八年级数学上册第15章轴对称图形和等腰三角形15.1轴对称图形(第1课时)课件(新版)沪科版
- 格式:ppt
- 大小:4.74 MB
- 文档页数:22
-教学设计:15.1轴对称图形一、教材分析1、教材的地位和作用:“轴对称图形”是八年级上册沪科版数学教材第15章第一节的教学内容,轴对称图形是一种常见的平面图形,在日常生活中有着广泛的应用。
教材中通过各种生活图片展示,目的是使学生从这些图形中抽象它们的共同特征.鼓励学生探索轴对称现象的共同特征,动手操作,亲自实践,收获乐趣.教材给学生自主探索留有很大空间,学生可以充分的发挥想象,以促进学生对轴对称的体验和理解.本节课是本章的第一节第一课时,对于以后学习等腰三角形,线段的垂直平分线,角平分线有很重要的铺垫作用.通过本节课的学习,可以训练学生的审美能力和图形设计能力,拓展学生的空间想象力,为学生后续学习做好充分的准备,同时这一节课也是联系数学与生活的桥梁.2、教学目标:(1)知识与技能目标:初步认识轴对称图形,理解轴对称的含义,能找出轴对称图形的对称轴.会作简单图形关于某直线的对称图形。
(2)过程与方法目标:通过观察、思考、合作交流、动手操作,提高学生的观察辨析图形的能力,发展学生的空间思维。
(3)情感态度与价值观目标:通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.3、教学重点与难点:教学重点:轴对称图形的概念.简单对称图形关于某直线对称的作法。
教学难点:能够识别轴对称图形并找出它的对称轴.轴对称图形的创作。
二、学情分析学生在小学时以接触轴对称知识,七年级的时候已经接触过图形知识,有一定的观察、分析能力.本节的知识全都来源于生活,所以本节课主要利用学生已有的知识经验解决问题.三、教学方法引导探索发现法,配合演示法、讨论法和总结法.在演示、引导学生进行观察、分析、操作、抽象概括、练习巩固各个环节中运用多媒体进行辅助教学,增强直观性,提高教学效率,激发学生的学习兴趣.四.教具准备多媒体课件,镜子、剪刀、彩纸等。
五.教学过程:(一)创设情境,引轴对称。
沪科版数学八年级上册第15章轴对称图形与等腰三角形15.1轴对称图形第1课时轴对称图形与轴对称基础达标提升训练1. 下面四个手机应用图标中是轴对称图形的是()A B C D2. 以下图形中对称轴的数量小于3的是()A B C D3. 下列选项中,左边的图形和右边的图形形成轴对称的是()A B C D4. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A B C D5. 下列图案中,不是轴对称图形的是()A B C D6. 下列四个图形,其中是轴对称图形,且对称轴的条数为2的图形的个数是()A. 1B. 2C. 3D. 47. 我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A. 1条B. 2条C. 3条D. 4条8. 将一张长方形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A B C D9. 下列四个图形,其中所有轴对称图形的对称轴条数之和为()A. 13B. 11C. 10D. 810. 如图所示,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A. 50°B. 30°C. 100°D. 90°11. 下列各组图中,其中,左右两个图形能成轴对称的是(填序号).①②③④12. 在宋体汉字中,如“十”,“中”,“日”等都是轴对称图形,请你再写出三个这样的汉字:.13. 如图,某英语单词由四个字母组成,且四个字母都关于直线l对称,则这个英语单词的汉语意思为.14. 如图所示,在△ABC中,点B,点C关于AD所在直线对称,若△ABC的面积为12 cm2,则图中阴影部分的面积是cm2.第14题第15题15. 在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.16. 如图所示的图形都是轴对称图形,请你试着画出它们所有的对称轴.17. 请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)图①图②图③拓展探究综合训练18. 轴对称在数学计算中有巧妙的应用,如图①,现要计算长方形中六个数字的和,我们发现,把长方形沿对称轴l1对折,重合的数字和均为4,故六个数字的和为3×4=12,若沿对称轴l2对折,则六个数字的和可表示为4×2+2×2=12,受上面方法的启发,请快速计算长方形(图②)中各数字之和.图①图②。
第2课时轴对称◇教学目标◇【知识与技能】1.知道线段垂直平分线的概念;2.知道成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线.【过程与方法】1.通过丰富的实例认识成轴对称的两个图形,并能找出成轴对称的两个图形的对称轴;2.了解轴对称图形、两个图形关于某直线成轴对称这两个概念之间的联系和区别.【情感、态度与价值观】1.经历丰富材料的学习过程,发展对图形的观察、分析、判断、归纳等能力;2.体验数学与生活的联系、发展审美观.◇教学重难点◇【教学重点】会利用轴对称的性质作对称点、轴对称图形等.【教学难点】轴对称图形与两个图形关于某直线成轴对称这两个概念之间的联系与区别.◇教学过程◇一、情境导入这几幅图是轴对称图形吗?每对图形有什么共同的特点?二、合作探究1.操作:取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?2.如图,图形M与图形M'关于直线l对称,点A',B',C'分别是点A,B,C的对称点.连接AA',设AA'与直线l交于点O1,BB'与直线l交于点O2,CC'与直线l交于点O3.(1)直线l与线段AA'有怎样的位置关系?(2)O1A与O1A'的长度有何关系,O2B与O2B',O3C与O3C'呢?说明:直线l垂直于线段AA',直线l平分线段AA'.O1A=O1A',O2B=O2B',O3C=O3C',即直线l 垂直平分线段AA';直线l垂直平分线段BB';直线l垂直平分线段CC'.结论:对称轴经过连接对应点的线段的中点,并且垂直于这条线段.经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线.如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线. 一般地,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.典例1 下列图形是部分汽车的标志,哪些是轴对称图形?[解析] 图①、图③和图④是轴对称图形.典例2 下图中的两个图形是否成轴对称?如果是,请找出它的对称轴.典例3 在平面直角坐标系中点A 关于x 轴对称的点的坐标为(7x+6y-13,y+x-4),点A 关于y 轴对称的点的坐标为(4y-2x-2,-6x-4y+5),求点A 坐标.[解析] 由题意得解得所以点A 的坐标为(-8,3).三、板书设计轴对称1.线段的垂直平分线.2.一般地,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.◇教学反思◇本节课设计和实施时应体现以下三个方面:首先,努力体现数学与生活的联系.设计中提供了丰富的图案,涉及建筑、动物、植物、标志(汽车、建筑)、数学图形等方面,让学生感受到数学就在身边.其次,致力于学习方法的改变.让学生主动地进行学习、合作、讨论、动手操作、收集材料、设计图案等.再次,处理好概念教学与能力培养的关系.本设计先让学生收集图案,然后在学生有了感性认识的基础上提出有关的概念,再让学生把概念运用到实际问题情景中,这样的设计有利于学生对数学概念的真正理解,也有利于学生学习能力的提高.。
第15章轴对称图形与等腰三角形15.1 轴对称图形第1课时轴对称图形(一)教学目标【知识与技能】1.在生活实例中认识轴对称,能画出简单轴对称图形的对称轴.2.使学生了解轴对称图形和关于直线成轴对称的概念.3.了解轴对称图形和轴对称的联系与区别.【过程与方法】1.通过实例认识轴对称,能够识别生活中的轴对称图形及其对称轴.2.培养学生的观察能力、思维能力、动手能力、总结能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】理解并掌握轴对称图形、轴对称的概念、画对称图形的对称轴.【难点】理解并掌握轴对称图形和两个图形成轴对称之间的关系.教学过程一、创设情境、导入新知教师多媒体课件出示:师:同学们认识这些图形吗?生:认识.师:你能说出它们的共同点吗?学生观察后,思考并讨论交流.生:它们的左右两边是一样的.师:对,实际上它们的左右两边是对称的.自然界中,许多物体的平面图形都具有对称性.今天我们就来研究轴对称图形.二、共同探究,获取新知学生实验一师:把一张纸对折,然后从折叠处剪出一个图形,想一想:展开后会是什么样的图形?位于折痕两侧的图案有什么关系?学生分组活动,合作交流后选代表回答实验结果.生甲:我们得到了一个美丽的图形:飞鸟,它有对称美.生乙:我们得到的是大树和五角星,它们是对称的.生丙:我们得到的是轴对称图形,位于折痕两部分的图案能够完全重合.师:你们的发现真是了不起啊!那么你们能说说什么样的图形是轴对称图形吗?生甲:能够完全重合的图形是轴对称图形.生乙:不对!应该是沿着一条直线折叠后能完全重合的图形才是轴对称图形.师:很好,如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.请同学们尽可能多地从你周围的环境中找出轴对称的物体.学生畅所欲言.教师提示:天上飞的、地上跑的、水里游的,还有已经学过的那些简单的图形、数字、字母等都可以.生:我们组将这个平行四边形对折后,发现无论怎么对折,两边都无法重合,所以它不是一个轴对称图形.师:有道理,其他同学有没有不同的想法?生:我们组将这个平等四边形剪拼成一个长方形,而长方形对折后两边完全重合,所以我们认为它是一个轴对称图形.师:听起来好像也有道理.生甲:我们反对.因为在刚才的学习中,我们知道判断一个图形是不是轴对称图形关键是看对折后两边能否完全重合,而这个图形对折后显然无法重合.生乙:(补充)而且你们将这个图形剪拼后,已经改变了这个图形的形状和性质,所以我们认为它原本不是一个轴对称图形.师:(回到赞成“是的”一方)听了对方的阐述,再结合我们一开始探讨轴对称图形时的要求,你现在的观点是什么?生:(沉默一会儿后)现在我也同意这个平行四边形不是轴对称图形了.师:对,平行四边形不是轴对称图形.学生实验二:折纸印墨迹学生分组完成实验教师提出问题1:你发现折痕两边的墨迹形状一样吗?为什么?问题2:两边墨迹的位置与折痕有什么关系?(让学生充分观察、讨论和交流,并指名汇报):生甲:我们组发现两边的墨迹形状一样,因为它们折过去能完全重合.生乙:我们组的发现和他们一样.生丙:两边的墨迹关于折痕对称.生丁:我想补充的是两边的墨迹是关于折痕成轴对称的.师:同学们观察得真仔细啊!那你们能说说究竟什么样的两个图形成轴对称吗?生甲:一个图形和另一个图形能完全重合,这两个图形成轴对称.生乙:我不同意他的观点,应该是一个图形沿着某条直线折叠,如果它能和另一个图形重合,那么称这两个图形关于这条直线对称.师:你真是太聪明了!动画演示,师生共同总结出轴对称、对称轴及对称点的概念.教师用多媒体展示练习,学生独立思考后回答.三、深入探究师:通过刚才的学习,你们能说说轴对称与轴对称图形是否是一回事吗?生齐答:不是.师:那谁能说说它们的关系呢?(见学生面有难色,让学生先思考交流)生甲:轴对称是两个图形,轴对称图形是一个图形.师:说得好,谁还想说?生乙:它们都是沿着一条地线对折的,并且能重合.生丙:如果把成轴对称的两个图形看成一个整体,就是一个轴对称图形;如果把一个轴对称图形看成两个图形就是成轴对称.师:怎样将一个轴对称图形看成两个图形呢?生:哦,是将位于对称轴两旁的部分看成两个图形.师:你可以当小老师了!各位同学的发现合起来就是轴对称与轴对称图形的区别与联系.四、课堂小结师:生活中处处有数学,我们只有学好了数学,才能更好地运用所学的知识去解决生活中的实际问题,谁想说说你今天收获得了什么?生甲:我今天最大的收获是认识了轴对称图形和轴对称.生乙:我通过观察发现了轴对称图形和轴对称的区别和联系.生丙:通过欣赏图片,我感受到了对称图形的美.生丁:通过找生活中的轴对称物体,我体会到数学就在我们身边,生活中处处有数学知识.教学反思在学习轴对称与轴对称图形的时候,充分让学生通过实验去感知、思考、探索知识,从更深层次上理解概念.在本节课中轴对称和轴对称图形是两个重要要概念且易混淆.在教学中充分地进行比较,这样不仅能帮助学生建立、理解概念,而且有利于学生在头脑中建立起事物与概念间的内在联系,达到事半功位的效果.第2课时轴对称图形(二)教学目标【知识与技能】1.知道线段垂直平分线的概念.2.知道成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线.【过程与方法】1.探索并了解线段垂直平分线的有关性质,通过作对称轴提高学生的作图能力.2.经历探索轴对称性质的活动,积累数学活动经验,进一步发展空间观念和表达能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】会利用轴对称性质作对称点、轴对称图形等.【难点】根据题目要求画出轴对称图形.教学过程一、创设情境,导入新知师:上节课我们探讨了轴对称图形,知道现实生活中由于轴对称图形,而显得异常美丽,那么什么样的图形是轴对称图形呢?学生思考回答:如果一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.师:大家想一想,我们以前学过的哪些几何图形是轴对称图形呢?生甲:正方形、矩形.生乙:圆、等腰三角形.生丙:角、线段.师:刚才有人提出“线段是轴对称图形”,今天我们就来研究这个简单的轴对称图形(板书课题).二、共同探究,获取新知教师画出一条线段.师:你能找出它的一条对称轴吗?生甲:它的对称轴是与线段垂直的,且垂足是线段中点的直线.教师画出一条线段AB,对折AB使点A、B重合,折痕与AB的交点为O.师:OA=OB吗?折痕与直线所成的两个角是多少度?学生观察.生:OA=OB,折痕与直线所成的两个解都是90°师;折痕(即线段的对称轴)与线段有什么关系?学生讨论交流.教师小结:经过线段的中点并且垂直这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线.线段是轴对称图形,它的对称图形就是线段的垂直平分线.教师让学生任意画一条线段,然后用带有刻度的直角三角板画出线段的垂直平分线.学生讨论做法,教师巡视指导.三、合作交流,深化理解教师多媒体出示:如图,△ABC与△A'B'C'关于直线l对称,点A'B'C'分别是点A、B、C的对称点,连接AA',设AA'与直线l交于点O1.师:直线l与线段AA'有怎样的位置关系?生:垂直.师:OA1与O1A'的长度有什么关系?学生观察后回答:相等.师:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,如果两个图形各对对应点的连线被同一条直线平分,那么这两个图形关于这条直线对称.四、练习新知师:请同学们完成课本练习的第3题.教师找三名学生板演,其余同学在下面做,教师巡视指导,然后集体订正.师:请同学们完成练习第4题.教师找两名学生板演,其余同学在下面做,然后集体订证.五、课堂小结师:今天你有什么收获你又学到了什么?学生回答,教师补充完整.教学反思对称是一种最基本的图形变换,是学生学习空间与图形的必要基础,了解对称图形,对于帮助学生建立空间观念,培养学生的空间想象力都有着不可忽视的作用,这节课鼓励每个学生动手、动口、动脑,积极参与到数学的学习过程中来,注意发挥学生的主体性,给学生留下充分的时间与空间进行活动.上述的自主活动是整堂课的重点所在,通过活动既可充分发挥学生的理解能力、创造能力,又能在整个活动中对轴对称的概念从感性认识升华到理性认识.第3课时轴对称图形(三)教学目标【知识与技能】1.理解并掌握平面直角坐标系中,与已知点关于x轴或y轴对称的点的坐标的规律.2.能作出与一个图形关于x轴或y轴对称的图形.【过程与方法】1.通过作图提高学生的实践能力.2.通过现实情境的创设使学生体验到数学就在我们身边,从而培养审美感以及数学应用意识.【情感、态度与价值观】1.通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新的意识及多方位审视问题的创造技巧.2.在作图过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神.重点难点【重点】用坐标表示点关于坐标轴对称的点的坐标.【难点】找对称点的坐标之间的关系、规律.教学过程一、创设情境,导入新知师:什么是轴对称图形?生:如果一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形.师:什么是轴对称?生:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称.师:什么是线段的垂直平分线生;经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线.师:很好!这节课我们继续学习轴对称的有关知识.老师板书课题.二、共同探究,获取新知师:已知点A和一条直线,你能画出这个点关于已知直线的对称点吗?教师多媒体出示:学生作图,教师巡视指导,然后集体纠正.教师边操作边讲解:我们过A点作MN的垂线并延长,记垂线与MN的交点为O,然后在上面截取一段使OA'=AO,则A'点就是A点关于MN的对称点.教师强调:不是题中要求作出的,比如我们作的这条垂线,它相当于辅助线,用虚线表示.三、深入探究,层层推进师:在平面直角坐标系里,如何作出图形的轴对称图形呢?下面只介绍以特殊直线(坐标轴)为对称轴的情形.教师多媒体出示:如图所示,在平面直角坐标系中,正方形ABCD四个顶点的坐标分别为A(1,1),B(3,1),C(3,3),D(1,3).师:我请两名同学分别作出点A、B、C、D关于x轴和y轴对称的点,并写出它们的坐标.学生思考.教师找两名学生板演,其余同学在下面做.教师出示表格.已知点的A(1,1)B(3,1)C(3,3)D(1,3)坐标关于x轴对A1(1,-1)B1(3,-1)C1(3,-3)D1(1,-3)应点的坐标关于y轴对A2(1,-1)B2(-3,1)C2(-3,3)D2(-1,3)应点的坐标师:观察上表,已知点与它关于x轴对称的点的坐标有什么关系?已知点与它关于y轴对称点的坐标呢?学生观察表格,思考后回答.生:关于x轴对称的点横坐标不变,纵坐标互为相反数;关于y轴对称的点纵坐标不变,横坐标互为相反数师:很好!我们得到:一般地,已知点P(x,y),它关于x轴对应的点的坐标为P1(x,-y),它关于y轴对应的点的坐标P2(-x,y).四、练习新知,加深理解教师找一名学生完成课本练习第1题,然后集体订正.点关于x轴对称的点关于y轴对称的点A(-2,0)(-2,0)(2,0)B(2,-3)(2,3)(-2,-3)C(-4,-2)(-4,2)(4,-2)D(-3,2)(-3,-2)(3,2)E(0,-1)(0,1)(0,-1)F(2,3)(2,-3)(-2,3)教师找一名学生板演练习2,其余同学在下面做,老师巡视指导,然后集体订正.五、课堂小结师:今天我们学习了什么知识?你有哪些收获?生甲:我学习了一点关于x轴或y轴对称的点的坐标的求法.生乙:我知道了一个图形关于x轴或y轴对称的图形的画法.师:你还有哪些疑问?学生提问,教师解答.教学反思上节课我们只是根据对称轴是两个图形对应点所连线段的垂直平分线作出一个图形关于一条对称轴对称的图形,在这节课上我们把图形放在坐标系里,来讨论这个图形上点的坐标和与它对应的点的坐标的关系,先让学生作出对应点,然后让他们自己分析关于两条坐标轴对称的两点坐标之间的关系.比较一个点和它的对应点和对称轴之间的关系,发挥了学生的主动性,让他们自己去发现规律,总结规律,提高他们的分析、归纳能力,同时也给他们提供表达自己观点的机会,提高他们表达问题的能力.。
15.3等腰三角形第1课时等腰三角形的性质◇教学目标◇【知识与技能】1.经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力;2.掌握等腰三角形的性质1,2及其推论;3.运用等腰三角形的性质及其推论进行有关证明和计算.【过程与方法】在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.【情感、态度与价值观】经历探索等腰三角形的轴对称及相关性质的过程,进一步体会轴对称的特征,发展学生的空间意识.◇教学重难点◇【教学重点】等腰三角形的性质定理及其证明.【教学难点】等腰三角形性质的验证.◇教学过程◇一、情境导入活动1:请同学们把一张长方形的纸片对折,按如图2所示的方式剪去(或用刀子裁)一个角,再把它展开,得到的是什么样的三角形?结果:剪刀剪过的两条边是相等的;剪出的图形是等腰三角形.知识回顾:有两条边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.问题1:等腰三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想.结果:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴.说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴.二、合作探究活动2:出示刚才剪下的等腰三角形纸片,标上字母如图所示:把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD,观察图形,△ADB与△ADC有什么关系?图中哪些线段或角相等?AD与BD垂直吗?为什么?结果:△ADB与△ADC重合,∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,BD=CD,AB=AC,AD与BD垂直,理由略.活动3:由上面的性质我们可以得到等腰三角形有如下性质:定理1:等腰三角形的两底角相等,简称“等边对等角”.问题2:这个命题的题设是什么?结论是什么?结果:已知:在△ABC中,AB=AC.求证:∠B=∠C.转化为两个三角形?通过折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD.等腰三角形的性质定理1的几何符号语言的书写:在△ABC中,∵AB=AC(已知),∴∠B=∠C(等边对等角).问题3:等边三角形各内角有什么关系?各等于多少度?结果:(1)等腰三角形中顶角与底角的关系:顶角+2×底角=180°;(2)推论:等边三角形三个内角相等,每一个内角都等于60°.活动4:从性质1的证明过程可以知道,BD=CD,∠ADB=∠ADC=90°,由此,你能得出等腰三角形还具有什么性质?结果:定理2:等腰三角形顶角的平分线垂直平分底边.即等腰三角形的顶角平分线、底边上的中线和底边上的高“三线合一”.典例如图,在△ABC中,AB=AC,∠BAC=120°,点D,E是底边上两点,且BD=AD,CE=AE,求∠DAE的度数.[解析]∵AB=AC,(已知)∴∠B=∠C.(等边对等角)∴∠B=∠C=错误!未找到引用源。
《等腰三角形》一、说教材分析:1.教材内容:本课是等腰三角形,本课内容在初中数学教学中起着比较重要的作用。
通过等腰三角形的特征反映在一个三角形中等边对等角关系,并且对轴对称图形特征的直观反映(三线合一),对以后直角三角形和相似三角形学习起到相当重要的作用。
2、教学目标:(1)认知目标:要求学生掌握等腰三角形的特征和三线合一的特征,使学生会用等腰三角形的特征进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法;(2)能力目标:培养观察能力、分析能力、联想能力、表达能力;使学生初步学会分析几何证明题的思路,从而提高学生的逻辑思维能力及分析问题、解决问题的能力;(3)情感目标:通过亲自动手,发现“等腰三角形两底角相等”和“三线合一”特征,对学生进行数学美育教育。
3、教学重难点:(1)教学重点:等腰三角形两底角相等的特征是本课的重点。
(2)教学难点:等腰三角形“三线合一”特征的运用是本课的难点。
4、教具准备:为了使学生了解这堂课,本节课要求学生自制若干个不同等腰三角形和一般性三角形纸片模型。
二、说教学方法:由于八年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及八年级学生刚刚学习轴对称图形,对轴对称图形的分析相对比较好,再加上八年级学生思维的感官性,所以本课由学生通过翻折等腰三角形纸片去发现等腰三角形的两个特征,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,我通过实验观察,采用教具直观教学法,启发式教学法和师生互动式教学模式进行教学。
教学过程中注意师生之间的情感交流,培养学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习模式,培养学生的数形结合的思想。
对于等腰三角形的“两底角相等”和“三线合一”这两个特征,通过让学生动手操作,让学生翻折不同的等腰三角形,如顶角是锐角、钝角或直角的等腰三角形,以及一般三角形的模版,从而让学生逐步通过等腰三角形的轴对称变换探索出相关的特征。
2018年秋八年级数学上册第15章轴对称图形和等腰三角形15.1 轴对称图形第1课时轴对称图形教案(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第15章轴对称图形和等腰三角形15.1 轴对称图形第1课时轴对称图形教案(新版)沪科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第15章轴对称图形和等腰三角形15.1 轴对称图形第1课时轴对称图形教案(新版)沪科版的全部内容。
第十五章轴对称图形与等腰三角形15.1轴对称图形第1课时轴对称图形◇教学目标◇【知识与技能】1.初步认识对称图形,明白对称的含义,能找出对称图形的对称轴;2.了解轴对称图形和关于直线成轴对称的概念;3。
了解轴对称图形和轴对称的联系与区别。
【过程与方法】通过实例认识轴对称,能够识别生活中的轴对称图形及其对称轴。
【情感、态度与价值观】1.让学生体会数学与生活的密切联系,发展学生的空间观念和审美观;2。
通过观察、思考和动手操作,培养学生多种能力,渗透美的教育.◇教学重难点◇【教学重点】理解对称图形的概念及性质,会找对称轴.【教学难点】准确找全对称轴.◇教学过程◇一、情境导入观察这些图形有什么特点?二、合作探究1。
对称图形和对称轴的定义如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。
这条直线叫做对称轴.2。
巩固概念典例1判断下面的图形是不是轴对称图形?为什么?[解析]天安门、奖杯、汽车图是轴对称图形;金鱼图不是轴对称图形,无论怎样折,两侧都不能完全重合.典例2观察下列几何图形,哪些是轴对称图形,画出它们的对称轴,并在()里写明有几条对称轴.[解析]①任意三角形不是轴对称图形;②等腰三角形是轴对称图形,有1条对称轴;③任意梯形不是轴对称图形;④正方形是轴对称图形,有4条对称轴;⑤平行四边形不是轴对称图形;⑥长方形是轴对称图形,有2条对称轴;⑦圆是轴对称图形,有无数条对称轴;⑧等腰梯形是轴对称图形,有1条对称轴;画对称轴略.三、板书设计轴对称图形如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形.这条直线叫做对称轴.◇教学反思◇在学习轴对称与轴对称图形的时候,充分让学生通过实验去感知、思考、探索新知识,从更深层次上理解概念,达到事半功倍的效果。