人教版七年级数学下册第九章第二节一元一次不等式作业习题(含答案) (33)
- 格式:docx
- 大小:133.14 KB
- 文档页数:14
第9章不等式与不等式组9.2一元一次不等式班级:姓名:知识点1一元一次不等式的概念1.下列不等式是一元一次不等式的是()A.x2+x>1B.12x+1>2x+33C.x+y>3D.x()1x+2>3x+12.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④3>2.A.1个B.2个C.3个D.4个3.若3x2a+3-9>6是关于x的一元一次不等式,则a=.4.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.知识点2解一元一次不等式5.不等式3x≤2(x-1)的解集为()A.x≤-1B.x≤-1C.x≤-2D.x≥-26.3x-7≥4(x-1)的解集为()A.x≥3B.x≤3C.x≥-3D.x≤-37.不等式3x+22<x的解集是()A.x<-2B.x<-1C.x<0D.x>28.不等式3(x-1)+4≥2x的解集在数轴上表示为()9.不等式x-5>4x-1的最大整数解是()A.-2B.-1C.0D.110.解不等式14(2-x)≥5的过程是:去分母,得;移项,得,系数化为1,得.11.不等式y-26≥y3+1的解集为.12.请你写出一个满足不等式2x-1<6的正整数x的13.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.14.解不等式:2(x-1)<x+1,并求它的非负整数解.15.解不等式x-1≤1+x3,并求其正整数解.16.解不等式2x-13≤3x-46,并把它的解集在数轴上表示出来.17.解不等式2x-13-5x+12≤1,并把它的解集在数轴上表示出来.18.x取什么值时,代数式1-5x2的值不小于代数式3-2x3+4的值.19.已知x=3是关于x的不等式3x-ax+22>2x3的解,求a的取值范围.知识点3列一元一次不等式解决实际问题20.CBA篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计2017—2018赛季全部38场比赛中最少得到57分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(38-x)≥57B.2x-(38-x)≥5721.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每本笔记本2元,她买了4本笔记本,则她最多还可以买支笔()A.1B.2C.3D.422.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折23.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.24.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.25.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,现安排10辆车,则甲种运输车至少应安排几辆?26.八年级二班的五名同学参加学校组织的数学抽查测试,其中四名同学的考试分数分别为85, 80,82,86,又知他们五人的平均成绩不低于80分,那么第五名同学至少要考多少分?27.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?综合点1一元一次不等式与一元一次方程(组)的综合28.若关于x,y的二元一次方程组{3x+y=1+a,x+3y=3的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<429.当m为何值时,关于x的方程(m+2)x-2=1-m(4-x)有:(1)负数解;(2)不大于2的解.综合点2已知一元一次不等式的解集求字母的值30.不等式mx-2<3x+4的解集为x>6m-3,求m的最大整数值.综合点3列一元一次不等式与方程(组)的综合31.为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A,B 两种型号家用净水器共160台,A型号家用净水350元/台,购进两种型号的家用净水器共用36 000元.(1)A,B两种型号家用净水器各购进了多少台?(2)为使每台B型号的家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,则每台A型号家用净水器的售价至少是多少元?(毛利润=售价-进价)拓展点1阅读题32.阅读理解:我们把a bcd称作二阶行列式,规定它的运算法则为a bcd=ad-bc.如2345=2×5-3×4=-2.如果有23-x1x>0,求x的解集.拓展点2含字母系数的一元一次不等式33.解关于x的不等式:ax-x-2>0.拓展点3方案设计34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A,B两种树苗刚好用去1220元,问购进A,B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.第9章不等式与不等式组9.2一元一次不等式答案与点拨1.B(点拨:A 中含未知数项的最高次数是2,C 中含有两个未知数,D 中式子不全是整式,它们都不是一元一次不等式.)2.B(点拨:①③是一元一次不等式,注意③化简后再判断.)3.-1(点拨:2a+3=1,a=-1.)4.1(点拨:|m|=1且m+1≠0,所以m=1.)5.C6.D7.A(点拨:去分母得3x+2<2x,移项得3x-2x<-2,合并同类项得x<-2.)8.A(点拨:不等式3(x-1)+4≥2x 的解集是x ≥-1,大于应向右画,包括-1时,应用实心圆点表示-1这一点,故选A.)9.A(点拨:解不等式得解集为x<-43,所以最大整数解为-2.)10.2-x ≥20-x ≥20-2x ≤-1811.y ≤-812.1,2,3中任何一个都可(点拨:不等式的解集为x<72,其正整数解为1,2,3.)13.去括号得2x-2-3<1,移项、合并同类项得2x<6,系数化为1得x<3.在数轴上把解集表示出来为:14.去括号,得2x-2<x+1,移项、合并同类项,得x<3.因此不等式的非负整数解是0,1,2.15.去分母得3(x-1)≤1+x,去括号得3x-3≤1+x,移项得3x-x ≤1+3,合并同类项得2x ≤4,系数化为1得x ≤2,符合x ≤2的正整数解有1,2.16.去分母,得2(2x-1)≤3x-4.去括号,得4x-2≤3x-4.移项,合并同类项,得x ≤-2.∴不等式的解集为x ≤-2.该解集在数轴上表示如下:17.去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6.移项,得4x-15x ≤6+2+3.合并同类项,得-11x ≤11.系数化为1,得x ≥-1.这个不等式的解集在数轴上表示如下:18.由题意得1-5x 2≥3-2x3+4.去分母,得3(1-5x)≥2(3-2x)+24.去括号、移项、合并同类项,-11x ≥27.系数化为1,得x ≤-2711.∴当x ≤-2711时,1-5x 2≥3-2x 3+4.19.因为x=3是关于x 的不等式3x-ax +22>2x 3的解,所以9-3a +22>2,解得a<4.故a 的取值范围是a<4.21.D(点拨:设可买x支笔,则有3x+4×2≤21,即3x+8≤21,3x≤13,x≤133,所以x可取最大的整数为4,她最多可买4支笔.故选D.)22.B(点拨:设可打x折,则有1200x·0.1≥800(1+0.05),解得x≥7.故选B.)23.14(点拨:根据本次竞赛规则可知竞赛得分=10×答对的题数+(-5)×答错(或不答)的题数,得分要超过100分,列出不等式求解即可.设要答对x道题,则10x+(-5)×(20-x)>100,解得x>1313.∵x是整数,∴x=14.)24.3(点拨:设小宏能买x瓶甲饮料,则买乙饮料(10-x)瓶.根据题意,得7x+4(10-x)≤50,解得x≤31 3 .所以小宏最多能买3瓶甲饮料.)25.设甲种运输车安排x辆,则5x+4×(10-x)≥46,解得x≥6.答:甲种运输车至少应安排6辆.26.设第五名同学要考x分,则85+80+82+86+x≥80×5,解得x≥67.答:第五名同学至少要考67分.27.设购买球拍x个,依题意得:1.5×20+22x≤200.解之得:x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.28.D(点拨:将两个方程相加,得4x+4y=4+a,从而有x+y=4+a4,然后解不等式4+a4<2,得a<4.)29.解方程得x=3-4m2.(1)由3-4m2<0得m>34.(2)由3-4m2≤2得m≥-14.30.2(点拨:由题意得m-3<0,即m<3.)31.(1)设A种型号家用净水器购进了x台,则B种型号的净水器购进了(160-x)台.由题意,得150x+350(160-x)=36000.解得x=100.所以160-x=60.所以A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润为z元,则每台B型号家用净水器的毛利润为2z元.由题意,得100z+60×2z≥11000,解得z≥50.150+50=200(元).所以,每台A型号家用净水器的售价至少为200元.32.由题意得2x-(3-x)>0,去括号得:2x-3+x>0,移项、合并同类项得:3x>3,x的系数化为1得:x>1.33.ax-x-2>0,(a-1)x>2.当a-1=0时,ax-x-2>0无解;当a-1>0时,x>2a-1;当a-1<0时,a<2a-1.34.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得17-x<x,解得x>81 2 .购进A,B两种树苗所需费用为80x+60(17-x)=20x+1020.费用最省则需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.。
第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)一、选择题1.若关于x 、y 的二元一次方程组{3x −y =−1−a,x −3y =3的解满足x -y >-2,则a 的取值范围是( ) A .a <4B . 0<a <4C . 0<a <10D .a <102.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( )A .y =-1B .y =1C .y =-2D .y =23.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买多少枝钢笔.( )A . 11B . 12C . 13D . 144.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为21.5元,那么x 的最大值是( )A . 11B . 8C . 7D . 55.初三的几位同学拍了一张合影作留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为( )A . 至多6人B . 至少6人C . 至多5人D . 至少5人6.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <37.不等式|x -2|>1的解集是( )A .x >3或x <1B .x >3或x <-3C . 1<x <3D . -3<x <3二、填空题8.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________.9.若-3是关于x 的方程x−a 3-2−x 4=1的解,则x−a 3-2−x 4≥1的解集是__________.10.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用____________资金购买书桌、书架等设施.11.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_________. 12.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______.三、解答题13.已知方程组{x −y =2a,2x +3y =5−a的解为非负数,求整数a 的值. 14.若关于x 的方程2x -3m =2m -4x +4的解不小于78-1−m 3,求m 的最小值.15.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.17.解不等式:5x+12-x−24>5x−16+x−33.答案解析1.【答案】D【解析】在关于x 、y 的二元一次方程组{3x −y =−1−a①,x −3y =3②中, ①+②,得4x -4y =2-a ,即x -y =12-a 4,∵x -y >-2,∴12-a 4>-2,解得a <10,故选D.2.【答案】D【解析】ax -2>0,移项,得ax >2,∵解集为x <-2,则a =-1,则ay +2=0,即-y +2=0,解得y =2.故选D.3.【答案】C【解析】设买x 支钢笔,则笔记本有(30-x )本,则有5x +2(30-x )≤100,即3x ≤40,解得x ≤1313.因此最多能买13支钢笔.故答案为13.4.【答案】B【解析】根据题意得8+2.6(x -3)≤21.5,解得x ≤8.19,∵不足1千米按1千米计,∴x 的最大值是8.故选B.5.【答案】B【解析】设参加合影的同学人数为x 人,则有5+0.5x <1.5x ,解得x >5,∵x 取正整数,∴参加合影的同学人数至少为6人.故选B.6.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A.7.【答案】A【解析】∵|x -2|>1,∴x -2>1或x -2<-1;所以解集为x >3或x <1;故选A.8.【答案】k >4【解析】由方程3(x +2)=k +2去括号移项,得3x =k -4,∴x =k−43, ∵关于x 的方程3(x +2)=k +2的解是正数,∴x =k−43>0,∴k >4. 9.【答案】x ≥-3【解析】把x =-3代入方程x−a 3-2−x 4=1,可得a =-394, 把a =-394代入x−a 3-2−x 4≥1,解得x ≥-3,故答案为x ≥-3.10.【答案】7 500元【解析】设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元, 根据题意得30 000-x ≥3x ,解得x ≤7 500.即最多用7 500元购买书桌、书架等设施;故答案是7 500元.11.【答案】80【解析】设以后几天平均每天完成x 土方.由题意得:3x ≥300-60,解得x ≥80答:以后几天平均至少要完成的土方数是80土方.故答案为80.12.【答案】3-a【解析】∵关于x 的不等式(a -2)x >a -2解集为x <1,∴a -2<0,即a <2,∴原式=3-a .故答案为3-a .13.【答案】解:{x −y =2a①,2x +3y =5−a②,①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1;②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1;则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.14.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =5m+46, 根据题意,得5m+46≥78-1−m 3,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-14.所以当m ≥-14时,方程的解不小于78-1−m 3,m 的最小值为-14. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于78-1−m 3,即可得到关于m 的不等式,即可求得m 的范围,从而求解.15.【答案】解:(1)设甲票价为4x 元,乙为3x 元,∴3x +4x =42,解得x =6,∴4x =24,3x =18, 答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y 张,则乙种票(36-y )张,根据题意得24y +18(36-y )≤750,解得y ≤17,答:甲种票最多买17张.【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.16.【答案】解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得x≥4或x≤-5.(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.故a≤7.【解析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x-3|+|x+4|≥a对任意的x都成立,即求到3与-4两点距离的和最小的数值.17.【答案】解:去分母得6(5x+1)-3(x-2)>2(5x-1)+4(x-3),去括号得30x+6-3x+6>10x-2+4x-12,移项得30x-3x-10x-4x>-2-12-6-6,合并同类项,得13x>-26,系数化为1,得x>-2.【解析】利用不等式的基本性质,即可求得原不等式的解集.。
9.2一元一次不等式(实际应用)一、单选题1.缤纷节临近,小西在准备爱心易物活动中发现班级同学捐赠的一个布偶的成本为60元,定价为90元,为使得利润率不低于5%,在实际售卖时,该布偶最多可以打( )折. A .8B .7C .7.5D .8.52.妈妈将某服饰店的促销活动内容告诉爸爸后,爸爸假设某一商品的定价为x 元,并列出关系式为0.8(2x ﹣100)<1500,则下列哪一项可能是妈妈告诉爸爸的内容( ) A .买两件等值的商品可减100元,再打2折,最后不到1500元 B .买两件等值的商品可打2折,再减100元,最后不到1500元 C .买两件等值的商品可减100元,再打8折,最后不到1500元 D .买两件等值的商品可打8折,再减100元,最后不到1500元3.王老师每天从甲地到乙地锻炼身体,甲、乙两地相距1.4千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步( )分钟? A .4B .5C .6D .74.一辆匀速行驶的汽车在8点20分的时候距离某地60km ,若汽车需要在9点以前经过某地,设汽车在这段路上的速度为x (/km 小时),列式表示正确的是( ) A .60x >B .4060x >C .2060x <D .2603x > 5.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x 支钢笔,依题意可列不等式为( ) A .()3530100x x +-≤B .()3305100x x -+≤C .()5301003x x -≤+D .()5100330x x ≤-+6.在世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( ) A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负7.某校要购买一批羽毛球拍和羽毛球,现有经费850元,已知羽毛球拍150元/套,羽毛球30元/盒,若该校购买了4套羽毛球拍,x 盒羽毛球,则下列不等式列式正确的是( ) A .150304x +⨯≤850B .150304850x +⨯<C .150430x ⨯+≤850D .150430850x ⨯+<8.张老师每天从甲地到乙地锻炼身体,甲、乙两地相距14千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式( ) A .80x+200(10-x)≤1.4 B .80x+200(10-x)≤1400C .200x+80(10-x)≥1.4D .200x+80(10-x)≥14009.太原市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( ) A .至少20户B .至多20户C .至少21户D .至多21户10.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分 D .某参赛选手得分可能为负数二、填空题11.某超市从厂家以每件50元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过_________元.12.迪士尼乐园开门前已经有400名游客在排队检票.检票开始后,平均每分钟又有120名游客前来排队.已知一个检票口每分钟能检票15人,若要使排队现象在开始检票10分钟内消失,则至少开放___个检票口.13.一个工程队原定在10天内至少要挖土3600m ,前两天一共完成了3120m ,由于工程调整工期,需要提前两天完成挖土任务,则以后的几天内每天至少要挖土__________3m.14.小红网购了一本数学拓展教材《好玩的数学》.两位小伙伴想知道书的价格,小红告诉他们这本书的价格是整数并让他们猜,小曹说:“至少29元”,小强说:“至多21元,小红说:“你们两个人都猜错了。
人教版七年级数学下册第九章一元一次不等式(组)解法专题一.例题讲解:例题:解关于x 的不等式:ax -x -2>0.解:由ax -x -2>0,得(a -1)x >2. 当a -1=0,则ax -x -2>0无解. 当a -1>0,则x>2a -1.当a -1<0,则x<2a -1.二.对应训练:1.求不等式2x -7<5-2x 正整数解.2.已知不等式x +8>4x +m(m 是常数)的解集是x <3,求m. 3.x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?4.解不等式:x 3>1-x -36.5.解不等式2(x +1)<3x ,并把解集在数轴上表示出来.6.解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.类型2 解一元一次不等式组一.例题讲解:例题:求不等式组⎩⎪⎨⎪⎧x -3≤2,①1+12x>2x ②的正整数解.解:解不等式①,得x ≤5. 解不等式②,得x <23.∴不等式组的解集为x <23.∴这个不等式组不存在正整数解.二.对应训练:1.解不等式组:⎩⎪⎨⎪⎧2x -1>3,①2+2x ≥1+x.②2.解不等式组:⎩⎪⎨⎪⎧x -1>2x ,①12x +3<-1.②3.解不等式组⎩⎪⎨⎪⎧2(x +2)≤x +3,①x 3<x +14,②并它的解集表示在数轴上.4.解不等式组⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -2≤7-52x ,②并在数轴上表示出该不等式组的解集. 类型3 关于字母系数问题一.例题讲解:例题:若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围. 解:解不等式①,得x >-25.解不等式②,得x <2a.∵不等式组恰有三个整数解,∴2<2a ≤3. ∴1<a ≤32.二.对应训练:1.若不等式组⎩⎪⎨⎪⎧x>3,x>m的解集是x>3,则m 的取值范围是_______.2.一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是( )A .4B .5C .6D .73.若不等式组⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为( )A .1B .2C .3D .44.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m ≥25.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x>x -2无解,则实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-16.不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x<0的最小整数解是______.7.不等式组2≤3x -7<8的解集为________.8.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为___.9.已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x<0.②并依据a 的取值情况写出其解集.10.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围. 11.已知不等式组⎩⎪⎨⎪⎧x>2,x<a人教版七年级数学下册 第九章 不等式与不等式组 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.2019年2月1日某市最高气温是8℃,最低气温是-2℃,则当天该市气温变化范围t (℃)是( )A .t >8B .t <2C . -2<t <8D . -2≤t ≤82.下列x 的值中,是不等式x >3的解的是( )A . -3B . 0C . 2D . 43.下列不等式变形正确的是( )A . 由a >b ,得ac >bcB . 由a >b ,得a -2<b -2C . 由-21>-1,得-2a>-a D . 由a >b ,得c -a <c -b4.如果a +b <0,且b >0,那么a ,b ,-a ,-b 的大小关系为( ) A .a <b <-a <-b B . -b <a <-a <b C .a <-b <-a <b D .a <-b <b <-a5.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <36.若关于x 、y 的二元一次方程组的解满足x -y >-2,则a 的取值范围是( )A .a <4B . 0<a <4C . 0<a <10D .a <107.已知点M (1-2m ,m -1)在第四象限内,那么m 的取值范围是( ) A .m >1 B .m <21C .21<m <1D .m <21或m >18.已知不等式组有解,则a 的取值范围为( )A .a >-2B .a ≥-2C .a <2D .a ≥29.在关于x 、y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( ) A . B .C .D .10.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是( )A . 5B . 6C . 7D . 8二、填空题(共8小题,每小题3分,共24分)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是___________.12.如果2x -5<2y -5,那么-x ______-y .(填“<、>、或=”) 13.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______. 14.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________. 15.不等式组:的解集是________.16.关于x 的不等式组的解集为1<x <4,则a 的值为________.17.把m 个练习本分给n 个学生.若每人分3本,则余80本;若每人分5本,则最后一个同学有练习本但不足5本.那么n =________.18.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张.三、解答题(共7小题,共66分)19.(8分)解不等式:6x -1≤5;把解集在数轴上表示出来.20. (8分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad -bc .如=2×5-3×4=-2.如果有>0,求x 的解集.21. (8分)已知方程组的解为非负数,求整数a 的值.22. (8分)若关于x 的方程2x -3m =2m -4x +4的解不小于87-,求m 的最小值.23. (10分)解不等式组:并把解集在数轴上表示出来.24. (12分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?25. (12分)学校计划利用校友慈善基金购买一些平板电脑和打印机.经市场调查,已知购买1台平板电脑比购买3台打印机多花费600元,购买2台平板电脑和3台打印机共需8 400元.(1)求购买1台平板电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买平板电脑和打印机共100台,要求购买的总费用不超过168 000元,且购买打印机的台数不低于购买平板电脑台数的2倍.请问最多能购买平板电脑多少台?答案解析1.【答案】D【解析】由题意得-2≤t ≤8.故选D. 2.【答案】D【解析】∵不等式x >3的解集是所有大于3的数,∴4是不等式的解.故选D. 3.【答案】D【解析】A.由a >b ,得ac >bc (c >0),故此选项错误; B .由a >b ,得a -2>b -2,故此选项错误; C .由-21>-1,得-2a>-a (a >0),故此选项错误; D .由a >b ,得c -a <c -b ,此选项正确.故选D. 4.【答案】D【解析】∵设b =1,a =-2,则有-b =-1,-a =2,a <-b <b <-a .故选D. 5.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A. 6.【答案】D【解析】在关于x 、y 的二元一次方程组中,①+②,得4x -4y =2-a ,即x -y =21-4a, ∵x -y >-2,∴21-4a>-2,解得a <10,故选D. 7.【答案】B【解析】根据题意,可得解不等式①,得m <21,解不等式②,得m <1,∴m <21,故选B. 8.【答案】C 【解析】不等式组由(1)得x ≥a ,由(2)得x <2,故原不等式组的解集为a ≤x <2, ∵不等式组有解,∴a 的取值范围为a <2.故选C.9.【答案】C【解析】①×2-②,得3x=3m+6,即x=m+2,把x=m+2代入②,得y=3-m,由x≥0,y>0,得到解得-2≤m<3,表示在数轴上,如图所示:,故选C.10.【答案】B【解析】设小张同学应该买的球拍的个数为x,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.11.【答案】x>-2【解析】观察数轴可得该不等式的解集为x>-2.故答案为x>-2.12.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.13.【答案】3-a【解析】∵关于x的不等式(a-2)x>a-2解集为x<1,∴a-2<0,即a<2,∴原式=3-a.故答案为3-a.14.【答案】k>4【解析】由方程3(x+2)=k+2去括号移项,得3x=k-4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,∴k>4.15.【答案】x>5【解析】解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.16.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x <4,∴a -1=4,即a =5, 故答案为5. 17.【答案】41或42 【解析】根据题意得解得40<n <42.5,∵n 为整数,∴n 的值为41或42.故答案为41或42. 18.【答案】152【解析】设本班有x 人(x 是正整数),最后的学生得到的贺卡为y (y 是整数,0<y ≤3), 根据题意有3x +59=5(x -1)+y ,解得x =32-21y ,由于x 取正整数,y 为整数,0<y ≤3,∴y 只能取2,∴x =32-1=31, 那么班主任购买的贺卡数为3x +59=152(张),故填152. 19.【答案】6x -1≤5,6x ≤6,x ≤1, 在数轴上表示为【解析】利用不等式的性质1及性质2求出解集. 20.【答案】解:由题意得2x -(3-x )>0, 去括号得2x -3+x >0, 移项合并同类项得3x >3, 把x 的系数化为1得x >1.【解析】首先看懂题目所给的运算法则,再根据法则得到2x -(3-x )>0,然后去括号、移项、合并同类项,再把x 的系数化为1即可. 21.【答案】解:①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1; ②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1; 则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解. 22.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =,根据题意,得≥87-,去分母,得4(5m +4)≥21-8(1-m ), 去括号,得20m +16≥21-8+8m , 移项,合并同类项,得12m ≥-3, 系数化为1,得m ≥-41.所以当m ≥-41时,方程的解不小于87-,m 的最小值为-41.【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于87-,即可得到关于m 的不等式,即可求得m 的范围,从而求解.23.【答案】解:解不等式①,得x <2, 解不等式②,得x ≥-1, 在数轴上表示为:∴不等式组的解集为-1≤x <2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.24.【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元,y 万元. 则解得答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元; (2)设购买A 型车a 辆,则购买B 型车(6-a )辆, 则依题意得解得2≤a ≤341.∵a 是正整数,∴a =2或a =3. ∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车;人教版七年级数学下册第九章不等式与不等式组单元测试题一、 选择题。
9.2 一元一次不等式 第1课时 一元一次不等式的解法1.下列不等式中,是一元一次不等式的是( ) A .2x -3y >4 B .-2<3 C .3x -1<0 D .y 2-3>22.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =1. 3.不等式1-2x ≥0的解集是( ) A .x ≥2 B .x ≥12C .x ≤2D .x ≤124.不等式2x -1≤3的解集在数轴上表示正确的是( ) A. B. C.D.5.当x 时,式子x -3的值是正数. 6.不等式x -3<6-2x 的解集是 . 7.解不等式,并把解集在数轴上表示出来: (1)5x -2≤3x ;(2)5x -5<2(2+x);(3)2-x 4≥1-x 3.8.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.9.与不等式2x -4≤0的解集相同的不等式是( ) A .-2x ≤x -1 B .-2x ≤x -10 C .-4x ≥x -10 D .-4x ≤x -10 10.不等式6-4x ≥3x -8的非负整数解为( ) A .2个 B .3个 C .4个 D .5个11.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤212.如果a<2,那么不等式ax>2x +5的解集是x<5a -2.13.在实数范围内规定新运算“△”,其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是 .14.解不等式,并把解集在数轴上表示出来: (1)2(x +1)-1≥3x +2;(2)3(x -1)<4(x -12)-3;(3)x +12≥3(x -1)-4;(4)x -25-x +42>-3.15.如图,在数轴上,点A ,B 分别表示数1,-2x +3. (1)求x 的取值范围;(2)数轴上表示数-x +2的点应落在 .A .点A 的左边B .线段AB 上C .点B 的右边第2课时一元一次不等式的应用1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x页,所列不等式为( )A.2+10x≥87 B.2+10x≤87C.10+8x≤87 D.10+8x≥872.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A.5 B.4 C.3 D.23.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其他费用不考虑),售价至少定为多少?设售价为x元/千克,根据题意所列不等式正确的是( )A.100(1-5%)x≥1 140B.100(1-5%)x>1 140C.100(1-5%)x<1 140D.100(1-5%)x≤1 1404.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是( )A.11 B.8 C.7 D.55.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( )A.13 B.14 C.15 D.167.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为人.8.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为( ) A.210x+90(18-x)≥2 100B.90x+210(18-x)>2 100C.210x+90(18-x)≥2.1D.210x+90(18-x)>2.19.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工40个零件.10.已知导火线的燃烧速度是0.7 cm/s,爆破员点燃后跑开的速度是5 m/s,为了点火后跑到130 m及以外的安全地带,则导火线至少长多少厘米?11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( )A.8 B.6 C.7 D.912.国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为 cm.13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.14.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1 140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7 000元,那么A种防疫物品最多购买多少件?15.新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款560万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:(1)购进A种型号的口罩机台,B种型号的口罩机台;(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台进行生产.若工厂的工人每天工作10 h,则至少购进B种型号的口罩机多少台才能在5天内完成任务?16.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36 800元,试问本次试点投放A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?第3课时利用一元一次不等式解决方案设计问题1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?2.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9 000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.3.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.4.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(只填“方案一”或“方案二”,不要求写解题过程)(2)当x>20时,①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?5.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.6.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?请说明理由.参考答案:9.2 一元一次不等式第1课时 一元一次不等式的解法1.下列不等式中,是一元一次不等式的是(C)A .2x -3y >4B .-2<3C .3x -1<0D .y 2-3>22.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =1.3.不等式1-2x ≥0的解集是(D)A .x ≥2B .x ≥12C .x ≤2D .x ≤124.不等式2x -1≤3的解集在数轴上表示正确的是(C)A.B. C. D. 5.当x >3时,式子x -3的值是正数.6.不等式x -3<6-2x 的解集是x <3.7.解不等式,并把解集在数轴上表示出来:(1)5x -2≤3x ;解:移项,得5x -3x ≤2.合并同类项,得2x ≤2.系数化为1,得x ≤1.其解集在数轴上表示为:(2)5x -5<2(2+x);解:去括号,得5x -5<4+2x.移项,得5x -2x <4+5.合并同类项,得3x <9.系数化为1,得x <3.这个不等式的解集在数轴上表示为:(3)2-x 4≥1-x 3. 解:去分母,得3(2-x)≥4(1-x).去括号,得6-3x ≥4-4x.移项、合并同类项,得x ≥-2.其解集在数轴上表示为:8.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:错误的是①②⑤,正确的解答过程如下:去分母,得3(1+x)-2(2x +1)≤6.去括号,得3+3x -4x -2≤6.移项,得3x -4x ≤6-3+2.合并同类项,得-x ≤5. 两边都除以-1,得x ≥-5.9.与不等式2x -4≤0的解集相同的不等式是(C)A .-2x ≤x -1B .-2x ≤x -10C .-4x ≥x -10D .-4x ≤x -1010.不等式6-4x ≥3x -8的非负整数解为(B)A .2个B .3个C .4个D .5个11.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是(C)A .m ≥2B .m >2C .m <2D .m ≤212.如果a<2,那么不等式ax>2x +5的解集是x<5a -2. 13.在实数范围内规定新运算“△”,其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是-3.14.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x +2;解:去括号,得2x +2-1≥3x +2.移项,得2x -3x ≥2-2+1.合并同类项,得-x ≥1.系数化为1,得x ≤-1.其解集在数轴上表示为:(2)3(x -1)<4(x -12)-3;解:去括号,得3x -3<4x -2-3.移项,得3x -4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x >2.其解集在数轴上表示为:(3)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8.去括号,得x +1≥6x -6-8.移项,得x -6x ≥-6-1-8. 合并同类项,得-5x ≥-15.系数化为1,得x ≤3.其解集在数轴上表示为:(4)x -25-x +42>-3. 解:去分母,得2(x -2)-5(x +4)>-30.去括号,得2x -4-5x -20>-30.移项,得2x -5x >-30+4+20.合并同类项,得-3x >-6.系数化为1,得x <2.其解集在数轴上表示为:15.如图,在数轴上,点A ,B 分别表示数1,-2x +3.(1)求x 的取值范围;(2)数轴上表示数-x +2的点应落在B .A .点A 的左边B .线段AB 上C .点B 的右边解:由数轴上的点表示的数右边的总比左边的大,得-2x +3>1,解得x <1.第2课时 一元一次不等式的应用1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x 页,所列不等式为(D)A .2+10x ≥87B .2+10x ≤87C .10+8x ≤87D .10+8x ≥872.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为(B)A.5 B.4 C.3 D.23.某超市花费1 140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其他费用不考虑),售价至少定为多少?设售价为x元/千克,根据题意所列不等式正确的是(A) A.100(1-5%)x≥1 140B.100(1-5%)x>1 140C.100(1-5%)x<1 140D.100(1-5%)x≤1 1404.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11 B.8 C.7 D.55.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?解:设孔明可以买x副球拍.根据题意,得1.5×20+22x≤200,解得x≤7811.答:孔明最多可以买7副球拍.6.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为(C)A.13 B.14 C.15 D.16 7.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为6人.8.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为(A)A.210x+90(18-x)≥2 100B.90x+210(18-x)>2 100C .210x +90(18-x)≥2.1D .210x +90(18-x)>2.19.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工40个零件.10.已知导火线的燃烧速度是0.7 cm/s ,爆破员点燃后跑开的速度是5 m/s ,为了点火后跑到130 m 及以外的安全地带,则导火线至少长多少厘米?解:设导火线长x cm.由题意,得x 0.7≥1305, 解得x ≥18.2.答:导火线至少长18.2 cm.11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?(B)A .8B .6C .7D .912.国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm ,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为55cm.13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.解:设这份快餐含有x 克蛋白质,则这份快餐含有4x 克的碳水化合物.根据题意,得 x +4x ≤400×70%,解得x ≤56.答:这份快餐最多含有56克蛋白质.14.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A 、B 两种防疫物品每件各多少元;(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7 000元,那么A 种防疫物品最多购买多少件?解:(1)设A 种防疫物品每件x 元,B 种防疫物品每件y 元,根据题意,得⎩⎪⎨⎪⎧60x +45y =1 140,45x +30y =840,解得⎩⎪⎨⎪⎧x =16,y =4.答:A 种防疫物品每件16元,B 种防疫物品每件4元.(2)设购买A 种防疫物品m 件,则购买B 种防疫物品(600-m)件,根据题意,得16m +4(600-m)≤7 000.解得m ≤38313. 又∵m 为正整数,∴m 的最大值为383.答:A 种防疫物品最多购买383件.15.新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款560万元购进A ,B 两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:(1)购进A 种型号的口罩机10台,B 种型号的口罩机20台;(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台进行生产.若工厂的工人每天工作10 h ,则至少购进B 种型号的口罩机多少台才能在5天内完成任务? 解:设购进B 型口罩机m 台,根据题意,得5×10×[2 500(15-m)+3 000m]≥2 000 000.解得m ≥5.答:至少购进B 型号口罩机5台.16.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A ,B 两种款型的单车共100辆,总价值36 800元,试问本次试点投放A 型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A ,B 两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?解:(1)设本次试点投放A 型车x 辆,则投放B 型车(100-x)辆.依题意,得400x +320(100-x)=36 800.解得x =60.则100-x =40.答:本次试点投放A 型车60辆,B 型车40辆.(2)由(1)可知,试点投放的A ,B 两车型数量比为3∶2,设城区10万人口平均每100人享有A 型车3y 辆,B 型车2y 辆.依题意,得100 000100×3y ×400+100 000100×2y ×320≥1 840 000 解得y ≥1.则3y ≥3,2y ≥2.答:城区10万人口平均每100人至少享有A 型车3辆,B 型车2辆.第3课时 利用一元一次不等式解决方案设计问题1.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元.由题意,得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算.2.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9 000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.解:(1)设购买甲种树苗x棵,则购买乙种树苗(2x-40)棵,由题意,得30x+20(2x-40)=9 000,解得x=140.∴2x-40=240.答:购买甲种树苗140棵,乙种树苗240棵.(2)设购买甲种树苗y棵,乙种树苗(10-y)棵,根据题意,得30y+20(10-y)≤230,解得y≤3.购买方案一:购买甲树苗3棵,乙树苗7棵;购买方案二:购买甲树苗2棵,乙树苗8棵;购买方案三:购买甲树苗1棵,乙树苗9棵;购买方案四:购买甲树苗0棵,乙树苗10棵.3.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2 400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3 000-50m)元.①若3 000-50m=2 400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3 000-50m>2 400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3 000-50m<2 400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.4.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求写解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3_200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3_600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则40x+3 200<36x+3 600.解得x<100.若按方案二购买更省钱,则40x+3 200>36x+3 600.解得x>100.若两种方案付费一样,则40x+3 200=36x+3 600,解得x=100.∴当x<100时,方案一更省钱;当x>100时,方案二更省钱;当x=100时,两种方案付费一样.5.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.解:(1)由题意得,当x=8时,选择方案一的购买费用为90%a×8=7.2a元.选择方案二的购买费用为5a+(8-5)a×80%=7.4a元.∵7.2a<7.4a,∴当x =8时,应选择方案一,该公司购买费用最少,最少费用是7.2a 元.(2)∵该公司采用方案二购买更合算,∴x >5.∴选择方案一,购买的费用为90%ax =0.9ax 元.选择方案二,购买的费用为5a +(x -5)a ×80%=5a +0.8ax -4a =a +0.8ax.根据题意,得0.9ax >a +0.8ax.解得x >10.∴x 的取值范围是x >10.6.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A ,B 两种型号的设备,其中每台的价格、月处理污水量如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?请说明理由.解:(1)设购买x 台A 型污水处理设备,则购买(10-x)台B 型污水处理设备,由题意,得 12x +10(10-x)≤105.解得x ≤52. 故有3种购买方案:方案一:购买0台A 型污水处理设备,10台B 型污水处理设备;方案二:购买1台A 型污水处理设备,9台B 型污水处理设备;方案三:购买2台A 型污水处理设备,8台B 型污水处理设备.(2)应选择购买1台A 型污水处理设备,9台B 型污水处理设备.理由:设购买a 台A 型污水处理设备,由题意,得240a +200(10-a)≥2 040.解得 a ≥1.当a =1时,需资金12×1+10×9=102 (万元);当a=2时,需资金12×2+10×8=104 (万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.。
一元一次不等式应用1.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?2.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价﹣进价)3.某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和5部乙型号手机,共需资金6000元;若购进3部甲型号手机和2部乙型号手机,共需资金4600元.(1)求甲、乙型号手机每部进价多少元?(2)为了提高利润,该店计划购进甲、乙型号手机销售,预计用不多于1.8万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?(3)若甲型号手机的售价为1500元,乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a元;而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.4.某旅游景点的一个商场为了抓住国庆节长假这一旅游旺季的商机,决定购进甲,乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品共100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时甲种纪念品又不能超过60件,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?5.某电器销售商到厂家选购A、B两种型号的液晶电视机,用30000元可购进A型电视10台,B型电视机15台;用30000元可购进A型电视机8台,B型电视机18台.(1)求A、B两种型号的液晶电视机每台分别多少元?(2)若该电器销售商销售一台A型液晶电视可获利800元,销售一台B型液晶电视可获利500元,该电器销售商准备用不超过40000元购进A、B两种型号液晶电视机共30台,且这两种液晶电视机全部售出后总获利不低于20400元,问:有几种购买方案?在这几种购买方案中,哪种方案获利最多?6.为响应习总书记“扶贫先扶志,扶贫必扶智”的号召,我州北部某市向南部某贫困县中小学捐赠一批书籍和实验器材共360套,其中书籍比实验器材多120套.(1)求书籍和实验器材各有多少套?(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批书籍和实验器材运往该县.已知每辆甲种货车最多可装书籍40套和实验器材10套,每辆乙种货车最多可装书籍30套和实验器材20套.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来.(3)在(2)的条件下,如果甲种型号的货车每辆需付运费1000元,乙种型号的货车每辆需付运费900元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?7.某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型车不少于2辆,购车费不少于130万元,则有哪几种购车方案?(3)试说明在(2)中哪种方案费用最低?最低费用是多少元?8.某电器超市销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售时段第一周第二周销售数量(台)A型35B型46销售收入(元)12001900(1)求A、B两种型号的电风扇的销售单价各是多少元?(2)若超市准备用不多于7400元的金额再采购这两种型号的电风扇共50台,在全部售完台电风扇情况下,使利润不少于1835元,请你帮助超市设计有哪几种采购方案?9.万美服装店准备购进一批两种不同型号的衣服,已知若购进A型号的衣服9件,B型号的衣服10件共需1810元;若购进A型号的衣服12件,B型号的衣服8件共需1880元.已知销售一件A型号的衣服可获利18元,销售一件B型号的衣服可获利30元.(1)求A、B型号衣服的进价各是多少元;(2)若已知购进的A型号的衣服比B型号衣服的2倍还多4件,且购进的A型号的衣服不多于28件,则该服装店要想获得的利润不少于699元,在这次进货时可有几种进货方案?10.有大小两种货车,已知1辆大货车与3辆小货车一次可以运货14吨,2辆大货车与5辆小货车一次可以运货25吨.(1)1辆大货车与1辆小货车一次可以运货各多少吨?(2)1辆大货车一次费用为300元,1辆小货车一次费用为200元,要求两种货车共用10辆,两次完成80吨的运货任务,且总费用不超过5400元,有哪几种用车方案?请指出费用最低的一种方案,并求出相应的费用.11.学校准备举行社团活动,需要向商家购买A,B两种型号的文化衫50件,已知一件A 型号文化衫的售价比一件B型号文化衫的售价贵9元,用200元恰好可以买到2件A型号文化衫和5件B型号文化杉.(1)求A、B两种型号的文化衫每件的价格分别为多少元?(2)如果用于购买A、B两种型号文化杉的金额不少于1500元但不超过1530元,请你求出所有的购买方案?(3)试问在(2)的条件下,学校采用哪种购买方案花钱最少?最少是多少?12.某家电专卖店销售每台进价分别200元、160元的A,B两种型号的电风扇,下表是近两周的销售情况销售时段销售数量销售收入A种型号B种型号第一周3台4台1550元第二周4台8台2600元(进价、售价均保持不变,利销=销售收入﹣进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若专卖店准备用不多于3560元的金额再采购这两种型号的电风扇共20台,且采购A型电风扇的数量不少于8台.求专卖店有哪几种采购方案?(3)在(2)的条件下.如果采购的电风扇都能销售完,请直接写出哪种采购方案专卖店所获利润最大?最大利润是多少?13.某商场准备进一批两种不同型号的衣服,若购进A种型号衣服5件,B种型号衣服2件,则共需720元;若购进A种型号衣服6件,B种型号衣服1件,共需710元(1)求A、B型号衣服进价各是多少元?(2)已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于522元,且购进A型号衣服不多于20件,若已知购进A型号衣服比B型号衣服的2倍少4件,则商店在这次进货中可有几种方案并简述有哪几种购货方案.14.2018年暑期临近,学生们也可轻松逛逛商场,选择自己心仪的衣服.安岳上府街一服装店老板打算不错失这一良机,计划购进甲、乙两种T恤.已知购进甲T恤2件和乙T 恤3件共需310元;购进甲T恤1件和乙T恤2件共需190元(1)求甲、乙两种T恤每件的进价分别是多少元?(2)为满足市场需求,服装店需购进甲、乙两种T恤共100件,要求购买两种T恤的总费用不超过6540元,并且购买甲T恤的数量应小于购买甲乙两种T恤总数量的,请你通过计算,确定服装店购买甲乙两种T恤的购买方案.15.为了解决小区停车难的问题,某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.5万元,新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)根据实际情况,该小区新建地上停车位不多于33个,且预计投资金额不超过11万元,共有几种建造方式?16.某中学拟组织七年级师生去参观苏州博物馆.下面是张老师和小芳、小明同学有关租车问题的对话:张老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了5辆60座和3辆45座的客车到苏州博物馆,一天的租金共计6750元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车则可少租1辆,且有一辆车上的人不足一半.”根据以上对话,解答下列问题:(1)客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)求出满足条件的a的值.(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有哪几种租车方案?17.实验中学为了奖励在学校《诗词大会》上获奖的同学,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费650元,求甲、乙两种奖品各购买了多少件.(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求学校有几种不同的购买方案.18.为实现区域教育均衡发展,我区计划对A、B两类薄弱学校分别进行改造,根据预算,改造一所A类学校和两所B类学校共需资金220万元,改造两所A类学校和一所B类学校共需资金200万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)我区计划今年对A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过360万元,地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元,请你通过计算求出有几种改造方案?19.为实现区域教育均衡发展,我县对薄弱学校全面进行办学条件的改善,计划为某学校购进一批电脑和电子白板,经过市场考察得知,购买2台电脑和3台电子白板需要5.5万元,购买4台电脑和5台电子白板需要9.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据该学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购进方案?20.某汽车销售公司经销某品牌A、B两款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元.(1)公司预计用不多于135万元且不少于129万元的资金购进这两款汽车共20辆,有几种进货方案,它们分别是什么?(2)如果A款汽车每辆售价为9万元,B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(1)中所有的方案获利相同,a值应是多少,此种方案是什么?(提示:可设购进B款汽车x辆)21.攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?22.某校准备为七年级同学庆祝最后一个“儿童节”,至少需要甲种鲜花266朵,乙种鲜花169朵,制成A、B两种造型共16束.要求A造型用甲种鲜花18朵,乙种鲜花10朵;B 造型用甲种鲜花16朵,乙种鲜花11朵,送某花店制作.(1)花店共有几种制作方案?分别有哪几种?(2)若A种造型每束鲜花可获得利润12元,B种造型每束鲜花可获得利润10元.如果你是店主,你选择哪种制作方案?说明理由.一元一次不等式的应用1.解:(1)设A、B两种型号的扫地车每辆每周分别可以处理垃圾a吨、b吨,,解得,,答:(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;(2)设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,,解得,20≤m≤22,∵m为整数,∴m=20,21,22,∴共有三种购买方案,方案一:购买A型扫地车20辆,B型扫地车20辆;方案二:购买A型扫地车21辆,B型扫地车19辆;方案三:购买A型扫地车22辆,B型扫地车18辆;∵y=25m+20(40﹣m)=5m+800,∴当m=20时,y取得最小值,此时y=900,答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.2.解:(1)设A型号家用净水器每台进价为x元,B型号家用净水器每台进价为y元,根据题意知,解得:,答:A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)设商家购进A型号家用净水器m台,则购进B型号家用净水器(20﹣m)台,根据题意,得:,解得:12≤m≤15,因为m为整数,所以m=12或13或14或15,则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.3.解:(1)设甲型号手机的每部进价为x元,乙型号手机的每部进价为y元,根据题意,得:,解得:,答:甲型号手机的每部进价为1000元,乙型号手机的每部进价为800元;(2)设购进甲型号手机a部,则购进乙型号手机(20﹣a)部,根据题意,得:,解得:8≤a≤10,∵a为整数,∴a=8或9或10,则进货方案有如下三种:方案一:购进甲型号手机8部,购进乙型号手机12部;方案二:购进甲型号手机9部,购进乙型号手机11部;方案三:购进甲型号手机10部,购进乙型号手机10部.(3)设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.4.解:(1)设购进甲乙两种纪念品每件各需要x元和y元,依题意得:,解得答:购进甲乙两种纪念品每件各需80元和40元.(2)设购进甲种纪念品m件,则乙种纪念品(100﹣m)件,依题意得:,解得50≤m≤60,∵m只能取正整数,∴m=50,51,52,53,54,55,56,57,58,59,60,所以共有11种进货方案;(3)因为甲种纪念品获利最高,所以甲种纪念品的数量越多总利润越高,因此选择购进甲种纪念品60件,乙种纪念品40件利润最高,总利润=60×30+40×12=2280(元).答:购进甲种纪念品60件,购进乙种纪念品40件利润最大,最大利润为2280元.5.解:(1)设A型液晶电视机每台x元,B型液晶电视机每台y元,根据题意得:,解得:.答:A型液晶电视机每台1500元,B型液晶电视机每台1000元.(2)设购进A型液晶电视机a台,则购进B型液晶电视机(30﹣a)台,根据题意得:,解得:18≤a≤20.∵a为整数,∴a=18、19、20,∴30﹣a=12、11、10,∴有三种购买方案,方案一:购进A型液晶电视机18台,B型液晶电视机12台;方案二:购进A型液晶电视机19台,B型液晶电视机11台;方案三:购进A型液晶电视机20台,B型液晶电视机10台.方案一获利:18×800+12×500=20400(元);方案二获利:19×800+11×500=20700(元);方案三获利:20×800+10×500=21000(元).∵20400<20700<21000,∴方案三获利最多.6.解:(1)设书籍和实验器材分别为x、y套.根据题意得:解得:故书籍和实验器材分别为240套,120套.(2)设安排甲型号的货车a辆,则安排乙型号的货车(8﹣a)辆.根据题意得:解得:0≤a≤4又∵a取整数,∴a=1,2,3,48﹣a=7,6,5,4,∴共有4种方案,如下:方案一:甲1辆,乙7辆方案二:甲2辆,乙6辆方案三:甲3辆,乙5辆方案四:甲4辆,乙4辆(3)方案一:1000+7×900=7300(元)方案二所需运费:2×1000+6×900=7400(元)方案三所需运费:3×1000+5×900=7500(元)方案四所需运费:4×1000+4×900=7600(元)故运输部门应选择方案一,他的运费最少,最少运费是7300元.7.解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得:,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3,∴2≤a≤3.a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;(3)方案一的费用为:2×18+4×26=140(万元)、方案二的费用为:3×18+3×26=132(万元),所以方案二的费用最低,最低费用为132万元.8.解:(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则,解得:33.5≤a≤35,∵a为整数,∴a=34或35,方案一:采购A型34台B型16台;方案二:采购A型35台B型15台.9.解:(1)设A型号衣服进价是x元/件,B型号衣服进价是y元/件,由已知得:,解得:.答:A型号衣服进价是90元/件,B型号衣服进价是100元/件.(2)设购进B型号衣服m件,则购进A型号衣服(2m+4)件,由已知得:,解得:9≤m≤12,∵m为正整数,∴m=10、11、12,∴有三种购货方案:方案一:购进B型号衣服10件、A型号衣服24件;方案二:购进B 型号衣服11件、A型号衣服26件;方案三:购进B型号衣服12件、购进A型号衣服28件10.解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货5吨和3吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵两次完成80吨的运货任务,且总费用不超过5400元,∴,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大货车用5台、小货车用5台时,总费用最低,最低费用为5000元.11.解:(1)设:A型文化衫每件x元,B型文化衫每件(x﹣9)元.∴2x+5(x﹣9)=200.解得:x=35 x﹣9=26答:购买一件A型文化衫和一套B型文化衫各需35元和26元.(2)设购买A型文化衫a件,则购买B型(50﹣a)件依题意得:1500≤35a+26(50﹣a)≤1530.解得:≤a≤25.∵a为整数,所以a=23、24、25所以共有3种方案.方案一:购买A型文化衫23件,购买B型文化衫27件.方案二:购买A型文化衫24件,购买B型文化衫26件.方案三:购买A型文化衫25件,购买B型文化衫25件.(3)方案一花费2070元,方案二花费2160元,方案三花费2250元.所以,方案一:即:学校购买A型文化衫23件,购买B型文化衫27件花钱最少,最少花费2070元.12.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,,解得:,答:A、B两种型号电风扇的销售单价分别为250元、200元;(2)设购买A种型号的电风扇m台,则B种型号的电风扇(20﹣m)台,则解得,8≤m≤9,故A、B两种型号的电风扇的采购方案有二种,方案一:购买A种型号的电风扇8台,则B种型号的电风扇12台;方案二:购买A种型号的电风扇9台,则B种型号的电风扇11台.(3)方案一获得的利润为:8×(250﹣200)+12×(200﹣160)=880(元),方案二:获得的利润为:9×(250﹣200)+11×(200﹣160)=890(元).所以,购买A种型号的电风扇9台,则B种型号的电风扇11台获得利润最大,最大利润为890元.13.解:(1)设A种型号的衣服每件x元,B种型号的衣服y元.由题意列方程组,得解这个方程组,得答:A种型号的衣服每件100元,B种型号的衣服110元;(2)设B型号衣服购进m件,则A型号衣服购进(2m﹣4)件,由题意列不等式组,得解这个不等式组,得9≤m≤12∵m为正整数,∴m可取得整数值是9,10,11,12,当m=9时,2m﹣4=14;当m=10时,2m﹣4=16;当m=11时,2m﹣4=18;当m=12时,2m﹣4=20;∴2m﹣4=14、16、18、20.答:有四种进货方案:(1)B型号衣服购买9件,A型号衣服购进14件;(2)B型号衣服购买10件,A型号衣服购进16件;(3)B型号衣服购买11件,A型号衣服购进18件.(4)B型号衣服购买12件,A型号衣服购进20件.14.解:(1)设甲种T恤每件进价为x元,乙种T恤每件进价为y元.由题意得解得(答:甲种T恤每件进价为50元,乙种T恤每件进价为70元.(2)设商场购进甲种T恤a件,则购进乙种T恤为(100﹣a)件.根据题意得:(6分)解得23≤a<25(7分)∵a为整数,∴a为23或24∴当a=23时,100﹣a=77;当a=24时,100﹣a=76(8分)∴有两种购买方案,方案一:购买甲种T恤23件,购买乙种T恤77件,方案二:购买甲种T恤24件,购买乙种T恤76件.15.解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,,解得,答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元.(2)设新建m个地上停车位,则新建(50﹣m)个地下停车位,由题意可知,0.1m+0.4(50﹣m)≤11且m≤33,解得30≤m≤33,因为m为整数,所以m=30或m=31或m=32或m=33,对应的50﹣m=20或50﹣m=19或50﹣m=18或50﹣m=17,答:有4种建造方式;16.解:(1)设60座和45座的客车每辆每天的租金分别是x元、y元,由题意得解得答:60座和45座的客车每辆每天的租金分别是900元和750元(2)由已知,七年级人数为(45a+15)人由题意解得因为a为整数∴a=8(3)由(2)七年级共45×8+15=375人设60座和45座车分别为m辆n辆则60m+45n=3754m+3n=25则有m=解得n∴n为可取0﹣8的整数∵m为整数∴n=3时,m=4n=7时,m=1∴租车方案有两种:方案一:60座4辆,45座3辆方案二:60座1辆,45座7辆17.解:(1)设甲购买了x件乙购买了y件解得答:甲购买了5件乙购买了15件(2)设购买甲奖品为a件.则乙奖品为(20﹣a)件,根据题意可得:解这个不等式组为≤a≤8∵a为整数∴a=7.8有两种购买方案①购买甲奖品7件,乙奖品13件②购买甲奖品8件,乙奖品12件18.解:(1)设改造一所A类学校和一所B类学校所需的改造资金分别为a万元和b万元.依题意得:解得:答:改造一所A类学校和一所B类学校所需的改造资金分别为60万元和80万元;(2)设今年改造A类学校x所,则改造B类学校为(6﹣x)所,依题意得:解得:2≤x≤4∵x取整数∴x=2,3,4.方案一:改造A类学校2所,改造B类学校4所.方案二:改造A类学校3所,改造B类学校3所.方案三:改造A类学校4所,改造B类学校2所.19.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:解之得:答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a台,则购进电子白板(30﹣a)台,则∴15≤a≤17,∵a取整数,即a=15,16,17.∴共有三种购进方案:方案一:购进电脑15台,电子白板15台;方案二:购进电脑16台,电子白板14台;方案三:购进电脑17台,电子白板13台.20.解:(1)设购进A款汽车每辆x辆,则购进B款汽车(20﹣x)辆,依题意得:129≤7.5x+6(20﹣x)≤135.解得:6≤x≤10,∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(2)设总获利为W万元,购进B款汽车x辆,则:W=(9﹣7.5)(20﹣x)+(8﹣6﹣a)(15﹣x)=(0.5﹣a)x+30.当a=0.5时,(1)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车14辆时对公司更有利.21.解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.22.解:(1)设制造A种造型x束,则制造B种造型(16﹣x)束,,解得,5≤x≤7,∵x为整数,∴x=5,6,7,∴有三种制作方案,方案一:制造A种造型5束,则制造B种造型11束;方案二:制造A种造型6束,则制造B种造型10束;方案三:制造A种造型7束,则制造B种造型9束;(2)如果我是店主,我选择方案三:制造A种造型7束,则制造B种造型9束这种制作方案,理由:设利润为w元,w=12x+10(16﹣x)=2x+160,∵5≤x≤7,x为整数,∴当x=7时,w取得最大值,即如果我是店主,我选择方案三:制造A种造型7束,则制造B种造型9束这种制作方案.。
人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(含答案)1.为了参加西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:(1)求A.B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y1=8×0.9x=7.2x;当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,∴y2=.(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;令y1=y2,则7.2x=6x+24,解得:x=20;令y1>y2,则7.2x>6x+24,解得:x>20.综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某校计划购买篮球和排球两种球若干.已知购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)求篮球和排球的单价;(2)该校计划购买篮球和排球共30个.某商店有两种优惠活动(两种优惠活动不能同时参加),活动一:一律打九折,活动二:购物不超过600元时不优惠,超过600元时,超过600元的部分打八折.请根据以上信息,说明选择哪一种活动购买篮球和排球更实惠.【答案】(1)篮球每个50元,排球每个30元;(2)当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠【解析】【分析】根据球的总个数,及总的价格建立二元一次方程组,求解即可.设购买篮球m个,列出两种活动的付款金额,再根据情况分类讨论,从而得到结果.【详解】(1)设篮球每个x元,排球每个y元,根据题意得:2x+3y=190且3x=5y 解得x=50,y=30.答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(30﹣x)个,价值:50m+30(30﹣m)=900+20m因为900+20m>600,所以可以参加活动二;按活动一需付款:0.9(900+20m)=810+18m;按活动二付款:600+0.8(900+20m﹣600)=840+16m;若活动一更实惠:810+18m<840+16m,m<15;若活动一和活动二一样实惠:810+18m=840+16m,m=15;若活动二更实惠:810+18m>840+16m,m>15;综上所述,当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠.【点睛】找到等量关系列出方程组和不等式是解题的关键.32.2018年4月10日0时起,全国铁路开始实施新的列车运行图.调整后,重庆与郑州之间有了始发高铁,两地出行更加便利,想要来重庆旅游的郑州游客,可以下午喝碗胡辣汤,晚上品尝正宗重庆火锅,据重庆火车站介绍,此次列车运行图优化调整新增了郑州东站至重庆西站的调整动车组.试运行首日,商务座票价是二等座票价的2倍,商务座售出10张,二等座售出100张,商务座和二等座总售出不低于6万元.(1)试运行期间,二等座票价至少多少元?(2)现正式投入运行后,铁路部门将二等座票价在试运行首日最低票价的基础上上涨了a%(a为整数),商务座票价在试运行首日最低票价基础上提高了3a%,且正式运行首日二等座售出的数量比试运行首日减少了a张,商务座售出的数量减少为试运行首日的一半,正式运行首日商务座和二等座总销售额为55000元,求a的值.【答案】(1)二等座票价至少为500元.2)a的值为30.【解析】【分析】(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意列出不等式,解不等式即可;(2)分别表示出商务座和二等座的销售额,再根据题意列方程,解方程即可.【详解】解:(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意得:10×2x+100x≥60000,解得:x≥500.答:试运行期间,二等座票价至少为500元;(2)根据题意得:500(1+a%)(100﹣a)+500×2(1+3a%)×10÷2=55000,整理,得:5a2﹣150a=0,解得:a1=0,a2=30.答:a的值为30.【点睛】本题主要考查一元二次方程的实际应用.33.解下列方程组、不等式组:(1)21 3211 x yx y+=⎧⎨-=⎩(2)3(2)4 1213x xxx--≤⎧⎪+⎨>-⎪⎩【答案】(1)31xy=⎧⎨=-⎩,(2)1≤x<4.【解析】【详解】(1)21 3211x yx y+=⎧⎨-=⎩①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=1,解得:y=﹣1,所以方程组的解为31xy=⎧⎨=-⎩;(2)解不等式x﹣3(x﹣2)≤4,得:x≥1,解不等式123x+>x﹣1,得:x<4,则不等式组的解集为1≤x<4.【点睛】考查了二元一次方程组及一元一次不等式的解法.34.为开展体育大课间活动,某学校需要购买篮球与足球若干个,已知购买3个篮球和2个足球需求共需要575元,购买4个篮球和3个足球共需要785元.()1购买一个篮球,一个足球各需多少元?()2若体育老师带了8000元去购买这种篮球与足球共80个,由于数量较多,店主给出篮球与足球一律打八折的优惠价,那么他最多能购买多少个篮球?同时买了多少个足球?【答案】()1购买一个需要篮球155元,购买一个足球需要55元;(2)这所学校最多可以购买56个篮球,同时买了24个足球.【解析】【分析】()1设购买一个篮球需要x 元,购买一个足球需要y 元,根据题意列出x ,y 的一元一次方程组,然后求解即可;(2)设购买了a 个篮球,则购买了()80a -个足球,根据题意列出关于a 的不等式,然后求解不等式即可得到答案.【详解】()1设购买一个篮球需要x 元,购买一个足球需要y 元,列方程得:3257543785x y x y +=⎧+=⎨⎩, 解得:{15555x y ==,答:购买一个需要篮球155元,购买一个足球需要55元; ()2设购买了a 个篮球,则购买了()80a -个足球,列不等式得:()1550.8550.8808000a a ⨯+⨯⨯-≤,解得56a ≤,∴最多可以购买56个篮球,∴同时购买了80﹣56=24个足球,故这所学校最多可以购买56个篮球,同时买了24个足球.35.某文具店从市场得知如下信息:该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?(3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?【答案】(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.【解析】【分析】(1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,(2)把y=1200代入y与x之间的函数关系式即可,(3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.【详解】解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,A品牌计算器的单个利润为90﹣70=20元,A品牌计算器销售完后利润=20x,B品牌计算器的单个利润为140﹣100=40元,B品牌计算器销售完后利润=40(50﹣x),总利润y=20x+40(50﹣x),整理后得:y=2000﹣20x,答:y与x之间的函数关系式为y=2000﹣20x;(2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,解得:x=40,则A种品牌计算器的数量为40台,B种品牌计算器的数量为50﹣40=10台,答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)根据题意得:70x+100(50﹣x)≤4100,解得:x≥30,一次函数y=2000﹣20x随x的增大而减小,x为最小值时y取到最大值,把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,答:该文具店可获得的最大利润是1400元.【点睛】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.36.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?【答案】小诚至少需要跑步5分钟.【解析】【分析】设他需要跑步x分钟,根据他要在不超过20分钟的时间内从家到达学校可以列出相应的不等式,从而可以解答本题.【详解】设他需要跑步x分钟,由题意可得()200x8020x2200+-≥,解得,x5≥.答:小诚至少需要跑步5分钟.【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解答本题的关键.37.如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态(1)填表:(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.17米长的链条,至少需要多少个铁环?【答案】(1)11.8;15.4;(2)y=3.6n+1;(3)至少需要60个铁环【解析】【分析】(1)根据铁环粗0.5厘米,每个铁环长4.6厘米,进而得出3个/4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y与n的关系式;(3)由(2)得,3.6n+1≥217,进而求出即可.【详解】(1)由题意可得:3×4.6-4×0.5=11.8(cm ),故3个铁环组成的链条长为11.8cm .4×4.6-6×0.5=15.4(cm ),故4个铁环组成的链条长为15.4cm .故答案为:11.8;15.4;(2)由题意得:y=4.6n-2(n-1)×0.5,即y=3.6n+1;(3)据题意有:3.6n+1≥217,解得:n ≥60,答:至少需要60个铁环.【点睛】此题主要考查了一元一次不等式的应用,利用链条结构得出链条长的变化规律是解题关键.38.解不等式125164y y +--≥,并把它的解集在数轴上表示出来. 【答案】y ≤54,把不等式的解集在数轴上表示见解析 【解析】【分析】不等式去分母、去括号、移项合并,把y 系数化为1,求出解集,表示在数轴上即可.【详解】两边都乘以12得,()()21325y y +--≥12去括号得,22615y y +-+≥12移项,合并同类项得,4y -≥-5系数化为1得,y ≤54把不等式的解集在数轴上表示如下:【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.39.某商场销售每个进价为150元和120元的A 、B 两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B 两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A 种型号的足球最多能采购多少个?(3)在()2的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.【答案】(1)A 型号足球单价是200元,B 型号足球单价是150元.(2)40个.(3)有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.【解析】【分析】(1)设A 、B 两种型号的足球销售单价分别是x 元和y 元,根据3个A 型号和4个B 型号的足球收入1200元,5个A 型号和5个B 型号的电扇收入1450元,列方程组求解;(2)设A 型号足球购进a 个,B 型号足球购进()60a -个,根据金额不多余8400元,列不等式求解;(3)根据A 型号足球的进价和售价,B 型号足球的进价和售价以及总利润=一个利润×总数,列出不等式,求出a 的值,再根据a 为整数,即可得出答案.【详解】()1解:设A 、B 两种型号的足球销售单价分别是x 元和y 元,列出方程组: 341200531450x y x y +=⎧⎨+=⎩解得200150x y =⎧⎨=⎩A 型号足球单价是200元,B 型号足球单价是150元.()2解:设A型号足球购进a个,B型号足球购进()60a-个,根据题意得:()+-≤150120608400a aa≤,所以A型号足球最多能采购40个.解得40()3解:若利润超过2550元,须()+->a a5030602550a>,因为a为整数,37.5a≤≤所以3840能实现利润超过2550元,有3种采购方案.方案一:A型号38个,B型号22个;方案二:A型号39个,B型号21个;方案三:A型号40个,B型号20个.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.40.某学校为加强学生的体育锻炼,曾两次在某商场购买足球和篮球.第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元.()1求足球和篮球的标价;()2如果现在商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?【答案】(1)足球的标价为50元,篮球的标价为80元;(2)最多可以买38个篮球.【解析】【分析】(1)设足球的标价为x 元,篮球的标价为y 元,根据“第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元”,列出关于x 和y 的二元一次方程组,解出即可,(2)设可买m 个篮球,根据“商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元”,列出关于m 的一元一次不等式,解出即可.【详解】(1)设足球的标价为x 元,篮球的标价为y 元,根据题意得:6570037710x y x y +=⎧⎨+=⎩, 解得:5080x y =⎧⎨=⎩, 答:足球的标价为50元,篮球的标价为80元.(2)设可买m 个篮球,根据题意得:0.6×50(60﹣m )+0.6×80m ≤2500.解得:m ≤3889, 因为m 为整数,所以m ≤3889的最大整数解是38. 答:最多可以买38个篮球.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,根据数量关系列出方程组和不等式是解答本题的关键.。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某印染厂生产某种产品,每件产品出厂价为50元,成本价为25元.在生产过程中,平均每生产1件产品就有0.5 m3污水排出,为了净化环境,工厂设计了两种污水处理方案并准备实施.方案一:工厂污水先净化处理后再排出,每处理1 m3污水所用原料费用为2元,并且每月排污设备损耗费为30000元.方案二:将污水排放到污水处理厂统一处理,每处理1 m3污水需付14元排污费.你认为该工厂应如何根据每月生产产品的数量选择污水处理方案?【答案】该工厂每月生产的产品超过5000件时,应选择方案一;每月生产的产品等于5000件时,两种方案均可;每月生产的产品少于5000件时,应选择方案二【解析】试题分析:设该工厂每月生产x件产品,分别求得两种方案处理污水后所获的利润,当方案一利润大于方案二利润时选择方案一;当方案一利润等于方案二利润时两种方案都可以选择;当方案一利润小于方案二利润时选择方案二.试题解析:设该工厂每月生产x件产品,则按方案一处理可获利:(50-25)x-2×0.5x-30000=24x-30000;按方案二处理可获利:(50-25)x-14×0.5x=18x.当24x-30000>18x时,得x>5000,此时选择方案一;令24x-30000=18x时,得x=5000,此时两种方案都可以选择;令24x-30000<18x时,得x<5000,此时选择方案二.∴该工厂每月生产的产品超过5000件时,应选择方案一;每月生产的产品等于5000件时,两种方案均可;每月生产的产品少于5000件时,应选择方案二.72.某校社会实践小组调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图所示).若这份快餐中所含蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.【答案】这份快餐最多含有56 g蛋白质【解析】试题分析:设这份快餐含有x克的蛋白质,根据碳水化合物质量是蛋白质质量的4倍得碳水化合物有4x g.根据所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,列出不等式,求解即可试题解析:设这份快餐含有x g蛋白质,则碳水化合物有4x g.根据题意,得x+4x≤400×70%,解得x≤56.答:这份快餐最多含有56g蛋白质.73.预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个, 乙商品仍每个涨价1元,那么甲、乙两商品支付的总金额是1563.5元.(1)求x 、y 的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x ,y 的值.【答案】 (1)x ,y 的关系x+2y=186;(2)预计购买甲商品76个,乙商品55个.【解析】试题分析:(1)设出必需的未知量,找出等量关系为:甲原单价×甲原数量+乙原单价×乙原数量=1500,(甲原单价+1.5)×(甲原数量-10)+(乙原单价+1)×乙原数量=1529;(甲原单价+1)×(甲原数量-5)+(乙原单价+1)×乙原数量=1563.5.(2)结合(1)得到的式子,还有205<2倍甲总价+乙总价<210,求出整数解.试题解析:(1)设预计购买甲、乙商品的单价分别为a 元和b 元,则原计划是Ax+by=1500,①由甲商品单价上涨1.5元、乙商品单价上涨1元,并且甲商品减少10个的情形,得()()()1.51011529a x b y +-++=②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形,得(a+1)(x-5)+(b+1)y=1563.5, ③由①、②、③得 1.51044568.5x y a x y a +-=⎧⎨+-=⎩④⑤④-⑤×2并化简,得x+2y=186(2)依题意,有205<2x+y<210及x+2y=186,54<y<2,553由y是整数,得y=55,从而得x=76答:(1)x,y的关系x+2y=186;(2)预计购买甲商品76个,乙商品55个.点睛:解决本题的关键是读懂题意,找到合适的关系式.当必需的量没有时,应设出未知数,在做题过程中消去无关的量.74..买一辆汽车,分期付款购买要多加价7%,如果现金购买可按九五折(95%)优惠。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)(阅读理解)1989年5月20日全国启动了“中国学生营养日”活动,并确定每年5月20日为中国学生营养日,至今已29个春秋.某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息.根据信息,解答下列问题.信息:①.快餐的成分:蛋白质、脂肪、矿物质、碳水化合物;②.快餐总质量为400克;③.脂肪所占的百分比为5%;④.所含蛋白质质量是矿物质质量的4倍.(问题解决)(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.【答案】(1)20(2)176(3)180【解析】分析:(1)利用质量分数求脂肪质量.(2) 设所含矿物质的质量为x克,列方程解应用题.(3) 设所含矿物质的质量,所含蛋白质的质量,根据题意列不等式,求最大值.详解:(1)400×5℅=20(克),即这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x 克,由题意得x +4x +20+400×40℅=400,解得x =44.所以4x =176,即这份快餐所含蛋白质的质量176克.(3)解法一:设所含矿物质的质量为y 克,则所含蛋白质的质量为4y 克,碳水化合物的质量为(400-20-5y )克.由题意得,4y +(380-5y )≤400×85℅.解得y ≥40,所以380-5y ≤180,故所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为y 克,则由题意得y ≥(1-5℅-85℅) ×400.解得y ≥40.所以4y ≥160,故400×85℅-4y ≤180,即所含碳水化合物质量的最大值为180克.点睛:应用题中,这几个式子变形一定要非常熟练(1)100%%a ⨯=部分总体, (2)%a 部分=总体, (3)部分=总体%a ⨯. 一般计算同理:a abc c b ÷=⇔=,a b c ⇒=,a b c=,(b 0,c 0,,,a b c ≠≠可以是数也可以是式子).需熟练掌握.42.按要求解下列不等式(组)(1)x 32x -< (2)()1x 6x 323+-≥ (3)解不等式组:3150728x x x -≥⎧⎨-<⎩并在数轴上表示不等式的解集. (4)解不等式组: 21218x x +>⎧⎨-≤⎩并求其最大整数解. 【答案】(1)x>-3 (2) 1x 3≥(3) -3<x ≤1(4)1 【解析】分析:(1)(2)直接解不等式.(3)(4)分别解不等式,再取公共部分,就是不等式的解集.(1)x>-3 (2) 1x 3≥ ((1)、(2)过程略) (3)解不等式①得x ≤1解不等式②得,所以,原不等式组的解集为在同一条数轴上表示出①②得解集为:(4)解:解不等式3x ﹣1<x+3,得:x <2,解不等式2(2x ﹣5)≤5x-6,得:x ≥﹣4 ,则不等式组的解集为:﹣4≤x <2,所以不等式组的最大整数解为1.点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b.此乃“相交取中”,如图所示:④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空”如图所示:43.平房区政府为了“安全,清激、美丽”河道,计划对何家沟平房区河段进行改造,现有甲乙两个工程队参加改造施工,受条件阻制,每天只能由一个工程队。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某个不等式的解集在数轴上如图所示,这个不等式可以是()A.2x-1≤3 B.2x-1<3 C.2x-1≥3 D.2x-1>3【答案】A【解析】分析:先根据数轴上不等式解集的表示方法得出该不等式组的解集,再对四个选项进行逐一分析即可.x ,故本选项正确;详解:A、此不等式组的解集为:2B、此不等式组的解集为x<2,故本选项错误;C、此不等式组的解集为:x≥2,故本选项错误;D、此不等式组的解集为x>2,故本选项错误.故选A.点睛:用数轴表示不等式的解集时,当不等号是“≥”时,分界点用实心圆点,方向向右,当不等号是“≤”时,分界点用实心圆点,方向向左,当不等号是“>”时,分界点用空心圆圈,方向向右,当不等号是“<”时,分界点用空心圆圈,方向向左.22.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5000 B.10000 C.15000 D.20000【答案】B【解析】分析:设预计平均每年行驶x公里,根据已知条件分别列出两种汽车10年的用车成本,再根据“选择油电混动汽车的成本不高于选择普通汽车的成本”列出不等式进行解答即可.详解:设平均每年行驶的公里数至少为x公里,根据题意得:174800+31100x×10≤159800+46100x×10,解得:x≥10000,即预计平均每年行驶的公里数至少为10000公里.故选B.点睛:本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语句,弄清各数量间的关系,列出不等式;同时注意每百公里燃油成本是31元,不是一公里是31元.23.某单位为一中学捐赠了一批新桌椅,学校组织七年级300名学生搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A .80B .100C .120D .200【答案】C【解析】分析:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据总人数列不等式求解可得. 详解:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据题意,得:2x +2x ⩽300, 解得:x ⩽120,∴最多可搬桌椅120套,故选:C.点睛:本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.24.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x. 根据题意得:( )A .10x-5(20-x)≥120B .10x-5(20-x)≤120C .10x-5(20-x)> 120D .10x-5(20-x)<120【解析】分析:小明答对题的得分:10x;小明答错题的得分:-5(20-x).不等关系:小明得分要超过120分.详解:根据题意,得10x-5(20-x)>120.故选C.点睛:此题要特别注意:答错或不答都扣5分.至少即大于或等于.25.把不等式2x﹣3≤﹣5 的解集在数轴上表示,正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式基本步骤:移项、合并同类项化简可得.详解:移项,得:2x≤-5+3,合并同类项,得:2x≤-2,∴x≤-1故选:C.点睛:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.26.不等式1-2x<5-1x的负整数解有()2A.1个B.2个C.3个D.4个【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集后按要求求出整数解即可.【详解】2(1-2x)<10-x,2-4x<10-x,-4x+x<10-2,-3x<8,x>-22,3所以不等式的负整数解有-1、-2,共2个,故选B.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤及注意事项是关键.27.海安市核心价值观知识竞赛中共20道选择题,答对一题得10分,满分200分,答错或不答扣5分,总得分不少于80分者就通过预赛而进入决赛,若想通过预赛,那么至少答对()A.10道题B.12道题C.14道题D.16道题【答案】B【解析】【分析】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80,解不等式可得.【详解】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80去括号:10x-100+5x≥80∴15x≥180解得:x≥12因此选手至少要答对12道故选:B【点睛】本题考核知识点:列不等式解应用题.解题关键点:根据不等关系列出不等式.28.不等式组221xx-≤⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】分析:先解不等式①,再解不等式②,然后按照含等号的取实心,不含等号的取空心,大于向右,小于向左,在数轴上标出.详解:解不等式①可得:2x≥-,解不等式②可得:3x<,在数轴上表示为:故选D.点睛:本题主要考查解不等式组,并在数轴上正确表示不等式组的解集,解决本题的关键是要熟练掌握解不等式的方法和在数轴上表示不等式解集.29.下列不等式中,解集不同的是().A.5x>10与3x>6 B.6x-9<3x+6 与x<5C.x<-2与-14x>28 D.x-7<2x+8与x>15【答案】D【解析】【分析】分别求出每个选项中每一个不等式的解集,比较即可得.【详解】A.不等式5x>10的解集是x>2,3x>6的解集是x>2,相同,故不符合题意;B. 6x-9<3x+6 的解集是x<5,与x<5相同,故不符合题意;C. x<-2,-14x>28的解集是x<-2,相同,故不符合题意;D. x-7<2x+8的解集是x>-15,与x>15不相同,故符合题意,故选D.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的一般步骤是解题的关键.30.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.【答案】A【解析】分析:首先移项,再合并同类项,把x的系数化为1可得到不等式的解集,再把解集在数轴上表示出来即可.详解:移项得:3x﹣x≥2,合并同类项得:2x≥2,把x的系数化为1得:x≥1,在数轴上表示为:.故选A.点睛:本题主要考查了解一元一次不等式,以及用数轴表示不等式的解集,关键是掌握:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.。
人教新版七年级下学期《9.2 一元一次不等式》同步练习卷一.解答题(共17小题)1.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.2.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?3.在关于x,y的方程组中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.4.某商店购进甲、乙两种商品,购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元.(1)求甲、乙两种商品每件进价分别是多少元?(2)若该商店购进甲、乙两种商品共140件,都标价10元出售,售出一部分降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进甲种商品件数少20件,该商店此次购进甲、乙两种商品降价前后共获利不少于420元,求至少购进甲种商品多少件?5.已知关于x、y的二元一次方程组的解满足x+y>2.求k的取值范围.6.学校准备购买A、B两种奖品,奖励成绩优异的同学.已知购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元.(1)A、B两种奖品的单价分别是多少元?(2)如果学校购买两种奖品共100件,总费用不超过850元,那么最多可以购买A奖品多少件.7.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m﹣11的值.8.若不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是方程2x﹣ax=3的解,求4a ﹣的值.9.列式计算:求使的值不小于的值的非负整数x.10.在等式y=kx+b(k,b为常数)中,当x=2时,y=﹣5;当x=﹣1时,y=4.(1)求k、b的值;(2)若不等式5﹣2x>m+4x的最大整数解是k,求m的取值范围.11.已知不等式7﹣2x>3的正整数解是方程3x﹣a=2ax﹣6的解,求(3﹣4a)(3+4a)+(3+4a)2的值.12.若关于x,y 的二元一次方程组的解满足x+y<2,求整数a的最大值.13.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求甲、乙两种原料的费用不超过70元,试写出x(kg)应满足的另一个不等式.14.(1)列式:x与20的差不小于0;(2)若(1)中的x(单位:cm)是一个正方形的边长,现将正方形的边长增加2cm,则正方形的面积至少增加多少?15.在某次数学测试中,共有20道选择题,答对一题得5分,不答或答错一题扣2分,要想得60分以上,至少要答对多少道题?(只列式子)16.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.17.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.人教新版七年级下学期《9.2 一元一次不等式》2019年同步练习卷参考答案与试题解析一.解答题(共17小题)1.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.【分析】(1)根据新定义列出关于x的不等式,解之可得;(2)先解关于x的方程得出x=1,再将x=1代入x@a<5列出关于a的不等式,解之可得.【解答】解:(1)∵x@3<5,∴2x﹣3<5,解得:x<4;(2)解方程2(2x﹣1)=x+1,得:x=1,∴x@a=1@a=2﹣a<5,解得:a>﹣3.【点评】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x的不等式及解一元一次不等式、一元一次方程的能力.2.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?【分析】(1)根据题意可以列出相应的方程组,从而可以求得需购买甲、乙两种树苗各多少棵;(2)根据题意可以列出相应的不等式,从而可以求得至少应购买甲种树苗多少棵.【解答】解:(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.【点评】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组与不等式.3.在关于x,y的方程组中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.【分析】由①+②求出x+y=1﹣,得出不等式,求出不等式的解集即可.【解答】解:∵由①+②,得3x+3y=3﹣m,∴x+y=1﹣,∵x+y>0,∴1﹣>0,∴m<3,在数轴上表示如下:.【点评】本题考查了解二元一次方程组、二元一次方程组的解、解一元一次不等式和在数轴上表示不等式的解集,能得出关于m的不等式是解此题的关键.4.某商店购进甲、乙两种商品,购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元.(1)求甲、乙两种商品每件进价分别是多少元?(2)若该商店购进甲、乙两种商品共140件,都标价10元出售,售出一部分降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进甲种商品件数少20件,该商店此次购进甲、乙两种商品降价前后共获利不少于420元,求至少购进甲种商品多少件?【分析】(1)设甲种商品每件进价是x元,乙种商品每件进价是y元,根据“购进4件甲种商品比购进5件乙种商品少用10元,购进20件甲种商品和10件乙种商品共用去160元”列出方程组解答即可;(2)设购进甲种商品a件,则乙种商品(140﹣a)件,利润不少于420元”列出不等式解答即可.【解答】解:(1)设甲种商品每件进价x元,乙种商品每件进价y元,根据题意,得,解得,答:甲种商品每件进价5元,乙种商品每件进价6元.(2)设甲种商品购进a件,根据题意,得10(a﹣20)+0.8×10[140﹣(a﹣20)]﹣5a﹣6(140﹣a)≥420解得a≥60答:甲种商品至少购进25件.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.5.已知关于x、y的二元一次方程组的解满足x+y>2.求k的取值范围.【分析】①+②求出3x+3y=3k﹣3,根据已知得出不等式k﹣1>2,求出即可.【解答】解:,∵①+②得:3x+3y=3k﹣3,∴x+y=k﹣1,∵关于x、y的二元一次方程组的解满足x+y>2,∴k﹣1>2,∴k的取值范围是k>3.【点评】本题考查了二元一次方程组的解和解一元一次不等式的应用,关键是能得出关于k的不等式.6.学校准备购买A、B两种奖品,奖励成绩优异的同学.已知购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元.(1)A、B两种奖品的单价分别是多少元?(2)如果学校购买两种奖品共100件,总费用不超过850元,那么最多可以购买A奖品多少件.【分析】(1)直接利用购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元,进而得出方程组进而得出答案;(2)利用总费用不超过850元,得出不等关系进而得出答案.【解答】解(1)设A奖品的单价为x元,B奖品的单价为y元,由题意得:,解得:,答:A奖品的单价为12 元,B奖品的单价为6元.(2)设购买A奖品m件,则购买B奖品(100﹣m)件,由题意得:12m+6(100﹣m)≤850,解得:m≤,∵m为最大正整数,∴m得取值为41,答:至少购买A奖品41件.【点评】此题主要考查了一元一次不等式的应用,正确表示出两种奖品的总价是解题关键.7.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m ﹣11的值.【分析】先求出不等式的解集,再求出最小整数解,代入求出m,最后求出答案即可.【解答】解:解不等式3(x+1)﹣1<4(x﹣1)+3得:x>3,所以不等式的最小整数解是x=4,把x=4代入x﹣mx=6得:2﹣4m=6,解得:m=﹣1,所以m2﹣2m﹣11=1+2﹣11=﹣8.【点评】本题考查了一元一次不等式的整数解和一元一次方程的解,能求出m的值是解此题的关键.8.若不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是方程2x﹣ax=3的解,求4a﹣的值.【分析】先求出不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解,代入方程2x﹣ax=3,求出a的值,然后代入4a﹣,计算即可.【解答】解:∵5(x﹣2)+8<6(x﹣1)﹣7,∴x>11,∴不等式5(x﹣2)+8<6(x﹣1)﹣7的最小整数解是12,把x=12代入方程2x﹣ax=3,得24﹣12a=3,解得a=.∴4a﹣=4×﹣=7﹣8=﹣1.【点评】本题考查的是一元一次不等式的整数解,一元一次方程的解以及代数式求值.解决此类问题的关键在于正确求得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,从而根据得到的条件进而求得不等式组的整数解.9.列式计算:求使的值不小于的值的非负整数x.【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【解答】解:≥,3(x+1)+4≥2(3x﹣1),3x+3+4≥6x﹣2,3x﹣6x≥﹣2﹣3﹣4,﹣3x≥﹣9,x≤3,则符合条件的非负整数有0、1、2、3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变10.在等式y=kx+b(k,b为常数)中,当x=2时,y=﹣5;当x=﹣1时,y=4.(1)求k、b的值;(2)若不等式5﹣2x>m+4x的最大整数解是k,求m的取值范围.【分析】(1)根据二元一次方程组的求解方法,求出k、b的值各是多少即可.(2)首先根据一元一次不等式的解法,可得x<,然后根据不等5﹣2x>m+4x的最大整数解是k,可得关于m的不等式组,据此求出m的取值范围即可.【解答】解:(1)根据题意可得:,解得:;(2)解不等式5﹣2x>m+4x,得:x<,因为该不等式的最大整数解是k,即﹣3,所以﹣3<≤﹣2,解得:7≤m<13.【点评】本题主要考查解二元一次方程组和一元一次不等式组,解题的关键是掌握解二元一次方程组的能力,并根据不等式组的整数解情况列出关于m的不等式组.11.已知不等式7﹣2x>3的正整数解是方程3x﹣a=2ax﹣6的解,求(3﹣4a)(3+4a)+(3+4a)2的值.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,然后根据不等式正整数解是方程的解,进而求得a.【解答】解:∵7﹣2x>3,∴x<2,∴不等式7﹣2x>3的正整数解为x=1,∵x=1是方程3x﹣a=2ax﹣6的解,∴3﹣a=2a﹣6,解得a=3,∴(3﹣4a)(3+4a)+(3+4a)2=(3﹣12)×(3+12)+(3+12)2=﹣9×15+152=﹣135+225=90.【点评】考查了一元一次不等式的整数解,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.若关于x,y 的二元一次方程组的解满足x+y<2,求整数a的最大值.【分析】先把两式相加求出x+y的值,再代入x+y<2中得到关于a的不等式,求出a的取值范围,进而求解即可.【解答】解:,①+②得,x+y=1+,∵x+y<2,∴1+<2,解得a<4.故整数a的最大值为3.【点评】本题考查的是解二元一次方程组及解一元一次不等式,解答此题的关键是把a 当作已知条件表示出x+y的值,再得到关于a的不等式.13.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求甲、乙两种原料的费用不超过70元,试写出x(kg)应满足的另一个不等式.【分析】(1)所需甲种原料的质量xkg,则所需乙种原料的质量(9﹣x)kg,根据“至少含有4000单位的维生素C”可得不等式;(2)所需甲种原料的质量xkg,则所需乙种原料的质量(9﹣x)kg,根据“甲、乙两种原料的费用不超过70元”列出不等式.【解答】解:(1)设所需甲种原料的质量xkg,由题意得:500x+80(9﹣x)≥4000;(2)由题意得:16x+4(9﹣x)≤70.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的等量关系,列出不等式.14.(1)列式:x与20的差不小于0;(2)若(1)中的x(单位:cm)是一个正方形的边长,现将正方形的边长增加2cm,则正方形的面积至少增加多少?【分析】(1)不小于意思为“≥”;(2)正方形增加的面积=新正方形的面积﹣原正方形的面积.能够结合(1)中x的取值范围,求得正方形的面积增加的范围,从而得到正方形的面积至少增加多少.【解答】解:根据题意,得(1)x﹣20≥0;(2)由(1),得x≥20.则正方形的面积增加(x+2)2﹣x2=4x+4≥4×20+4=84.即正方形的面积至少增加84cm2.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.15.在某次数学测试中,共有20道选择题,答对一题得5分,不答或答错一题扣2分,要想得60分以上,至少要答对多少道题?(只列式子)【分析】首先设出未知数,找到关键描述语,进而找到所求的量的关系:得分﹣扣分>60,从而可得不等式.【解答】解:设这个学生至少要答对x道题,则答错的题目为(20﹣x)道题.依题意得:5x﹣2(20﹣x)>60.【点评】此题主要考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式,难度一般.16.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.【分析】理解:80分以上,意思是大于80分.本题的不等关系为:4×答对的题数﹣1×答错或不答的题数>80.【解答】解:设小明答对x道题,根据题意,得4x﹣(30﹣x)>80.【点评】读懂题意,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.17.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.【分析】利润率不低于5%,即是利润应大于或等于利润率的5%.利润有两种表示方法:利润=售价﹣成本=成本×利润率.本题满足的关系为:售价﹣进价≥500×5%.【解答】解:设应打x折,根据题意,得750×﹣500≥500×5%.【点评】应抓住关键词语不低于,得到不等式.本题还需注意:(1)利润的两种表示方法;(2)打几折,即原价的十分之几.。
第九章 不等式与不等式组9.3 一元一次不等式组基础过关全练知识点1 一元一次不等式组及其解法1.(2022山东潍坊中考)不等式组x+1≥0,x―1<0的解集在数轴上表示正确的是( )A B C D2.(2021广西贵港中考)不等式1<2x-3<x+1的解集是( )A.1<x<2B.2<x<3C.2<x<4D.4<x<53.(2020四川广元中考)关于x的不等式组x―m>0,7―2x>1的整数解只有4个,则m的取值范围是( )A.-2<m≤-1B.-2≤m≤-1C.-2≤m<-1D.-3<m≤-24.如图所示,点C位于点A、B之间(点C不与A、B重合),点C表示1-2x,则x的取值范围是 .5.(2022天津中考)解不等式组2x≥x―1,①x+1≤3.②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .6.(2020山东聊城中考)<7―32x,≥x3+x―44,并写出它的所有整数解.7.(2019湖北黄石中考)若点P,2x―9,其中x满足不―10≥2(x+1),x―1≤7―32x,求点P所在的象限.知识点2 列一元一次不等式组解决实际问题8.李华爸爸计划以60 km/h的平均速度行驶4 h从家去往某地开会,因路上堵车,实际行驶2 h时只行驶了100 km,但是前方路段限速80 km/h.为了按时参会,他在后面的行程中的平均速度为v km/h,则v的取值范围是 .9.【新独家原创】已知某商店某品牌水杯的售价是156元/个,商家出售一个该品牌水杯可获利20%~30%.设该品牌水杯的进价为x元/个,则x的取值范围是 .10.【教材变式·P130T6变式】为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质羊若干只.在准备发放的过程中发现:公羊刚好每户1只,若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.求这批优质羊共多少只.11.(2020河北石家庄二中期末)王老师为了准备奖品,购买了笔记本和钢笔共16件,笔记本一本5元,钢笔一支8元,一共110元.(1)笔记本、钢笔各多少件?(2)王老师计划再购买笔记本和钢笔共8件(钢笔和笔记本每样至少一件),但是两次总花费不得超过160元,有多少种购买方案?请将购买方案一一写出.能力提升全练12.(2022湖南邵阳中考,10,★★☆)关于x的不等式组13x>23―x,x―1<12(a―2)有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.613.(2021广西北部湾经济区中考,12,★★☆)定义一种运算:a*b= a,a≥b,b,a<b,则不等式(2x+1)*(2-x)>3的解集是( )A.x>1或x<13B.―1<x<13C.x>1或x<-1D.x>13或x<-114.(2022福建漳州期中,12,★☆☆)甲种蔬菜保鲜的适宜温度t(单位:℃)的范围是1≤t≤5,乙种蔬菜保鲜的适宜温度t的范围是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t的范围是 .15.(2022青海中考,12,★★☆)不等式组2x+4≥0,6―x>3的所有整数解的和为 .16.(2021黑龙江龙东地区中考,15,★★☆)关于x的一元一次不等式组2x―a>0,3x―4<5无解,则a的取值范围是 .17.(2022四川遂宁中考,19,★★☆)某中学为落实教育部办公厅印发的《关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5 500元,有哪几种购买方案?素养探究全练18.【运算能力】某计算程序如图所示,若开始输入的x的值为正整数.规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果为 .若经过2次运算输出结果,求x可以取的所有值. 19.【运算能力】(2022吉林省第二实验学校期中)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x-6=0的解为x=3,不等式组x―1>0,x<4的解集为1<x<4,则方程2x-6=0是不等式组x―1>0,x<4的关联方程.(1)在方程①3x-3=0;②23x+1=0;③x-(3x+1)=-9中,不等式组2x―9<0,―x+8<x+1的关联方程是 .(填序号)(2)若不等式组3x+6>x+1,x>3(x+1)的一个关联方程的解是整数,且这个关联方程是x+m=0,则常数m= .(3)①解两个方程:x+32=1和x+22+1=x+73.②是否存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.答案全解全析基础过关全练1.B x+1≥0①,x―1<0②,由①得x≥-1,由②得x<1,∴不等式组的解集为-1≤x<1,表示在数轴上如图所示:故选B.2.C 不等式可化为1<2x―3,①2x―3<x+1,②由不等式①,得x>2,由不等式②,得x<4,故原不等式的解集是2<x<4,故选C.3.C 由题意得,不等式组的解集为m<x<3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m<-1.4.答案-12<x<0解析 根据题意得1<1-2x<2,解得-12<x<0,∴x的取值范围是-12<x<0.5.解析 (1)解不等式①,得x≥-1.(2)解不等式②,得x≤2.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为-1≤x≤2.6.解析<7―32x,①≥x3+x―44,②解不等式①,得x<3,解不等式②,得x≥-45,∴不等式组的解集为-45≤x<3,它的所有整数解为0,1,2.7.解析―10≥2(x+1),①x―1≤7―32x,②解不等式①得x≥4,解不等式②得x≤4,则不等式组的解集是x=4,∴x―13=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在第四象限.8.答案70≤v≤80解析 由题意可得,(4―2)v+100≥60×4,v≤80,解得70≤v≤80.9.答案120≤x≤130解析 可列不等式:1561+30%≤x≤1561+20%,解得120≤x≤130.10.解析 设该村共有x户,则母羊共有(5x+17)只.由题意,得5x+17―7(x―1)>0,5x+17―7(x―1)<3,解得212<x<12.∵x为整数,∴x=11,∴这批优质羊共11+5×11+17=83(只).答:这批优质羊共83只.11.解析 (1)设笔记本有x本,钢笔有y支,依题意,得x+y=16,5x+8y=110,解得x=6,y=10.答:笔记本有6本,钢笔有10支.(2)设购买笔记本m本,则购买钢笔(8-m)支,依题意,得5m+8(8―m)+110≤160, 8―m>0,解得423≤m<8.又∵m为正整数,∴m可以为5,6,7,∴共有3种购买方案,方案1:购买笔记本5本,钢笔3支;方案2:购买笔记本6本,钢笔2支;方案3:购买笔记本7本,钢笔1支.能力提升全练12.C13x>23―x①,x―1<12(a―2)②,由①得x>1,由②得x<a,∴1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选C.13.C 由题意得2x+1≥2―x,2x+1>3或2x+1<2―x, 2―x>3,解得x>1或x<-1,故选C.14.答案3≤t≤5解析 根据题意可知1≤t≤5, 3≤t≤8,解得3≤t≤5.故答案为3≤t≤5.15.答案0解析 2x+4≥0①,6―x>3②,由①得x≥-2,由②得x<3,∴-2≤x<3,x可取的整数有-2,-1,0,1,2,∴所有整数解的和为-2-1+0+1+2=0,故答案为0.16.答案a≥6解析 2x―a>0,①3x―4<5,②解不等式①得x>12a,解不等式②得x<3,∵不等式组无解,∴12a≥3,∴a≥6,故答案为a≥6.17.解析 (1)设篮球的单价为a元,足球的单价为b元,由题意可得2a+3b=510, 3a+5b=810,解得a=120, b=90.答:篮球的单价为120元,足球的单价为90元. (2)设采购篮球x个,则采购足球(50-x)个,∵要求篮球不少于30个,且总费用不超过5 500元,∴x≥30,120x+90(50―x)≤5 500,解得30≤x≤3313,∵x为整数,∴x的值可以为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.素养探究全练18.解析 当x =2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x =2时,输出结果为11.若经过2次运算输出结果,则有(2x +1)×2+1>10,2x +1≤10,解得1.75<x ≤4.5.∵x 为正整数,∴x 可以取的所有值是2、3、4.19.解析 (1)①3x -3=0,3x =3,x =1;②23x +1=0,23x =-1,x =-32;③x -(3x +1)=-9,x -3x -1=-9,-2x =-8,x =4,解不等式组2x ―9<0,―x +8<x +1,得3.5<x <4.5,所以不等式组2x ―9<0,―x +8<x +1的关联方程是③,故答案为③.(2)解不等式组3x +6>x +1,x >3(x +1),得-2.5<x <-1.5,所以不等式组的整数解是x =-2,∵不等式组3x +6>x +1,x >3(x +1)的一个关联方程的解是整数,且这个关联方程是x +m =0,∴把x =-2代入方程x +m =0,得-2+m =0,解得m =2,故答案为2.(3)①x +32=1,x +3=2,x =-1.x +22+1=x +73,3(x +2)+6=2(x +7),3x +6+6=2x +14,3x -2x =14-6-6,x =2.②不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,理由:解不等式组x+m>2,2x+3m≤2,得2―m<x≤2―3m2,假如方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,则2-m<-1且2―3m2≥2,<―1,≥2,得不等式组无解,所以不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x 的不等式组x+m>2,2x+3m≤2的关联方程.。
人教版七年级数学下册第九章第二节一元一次不等式习题(含答案)学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?【答案】最多可以购买菊花20盆.【解析】【分析】设需要购买绿萝x 盆,则需要购买菊花(30-x )盆,根据“购买菊花和绿萝的总费用不超过400元”列出不等式并解答.【详解】解:设需要购买菊花x 盆,则需要购买绿萝()30x -盆,则()16830400x x +-≤,解之得:20x ≤.答:最多可以购买菊花20盆 .【点睛】考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.42.重百超市对出售A 、B 两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a 的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.【答案】(1)a=10;(2)当0<x≤33时,选择方案一得最大优惠;当x >33时,采用方案二更加优惠,理由见解析【解析】【分析】(1)根据题意列出50×120×0.7+40×150×(1-a%)=9600方程解答即可;(2)根据题意列出两种方案的需付款,进而比较即可.【详解】解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即只能即0<x≤33时,选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当0<x≤33时,选择方案一得最大优惠;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)【点睛】本题考查一元一次方程和一元一次不等式的应用,解题的关键是明确题意,列出正确的方程或不等式,找出所求问题需要的条件.43.(1)计算:22(9)3---÷+(2)解不等式:2(5)4x->x>.【答案】(1)4;(2)7【解析】【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式13344=++=4; (2)2(5)4x ->,2104x -> ,214x >,7x >.【点睛】此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.44.m 是什么自然数时,关于x 的方程()18-82m x x m +=+的解不小于零【答案】m 的值为0,1,2.【解析】【分析】先将m 看成已知,然后解关于x的一元一次方程,然后根据解不小于零,x 的值,列出不等式并求解,最后结合m为自然数的条件即可解答.【详解】解:188()2m x x m -+=+188820m x x m ----=10188x m m -=-++10189x m =-18910m x -= 由题意得x 0≥即189010m -≥1890m -≥2m ≤∵m 为自然数∴m 的值为0,1,2【点睛】本题考查了解一元一次不等式和一元一次方程,弄清题意、列出关于m 的不等式是解答本题的关键.45.解不等式21232x x +--<,并求出非正整数解. 【答案】5x >-,非正整数解为-4,-3,-2,-1,0.【解析】【分析】先求出不等式的解集,然后确定不等式的非正整数解即可.【详解】解:2(2)3(1)12x x +--<243312x x +-+<5x >-非正整数解为-4,-3,-2,-1,0.【点睛】本题考查了解一元一次不等式和不等式的整数解,根据不等式的解集确定非正整数解是解本题的关键.46.某书店最近有,A B 两本散文集比较畅销,近两周的销售情况是:第一周A 销售数量是15 本,B 销售数量是10本,销售总价是230元;第二周A 销售数量是20本,B销售数量是10本,销售总价是280元.()1求,A B散文集的销售单价,()2若某班准备用不超过407元钱购买,A B散文集共45本,求最多能买多少本A散文集?【答案】(1)A散文集的销售单价为每本10元,B散文集的销售单价为每本8元;(2)最多能够买23本A散文集.【解析】【分析】(1)根据题意,列出二元一次方程组求解即可;(2)根据题意,列出不等式,求解即可.【详解】()1设A散文集的销售单价为每本x元,B散文集的销售单价为每本y元根据题意,得1510230 2010280x yx y+=⎧⎨+=⎩解得108 xy=⎧⎨=⎩答:A散文集的销售单价为每本10元,B散文集的销售单价为每本8元()2设能够买a本A散文集,得:()10845407a a+-≤,解得:23.5a≤,则最多能够买23本A散文集【点睛】此题主要考查二元一次方程组以及不等式的实际应用,解题关键是理解题意,列出关系式.47.某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?【答案】(1)A种款式的服装采购了65件,B种款式的服装采购了35件;(2)A种款式的服装最多能采购22件.【解析】【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,根据总价=单价×数量结合总费用不超过3300元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【详解】解:(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,依题意,得:80x+40(100﹣x)=6600,解得:x=65,∴100﹣x=35.答:A种款式的服装采购了65件,B种款式的服装采购了35件.(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,依题意,得:80m+40(60﹣m)≤3300,解得:m≤221.2∵m为正整数,∴m的最大值为22.答:A种款式的服装最多能采购22件.【点睛】本题考查的是一元一次方程以及不等式在实际生活中的应用,难度不高,认真审题,列出方程是解决本题的关键.48.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示设安排x件产品运往A地,(1)当n=200时,①根据信息填表:②若运往B地的件数不多于运往C地的件数,求该企业最少需要多少运费?(2)若总运费为5800元,求n的最小值.【答案】(1)①见解析;②企业运费最少需要3840元;(2)n有最小值为221【解析】【分析】(1)①根据题意,直接把产品数量和运费填入表格,即可;②由“运往B 地的件数不多于运往C地的件数”,列出关于x的不等式,求出x的范围,再根据总运费的表达式,求出答案即可;(2)根据题意,列出关于n和x的等式,得到n与x关系式,结合n﹣3x ≥0,求出x的范围,进而即可求解.【详解】(1)①根据信息填表,如下:②由题意,得:200﹣3x≤2x,解得:x≥40,总运费=56x+1600,∵56>0,∴总运费随x增大而增大,∴x=40,该企业运费最少,最少总运费=56×40+1600=3840(元),答:企业运费最少需要3840元;(2)由题意,得:30x+8(n﹣3x)+50x=5800,整理,得n=725﹣7x,∵n﹣3x≥0,∴725﹣7x﹣3x≥0,∴﹣10x≥﹣725,∴x≤72.5,又∵x≥0,∴0≤x≤72.5且x为正整数,∵n随x的增大而减少,∴当x=72时,n有最小值为221.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.49.某水果生产基地销售苹果,提供两种购买方式供客户选择方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克.方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元).(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式;(备注:按方式购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱;(3)若客户甲采用方式1购买,客户乙采用方式2购买,甲、乙共购买苹果5000千克,总费用共计18000元,则客户甲购买了多少千克苹果?【答案】(1)31200y x =+;(2)当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)客户甲购买了1400千克苹果.【解析】【分析】(1)根据按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价,即可得到答案;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y 元,分别求出12y y <,12y y =,12y y >的解,即可得到答案;(3)设客户甲购买了x 千克苹果,则乙客户购买了(5000-x)千克苹果,分两种情况,分别列出方程,即可求解.【详解】(1)由题意得:31200y x =+;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y元,当1500x >时,2 3.5y x =,若12y y <,则31200 3.5x x +<,解得2400x >,若12y y =,则31200 3.5x x +=,解得2400x =,若12y y >,则31200 3.5x x +>,解得2400x <.答:当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)设客户甲购买了x 千克苹果,①若50001500x -<,即3500x >,由题意得:(31200)4(5000)18000x x ++-=,解得:3200x =,经检验,不合题意,舍去;②若50001500x -≥,即3500x ≤,由题意得:(31200) 3.5(5000)18000x x ++-=,解得:1400x =,经检验,符合题意.答:客户甲购买了1400千克苹果.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,根据数量关系,列出一次函数解析式和一元一次不等式,是解题的关键.50.今年受猪瘟影响,从年初开始,猪肉价格不断走高.消费者王阿姨发现,9月20日当天猪肉的价格是年初的1.5倍;9月20日当天,王阿姨购买4千克猪肉比年初多花了48元.(1)那么9月20日当天猪肉的价格为每千克多少元?(2)9月20日,按照(1)中的猪肉价格,某售卖点共卖出1000千克猪肉.9月21日,政府决定投入储备猪肉并规定其销售价在9月20日的基础上下调0.7%a 出售.该焦卖点按规定价出售一批储备猪肉和非储备猪肉,该售卖点的非储备猪肉仍按9月20日的价格出售,9月21日当天的两种猪肉总销量比9月20日增加了20%,且储备猪肉的销量占总销量的56,两种猪肉销售的总金额比9月20日至少提高了1%10a ,求a 的最大值. 【答案】(1)9月20日当天猪肉的价格为每千克36元;(2)a 的最大值为25.【解析】【分析】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意列出方程,求解即可;(2)根据题意,分别得出9月20日销售金额、储备猪肉每千克的销售价、9月21日当天的两种猪肉总销量、储备猪肉的销量和销售金额、非储备猪肉的销量和销售金额,列出总金额的不等式,解得即可.【详解】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意,得1.54448x x ⨯-=解得24x =经检验24x =是方程的解,∴1.5241.536x =⨯=答:9月20日当天猪肉的价格为每千克36元;(2)由题意,得9月20日销售金额为:36×1000=36000元 储备猪肉每千克的销售价:36(1-0.7%a )9月21日当天的两种猪肉总销量为:1000(1+20%)储备猪肉的销量为:1000(1+20%)×56储备猪肉销售金额为:36(1-0.7%a )×1000(1+20%)×56非储备猪肉的销量为:1000(1+20%)×16非储备猪肉销售金额为:36×1000(1+20%)×169月21日两种猪肉销售的总金额为:36(1-0.7%a )×1000(1+20%)×56+36×1000(1+20%)×16≥36000(1+1%10a ) 解得%25%a ≤故a 的最大值为25.【点睛】此题主要考查一元一次方程和不等式的实际应用,解题关键是理解题意,列出关系式.。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)不等式组21xx>-⎧⎨<⎩的解集在数轴上表示正确的是A.B.C.D.【答案】C【解析】【分析】先求出的解集,然后在数轴上把解集表示出来即可,不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.【详解】∵21 xx>-⎧⎨<⎩∴解集是-2<x<1,在数轴上可表示为:.故选C.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.22.某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A.44个B.45个C.104个D.105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.二、解答题23.甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>200.(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【答案】(1)300;(2)当小李购物花费多于200元,少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算;当小李购物花费等于300元时,到两家商场购物一样多.【解析】【分析】(1)根据已知得出甲商场200+(x﹣200)×90%以及乙商场100+(x﹣100)×95%,相等列等式,进而得出答案;(2)根据200+(x﹣200)×90%与100+(x﹣100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【详解】(1)依题意,得200+(x﹣200)×90%=100+(x﹣100)×95%,解得x=300.即当x=300时,小李在甲、乙两商场的实际花费相同;(2)①当200+(x﹣200)×90%>100+(x﹣100)×95%时,解得x<300.②当200+(x﹣200)×90%<100+(x﹣100)×95%时,解得x>300.③当200+(x﹣200)×90%=100+(x﹣100)×95%时,解得x=300.答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.【点睛】本题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.24.求不等式5(x+2)≤28﹣2x的非负整数解.【答案】不等式的非负整数解为0、1、2.【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:5x+10≤28﹣2x,移项,得:5x+2x≤28﹣10,合并同类项,得:7x≤18,,系数化为1,得:x≤187则不等式的非负整数解为0、1、2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.解不等式:1123x x +-+≤1并把解集在数轴上表示出来. 【答案】x ≤1,数轴表示见解析.【解析】【详解】去分母得:3x+3+2x ﹣2≤6,移项合并得:5x ≤5,解得:x ≤1,把解集在数轴上表示出来为:【点睛】本题主要考查解不等式和在数轴上表示不等式的解集.用数轴表示不等式解集的方法:(1)定边界点,若含有边界点,解集为实心点,若不含边界,解集为空心圆圈;(2)定方向,大于向右,小于向左.26.先阅读,再完成练习一般地,数轴上表示数x 的点与原点的距离,叫做数x 的绝对值,记作|x|. |x|<3x 表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x|<3的解集是﹣3<x<3;|x|>3x表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数或大于3的数,它们到原点距离大于3,所以x>3的解集是x<﹣3或x>3解答下面的问题:(1)不等式|x|<5的解集为,不等式|x|>5的解集为.(2)不等式|x|<m(m>0)的解集为.不等式|x|>m(m>0)的解集为.(3)解不等式|x﹣3|<5.(4)解不等式|x﹣5|>3.【答案】(1)﹣5<x<5、x<﹣5或x>5;(2)﹣m<x<m、x<﹣m或x>m;(3)﹣2<x<8;(4)x>8或x<2【解析】【分析】(1)根据题意即可得;(2)根据题意可得;(3)将x−3看做整体得−5<x−3<5,解之即可;(4)将x−5看做整体得x﹣5>3或x﹣5<﹣3,解之即可.【详解】解:(1)不等式|x|<5的解集为﹣5<x<5,不等式|x|>5的解集为x<﹣5或x>5,故答案为﹣5<x<5、x<﹣5或x>5;(2)不等式|x|<m(m>0)的解集为﹣m<x<m,不等式|x|>m(m>0)的解集为x<﹣m或x>m,故答案为﹣m<x<m、x<﹣m或x>m;(3)|x﹣3|<5,∴﹣5<x﹣3<5,∴﹣2<x<8;(4)|x﹣5|>3,∴x﹣5>3或x﹣5<﹣3,∴x>8或x<2.【点睛】此题考查解一元一次不等式,首先通过阅读把握题目中解题规律和方法,然后利用这些方法解决所给出的题目,所以解题关键是正确理解阅读材料的解题方法,才能比较好的解决问题.此题是一个绝对值的问题,有点难以理解,要反复阅读,充分理解题意.27.某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花共需13元;2盆A种花和1盆B种花共需11元.(1)求1盆A种花和1盆B种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B 种盆花数量的2倍,请求出A种盆花的数量最多是多少?【答案】(1)1盆A种花的售价为3元,1盆B种花的售价是5元;(2)A 种盆花最多购进66盆.【解析】【分析】(1)1盆A 种花的售价为x 元,1盆B 种花的售价是y 元,根据:“1盆A 种花和2盆B 种花共需13元;2盆A 种花和1盆B 种花共需11元”列方程组求解即可;(2)首先根据“A 种盆花的数量不超过B 种盆花数量的2倍”确定m 的取值范围,然后得出最值即可.【详解】解:(1)1盆A 种花的售价为x 元,1盆B 种花的售价是y 元,根据题意可得:213211,x y x y +=⎧⎨+=⎩解得:35.x y =⎧⎨=⎩答:1盆A 种花的售价为3元,1盆B 种花的售价是5元;(2)设购进A 种花m 盆,依据题意可得:()2100,m m ≤- 解得:266,3m ≤ 而m 为正整数, ∴m 最多=66,答:A 种盆花最多购进66盆.【点睛】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.28.解不等式543132(32)3x x x -⎧⎨--≤⎩>①②,并在数轴上表示不等式组的解.【答案】x ≥73,图见解析. 【解析】【详解】 解:()543132323x x x -⎧⎪⎨--≤⎪⎩>①②, 由①得:x >2,由②得:x ≥73,则不等式组的解集为x≥73. 【点睛】本题主要考查解不等式组和数轴上表示不等式组的解. 用数轴表示不等式解集的方法:(1)定边界点,若含有边界点,解集为实心点,若不含边界,解集为空心圆圈;(2)定方向,大于向右,小于向左.29.已知不等式219836x x -+≤所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.【答案】-4【解析】试题分析:先解不等式219836x x -+≤ 求出其所有的负整数解,再求得所有负整数解的和,将所得和代入方程236y a -=中,即可求得a 的值.试题解析:解不等式219836x x -+≤ 得:2x ≥-,∴不等式219836x x -+≤ 的负整数解有:-2,-1两个, ∵-2+(-1)=-3,∴由题意可知:方程236y a -=的解为3y =-, ∴2(3)36a ⨯--=,解得:4a =-.30.已知不等式mx -3>2x +m.(1)若它的解集是x <32m m +-,求m 的取值范围; (2)若它的解集是x >6,求m 的值.【答案】(1)m <2(2)m=3【解析】试题分析:(1)不等式32mx x m ->+可化为:(2)3m x m ->+,由其解集为:32m x m +<-可得20m -<,由此解得:2m <;(2)不等式32mx x m ->+可化为:(2)3m x m ->+,由其解集为:6x >可得362m m +=-且20m ->,由此即可解得:3m =. 试题解析:不等式32mx x m ->+可化为:(2)3m x m ->+,.(1)∵它的解集是32m x m +<-, ∴ 20m -<,解得2m <;(2)∵它的解集是6x >,∴ 36220m m m +⎧=⎪-⎨⎪->⎩ ,解得3m =.。
人教版七年级数学下册第九章第二节一元一次不等式作业习题(含答案)不等式()2216x x ->+的最大整数解是( )A .-1B .-2C .0D .1【答案】B【解析】【分析】先求出不等式的解集,然后得到最大整数解即可.【详解】解:∵()2216x x ->+,∴2416x x ->+,∴45x ->, ∴54x <-; ∴最大整数解是2x =-;故选:B .【点睛】本题考查了解一元一次不等式的整数解,解题的关键是熟练掌握解不等式的方法进行解题.二、解答题22.已知:平面直角坐标系中,把点A(m ,4)(m 是实数)向右移动7个单位向下移动2个单位得到点B ,点B 向左移动3个单位向上移动6个单位得到点C ,请解答:(1) 点B ,C 的坐标是:B ,C ;(2) 求△ABC 的面积;(3)若连接OC 交线段AB 于点D ,且△ACD 与△BCD 的面积比不超过0.75时,求m 的取值范围.【答案】(m+7,2) ,(m+4,8);(2)18;(3)40m 417-≤<【解析】【分析】(1)根据平面直角坐标系中点坐标的平移即可求解;(2)利用割补法求解即可;(3)画图分析,根据同底两个三角形的面积之比等于高之比,则△ACD 与△BCD 的面积比△AOC 与△OBC 的面积比,然后进行计算.【详解】解:(1)点A (m ,4)(m 是实数)向右移动7个单位向下移动2个单位得到点B ,点B 的坐标为(m +7,2),点B 向左移动3个单位向上移动6个单位得到点C ,点C 的坐标为(m+4,8);故答案为:(m+7,2) ,(m+4,8);(2)1116772443618222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△; (3)画图如下:根据同底两个三角形的面积之比等于高之比,则ACD AOC BCD OBCS S S S ∆∆∆∆=. ∵A(m ,4),B(m+7,2) ,C(m+4,8), ∴111(4)8444()222AOC S m m ∆=⨯-⨯-⨯⨯-⨯⨯-=8-2m, 111(37)8362(7)222BOC S m m ∆=⨯++⨯-⨯⨯-⨯⨯+=3m+24. ∴8-2m>0,3m+24>0,解得m<4. ∵34ACD BCD S S ∆∆≤, ∴34AOC OBC S S ∆∆≤,即8233244m m -≤+. 解得4017m ≥-. ∴4017-≤m<4. 【点睛】本题考查到了平面直角坐标系中点坐标的平移和利用割补法求面积等知识点,有一定难度,能够画出图形进行分析是解本题的关键.23.某校计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A 超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折.(1)若规定只能到其中一个超市购买所有物品,什么情况下到A 超市购买合算?(2)若学校想购买20张书柜和100个书架,且可到两家超市自由选购.你认为至少要准备多少货款,请用计算的结果来验证你的说法.【答案】(1)少于40到A ;(2)A 买20书柜到B 买80个书架.验证见解析.【解析】【分析】(1)设买x 张书架时,到A 超市购买合算,分别表示出到A 超市所花的费用和到B 超市所花的费用,然后根据到A 超市购买合算可建立不等式,求解即可.(2)买一张书柜赠送一只书架相当于所有商品都打折,再根据题意作出选择即可.【详解】(1) 设学校购买x 张书架,由题意可知,到A 超市所花的钱数为:2021070(20)x ⨯+- ;到B 超市所花的钱数为0.8(2102070)x ⨯⨯+ ,∵2021070(20)x ⨯+-<0.8(2102070)x ⨯⨯+,解得x< 40;所以当20≤x < 40时到A 超市购买合算;故少于40到A;(2)买一张书柜赠送一只书架的价钱为210元,即相当于所有商品打折,所以应该到A超市购买20个书架和20个书柜,再到B超市购买80个书架,总花费是:⨯+⨯⨯=8680元,至少要准备8680元;2021070800.8故到A买20书柜,到B买80个书架.【点睛】本题主要考查一元一次不等式的应用,注意不等式中未知数的取值范围.24.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买多少本笔记本?【答案】他最多能买5本笔记本【解析】【分析】设他可买x本笔记本,根据题意列出一元一次不等式,求解即可.【详解】设他可买x本笔记本,由题意可得:x≤,40.4(30)30+-≤,解得:5x xx≤的最大整数是5,∵满足5∴他最多可买5本笔记本.【点睛】本题考查了一元一次不等式在实际问题中的应用,根据题意列出一元一次不等式,是解题的关键.25.(1)解方程:2143x x +=-; (2)解不等式:122123x x ++>- 【答案】(1)2x =;(2)5x <【解析】【分析】 (1)按照移项、合并同类项、系数化为1的步骤解答即可;(2)根据解一元一次不等式的方法解答即可.【详解】解:(1)移项,得2431x x -=--,合并同类项,得24x -=-,系数化为1,得2x =;(2)去分母,得()()312226x x +>+-,去括号,得33446x x +>+-,移项、合并同类项,得5x ->-,不等式两边同时除以﹣1,得5x <.【点睛】本题考查了一元一次方程和一元一次不等式的解法,属于基础题型,熟练掌握解一元一次方程和一元一次不等式的方法是关键.26.解不等式:22x x +≤,并把解集表示在数轴上.【答案】x ≥2,数轴见解析【解析】【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【详解】解:去分母,得x+2≤2x移项、合并,得-x≤-2系数化为1,得x≥2【点睛】不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.27.有大小两种货车,3辆大货车与4辆小货车一次可以运货27吨,2辆大货车与6辆小货车一次可以运货28吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨;(2)目前有45吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运货费用150元,每辆小货车一次运货费用100元,请问货运公司应如何安排车辆最节省费用?【答案】(1)1辆大货车和1辆小货车一次可以分别运货5吨和3吨;(2)大货车8辆,小货车2辆,使运货花费最小,最小花费是:150×8+100×2=1400(元).【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“辆大货车与4辆小货车一次可以运货36吨,2辆大货车与6辆小货车一次可以运货34吨”列方程组求解可得;(2)设货运公司安排大货车m 辆,则安排小货车(10−m )辆.根据10辆货车需要运输66吨货物列出不等式.【详解】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据题意可得:34272628x y x y +=⎧⎨+=⎩, 解得:53x y =⎧⎨=⎩, 答:1辆大货车和1辆小货车一次可以分别运货5吨和3吨;(2)设货运公司拟安排大货车m 辆,则安排小货车(10−m )辆, 根据题意可得:5m +3(10−m )≥45,解得:m ≥7.5,令m =8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车2辆,使运货花费最小,最小花费是:150×8+100×2=1400(元).【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.28.(1)解方程组:32143 231y xx y-+⎧+=⎪⎨⎪-=⎩;(2)解不等式组4(1)710753x xxx+≤+⎧⎪-⎨-<⎪⎩把解集在数轴上表示出来,并求出所有非负整数解.【答案】(1)373xy-⎧⎪⎨-⎪⎩==;(2)在数轴上表示见解析,非负整数解为:0,1,2,3【解析】【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出两个不等式的解,找出解集并表示在数轴上,再找出其非负整数解即可.【详解】(1)方程组整理得:435231x yx y--⎧⎨-⎩=①=②,①−②得:2x=−6,解得:x=−3,把x=−3代入②得:y=73-,则方程组的解为373xy-⎧⎪⎨-⎪⎩==;(2)4(1)710753x x x x +≤+⎧⎪⎨--<⎪⎩①② 解①得:x ≥-2,解②得:x <4,该不等式组的解集为:-24x ≤<,在数轴上表示如下:其非负整数解为:0,1,2,3.【点睛】此题考查了解二元一次方程组和解一元一次不等式组,熟练掌握运算法则是解题的关键.29.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b满足|273|0a b --=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.【答案】(1)(12,0)A (0,3)B (15,3)C(2)610.8t <<;存在,02t <≤或11.612t ≤<【解析】【分析】(1)根据题意构造方程组21802730a b a b +-=⎧⎨--=⎩,解方程组,问题得解; (2)∵当010t <≤时,15 1.5BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,当1012t <<时, 1.515BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,二者结合,问题得解;②分别表示出BCN S 三角形、 OACB S 四边形,分010t <≤,1012t <<两种情况讨论,问题得解.【详解】解:(1)由题意得21802730a b a b +-=⎧⎨--=⎩, 解得123a b =⎧⎨=⎩, ∴(12,0)A ,(0,3)B ,(15,3)C(2)①当010t <≤时,15 1.5BM t =-,12AN t =-,BM AN <得15 1.512t t -<-,解得6t >则610t <≤;当1012t <<时, 1.515BM t =-,12AN t =-,BM AN <得1.51512t t -<-, 解得10.8t <,则1010.8t <<,综上,610.8t <<;②1145153222BCN S BC OB =⨯⨯=⨯⨯=三角形 1181()(1215)3222OACB S OA BC OB =⨯+⨯=⨯+⨯=四边形 当010t <≤时, 81145(15 1.5)3222OACM OACB BMO S S S t =-=-⨯-⨯≤四边形四边形三角形 解得2t ≤,则02t <≤;当1012t <<时, 81145(1.515)15222OACM OACB BMC S S S t =-=-⨯-⨯≤四边形四边形三角形 解得11.6t ≥,则11.612t ≤<,综上02t <≤或11.612t ≤<.【点睛】本题考查了非负数的表达、平面直角坐标系中图形面积表示,不等式,方程组、分类讨论等知识,综合性较强.根据题意,分类讨论是解题关键.30.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【答案】(1)电脑0.5万元,电子白板1.5万元;(2)14台【解析】【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。