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.【点评】此题主要考查了平方根、算术平方根的定义,解题关键是找出这个正方体的相对面,要求学生自己动手,慢慢体会哪二个面是相对面.22.(3分)1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有186 个.【考点】26:无理数.【分析】分别找出1,2,3…,100这100个自然数的算术平方根和立方根中,有理数的个数,然后即可得出无理数的个数.【解答】解:∵12=1,22=4,32=9,…,102=100,∴1,2,3…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有90个;∵13=1,23=8,33=27,43=64<100,53=125>100,∴1,2,3…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个;∴1,2,3…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186个.故答案为:186.【点评】本题结合算术平方根与立方根的定义考查了无理数的定义,有一定的难度.23.(3分)已知a、b为两个连续的整数,且,则a+b= 11 .【考点】2B:估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.24.(3分)计算:﹣|2﹣π|= ﹣1.14 .【考点】2C:实数的运算.【分析】先判断3.14﹣π和2﹣π的符号,然后再进行化简,计算即可.【解答】解:﹣|2﹣π|=π﹣3.14+2﹣π=﹣1.14.故答案为:﹣1.14.【点评】此题主要考查实数的运算,其中有二次根式的性质和化简,绝对值的性质,是一道基础题.三、计算题25.计算:(1)(2)(3)(4);(5);(6).【考点】2C:实数的运算.【专题】11 :计算题.【分析】(1)原式利用平方根定义化简得到结果;(2)原式变形后利用平方根定义化简即可得到结果;(3)原式利用平方根的定义化简即可得到结果;(4)原式利用立方根的定义化简即可得到结果;(5)原式利用平方根及立方根的定义化简,计算即可得到结果;(6)原式第二项利用乘法分配律计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解(1)==9;(2)原式==;(3)原式=±;(4)原式=﹣(﹣3)=3;(5)原式=+0.5﹣10+π=π﹣5;(6)原式=2﹣3﹣1+5=6﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.26.求下列各式中的x的值:(1);(2)27x2=12;(3)(x﹣1)3=5.【考点】24:立方根;21:平方根;22:算术平方根.【专题】11 :计算题.【分析】(1)根据算术平方根得到|x|=2,然后根据绝对值的意义求解;(2)先变形得到x2=,然后根据平方根定义求解;(3)根据立方根的定义得到x﹣1=,然后解方程.【解答】解:(1)|x|=2,x=±2;(2)x2=,x=±;(3)x﹣1=,x=1+.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了平方根和算术平方根.四、解答题27.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?【考点】E5:函数值.【分析】(1)把h=20代入函数解析式分别计算即可得解;(2)根据速度=路程÷时间分别求出速度,然后比较大小即可.【解答】解:(1)h=20米时,地球上,4.9t2=20,解得t=,月球上,0.8t2=20,解得t=5;(2)在地球上的速度==7m/s,在月球上的速度==4m/s,所以,在地球上物体下落的快.【点评】本题考查了函数值的求解,准确计算是解题的关键.28.若a、b互为相反数,c、d互为倒数,m的绝对值是2,求.【考点】2C:实数的运算;14:相反数;15:绝对值;17:倒数.【专题】11 :计算题.【分析】根据互为相反数两数之和为0得到a+b=0,根据互为倒数两数之积为1得到cd=1,利用绝对值的代数意义求出m的值,分别代入计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=0+=;当m=﹣2时,原式=0+=.【点评】此题考查了实数的运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.29.已知a,b,c在数轴上如图所示,化简:.【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】根据数轴abc的位置推出a+b<0,c﹣a>0,b+c<0,根据二次根式的性质和绝对值进行化简得出﹣a+a+b+c﹣a﹣b﹣c,再合并即可.【解答】解:∵从数轴可知:a<b<0<c,∴a+b<0,c﹣a>0,b+c<0,∴﹣|a+b|++|b+c|=﹣a+a+b+c﹣a﹣b﹣c=﹣a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出﹣a+a+b+c ﹣a﹣b﹣c.30.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.【考点】2B:估算无理数的大小.【专题】21 :阅读型.【分析】根据题意的方法,估计的大小,易得10+的范围,进而可得x﹣y 的值;再由相反数的求法,易得答案.【解答】解:∵1<<2,∴1+10<10+<2+10,∴11<10+<12,∴x=11,y=10+﹣11=﹣1,x﹣y=11﹣(﹣1)=12﹣,∴x﹣y的相反数﹣12.【点评】此题主要考查了无理数的估算能力,解题关键是估算无理数的整数部分和小数部分,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.。
2010---2011学年第二学期检测题第六单元检测试卷时间:90分钟 满分:100分一、选择题(每小题3分,共30分)1、P (x ,5)在第二象限内,则x 应是 ( ). A 、正数 B 、负数 C 、非负数 D 、有理数2、若y 轴上地点P 到x 轴地距离为3,则点P 地坐标是 ( ). A 、(3,0) B 、(0,3) C 、(3,0)或(-3,0) D 、(0,3)或(0,-3)3、若点P(a ,b)地坐标满足关系式ab >0,则点P 在( ). (A)第一象限(B)第三象限(C)第一、三象限(D)第二、四象限4、已知A (-4,2),B (1,2),则A ,B 两点地距离是( ). A .3个单位长度B .4个单位长度 C .5个单位长度D .6个单位长度 5、将点P ()3,4-先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′地坐标为( ).A .()5,2-B .()1,6-C .()5,6-D .()1,2-6、一个长方形在平面直角坐标系中,三个顶点地坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点地坐标是( ).A 、(2,2) B 、(3,2) C 、(3,3) D 、(2,3)7、下列语句,其中正确地有( ).①点(3,2)与(2,3)是同一个点 ②点(0,-2)在x 轴上 ③点(0,0)是坐标原点④点(-2,-6)在第三象限内A 、0个目B 、1个C 、2个D 、3个8、如图, 与①中地三角形相比,②中地三角形发生地变化是( ) . A 、向左平移3个单位 B 、向左平移1个单位 C 、向上平移3个单位 D 、向下平移1个单位.9、坐标为(x ,x –1)地点一定不会在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限10、如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 地位置用(-40,-30)表示,那么(10,20)表示地位置是( ).A .点A B .点B C .点C D .点D 二、填空题(每小题3分,共24分)1、一张电影票地座位5排2号记为(5,2),则3排5号记为.2、点(-3,5)到x 轴上地距离是_______,到y 轴上地距离是_______.3、将点(0,1)向下平移2个单位后,所得点地坐标为________ .4、点P (a+5,a-2)在x 轴上,则P 点坐标为.5、若点P ()n m ,在第二象限,则点Q ()n m --,在第象限.6、已知P (x ,y )点在y 轴地左侧,且│x │=3,│y │=2,则点P 地坐标为.7、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限地角平分线上,则a 地值为________.8、学完了“平面直角坐标系”后,李宇同学在笔记本上写了下列一些体会: ①如果一个点地横,纵坐标都为零,则这个点是原点; ②如果一个点在x 轴上,那它一定不属于任何象限; ③纵轴上地点地横坐标均相等,且都等于零; ④纵坐标相同地点,分布在平行于y 轴地某条直线上. 其中你认为正确地有(把正确地序号填在横线上).三、解答题. (共46分)1、如图,正方形ABCD 地边长为4,请你建立适当地平面直角坐标系,并写出各个顶点地坐标.(本题4分)2.他从苹果园出发,沿(1,3),(-3,3),(-4,0)-3),(2,6,-3),(6,0),(6,4)地路线进行了参观,地点.(本题8分) 3、如图,(1)请写出在直角坐标系中地房子地A 、B 、C 、D 、E 、F 、G 地坐标. (2)源源想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后地7个点地坐标.(本题8分)4、已知直线AB 与两坐标轴交于A 、B 两点,点A 地坐标为(0,-3),且三角形OAB地面积为6,求点B地坐标.(本题8分)5、一长方形住宅小区长400m,宽300m,以长方形地对角线地交点为原点,过原点和较长边平行地直线为x轴,和较短边平行地直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.(本题8分)6、如图,四边形ABCD各个顶点地坐标分别为(– 2,8),(– 11,6),(– 14,0),(0,0).(1)计算这个四边形地面积;(2)如果把原来ABCD各个顶点地纵坐标保持不变,横坐标增加2,所得地四边形面积又是多少?(本题10分)参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共24分)1、(3,5)2、5,33、(0,-1)4、(7,0)5、四6、(-3,2)或(-3,-2)7、 18、①②③三、解答题1.略2、他路上经过地地方:葡萄园,杏林,桃林,梅林,山楂林,枣林,梨园,苹果园.图略.3、(1)(2,3),(6,5),(10,3),(3,3),(9,3),(3,0),(9,0);(2)平移后坐标依次为(2,0),(6,2),(10,0),(3,0),(9,0),(3,– 3),(9,– 3).4、因为点A地坐标为(0,-3),所以OA=3,设B点地坐标为(a,0),则OB=a,又因为三角形OAB地面积为6,所以113622AOBS OA OB a=∙=⨯⨯=三角形,所以4a=±.所以B点地坐标为(-4,0)或(4,0).5、在小区内地违章建筑有B、D;不在小区内地违章建筑有A、E、C6、(1)80(可分别割成直角三角形和长方形或补直角三角形成长方形).(2)80版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.kavU4。
人教版七年级下册数学第六章测试题(附答案)人教版七年级下册数学第六章测试题(附答案)一、单选题(共12题;共36分)1.在-5,0,3,8这四个数中,最小的数是()A。
-5.B。
0.C。
3.D。
82.下列四个数中,最大的数是()A.﹣2.B。
2π。
C。
0.D。
63.下列说法中正确的有()①±2都是8的立方根,②x2=16,③27的立方根是3,④4=2².A。
1个。
B。
2个。
C。
3个。
D。
4个4.在实数-π,0,-4中,最小的数是()A。
0.B。
-π。
C。
-4.D。
-π和-4都一样小5.在1,0,-2,-6四个数中,最小的数是()A。
1.B。
0.C。
-2.D。
-66.当a²=b²时,下列等式中成立的是()A。
a=b。
B。
a=-b。
C。
a+b=0.D。
a-b=07.下列不是无理数的是()A.√2.B。
3.xxxxxxxx4…。
C。
-π。
D。
π8.在实数2,3,-1,-2中,最小的实数是()A。
2.B。
0.C。
-1.D。
-29.64的算术平方根和-根的和是()A。
0.B。
6.C。
4.D。
-410.在实数-1,0,1中,属于无理数是()A。
0.B。
1.C。
-1.D。
-1和0都是无理数11.若a²=36,b³=8,则a+b的值是()A。
8或-4.B。
+8或-8.C。
-8或-4.D。
+4或-412.下列命题中正确的是()①0.027的立方根是0.3;②√-1不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A。
①③。
B。
②④。
C。
①④。
D。
③④二、填空题(共8题;共27分)13.6根为4.14.27的立方根是3.输出的y值为8;2)当x为负数或大于16时,无法计算出y值;3)满足要求的x值为4和16.25.(1)①2的算术平方根为√2;②﹣27的立方根为﹣3;③16的四次方根为±2.2)数轴上的表示顺序为:﹣3<﹣√2<0<√2<3,连接符号为<。
七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。
一、选择题1.投掷一枚质地均匀的硬币4次,其中3次正面向上,1次反面向上,则第5次掷出反面向上的概率为()A.12B.13C.14D.152.疫情其间,阳光小区在进行如何避免“新型冠状病毒”感染的宣传活动中,将以下几种注意事项写在条幅上进行张贴,内容分别是:①注意防寒保暖、室内通风和个人卫生;②加强体育锻炼;③保持清淡饮食;④避免到人群密集场所活动;⑤用肥皂和清水或含有酒精的洗手液洗手;⑥出门戴口罩.小雨从以上6张宣传标语中随机抽取一张进行张贴,恰好抽到③或④的概率是()A.16B.14C.13D.123.下列事件中,为必然事件的是()A.明天早晨,大家能看到太阳从东方冉冉升起B.成绩一直优秀的小华后天的测试成绩也一定优秀C.从能被2整除的数中,随机抽取一个数能被8整除D.从10本图书中随机抽取一本是小说4.下列事件属于不可能事件的是()A.从装满白球的袋子里随机摸出一个球是白球B.随时打开电视机,正在播新闻C.通常情况下,自来水在10℃结冰D.掷一枚质地均匀的骰子,朝上的一面点数是25.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等6.下列事件中,属于必然事件的是()A.一个数的相反数等于它本身B.早上的太阳从北方升起C.380人中有两人的生日在同一天D.明天上学路上遇到下雨7.从-5,-1,0,83, 这五个数中随机抽取一个数,恰好为负整数的概率为()A.15B.25C.35D.458.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( )A.6 B.16 C.22 D.249.下列关于事件发生可能性的表述,正确的是()A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件;B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖;C.掷两枚硬币,朝上的一面是一正面一反面的概率为1 3 ;D.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品.10.下列说法错误..的是()A.任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小是1 2B.一个转盘被分成8块全等的扇形区域,其中2块是红色,6块是蓝色. 用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是1 4C.一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同. 从这个盒子中随意摸出一个球,摸到白球的可能性大小是2 5D.100件同种产品中,有3件次品. 质检员从中随机取出一件进行检测,他取出次品的可能性大小是3 10011.以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6B.多边形的内角和是360C.二次函数的图象不过原点D.半径为2的圆的周长是4π12.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.19B.16C.29D.13二、填空题13.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2附近,由此可以估计纸箱内有红球________个.14.写出一个你认为的必然事件_________.A B C D E的五个小客车收费出口,假定各收15.高速公路某收费站出城方向有编号为,,,,费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号,A B,B C,C D,D E,E A通过小客车数量(辆)260330300360240在五个收费出口中,每分钟通过小客车数量最多的一个出口的编号是___________.16.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数等级五星四星三星二星一星合计餐厅甲53821096129271000乙460187154169301000丙4863888113321000芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.17.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、等边三角形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.18.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为_______枚.19.小莉抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为________.20.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是_____.三、解答题21.如图,有一枚质地均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”, 3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这枚骰子掷出后:(1)数字几朝上的概率最小?(2)奇数面朝上的概率是多少?22.一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀.(1)如果从中任意摸出1个球.①你能够事先确定摸到球的颜色吗?②你认为摸到哪种颜色的球的概率最大?③如何改变袋中白球、红球的个数,就能使摸到这三种颜色的球的概率相等.(2)从中一次性最少摸出个球,必然会有红色的球.23.一个不透明的布袋里装有10个球,其中2个红球,3个白球,5个黄球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸到哪种颜色的球的概率最大?并说明理由;24.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样.便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为__________;(2)某天甲同学想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与乙同学联系,恰好选用“微信”联系的概率为多少?25.(7分)在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数l、2、3、、的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P的纵坐标,请用所学的知识求出点P落在△AOB内部的概率.26.在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若设计一种游戏方案:若从中任取一球(不放回),再从中任取一球.两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?请用画树状图或列表格的方法说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先确定掷硬币共有正面和反面两种可能性,后根据概率计算公式计算即可.【详解】∵掷硬币共有正面和反面两种可能性,∴第5次掷出反面向上的概率为:12;故选A.【点睛】本题考查了简单概率的计算,准确计算事件的所有等可能性和事件A的等可能性是解题的关键.2.C解析:C【分析】小雨同学从6张宣传标语中随机抽取一张,③或④有两种情况,直接利用概率公式求解即可求得答案.【详解】解:∵一共有6张宣传标语,∴小雨同学从6张宣传标语中随机抽取一张进行张贴,恰好抽到③或④的概率是:P(抽到③或④)=21 = 63故选:C.【点睛】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=nm.3.A解析:A【分析】必然发生的事件是必然事件,根据定义解答A.【详解】A、明天早晨,大家能看到太阳从东方冉冉升起是必然事件;B、成绩一直优秀的小华后天的测试成绩也一定优秀是随机事件;C、从能被2整除的数中,随机抽取一个数能被8整除是随机事件;D、从10本图书中随机抽取一本是小说是随机事件;故选:A.【点睛】此题考查必然事件定义,熟记定义、理解必然事件与随机事件发生的可能性的大小是解题的关键.4.C解析:C【分析】把一个在一定的条件下,不可能发生的事,称为不可能事件,根据定义判断.【详解】A、从装满白球的袋子里随机摸出一个球是白球是必然事件;B、随时打开电视机,正在播新闻是随机事件;C、通常情况下,自来水在10℃结冰是不可能事件;D、掷一枚质地均匀的骰子,朝上的一面点数是2是随机事件;故选:C.【点睛】此题考查不可能事件的定义,熟记定义,掌握必然事件,随机事件,不可能事件的发生可能性大小是解题的关键.5.B解析:B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A、正五边形不是中心对称图形,故A是不可能事件;B、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B正确;C、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C错误;D、在同圆或等圆中,相等的圆心角所对的弧相等,故D是随机事件,故D错误;故选:B.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断.6.C解析:C【分析】根据事件发生的可能性判断相应事件的类型即可.【详解】A. 一个数的相反数等于它本身,0的相反数等于它本身,是不确定事件.B. 早上的太阳从北方升起,是不可能事件.C. 380人中有两个人的生日在同一天是必然事件.D. 明天上学路上遇到下雨,是不确定事件.故选:C.【点睛】此题考查随机事件,解题关键在于判断相应事件的类型.7.B解析:B【解析】【分析】五个数中有两个负整数,根据概率公式求解可得.【详解】解:∵在-5,-1,0,83,π这五个数中,负整数有-5和-1这2个,∴恰好为负整数的概率为25,故选:B.【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.9.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,所以A错误;B. 体育彩票的中奖率为10%,则买100张彩票不一定10张中奖,所以B错误;C. 掷两枚硬币,朝上的一面是一正面一反面的概率为1,2C所以错误;D. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,所以D正确.故选D.【点睛】本题考查的是概率,熟练掌握概率的计算方法是解题的关键.10.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】A.啤酒盖的正反两面不均匀,任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小不是12,故本选项错误;B.一个转盘被分成8块全等的扇形区域,其中2块是红色,6块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是14,故本选项正确;C.一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同.从这个盒子中随意摸出一个球,摸到白球的可能性大小是25,故本选项正确;D.100件同种产品中,有3件次品.质检员从中随机取出一件进行检测,他取出次品的可能性大小是3100,故本选项正确; 故选A . 【点睛】此题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 11.D解析:D 【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可. 【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误;二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确. 故选D . 【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.12.D解析:D 【分析】直接利用轴对称图形的性质分析得出答案. 【详解】 如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,故新构成灰色部分的图形是轴对称图形的概率是:21 63 =.故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.二、填空题13.200【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手列出等式解答【详解】设红球的个数为x根据题意得:解得:x=200故答案为:200考点:利用频率估计概率解析:200【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】设红球的个数为x,根据题意得:10000.2x=解得:x=200故答案为:200.考点:利用频率估计概率.14.瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可【详解】必然事件就是一定会发生的例如:瓮中捉鳖等故答案:瓮中捉鳖(答案不唯一)【点睛】此题考查事件的可能性:必然事件的概念解析:瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.15.B【分析】利用同时开放其中的两个安全出口20分钟所通过的小车的数量分析对比能求出结果【详解】同时开放AE两个安全出口与同时开放DE两个安全出口20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放解析:B【分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B.【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.16.丙【分析】不低于四星即四星与五星的和居多为符合题意的餐厅【详解】不低于四星即比较四星和五星的和丙最多故答案是:丙【点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少解析:丙【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.17.【解析】【分析】由五张完全相同的卡片上分别画有平行四边形矩形菱形等边三角形等腰梯形其中既是轴对称图形又是中心对称图形的有矩形菱形然后直接利用概率公式求解即可求得答案【详解】∵五张完全相同的卡片上分别解析:2 5【解析】【分析】由五张完全相同的卡片上分别画有平行四边形、矩形、菱形、等边三角形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形,然后直接利用概率公式求解即可求得答案.【详解】∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、等边三角形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形,∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为25,故答案为:25.【点睛】此题考查了概率公式的应用.注意:概率=所求情况数与总情况数之比.18.40【解析】【分析】根据表格中的数据求出摸出黑棋的概率然后求出棋子的总个数再减去黑棋子的个数即可【详解】黑棋子的概率==棋子总数为10÷=50所以白棋子的数量=50﹣10=40(枚)故答案为:40【解析:40【解析】【分析】根据表格中的数据求出摸出黑棋的概率,然后求出棋子的总个数,再减去黑棋子的个数即可.【详解】黑棋子的概率=13023421131010+++++++++⨯=15,棋子总数为10÷15=50,所以,白棋子的数量=50﹣10=40(枚).故答案为:40.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.19.【分析】本题考查了概率的简单计算能力是一道列举法求概率的问题属于基础题可以直接应用求概率的公式【详解】因为一枚质地均匀的硬币只有正反两面所以不管抛多少次硬币正面朝上的概率都是故答案为【点睛】本题考查解析:1 2【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【详解】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12.故答案为12.【点睛】本题考查了概率的意义,一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.20.50【解析】试题分析:大量反复试验时某事件发生的频率会稳定在某个常数的附近这个常数就叫做事件概率的估计值而不是一种必然的结果可得答案解:事件A发生的概率为大量重复做这种试验事件A平均每100次发生的解析:50【解析】试题分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.解:事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是50,故答案为50.考点:概率的意义.三、解答题21.(1)数字1朝上的概率最小;(2)9 20.【解析】【分析】(1)根据概率的计算公式,先求出标有“6”的面数,然后把标有各种数字的面数分别于总面数相比可求得各个数字朝上的概率;比较大小,可得答案;(2)根据标有奇数字的面数之和与总面数的比即可求得奇数面朝上的概率.【详解】解:(1)∵骰子有20个面,根据题意∴标有“6”的面数为5面∴(6)51 == 204P朝上,(5)51==204P朝上,(1)1=20P朝上,(2)21 == 2010P朝上,(3)3=20P朝上,(4)41==205P朝上,∴数字1朝上的概率最小(2)∵奇数包括了1,3,5∴()1359 ==2020P++奇数朝上【点睛】本题主要考察概率知识,熟练掌握概率的计算公式是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.22.(1)①不能事先确定摸到的球是哪一种颜色;②摸到红球的概率最大;③增1个白球,减1个红球;只要使袋子中的白球、黄球、红球的个数相等即可(2)4【解析】【分析】(1)①根据颜色不同质地相同可以确定不能事先确定摸到球的颜色;②那种球的数量最多,摸到那种球的概率就大;③使得球的数量相同即可得到概率相同;(2)要想摸出红球是必然事件,必须摸出球的总个数多于白球与黄球的和.【详解】解:(1)①不能事先确定摸到的球是哪一种颜色;②摸到红球的概率最大;③增1个白球,减1个红球;只要使袋子中的白球、黄球、红球的个数相等即可.(2)从中一次性最少摸出4个球,必然会有红色的球.故答案为4.【点睛】本题考查了概率公式,随机事件,属于概率基础题,随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.23.(1)摸出1个球是白球的概率310;(2)袋子中黄色球的个数最多.【解析】【分析】(1)用白色球的个数除以球的总个数即可得;(2)那种球的数量最多,摸到那种球的概率就大.【详解】(1)∵袋子中共有10个球,其中白球有3个,∴摸出1个球是白球的概率310;(2)摸到黄色球的概率最大,因为袋子中黄色球的个数最多.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n24.(1)100,108°;(2)4 9 .【解析】分析:(1)由统计图中的信息可知,通过电话联系的有20人,占被抽查学生学生的20%,由此即可得到被抽查学生的总数为:20÷20%=100(人);由此可得扇形统计图中表示“QQ”的扇形的圆心角为:360°×30%=108°;(2)由(1)中所得结果可计算出被抽查学生中使用微信的人数,这样结合已知的使用QQ和电话的人数即可计算出所求概率了.详解:(1)由题意可得:被抽查学生总数为20÷20%=100(人);∵被抽查的100人中,使用QQ的有30人,∴扇形统计图中表示“QQ”的扇形的圆心角的度数=360°×30%=108°;(2)由题意和(1)中所得被抽查学生总数为100人可得:使用“微信”的人数为:100-20-30-5-100×5%=40(人),又∵使用“QQ”和“电话”的人数分别为:30人和20人,∴甲同学想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与乙同学联系,恰好选用“微信”联系的概率为:404= 20+40+309.点睛:熟悉“条形统计图和扇形统计图中相关统计数据间的关系”是解答本题的关键. 25.1231(2,1)(3,1)(,1)(,1)2(1,2)(3,2)(,2)(,2)3(1,3)(2,3)(,3)(,3)(1,)(2,)(3,)(,)(1,)(2,)(3,)(,)当时,∴点(1,),(1,)在△AOB内部,当时,∴点(2,),(2,)在△AOB内部,。
精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。
人教版初一数学下册第6章单元测试卷(答案带解析)一、选择题(本大题共10小题,共30.0分)1.−27的立方根与√81的平方根之和为()A. 0或6B. 6或−12C. 0或−6D. −6或122.下列各数中,无理数是A. 4B. 3.14C. 107D. 5π−53.√16的算术平方根是()A. 4B. ±4C. 2D. ±24.下列式子正确的是()A. √144=±12B. √(−2)2=−2C. (√2)2=2D. −√−27=−35.设2+√2的整数部分用a表示,小数部分用b表示,4−√2的整数部分用c表示,小数部分用d表示,则b+dac的值为()A. 18B. 16C. 56D. 13(√3−1)6.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. −a>b7.已知x,y为实数,且√x−3+(y+2)2=0,则y x的立方根是()A. 3√6B. −8C. −2D. ±28.下列说法错误的是()A. √a3中的a可以是正数、负数或零B. √a中的a不可以是负数C. 数a的平方根有两个,它们互为相反数D. 数a的立方根只有一个9. 比较大小:2√72,√17,12√62的大小顺序是( ) A. 2√72<√17<12√62 B. 2√72<12√62<√17 C. 12√62<2√72<√17 D. 12√62<√17<2√72 10. 下列说法中,不正确的有( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π−4)2的算术平方根是π−4;⑤算术平方根不可能是负数,A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共4小题,共12.0分)11. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是________.12. 已知实数x ,y 满足√x −2+(x −y)2=0,则xy 的算数平方根为_____________. 13. 9的算术平方根是______ ,3的平方根是______ ,0的平方根是______ . 14. 定义新运算“☆”:a ☆b =√ab +1,则2☆(3☆5)=______.三、计算题(本大题共2小题,共12.0分)15. 计算:(1)(−1)3+|1−√2|+√83;(2)(−3)2+2×(√2−1)−|−2√2|.16.求下列各式中x的值:(1)8x3+125=0;(2)(x+3)3+27=0.四、解答题(本大题共5小题,共40.0分)17.已知:x+2的平方根是±2,4x+y+7的立方根是3,求y−2x的立方根.18.张明想用一块面积为900cm2的正方形纸片,沿着边的方向裁出一块面积为800cm2的长方形纸片,使它的长与宽之比为5:4,他是否能实现这一想法?请说明理由.19.观察:∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为√7−2,请你观察上述式子规律后解决下面问题.]=0,[π]=3,填空:[√10+(1)规定用符号[m]表示实数m的整数部分,例如:[452]=___________;[5−√13]=____________;(2)若5+√13的小数部分为a,5−√13的小数部分为b,则a=___________,b=_________.20.如图,已知点A、B是数轴上两点,O为原点,AB=12,点B表示的数为4,点P、Q分别从O、B同时出发,沿数轴向不同的方向运动,点P速度为每秒1个单位,点Q速度为每秒2个单位,设运动时间为t,当PQ的长为5时,求t的值及AP的长.21.观察下列各式:①√2+23=2√23;②√3+38=3√38;③√4+415=4√415;④√5+524=5√524;…(1)写出分数中分母与式子序号n之间的关系式;(2)通过猜想写出第⑥个等式;(3)用含字母n(n为正整数)的式子表示上述规律.答案和解析1.【答案】C【解析】【分析】本题考查了平方根、立方根的定义,熟练掌握定义是解本题的关键.求出−27的立方根与√81的平方根,相加即可得到结果.【解答】解:∵−27的立方根为−3,√81的平方根±3,∴−27的立方根与√81的平方根之和为0或−6.故选C.2.【答案】D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.4整数,整数是有理数,故本选项错误;B.3.14是有理数,故本选项错误;C.10是有理数,故本选项错误;7D.π是无限不循环小数,故5π−5是无理数,故本选项正确.故选D.3.【答案】C【解析】【分析】本题考查了算术平方根的定义,首先计算出√16,然后再计算算术平方根.【解答】解:∵√16=4,∴4的算术平方根是2,即√4=2.故选C.4.【答案】C【解析】【分析】本题考查算术平方根,解答本题的关键是理解算术平方根.【解答】A.√144=12,A错误;B.√(−2)2=2,B错误;C.(√2)2=2,C正确;D.无意义,D错误.故选C.5.【答案】B【解析】【分析】本题主要考查的是估算无理数的大小,由1<2<4,可知1<√2<2,进而得到3<2+√2<4,然后可求得a、b的值,根据2<4−√2<3,可得c、d的值,最后代入计算即可.【解答】解:∵1<2<4,∴1<√2<2,∴3<2+√2<4,∴a=3,b=2+√2−3=√2−1,∵2<4−√2<3,∴c=2,d=4−√2−2=2−√2.∴b+d=√2−1+2−√2=1,ac=2×3=6,∴b+dac =16.故选B.6.【答案】D【解析】解:由数轴可得,−2<a<−1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,−a>b,故选项D正确,故选:D.根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.7.【答案】C【解析】【分析】此题主要考查了算术平方根的非负性和开立方运算以及偶次方的非负性,正确得出x,y的值是解题关键.直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案.【解答】解:∵√x−3+(y+2)2=0,∴x−3=0,y+2=0,解得:x=3,y=−2,则y x=(−2)3=−8,−8的立方根是:−2.故选C.8.【答案】C【解析】【分析】此题主要考查了平方根、立方根的定义及它们的性质.有平方根的应是非负数,任何数都有立方根.根据立方根、算术平方根、平方根的定义即可判定.【解答】解:A、√a3中的a可以是正数、负数、零,故A选项正确;B、√a中的a不可能是负数,故B选项正确;C、如果a为0,则平方根有一个,故C选项错误;D、数a的立方根只有一个,故D选项正确.故选C.9.【答案】B【解析】【分析】本题主要考查的是实数的大小比较的有关知识,先将给出的各个数进行变形,然后再比较大小即可.【解答】解:2√72=√14,√17,12√62=√312,∵14<312<17,∴√14<√312<√17,∴2√72<12√62<√17,故选B.10.【答案】C【解析】【分析】本题主要考查了平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根;若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.①②③④⑤分别根据平方根和算术平方根的概念即可判断.【解答】解:根据算术平方根概念可知:①负数没有平方根,故此选项错误;②反例:0的算术平方根是0,故此选项错误;③当a<0时,a2的算术平方根是−a,故此选项错误;④(π−4)2的算术平方根是4−π,故此选项错误;⑤算术平方根不可能是负数,故此选项正确.所以不正确的有4个.故选C.11.【答案】a【解析】【分析】此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围.首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.12.【答案】2【解析】【分析】此题考查了非负数的性质,熟练掌握非负数的性质是解本题的关键.根据两非负数之和为0,两非负数分别为0求出x与y的值,利用算术平方根的定义即可求出xy的算术平方根.【解答】解:∵√x−2+(x−y)2=0,∴x−2=0,x−y=0,解得:x=2,y=2,则xy=2×2=4,∴4的算术平方根为2,即xy的算术平方根为2.故答案为2.13.【答案】3;±√3;0【解析】解:∵32=9,∴9的算术平方根是3.∵(±√3)2=3,∴3的平方根是为±√3.0的平方根是0.故答案是:3;±√3;0.根据算术平方根的定义、平方根的定义解答.本题主要考查了算术平方根、平方根的概念,比较简单,熟记概念即可解题.14.【答案】3【解析】解:∵3☆5=√3×5+1=√16=4;∴2☆(3☆5)=2☆4=√2×4+1=3.故答案为:3.先根据新定义求出3☆5,再计算2☆4即可.本题考查了实数的运算,读懂新定义的运算是解题的关键.15.【答案】解:(1)原式=√2.(2)原式=7.【解析】略16.【答案】解:(1)8x3+125=0x3=−125 8所以x=−52.(2)(x+3)3+27=0(x+3)3=−27x+3=−3解得x=−6.【解析】略17.【答案】解:由题意可得:x+2=4,4x+y+7=27,∴x=2,y=12,∴y−2x=12−2×2=12−4=8,又∵8的立方根是2,∴y−2x的立方根是2.【解析】本题主要考查平方根和立方根.根据平方根和立方根的定义求出x,y的值,然后代入代数式求值即可.18.【答案】解:不能实现.理由如下:设长方形的长为5xcm,宽为4xcm,根据题意,得5x·4x=800.∴x=√40.∴长方形纸片的长为5√40cm.∵6<√40<7,∴30<5√40<35.∵√900=30,∴正方形纸片的边长为30cm.∵5√40>30,∴张明的想法不能实现.【解析】略19.【答案】(1)5;1.(2)√13−3;4−√13.【解析】略20.【答案】解:∵AB=12,OB=4,∴OA=8,当P向左,Q向右时,t+2t=5−4,得t=13,此时,OP=13,AP=8−13=233;当P向右,Q向左时,t+2t=5+4,得t=3,此时,OP=3,AP=8+3=11.【解析】根据题意可以分两种情况,然后根据题意和数轴即可解答本题.本题考查实数与数轴,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.21.【答案】解:(1)通过观察,可知,第一个式子的分母为3=(1+1)2−1,第二个式子的分母为8=(2+1)2−1,第三个式子的分母为15=(3+1)2−1,由此可知,第n个式子的分母为(n+1)2−1;(2)由(1)观察可得第1个等式为√(1+1)+1+1(1+1)2−1=(1+1)√1+1(1+1)2−1,第2个等式为√(2+1)+2+1(2+1)2−1=(2+1)√2+1(2+1)2−1,由此类推第6个等式为√7+748=7√748;(3)由(1)(2)知上述规律为√(n+1)+n+1(n+1)2−1=(n+1)√n+1(n+1)2−1.【解析】本题主要考查了算术平方根,解题的关键是观察等式,找出规律.(1)观察各个等式的分母,写出第n个分母与式子序号的关系.(1)观察等式,找出规律,写出第⑥个式子即可.(2)观察等式,找出规律,写出第n个式子即可.。
2010---2011学年第二学期检测题第六单元检测试卷时间:90分钟 满分:100分一、选择题(每小题3分,共30分)1、P (x ,5)在第二象限内,则x 应是 ( )。
A 、正数B 、负数C 、非负数D 、有理数 2、若y 轴上的点P 到x 轴的距离为3,则点P 的坐标是 ( )。
A 、(3,0) B 、(0,3) C 、(3,0)或(-3,0) D 、(0,3)或(0,-3) 3、若点P(a ,b)的坐标满足关系式ab >0,则点P 在( )。
(A)第一象限 (B)第三象限 (C)第一、三象限 (D)第二、四象限 4、已知A (-4,2),B (1,2),则A ,B 两点的距离是( )。
A .3个单位长度B .4个单位长度C .5个单位长度D .6个单位长度 5、将点P ()3,4-先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为( )。
A .()5,2-B .()1,6-C .()5,6-D .()1,2-6、一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )。
A 、(2,2)B 、(3,2)C 、(3,3)D 、(2,3) 7、下列语句,其中正确的有 ( )。
①点(3,2)与(2,3)是同一个点 ②点(0,-2)在x 轴上 ③点(0,0)是坐标原点 ④点(-2,-6)在第三象限内 A 、0个目 B 、1个 C 、2个 D 、3个8、如图, 与①中的三角形相比,②中的三角形发生的变化是( ) 。
A 、向左平移3个单位 B 、向左平移1个单位 C 、向上平移3个单位 D 、向下平移1个单位.9、坐标为(x ,x –1)的点一定不会在第( )象限。
A .第一象限B .第二象限C .第三象限D .第四象限10、如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )。
七下数学第六章《实数》单元测试一.选择题(共6小题)1.表示()A.16的平方根B.16的算术平方根C.±4D.±22.下列计算中,正确的是()A.=±3B.(﹣1)0=1C.|a|﹣a=0D.4a﹣a=3 3.若,那么y x的值是()A.﹣1B.C.1D.84.图中的内容是某同学完成的作业,嘉琪帮他做了批改,嘉琪批改正确的题数是()A.2个B.3个C.4个D.5个5.在﹣1、2、、这四个数中,无理数是()A.﹣1B.2C.D.6.﹣1的相反数是()A .1B .C .D .二.填空题(共8小题)7.若一个正数的平方根分别是a +1和2a ﹣7,则a 的值是.8.面积等于5的正方形的边长是.9.若x 、y 为实数,且|x +3|+=0,则的值为.10.写出一个同时符合下列条件的数:.(1)它是一个无理数;(2)在数轴上表示它的点在原点的左侧;(3)它的绝对值比2小.11.在数轴上,实数2﹣对应的点在原点的侧.(填“左”、“右”)12.已知a ,b 为两个连续的整数,且a <<b ,则b a =.13.数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,﹣a ,﹣b 的大小关系为(用“<”号连接).14.6﹣的整数部分是.三.解答题(共6小题)15.计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.16.若实数x ,y 满足,求代数式x 2﹣2xy +y 2的值.17.已知(a ﹣)2与|2b ﹣3|+互为相反数,求(2a ﹣b )c 的值.18.如图,在一条不完整的数轴上,从左向右有两个点A 、B ,其中A 点表示的数为m ,B 表示数的为4,点C 也为数轴上一点,且AB =2AC ,(1)若m 为整数,求m 的最大值;(2)若C 表示的数为﹣2,求m 的值;19.阅读理解:[x ]表示不大于x 的最大整数,例[2.3]=2,[﹣5.6]=﹣6(1)[8.2]=.[﹣]=.(2)[x ]=2的x 的取值范围.(3)直接写出方程[2x ]=x 2的解.20.观察下列各式及证明过程:①=;=;=②③.验证:===;===;===.(1)按照上述等式及验证过程的基本思想,猜想的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n为正整数,且n≥1)表示的等式.参考答案一.选择题(共6小题)1.表示()A.16的平方根B.16的算术平方根C.±4D.±2【分析】直接利用算术平方根的定义分析得出答案.【解答】解:表示16的算术平方根.故选:B.2.下列计算中,正确的是()A.=±3B.(﹣1)0=1C.|a|﹣a=0D.4a﹣a=3【分析】直接利用算术平方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.【解答】解:A、=3,故此选项错误;B、(﹣1)0=1,正确;C、|a|﹣a=0(a≥0),故此选项错误;D、4a﹣a=3a,故此选项错误;故选:B.3.若,那么y x的值是()A.﹣1B.C.1D.8【分析】直接利用偶次方以及二次根式的性质得出x,y的值,进而化简得出答案.【解答】解:∵,∴x+3=0,y﹣2=0,解得:x=﹣3,y=2,∴y x=2﹣3=.故选:B.4.图中的内容是某同学完成的作业,嘉琪帮他做了批改,嘉琪批改正确的题数是()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,即可作出判断.【解答】解:①﹣1的倒数=﹣1,符合题意;②1的平方根为±1,立方根等于本身,不符合题意;③(﹣)2=,符合题意;④|1﹣|=﹣1,符合题意;⑤=﹣=﹣2,不符合题意,故选:B.5.在﹣1、2、、这四个数中,无理数是()A.﹣1B.2C.D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:是无理数,,2,﹣1是有理数,故选:D.6.﹣1的相反数是()A.1B.C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣1的相反数是:1﹣.故选:A.二.填空题(共8小题)7.若一个正数的平方根分别是a+1和2a﹣7,则a的值是2.【分析】根据一个正数的平方根互为相反数,可得a+1和2a﹣7的关系,根据互为相反数的和为0,可得a的值.【解答】解:根据题意知a+1+2a﹣7=0,解得:a=2,故答案为:2.8.面积等于5的正方形的边长是.【分析】根据算术平方根的定义解答.【解答】解:面积等于5的正方形的边长是.故答案为:.9.若x、y为实数,且|x+3|+=0,则的值为﹣1.【分析】先根据绝对值和算术平方根的非负性得出x和y的值,再代入计算可得.【解答】解:∵|x+3|+=0,∴x=﹣3,y=3,则原式=()2019=(﹣1)2019=﹣1,故答案为:﹣1.10.写出一个同时符合下列条件的数:.(1)它是一个无理数;(2)在数轴上表示它的点在原点的左侧;(3)它的绝对值比2小.【分析】根据无理数的定义求解即可.【解答】解:写出一个同时符合下列条件的数﹣,故答案为:﹣.11.在数轴上,实数2﹣对应的点在原点的左侧.(填“左”、“右”)【分析】根据2<<3,可知2﹣<0,所以2﹣在原点的左侧.【解答】解:根据题意可知:2﹣<0,∴2﹣对应的点在原点的左侧.故填:左12.已知a,b为两个连续的整数,且a<<b,则b a=9.【分析】直接利用的取值范围得出a,b的值,即可得出答案.【解答】解:∵a,b为两个连续的整数,且a<<b,∴a=2,b=3,∴b a=32=9.故答案为:9.13.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b(用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b14.6﹣的整数部分是4.【分析】由于1<<2,所以6﹣的整数部分是6﹣2,依此即可求解.【解答】解:∵1<<2,∴6﹣的整数部分是6﹣2=4.故答案为:4.三.解答题(共6小题)15.计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.16.若实数x,y满足,求代数式x2﹣2xy+y2的值.【分析】根据算术平方根、绝对值的非负性列出算式,分别求出a、b,根据完全平方公式把所求的式子变形,代入计算即可.【解答】解:由题意得,解得:,则x2﹣2xy+y2=(x﹣y)2=(2018﹣2019)2=1.17.已知(a﹣)2与|2b﹣3|+互为相反数,求(2a﹣b)c的值.【分析】本题主要运用了算术平方根、平方、绝对值的非负性.【解答】解:∵(a﹣)2与|2b﹣3|+互为相反数,∴(a﹣)2+2b﹣3|+=0∴a﹣=0,2b﹣3=0,c﹣5=0,∴a=,b=,c=5.∴(2a﹣b)c=(﹣1)=﹣1.18.如图,在一条不完整的数轴上,从左向右有两个点A、B,其中A点表示的数为m,B 表示数的为4,点C也为数轴上一点,且AB=2AC,(1)若m为整数,求m的最大值;(2)若C表示的数为﹣2,求m的值;【分析】(1)利用数轴可得结论;(2)根据AB=2AC,分两种情况讨论:①当点C在线段AB上时,②当点C在射线BA上时,分别列方程可得结论.【解答】解:(1)由题意可得,m<4,…………………………………………………………(2分)∵m为整数,∴m的最大值为3....................................................................................(4分)(2)∵C表示的数为﹣2,B表示数的为4,∴点C在点B的左侧,①当点C在线段AB上时,∵AB=2AC,∴4﹣m=2(﹣2﹣m),解之得,m=﹣8……(6分)②当点C在射线BA上时,∵AB=2AC,∴4﹣m=2(m+2),解之得,m=0................(8分)①=;②=;③=综上所述,m 的值是﹣8或0.19.阅读理解:[x ]表示不大于x 的最大整数,例[2.3]=2,[﹣5.6]=﹣6(1)[8.2]=8.[﹣]=﹣3.(2)[x ]=2的x 的取值范围2≤x <3.(3)直接写出方程[2x ]=x 2的解.【分析】(1)根据[x ]表示不大于x 的最大整数即可求解;(2)结合题目给出[x ]的定义,可以判断[x ]=2中,x 与2的大小关系;(3)结合题目给出[x ]的定义,可以判断[2x ]=x 2中,2x 与x 2的大小关系,从而列出不等式组,确定x 的范围,最后求出x 的值;【解答】解:(1)小于8.2的最大整数位8,小于﹣最大的整数位﹣3;故答案为:8;﹣3.(2)∵:[x ]表示不大于x 的最大整数,∴2≤x <3.故答案为:2≤x <3.(3)由题意可得,解得:0≤x ≤2∵x 2为整数∴x =0,,,2方程[2x ]=x 2的解为:0,,,220.观察下列各式及证明过程:.验证:===;===;===.(1)按照上述等式及验证过程的基本思想,猜想的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n为正整数,且n≥1)表示的等式.【分析】(1)按照规律写猜想并证明;(2)按规律写出第一个数换为n,第二个数换为(n+1),第三个数换为(n+2)的等式.【解答】解:(1)猜想:验证:(2)(n为正整数,且n≥1)。
2010---2011学年第二学期检测题
第六单元检测试卷
时间:90分钟 满分:100分
一、选择题(每小题3分,共30分)
1、P (x ,5)在第二象限内,则x 应是 ( )。
A 、正数
B 、负数
C 、非负数
D 、有理数 2、若y 轴上的点P 到x 轴的距离为3,则点P 的坐标是 ( )。
A 、(3,0) B 、(0,3) C 、(3,0)或(-3,0) D 、(0,3)或(0,-3) 3、若点P(a ,b)的坐标满足关系式ab >0,则点P 在( )。
(A)第一象限
(B)第三象限 (C)第一、三象限 (D)第二、四象限 4、已知A (-4,2),B (1,2),则A ,B 两点的距离是( )。
A .3个单位长度
B .4个单位长度
C .5个单位长度
D .6个单位长度 5、将点P ()3,4-先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为( )。
A .()5,2-
B .()1,6-
C .()5,6-
D .()1,2-
6、一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )。
A 、(2,2)
B 、(3,2)
C 、(3,3)
D 、(2,3) 7、下列语句,其中正确的有 ( )。
①点(3,2)与(2,3)是同一个点 ②点(0,-2)在x 轴上 ③点(0,0)是坐标原点 ④点(-2,-6)在第三象限内
A 、0个目
B 、1个
C 、2个
D 、3个
8、如图, 与①中的三角形相比,②中的三角形发生的变化是( ) 。
A 、向左平移3个单位 B 、向左平移1个单位 C 、向上平移3个单位 D 、向下平移1个单位.
9、坐标为(x ,x –1)的点一定不会在第( )象限。
A .第一象限
B .第二象限
C .第三象限
D .第四象限
10、如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )。
A .点A
B .点B
C .点C
D .点D 二、填空题(每小题3分,共24分)
1、一张电影票的座位5排2号记为(5,2),则3排5号记为 。
2、点(-3,5)到x 轴上的距离是_______,到y 轴上的距离是_______。
3、将点(0,1)向下平移2个单位后,所得点的坐标为________ 。
4、点P (a+5,a-2)在x 轴上,则P 点坐标为 。
5、若点P ()n m ,在第二象限,则点Q ()n m --,在第 象限。
6、已知P (x ,y )点在y 轴的左侧,且│x │=3,│y │=2,则点P 的坐标为 。
7、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a 的值为________。
8、学完了“平面直角坐标系”后,李宇同学在笔记本上写了下列一些体会: ①如果一个点的横,纵坐标都为零,则这个点是原点; ②如果一个点在x 轴上,那它一定不属于任何象限; ③纵轴上的点的横坐标均相等,且都等于零; ④纵坐标相同的点,分布在平行于y 轴的某条直线上.
其中你认为正确的有 (把正确的序号填在横线上)。
三、解答题. (共46分)
1、如图,正方形ABCD 的边长为4,请你建立适当的平面直角坐标系,并写出各个顶点的坐标。
(本题4分)
2、小明同学利用暑假参观了红星村果树种植基地(如图).他从苹果园出发,沿
(1,3),(-3,3),(-4,0)
-3),(2,
6,-3),(6,0),(6,4)的路线进行了参观,地点。
(本题8分)
3、如图,(1)请写出在直角坐标系中的房子的A 、B 、C 、D 、E 、F 、G 的坐标。
(2)源源想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标。
(本题8分)
4、已知直线AB 与两坐标轴交于A 、B 两点,点A 的坐标为(0,-3),且三角形
OAB的面积为6,求点B的坐标。
(本题8分)
5、一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.(本题8分)
6、如图,四边形ABCD各个顶点的坐标分别为(–2,8),(–11,6),(– 14,0),(0,0)。
(1)计算这个四边形的面积;
(2)如果把原来ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?(本题10分)
参考答案
一、选择题(每小题3分,共30分)
二、填空题(每小题3分,共24分)
1、(3,5)
2、5,3
3、(0,-1)
4、(7,0)
5、四
6、(-3,2)或(-3,-2)
7、 1
8、①②③
三、解答题
1.略
2、他路上经过的地方:葡萄园,杏林,桃林,梅林,山楂林,枣林,梨园,苹果园.图略.
3、(1)(2,3),(6,5),(10,3),(3,3),(9,3),(3,0),(9,0);
(2)平移后坐标依次为(2,0),(6,2),(10,0),(3,0),(9,0),(3,– 3),(9,– 3).
4、因为点A的坐标为(0,-3),所以OA=3,设B点的坐标为(a,0),则OB=
a,又因为三角形OAB的面积为6,所以
11
36
22
AOB
S OA OB a
=∙=⨯⨯=
三角形
,
所以4
a=±。
所以B点的坐标为(-4,0)或(4,0).
5、在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C
6、(1)80(可分别割成直角三角形和长方形或补直角三角形成长方形)。
(2)80。