2019-2020年八年级数学“变量与函数”教学反思 新人教版
- 格式:doc
- 大小:15.50 KB
- 文档页数:2
19.1.1变量与函数课标分析《变量与函数》是义务教育课程标准实验教科书人教版八年级下册第十九章第一节内容,第1课时介绍变量与常量的概念,是典型的概念课,引导学生从生活实例中抽象出常量、变量的概念。
1、知识技能:通过简单实例,了解变量、常量的意义。
在简单实际问题中会用一个变量表示另一个变量。
2、数学思考:通过用常量、变量描述数量关系的过程,体会建型的思想。
3、问题解决:学会在具体的情境中从数学的角度发现问题和提出问题、解决问题。
在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
4、情感态度:积极参与数学活动,对数学有好奇心和求知欲。
19.1.1变量与函数学情分析学生之前学习了方程、方程组、不等式、平面直角坐标系等知识,这些都为学习函数做好知识准备,学生在日常生活中也有很多类似的经历:如加油时总价钱随加油数量的变化而变化,而单价却是不变的。
变量与函数的概念把学生由常量数学的学习引入变量数学学习中.“变量与函数”较为抽象,学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义。
另一方面,学生在日常生活中也接触到函数图象、两个变量的关系等生活实例。
在本节教学中,试图从学生较为熟悉的现实情景入手,引领学生认识变量和函数的存在和意义,体会变量之间的互相依存关系和变化规律,借助生活实例,认识“由哪一个变量确定另一个变量?唯一确定的含义是什么?”,初步理解函数的概念。
变量与函数评测练习达标:1、小弥同学去买文具。
他先买了一块3元钱的橡皮,又买了每本5元钱的笔记本若干本。
设买了x本笔记本,总花费为y元,指出其中的常量和变量并写出y随x变化的关系式。
2、一个三角形的底边长为10,高为x,面积为y,指出其中的常量和变量并写出y随x变化的关系式。
19.1.1变量与函数教材分析《变量与函数》是义务教育课程标准实验教科书人教版八年级下册第十九章第一节内容,第1课时介绍变量与常量的概念,是典型的概念课,引导学生从生活实例中抽象出常量、变量的概念。
第一篇:八年级数学上册14.1《变量与函数》教学反思新人教版教学反思变量与函数变量和函数的概念是学好全章的基础,是全章中的重点内容之一.借助于实例的展示,是一种从熟悉到陌生的认识方法,变量和函数是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化的现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.其中所出现的常量、自变量、函数值也必须把它们联系起来,进一步进行区分,进一步加以辨析,不可以混淆起来.教学中立足于学生的认知基础,激发学生的认知冲突,提升了学生的认知水平,学生在原有的知识基础上迅速迁移到新知上来,这一课学生对什么是如何用变量来描述变化的事物掌握较好,对问题中的哪些量是变量还是常量也能很好地指出来.不足之处是学生在对自变量的取值范围的确定,不能注意问题的实际意义,还需补充这一类题进行强化训练.改进之处:帮助学生把握概念的本质特征,注重学生的认知过程的经历和体验.变量与函数的概念是学生学习数学认识上的一次飞越,所以我根据学生的认知基础,创设一定条件下的现实情境,使学生从中感受到变量与函数的存在和意义,体会变量与函数之间的相互依存关系和变化规律,遵循从具体到抽象、感性到理性的认知规律,以教师为主导,学生为主体的教学原则,引导学生探究新知。
让学生领悟到现实生活中存在的多姿多彩的数学问题,并能从中提出问题,分析问题和解决问题,并培养学生合作意识,探究和应用的能力,使学生真正成为数学学习的主人.第二篇:八年级数学上册14.1.3《函数图象(1)》教学反思新人教版教学反思函数的图象是学好全章的关键,是全章中的重点内容之一.数学来源于生活,长期以来,我国的数学教育存在着“掐头去尾烧中断”的现象,学生不知道数学的来龙去脉.这在一定程度上影响了学生学习数学的积极性.“新课标”强调数学与现实的联系,教师常常觉得难以把握.“函数的图象”一节就是很好的切入点.现实生活中有很多变量之间存在函数关系,其中很多是通过函数图象加以表现的.我们教师可以充分利用这一点,引导学生挖掘现实生活中的相关素材,体会数学与现实的密切联系及其应用价值,激发学生的数学学习兴趣.不足之处学生在对图形的认识和理解方面还不够深刻,需补充这一类题进行强化训练.在教学过程中,每节课总会有这有那的一些不尽人意的地方,有时候是语言说话不当.例如我在讲课中没组织好课堂,学生很沉闷不与老师配合,有极少同学不愿意动手画函数图像,也有一些同学认为太简单,不愿画.如何调动他们的参与度是我要在备课过程中多思考的地方,此外,还是没能改掉不好的习惯,我由于讲得太多,课堂练习较少,同学们自主学习的时间还是太少,以后尽可能少讲,由学生自已完成知识的建构.第三篇:新人教版八年级数学上册《反比例函数》教学反思一、教学设计符合学生的认知规律,以学生的实践活动作为学生思维的切入点,创建了活泼而富有活力的课堂氛围。
《变量与函数》教学设计人教版八年级下册第19章第1节教学目标:1. 通过探索具体问题中的数量关系和变化规律了解常量,变量的意义2. 理解自变量,函数和函数值的概念以及它们之间的关系3.培养学生自主探究,合作交流,归纳总结等习惯,培养学生认识现实世界的能力教学重点:变量,常量,自变量,函数以及函数值的概念教学难点:理解自变量,函数和函数值的概念以及它们之间的相互关系教法:讲练结合法,自主发现法,启发引导法,练习法.学法:自主探究,合作交流.教学过程:创设情景,导入新知阅读下面这段有关“龟兔赛跑”的寓言故事:一次乌龟与兔子举行500米赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20米/分的速度跑了10分钟时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10米/分的速度匀速爬向终点.40分钟后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30米/分的速度跑向终点时,它比乌龟足足晚了10分钟.(学生代表读小故事)在这个寓言故事中哪些量发生改变?哪些量没有变化?它们之间又有什么样的联系?从来引出课题《变量与函数》明确目标1. 通过探索具体问题中的数量关系和变化规律了解常量,变量的意义2. 理解自变量,函数和函数值的概念以及它们之间的关系3.培养学生自主探究,合作交流,归纳总结等习惯,培养学生认识现实世界的能力分析故事,形成概念问题:刚才的故事中变化的量是?不变的量是?学生回答形成概念:在变化的过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
板书(变量:变化;常量:不变)问题:如何正确区分变量和常量?通过题目,进一步的进行归纳总结例1 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a千克橘子的总价为m元,其中常量是,变量是;(2)周长C与圆的半径r之间的关系式是C=2πr,其中常量是,变量是;(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式中,其中常量是,变量是;4)某人持续以a米/分的速度用t分钟时间跑了s米,其中常量是 ,变量是 .方法:如何判断一个量是变量还是常量?(1)是否在一个变化过程中(2)看是否变化教师:能否说出生活中变量与常量的例子?达到巩固理解定义的目的探究二问题1 汽车以60千米/时的速度匀速行驶,行驶里程为 s 千米,行驶时间为 t 小时,填下面的表:这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化而变化的过程.问题2 每张电影票的售价为10元,如果早场售出票150张,日场售出200张,晚场售出310张,三场电影票的票房收入各多少元?若设一场电影售出票 x 张,票房收入为 y 元,怎样用含 x 的式子表示 y ?试用含x的式子表示y.y=_________这个问题反映了票房收入____随售票张数_____的变化而变化的过程.合作交流,解决问题合作内容:总结2个问题的共同之处.合作时间:3分钟合作要求:1.组长主持,相互补充;2.确定汇报展示的同学.(1)学生:两个变量.教师:每个问题中分别有几个变量?(2)学生:一个变量变,另一个变量随之而变.其中一个变量取确定的值,另一个变量有唯一确定的值与其对应教师:每个问题中变量之间有什么联系?是怎么变化的?同学们发现的这几个共同之处就是函数的共同特征,以上问题中的关系,就是函数关系. 一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.板书(1.两个变量2.唯一确定)例2 下列关于变量x ,y 的关系式:①y =2x+3;②y =x2+3;③y =2|x|;④;⑤y2-3x=10,其中表示y 是x 的函数的是.方法提示:关键是看当一个变量确定时,另一个变量是否有唯一确定的值与它对应.达标训练1、变量y与x的关系如图,y是x的函数有()2、y=3x-5,当x=-1时,y= ___ ,当x=1时,y= ___ ;当x= 时,y=___中考链接y x=下列各曲线中哪些表示y是x的函数?课堂小结(学生总结反思注重补充)1.知识常量、变量、自变量、函数、函数值的概念2. 方法(1)区分常量与变量(2)区分自变量与函数(3)区分函数与函数值(五个概念三个区分)布置作业必做题:教材习题19.1第1、2题选做题:教材习题19.1拓广探索第15题学情分析《变量与函数》是八年级下册第19章第1课内容。
变量与函数教学反思
在教学变量和函数时,我意识到有几个问题需要反思和改进。
首先,我没有足够强调变量和函数的重要性和实际应用。
我应该在教学过程中强调变量和函数在编程中的作用和意义,以及它们在实际问题解决中的重要性。
这样可以让学生更加认识到学习变量和函数的必要性,激发他们的学习兴趣和动力。
其次,我在教学过程中没有提供足够的实例和练习。
学习编程最好的方式是通过实际操作和练习来巩固知识。
我应该为学生提供更多的实例和练习,让他们亲自动手编写代码并应用所学知识。
这样可以帮助学生更好地理解和掌握变量和函数的概念和用法。
另外,我在教学中没有充分考虑学生的不同程度和学习风格。
有些学生可能对编程感兴趣,而有些学生可能对此感到困惑或无趣。
我应该根据学生的不同程度和学习风格,采用不同的教学方法和策略,以满足不同学生的学习需求,并激发他们的学习兴趣。
最后,我没有及时给予学生反馈和指导。
学生在学习过程中可能会遇到困难和问题,我应该及时给予他们反馈和指导,帮助他们解决问题和理解概念。
这样可以帮助学生更好地掌握变量和函数的知识,并增强他们的学习信心。
综上所述,教学变量和函数时,我需要重视变量和函数的重要性和实际应用,提供更多的实例和练习,考虑学生的不同程度和学习风格,并及时给予学生反馈和指导。
通过不断改进和完善教学方法,我相信可以提高学生的学习效果和兴趣。
Happiness does not happen every day. If you miss it, you will have to wait a long time.简单易用轻享办公(页眉可删)《变量与函数》教学反思《变量与函数》教学反思1函数一直是初中数学教学的重点,当然也是难点。
本节课作为函数教学的第一节,其重要性不言而喻。
如果上好了这节课,可以说接下来同学们对函数的理解程度就大大加深,对后续教学的帮助将非常大。
经过全组教师的集体备课后,我在本节课上淡化了自变量与因变量的区分,而是把重点放在了函数概念的理解以及因变量的唯一性上面。
课上完之后,感觉学生们对唯一性的理解还是比较透彻的,但对于函数的概念理解还存在一知半解的现象,尤其是对于谁是谁的函数方面理解较差。
在评课的时候,各位老师都提出了中肯的意见,我意识到我的前面几分钟自习时间仅仅只是为了体现’先学后教‘的思想,而缺乏实际性的指导;我还认识到我对变量与常量的讲授没有和前面4个问题有机结合,导致了结构分裂;我还发现了我在节奏掌控方面还是犯了老毛病:先松后紧等等一系列的不足。
在此感谢给我提出宝贵意见的各位领导以及同事们。
在今后的教学中,我会继续努力,让学生的主体地位得到体现的同时,不断加强教师的主导作用。
《变量与函数》教学反思2在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务。
之前,我分别在本校与广州开发区中学分别上了一堂课。
三节课,是一个实践、反思、改进、再实践的过程。
经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解。
本设计呈现的课堂结构为:(1)揭示学习目标;(2)引入数学原型;(3)抽象出数学现实,逐步达致数学形式化的概念;(4)巩固概念练习(概念辨析);(5)小结(质疑)。
1、如何揭示学习目标概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入。
函数与变量教学反思
函数与变量是数学中非常重要的两个概念,在学习过程中,学生
们往往需要经历一定的思考和练习才能真正熟练掌握这些概念。
以下是我对函数与变量教学的反思:
1. 强调概念的重要性:在学习函数和变量时,应该强调概念的重要性。
函数和变量对于数学运算和问题解决都是至关重要的。
教师需要向学生展示它们如何影响数学生活和各个领域。
2. 实践应用:除了强调概念的重要性外,还需要将函数和变量的实际应用场景引入课堂。
例如,通过展示如何使用函数解决问题,或者如何使用变量进行数据分析,教师可以帮助的学生更好地理解这些概念。
3. 提供多种教学资源:为了帮助学生更好地理解函数和变量的
概念,教师需要提供多种教学资源。
例如,可以使用电子教材、视频、游戏等多种方式,帮助学生更好地掌握这些概念。
4. 鼓励学生练习:练习是学习函数和变量的重要环节。
教师应该鼓励学生进行大量的练习,帮助他们掌握这些概念。
例如,可以使用练习题、测试和竞赛等方式,帮助学生巩固知识。
5. 反复检查:在学习过程中,教师需要对学生的掌握情况进行反复检查。
可以使用测试、问答和讨论等方式,帮助学生更好地理解概念,并发现他们存在的问题。
函数和变量的教学需要注重概念的重要性,实践应用,提供多种
教学资源,鼓励学生练习,并反复检查学生的学习情况。
通过这些措施,
教师可以帮助的学生更好地掌握这些概念,并在未来的数学学习和工作中更好地发挥作用。
八年级上册《变量与函数》教学反思1、如何提醒学习目的概念课的引入要思索先生关心的如下效果:这节课学什么概念?为什么要学这样的概念?数学源于生活而高于生活,数学概念的引入可从生活的需求、数学的需求等方面引入.初中触及的函数概念的中心是〝量与量之间的特殊对应关系〞.本课中,自己在导言中提出两个效果:〝引例1,«名侦探柯南»中有这样一个情形:柯南依据案发现场的足迹,锁定疑犯的身高.你知道其中的道理吗?〞、〝引例2.我们班中同窗A与职业相扑运发动,谁的饭量大?你能说明理由吗?〞先生对上述效果既熟习又感到不测.效果1触及两个量的关系,足迹确定,对应的身高有多个取值;效果2触及多个量的关系.上述效果,不只仅是惹起先生的留意,更重要的是让先生了解客观世界中量与量之间联络的多样性、复杂性,而函数研讨的正是量与量之间的各种关系中的〝特殊关系〞.数学研讨有时从最复杂、特殊的状况入手,化繁为简.让先生明白,这一节课我们只研讨两个量之间的特殊对应关系.〝特殊在什么中央?〞先生需带着这样的效果末尾这一课的学习.函数概念的引入应具有〝全体观〞,不只要提供契合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的〝一对多〞关系等),使先生在更普遍的背景中阅历挑选、提炼出新的数学知识的进程,逐渐领悟〝化繁为简〞的数学研讨方法.当然,这里的效果是作为研讨〝背景〞出现,教学时应作〝虚化〞处置,以突出主要内容.2、如何选取适宜的数学原型从数学的〝学术形状〞看,数学原型所蕴藏的数学素材应与数学概念的外延相分歧;从数学的〝教育形状〞看,数学原型应真实、繁复、复杂.真实指的是基于先生的生活理想、数学理想,它可以是生活中的实例,也可以是先生熟习的动漫故事、童话故事等.繁复、复杂指的是效果的表述应繁复,效果情境的设置要尽能够复杂,全体先生对情境中的效果不应存在太大的了解困难,设计的效果情境要能突出将要学习的新知识的实质.本设计采用了三个数学原型的效果:效果1,〝票房支出与售出票数效果〞(可用解析式表示);效果2,效果注销表中的一次数学测试的〝效果与学号效果〞(表格表示);效果3,〝气温变化与时间效果〞(图象表示).这三个效果从不同层面、不同角度表达函数的〝单值对应关系〞,也都是先生生活中的真实效果,效果复杂易懂,先生容易基于上述生活实例笼统出新的数学概念.由于不少先生在了解〝弹簧效果〞时面临列函数关系式的困难,能够冲淡对函数概念的学习,故本节课没有采用该引例。
教学反思
变量与函数
变量和函数的概念是学好全章的基础,是全章中的重点内容之一.借助于实例的展示,是一种从熟悉到陌生的认识方法,变量和函数是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化的现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.其中所出现的常量、自变量、函数值也必须把它们联系起来,进一步进行区分,进一步加以辨析,不可以混淆起来.教学中立足于学生的认知基础,激发学生的认知冲突,提升了学生的认知水平,学生在原有的知识基础上迅速迁移到新知上来,这一课学生对什么是如何用变量来描述变化的事物掌握较好,对问题中的哪些量是变量还是常量也能很好地指出来.
不足之处是学生在对自变量的取值范围的确定,不能注意问题的实际意义,还需补充这一类题进行强化训练.
改进之处:帮助学生把握概念的本质特征,注重学生的认知过程的经历和体验.变量与函数的概念是学生学习数学认识上的一次飞越,所以我根据学生的认知基础,创设一定条件下的现实情境,使学生从中感受到变量与函数的存在和意义,体会变量与函数之间的相互依存关系和变化规律,遵循从具体到抽象、感性到理性的认知规律,以教师为主导,学生为主体的教学原则,引导学生探究新知。
让学生领悟到现实生活中存在的多姿多彩的数学问题,并能从中提出问题,分析问题和解决问题,并培养学生合作意识,探究和应用的能力,使学生真正成为数学学习的主人.。
教师姓名李立峰单位名称阿克苏市第十三中学填写时间2020年8月26日学科数学年级/册八年级(下)教材版本人教版课题名称19.1.1《函数与变量2》难点名称函数的定义的理解,认识“两个变量间的特殊对应关系:由一个变量确定另一变量,以及唯一确定的含义”。
难点分析从知识角度分析为什么难函数是中学数学中最重要的基本概念之一。
它揭示了数量之间相互依存和相互影响的关系,是刻画和研究事物变化规律的重要模型。
函数概念抽象性较强,接受并理解它有一定难度。
难点教学方法通过贴近生活中的图像、表格及解析式,理解两个变量间的特殊对应关系:由一个变量确定另一变量,以及唯一确定的含义。
教学环节教学过程导入1.你能指出下列问题中的变量与常量吗?写出关系式。
(1)直角三角形中一个锐角α与另一个锐角β之间的关系;(用含α的代数式表示β)(2)(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨)。
2.指名学生回答。
(1)变量:两个锐角α和β;常量:直角90°; β=90°-α(2)变量:y、t;常量:30,0.5; y=30-0.5t知识讲解(难点突破)思考一(1)在心电图中,对于横坐标表示时间x的每一个确定的值,纵坐标表示心脏部位的生物电流y都有唯一确定的值与其对应吗?知识讲解(难点突破)(2)下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t变化而变化,对于每一个确定的时间t,都对应着一个确定的气温T吗?思考二(1)在我国人口数统计表中,对于每一个确定的年份x,都对应着一个确定的人口数y吗?(2)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数 y 吗?在实际生活中,一些用图或表格表达的问题中,也能看到两个变量之间的联系.比如股票收盘价格和星期几之间的联系。
函数与变量教学反思在教学中,函数和变量是非常重要的概念。
通过教学反思,我们可以不断完善我们的教学方法,帮助学生更好地理解这些概念。
让我们来看看函数在教学中的作用。
函数是计算机编程中一个非常基础的概念,它通常被用来执行一系列指令,并返回结果。
在教学中,我们可以通过讲解函数的定义、参数、返回值等概念,让学生了解函数的基本用法和作用。
但是,在教学中,我们也需要注意到学生的实际情况。
有些学生可能对函数的概念不是很理解,需要我们用更加通俗易懂的语言来讲解。
在这种情况下,我们可以通过实际例子来帮助学生理解函数的应用场景和具体用法。
除了函数,变量也是编程中一个非常重要的概念。
变量通常用来存储数据,以便在程序中使用。
在教学中,我们需要让学生明白变量的定义、类型、作用域等概念,以及如何正确使用变量。
同时,我们也需要注意到学生的实际情况,通过实际例子来帮助学生更好地理解变量的概念和用法。
除此之外,我们在教学中还需要注意到以下几点:我们需要避免使用过于复杂的语言和概念,以免让学生感到困惑和难以理解。
在讲解函数和变量的概念时,我们可以使用通俗易懂的语言和例子,让学生更好地理解。
我们需要注意到学生的学习进度和水平,根据不同的情况来进行针对性的讲解。
有些学生可能已经比较熟悉函数和变量的概念,需要我们更深入地讲解一些高级用法和技巧;而有些学生可能对这些概念还不是很了解,需要我们从基础开始讲解。
我们需要让学生在实际操作中更好地掌握函数和变量的用法。
通过编写代码和实现一些小项目,可以帮助学生更好地理解函数和变量的实际应用,提高他们的编程能力。
在教学中,函数和变量是非常重要的概念,我们需要通过不断反思和完善教学方法,帮助学生更好地理解和掌握这些概念,提高他们的编程能力。
10 课后反思本课是学习函数与变量的第2课时,课堂安排的容量比较大,包括了“函数”这比较抽象的概念理解,函数自变量取值范围及函数值的计算,从学生的掌握情况看效果还比较好。
一开始,自己还认为设计的内容多,学生不一定在45分内完成,结果,过程非常顺,甚至有些地方看起来,似乎是在上表演课一样,但这是一节真实的课,没有任何修饰或提前埋伏的环节。
我想关键还在于学生的课前预习做得很到位。
因为在几天前,因为要录课,让学生提前几天就开始准备预习本节课,所以一些难点、疑点学生在做一些练习题中都引起了足够的注意。
首先,我在处理“函数”这一抽象概念时,利用了上一节课学生学习的几个实际的例子入手,层层深入,紧紧抓住“两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应”中的“唯一”,并通过不断地运用具体例子来让学生感受这种“唯一对应”。
最后水到渠成,引出函数的概念。
其次,本节课再对函数概念的理解上,我不仅使用了具体的实例进行分析,并且给学生打比方,作形象的比喻,也起到了很好的效果。
再次,在讲授自变量的取值范围时,我采取设计练习题的形式,让学生先通过一般的解析式分类学习,再到实际问题的过渡,让学生非常清晰地知道实际问题与一般代数式之间是区别比较大的,并且引导学生学习怎样对于实际问题中的自变量取值范围进行计算求解。
第四,对于实际问题求自变量的取值范围时,设计了贴近学生实际的例子。
便于学生理解。
强化了利用不等式或不等式组求解自变量取值范围的思路方法。
第五,本节课自我尝试部分的题目设计,采取层层推进,逐步深入的思路。
对评测练习的题目设计也是从多角度进行考察。
无论是图象、列表、解析式都有涉及,同时也为后面的学习做好铺垫。
当然,本节课也存在一些不足之处,比如在教学设计的时候,对学生的学情分析不够,题目设计有点多,导学生思考的时间不够,在以后的教学中要改进,以更加切合学生的实际来设计问题。
学生探究问题的时间不够充分,学生的分层教学的实施不到位,学生的评价机制落实不够完善,没有完全面向学生全体等等,这些在以后的教学中应该注意不断完善。
《变量与函数》教学反思
《变量与函数》的概念教学是把学生由常量教学引入变量教学,是学生数学认识上的一个大飞跃。
1、根据学生的认知基础,创设丰富的现实情景,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律。
如问题1、
2、
3、
4、
5、8,都是学生在日常生活中比较熟悉的事情,让学生感觉到数学来源于生活,数学和日常生活紧密相连。
2、遵循从具体到抽象,从特殊到一般,感性到理性的渐进认知规律。
先是学生对问题1、2、3的分析,都是从具体的数字入手,慢慢引导抽象出含有字母的等式;接着是分小组对问题4、5的分析,是在分析了前面三个问题的基础上,加大一定的难度和深度,让学生加深体验,直接抽象出含有字母的等式,最后对第96页的两个思考进行分析观察,然后引导得出常量、变量和函数的定义。
《变量与函数》教学反思《变量与函数》,是人教版八年级数学。
本课是函数学习的入门课,学生的数学学习从静态数学到动态数学的转变,选择这样的课对我来说是巨大的挑战。
我在备课时做了充分的准备和精心的设计,对学生可能出现的困惑做了预设,并对此作出解决问题的对策。
总体来说,本课能够调动学生的积极性,启发学生的数学思维,课堂气氛较为活跃,学生基本理解了函数的概念,初步领会函数的意义。
然而,本课也存在着许多不足,对次,我回顾本节课的教学过程,认真分析每一环节的实施,作出以下的反思。
为了激发学生的兴趣,紧扣运功、变化的主题,我以本章序言中的图片为引例,通过设问,引发观察、比较,感受变化的过程。
突出本课教学的重点——变化的过程。
指导学生读引言,以此来让学生明确本章的主要内容的目标。
紧接着,我以“路程”问题为突破口,假设速度一定,利用“路程”、“速度”、“时间”三者之间的关系,通过观察时间变化了,路程也跟着变化,引出“变量与常量”的概念。
再接着,让学生观察身边的一些变化,举出含有两个变量的例子进行交流。
帮助学生理解“变量与常量”,同时引导学生关注身边的数学,体验数学在生活中。
在学生认识了变量与常量后,我设计了问题让学生观察两个变量变化,思考“两个变量之间具有什么样的关系”,设计的目的是体现函数的三种表示方法,为后面学习做准备。
经历问题的探究,进一步提问学生“这几个问题有什么共同的特征?”引发头脑风暴。
学生通过小组探究、合作交流,初步形成函数的概念。
在学生理解了函数的概念之后,我以例题教学、课堂检测,小结反思,巩固本节课的学习。
在教学中的突出问题。
1.缺乏学情分析和对学生的了解,没能体现学生的主体性。
对学生个体的差异性,思维方式考虑较少。
教学时,我还是放不开,急于求成,体现不出教师“少说话”、“搭桥梁”,学生没有了主体性,参与度不高,特别是女生,关注更少。
2.练习设计求全贪多,不舍得删减,影响教学的效果。
教学设计的前半部分较为合理,层层推进,环环相扣,然而后半部分的练习设计有些过多,学生对于函数的理解不深,没能落实课堂教学的有效性。
变量与函数教学反思(实用10篇)变量与函数教学反思第1篇通过《变量与函数》的教学,本人对概念课的教学设计与教学实践有了更深入的了解本设计呈现的课堂结构为:(1)揭示学习目标;(2)引入数学原型;(3)抽象出数学现实,逐步达致数学形式化的概念;(4)巩固概念练习(概念辨析);(5)小结(质疑)一、如何揭示学习目标概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。
二、如何选取合适的数学原型从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。
《变量与函数》教学反思《变量与函数》教学反思作为一名人民老师,课堂教学是重要的任务之一,教学反思能很好的记录下我们的课堂阅历,如何把教学反思做到重点突出呢?以下是我为大家整理的《变量与函数》教学反思,欢迎阅读与保藏。
《变量与函数》教学反思1这节课主要让同学理解并把握不等式的定义,不等式的解,不等式的解集,解不等式的意义,会把解集在数轴上表示出来。
以同学课外预习为前提开展教学的。
课本中的实际问题情境创设,都是由同学课外自学来完成,从而赐予同学更多的学习思考时间,争论这些问题,可以使同学体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型。
教学中要突出学问之间的内在联系。
不等式与方程一样,都是反映客观事物变化规律及其关系的模型。
在教学中,类比已经学过的方程学问,引导同学自己去探究、发觉、甄别,从而得出一元一次不等式、不等式的解与解集的意义。
引导同学类比等式及方程的有关学问,于学问的迁移过程中较好地体悟所学的内容。
同学数学语言概括力气,互助学习,合作学习的力气得到提高,数形结合思想渗透较好教学过程也是同学的认知过程,只有同学乐观地参与教学活动才能收到良好的效果。
因此,本课接受启发诱导、实例探究、讲练结合的教学方法,揭示学问的发生和形成过程。
这种教学方法以“生动探究”为基础,先“引导发觉”,后“讲评点拨”,让同学在克服困难与障碍的过程中充分发挥自己的观看力、想像力和思维力,再加上多媒体的运用,使同学真正成为学习的主体。
但是,课后及作业中消逝以下错误1、不大于,不小于,弄不清楚;2、用不等式表示某些语句,个别同学读不懂题意;3、用不等式解决简洁的实际问题,消逝错误较多;4、不能较好的运用所学学问解决相关问题。
5、一些解题中的细节要留意,例如用数轴来表示解集时,折线向左向右同学没有真正是什么意思,什么时候用实心圆点还是空心圆圈没有区分等等。
19.1函数工欲善其事,必先利其器。
《论语·卫灵公》原创不容易,【关注】,不迷路!19.1.1变量与函数【知识与技能】运用丰富的实例,使学生了解常量与变量的含义,理解函数的概念,能根据所给条件写出简单的函数关系式.【过程与方法】通过丰富的实例,分析变化过程中的常量与变量,经历从实际问题中得到函数关系式的过程,发展学生的数学应用能力.【情感态度】引导学生探索实际问题中的数量关系,培养学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【教学重点】理解常量、变量和函数的概念,并能根据具体问题得出相应的函数关系式.【教学难点】确定函数关系式及自变量的取值范围.一、情境导入,初步认识【教学说明】选取学生熟悉的生活情境,让学生感受其中的变化,从这些感受中逐渐领悟知识.情境1汽车以60km/,行驶时间为t2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?二、思考探究,获取新知问题1在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:如果弹簧原长10cm ,每1kg 重物使弹簧伸长0.5cm ,怎样用含重物质量m(kg)的式子表示受力后的弹簧长度l (cm )?问题2用10cm 长的绳子围成长方形.试改变长方形的长度,观察长方形的面积怎样变化.记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律(用表格表示).设长方形的长为xcm,面积为Scm2,怎样用含x 的式子表示S?将学生分成若干小组,分别探究两个问题,再汇总交流.【教学说明】在小组实践探究时,教师应参与小组活动,然后再作出总结.上面的问题和探究都反映了不同事物的变化过程,其中有些量(时间t,里程s;出售票数x,票房收入y;……)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称为变量.也有些量是始终不变的,如上面问题中的速度60(km/,一自行车以10km/).【分析】弄清题意,找准其中的等量关系,并注意字母表示的量不一定是变量,如(2)中的y.解:根据题意列表为:例2求下列函数中自变量的取值范围.(1)y=x2-2x-1;(2)错误!未找到引用源。
八年级“变量与函数”数学教学反思八年级“变量与函数”数学教学反思作为一名优秀的人民教师,我们要在课堂教学中快速成长,对学到的教学新方法,我们可以记录在教学反思中,教学反思应该怎么写呢?以下是小编为大家整理的八年级“变量与函数”数学教学反思,仅供参考,欢迎大家阅读。
八年级“变量与函数”数学教学反思1函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:1 有两个变量,2 一个变量的值随另一个变量的值的变化而变化,3 一个变量的值确定另一个变量总有唯一确定的值与其对应;函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。
与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。
在函数概念的教学中,应突出“变化”的思想和“对应”的思想。
从概念的起源来看,函数是随着数学研究事物的运动、变化而出现的,他刻画了客观世界事物间的动态变化和相互依存的关系,这种关系反映了运动变化过程中的两个变量之间的制约关系。
因此,变化是函数概念产生的源头,是制约概念学习的关节点,同时也是概念教学的一个重要突破口。
教师可以通过大量的典型实例,让学生反复观察、反复比较、反复分析每个具体问题的量与量之间的变化关系,把静止的表达式看动态的变化过程,让他们从原来的常量、代数式、方程式和算式的静态的关系中,逐步过渡到变量、函数这些表示量与量之间的动态的关系上,使学生的认识实现为了快速明了的引出课题,课前让学生收集一些变化的实例,从学生的生活入手,开门见山,来指明本节课的学习内容。
本课的引例较为丰富,但有些内容学生解决较为困难,于是我采取了三种不同的提问方式:1.教师问,学生答;2.学生自主回答;3.学生合作交流回答。
19.1.1变量与函数说课与反思《19.1.1变量与函数》说课稿变量与函数的内容是义务教育教科书人教版八年级下册第十九章《一次函数》第一节。
一、说教材1、教材的地位及作用人教版八年级下册第十九章《一次函数》是《课程标准》中“数与代数”领域的重要内容。
函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。
而本节课是一次函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,也为以后学习一次函数、二次函数、反比例函数的内容打下基础。
本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
2、根据课程标准的要求和基于对教材的理解与分析,考虑到学生已有的知识水平和认知经验制定这节课的学习目标:(1)、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;(2)、学会用含一个变量的代数式表示另一个变量;学习重点:常量和变量的概念;教学难点:会列变量之间的简单关系式。
二、说教法在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点,根据这一教学理论,结合本节课的内容特点和八年级学生的认知特征,本节课我采用自主学习、合作探究、引领提升的方式展开教学,从实例出发,通过创设情境,引导学生自主探究、思考、归纳、应用,激发学生的好奇心,调动学生的求知欲。
在新知识学习中,给学生提供足够的思考时间和空间,教师始终以引导者的形象出现并在恰当的时候给予点拨、归纳。
让学生在解决问题的过程中获得感悟,深化认识,形成技能。
三、说学法为把学习的主动权还给学生,教师引导学生动手实践、自主探索、合作交流,让学生在讨论、计算、概括、验证、交流、应用的学习过程中,自主参与知识的发生、发展和形成的过程,并及时总结、及时运用,使学生掌握知识。
四、说教学过程根据新课标、教材及学生特点,为了真正实现学生的自主学习,让学生参与知识的形成过程,我设计了五个教学流程:情境引入——学生自学——展示归纳——巩固练习——课堂小结(一)情境诱导师:同学们,词语“万物皆变”的含义是什么?生:…师:为了更深刻地认识千变万化的世界,人们经归纳总结得出一个重要的数学工具——函数,用它描述变化中的数量关系,函数在生产生活中的应用及其广泛。
2019-2020年八年级数学“变量与函数”教学反思新人教版
在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务.之前,我分别在本校与广州开发区中学分别上了一堂课.三节课,是一个实践、反思、改进、再实践的过程.经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解.
本设计呈现的课堂结构为:(1)揭示学习目标;(2)引入数学原型;(3)抽象出数学现实,逐步达致数学形式化的概念;(4)巩固概念练习(概念辨析);(5)小结(质疑).1、如何揭示学习目标
概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.
函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容.
2、如何选取合适的数学原型
从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.
本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.
由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。
对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象.过难、过繁的背景会成为学生学习抽象新概念的拦路虎.
3、如何引领学生经历数学化、形式化的过程
“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问
题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”
在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征.
4、如何引用反例
学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵.反例引用的时机、反例的量要恰到好处.过早、过多的反例会干扰学生对概念的准确理解.
概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景.这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向.
在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T 的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t 是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系.
在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力.
在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯.。