第三讲数据融合的关键技术PPT课件
- 格式:ppt
- 大小:770.50 KB
- 文档页数:34
数据融合技术简介数据融合技术是指利用计算机对按时序获得的若干观测信息,在一定准则下加以自动分析、综合,以完成所需的决策和评估任务而进行的信息处理技术。
数据融合的概念虽始于70年代初期,但真正的技术进步和发展乃是80年代的事【1】,尤其是近几年来引起了世界范围内的普遍关注,美、英、日、德、意等发达国家不但在所部署的一些重大研究项目上取得了突破性进展,而且已陆续开发出一些实用性系统投入实际应用和运行。
我国“八五”规划亦已把数据融合技术列为发展计算机技术的关键技术之一,并部署了一些重点研究项目,尽可能给予了适当的经费投入。
但这毕竟是刚刚起步,我们所面临的挑战和困难是十分严峻的,当然也有机遇并存。
这就需要认真研究,针对我国的国情和军情,采取相应的对策措施,以期取得事半功倍的效果。
数据融合可分为:(1)像素级融合:它是直接在采集到的原始数据层上进行的融合,在各种传感器的原始测报未经预处理之前就进行数据的综合与分析。
数据层融合一般采用集中式融合体系进行融合处理过程。
这是低层次的融合,如成像传感器中通过对包含若一像素的模糊图像进行图像处理来确认目标属性的过程就属于数据层融合。
(2)特征层融合:特征层融合属于中间层次的融合,它先对来自传感器的原始信息进行特征提取(特征可以是目标的边缘、方向、速度等),然后对特征信息进行综合分析和处理。
特征层融合的优点在于实现了可观的信息压缩,有利于实时处理,并且由于所提取的特征直接与决策分析有关,因而融合结果能最大限度的给出决策分析所需要的特征信h。
特征层融合一般采用分布式或集中式的融合体系。
特征层融合可分为两大类:一类是目标状态融合;另一类是目标特性融合。
(3)决策层融合决策层融合通过不同类型的传感器观测同一个目标,每个传感器在本地完成基本的处理,其中包括预处理、特征抽取、识别或判决,以建立对所观察目标的初步结论。
然后通过关联处理进行决策层融合判决,最终获得联合推断结果。
数据融合作为一种数据综合和处理技术,实际上是许多传统学科和新技术的集成和应用,其中涉及的知识包括通信、模式识别、决策论、不确定性理论、信号处理、估计理论、最优化技术、计算机科学、人工智能、神经网络等,特别是神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。
数据融合原理与方法一、数据融合概述数据融合是一种信息处理技术,旨在结合来自多个数据源的数据,经过适当的处理和分析,得出更准确、更可靠的结论。
在许多领域,例如智能传感器网络、医疗诊断、机器学习、遥感图像处理等,数据融合都有着广泛的应用。
二、数据融合的基本原理1.数据关联:这是数据融合的第一步,涉及到将来自不同数据源的数据进行关联和匹配。
这通常需要使用一些识别算法和技术,如特征匹配、模式识别等。
2.数据整合:这一步是将关联匹配后的数据进行合并,形成更完整、更一致的数据集。
在整合过程中,可能需要解决数据格式不一致、数据冗余等问题。
3.数据推断:基于整合后的数据,通过一定的算法和模型进行推断,得出更高级别的信息。
这可能涉及到统计推断、机器学习等技术。
4.决策输出:根据推断出的信息进行决策和输出,为最终的用户提供有价值的结果。
三、数据融合的方法1.加权平均法:根据各个数据源的可信度和精度,对数据进行加权处理,然后求得平均值。
这种方法简单易行,但需要准确评估各个数据源的权重。
2.卡尔曼滤波法:这是一种线性最优估计技术,通过建立系统状态模型,对数据进行平滑和预测。
卡尔曼滤波适用于有线性系统特性的数据融合。
2.贝叶斯推理法:基于贝叶斯概率理论进行数据融合。
通过建立事件和条件之间的概率关系,对数据进行概率化处理。
贝叶斯推理法适用于处理不确定性和概率性数据。
3.神经网络法:利用神经网络的自学习、自组织特性,对数据进行特征提取和分类。
神经网络法适用于非线性数据的融合处理。
4.决策树法:通过构建决策树模型,对数据进行分类和预测。
决策树法简单直观,但需要处理大量的特征选择和剪枝问题。
5.模糊逻辑法:利用模糊集合和模糊逻辑进行数据融合。
这种方法适用于处理不确定性和模糊性数据,尤其在处理主观判断和经验知识时具有优势。
6.支持向量机法:基于统计学习理论的方法,通过构建分类超平面或回归函数进行数据融合。
支持向量机法适用于小样本学习问题和分类问题。
数据融合概念数据融合是指将来自不同来源和不同格式的数据整合在一起,以生成更全面、准确和实用的信息。
通过数据融合,可以将分散的数据集合合并为一个统一的数据集,从而提供更深入的洞察和更好的决策支持。
数据融合的过程包括数据采集、数据清洗、数据整合和数据分析等多个阶段。
首先,需要从各种数据源采集数据,这些数据源可以是来自不同部门、不同系统或者不同组织的数据。
采集到的数据可能存在格式不一致、缺失值或者错误等问题,因此需要进行数据清洗,包括去除重复数据、填充缺失值、纠正错误等操作。
数据整合是数据融合的核心步骤,它将清洗后的数据按照一定的规则和逻辑进行合并。
数据整合可以通过数据匹配、数据链接或者数据转换等方式实现。
数据匹配是指根据某些属性或者关键字将不同数据集中的记录进行匹配,以建立数据之间的关联关系。
数据链接是指将不同数据集中的记录按照某些共同属性进行连接,以形成一个更大的数据集。
数据转换是指将不同数据集中的数据转换为相同的格式或者单位,以便进行比较和分析。
数据融合后,可以进行进一步的数据分析和挖掘。
通过对融合后的数据进行统计分析、机器学习或者数据挖掘等方法,可以发现数据中的潜在模式、关联规则或者趋势,从而提供更深入的洞察和决策支持。
数据融合还可以匡助发现数据之间的相互关系和依赖性,为业务流程优化、资源配置和风险管理等方面提供指导。
数据融合在各个领域都有广泛的应用。
在企业管理中,数据融合可以匡助企业整合来自不同部门和系统的数据,实现全面的数据分析和综合决策。
在金融领域,数据融合可以匡助银行或者保险公司整合客户的交易记录、信用评分和行为数据,以提供个性化的金融服务和风险管理。
在医疗健康领域,数据融合可以整合患者的电子病历、医学影像和基因组数据,以支持个性化的诊断和治疗。
总之,数据融合是将来自不同来源和不同格式的数据整合在一起的过程,旨在生成更全面、准确和实用的信息。
通过数据融合,可以实现对数据的全面分析和深入挖掘,为决策提供更好的支持。
数据融合技术简介数据融合技术是指利用计算机对按时序获得的若干观测信息,在一定准则下加以自动分析、综合,以完成所需的决策和评估任务而进行的信息处理技术。
数据融合的概念虽始于,,年代初期,但真正的技术进步和发展乃是,,年代的事【1】,尤其是近几年来引起了世界范围内的普遍关注,美、英、日、德、意等发达国家不但在所部署的一些重大研究项目上取得了突破性进展,而且已陆续开发出一些实用性系统投入实际应用和运行。
我国“八五”规划亦已把数据融合技术列为发展计算机技术的关键技术之一,并部署了一些重点研究项目,尽可能给予了适当的经费投入。
但这毕竟是刚刚起步,我们所面临的挑战和困难是十分严峻的,当然也有机遇并存。
这就需要认真研究,针对我国的国情和军情,采取相应的对策措施,以期取得事半功倍的效果。
数据融合可分为:(1)像素级融合:它是直接在采集到的原始数据层上进行的融合,在各种传感器的原始测报未经预处理之前就进行数据的综合与分析。
数据层融合一般采用集中式融合体系进行融合处理过程。
这是低层次的融合,如成像传感器中通过对包含若一像素的模糊图像进行图像处理来确认目标属性的过程就属于数据层融合。
(2)特征层融合:特征层融合属于中间层次的融合,它先对来自传感器的原始信息进行特征提取(特征可以是目标的边缘、方向、速度等),然后对特征信息进行综合分析和处理。
特征层融合的优点在于实现了可观的信息压缩,有利于实时处理,并且由于所提取的特征直接与决策分析有关,因而融合结果能最大限度的给出决策分析所需要的特征信h。
特征层融合一般采用分布式或集中式的融合体系。
特征层融合可分为两大类:一类是目标状态融合;另一类是目标特性融合。
(3)决策层融合决策层融合通过不同类型的传感器观测同一个目标,每个传感器在本地完成基本的处理,其中包括预处理、特征抽取、识别或判决,以建立对所观察目标的初步结论。
然后通过关联处理进行决策层融合判决,最终获得联合推断结果。
数据融合作为一种数据综合和处理技术,实际上是许多传统学科和新技术的集成和应用,其中涉及的知识包括通信、模式识别、决策论、不确定性理论、信号处理、估计理论、最优化技术、计算机科学、人工智能、神经网络等,特别是神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。