2010-2015选择题集萃
- 格式:doc
- 大小:4.12 MB
- 文档页数:18
2015年真题参考答案:一、选择题:CDABA DACDB CABBD CBDCA CCDCA BBDAD二、判断题:BAABA ABBAB41题(1)我国在处理民族关系上坚持民族平等、民族团结和各民族共同繁荣的基本原则。
(共3分。
回答1个原则给1分)政府履行的职能有:组织社会主义经济建设;组织社会主义文化建设;加强社会建设;推进生态文明建设。
(共3分。
每点1分,回答任意三个职能给满分)(2)整体和部分是相互联系、密不可分的。
(共2分。
仅回答整体和部分辩证关系某一方面给1分)“全面实现小康,一个民族都不能少”既做到了立足整体,又重视了部分的作用。
(2分)42题(1)经济规律:价值规律。
(2分,如回答价值规律的内容亦给2分)表现形式(略,2分)(2)负面影响:①、②、⑥,传导顺序43题(1)有利于促进亚太各国生产要素的流动;提高国际分工和国际贸易发展水平;提高资源配置效率;推动各国生产力的发展;拓展各国经济发展的空间。
(共4分。
每点2分,回答任意两点给满分)(2)考生的综合评价应该包括三个层次的内容:①观点一、二都有失偏颇。
(片面的)②国家利益是国际关系的决定因素,维护国家利益是主权国家对外活动的出发点和落脚点。
因而要坚定地维护本国的国家利益,但不应损害他国的合法利益。
③国家间的利益差别和对立是冲突的根源,而共同利益是合作的基础。
在国际社会中,要兼顾他国合理关切,求同存异,努力实现互利共赢、促进共同发展。
(3)①要在劳动和奉献中创造和实现自己的价值;②要在个人和社会的统一中实现自己的价值(或:要正确处理个人与集体、社会的关系);③要在砥砺自我中走向成功(或:要有顽强拼搏、自强不息的精神)。
(共4分。
每点2分,回答任意两点给满分)。
2014年真题参考答案:一、单项选择题:ADBBC DDCAB DACCC ACBDD BBDBA ADACB二、判断题:BBBAB AAABA41题(1)①B曲线。
(1分)②价格变动会引起需求量的变动,但不同商品的需求量对价格变动的反应程度是不同的。
第九章现代生活与化学2015年真题一、选择题7.(3分)(2015•湖南岳阳)化学与生产、生活关系密切,下列说法错误的是()A.食用甲醛浸泡过的食物对人体有害B.塑料给环境带来了污染,因此要全面禁止生产和使用C.在酱油中加入铁强化剂,是为了预防缺铁性贫血D.农业上常用熟石灰改良酸性土壤【答案】B【解析】塑料制品有方便、质轻、化学性稳定、不会锈蚀、较好的透明性、耐磨耗性、便宜等优点,已经深入到我们生活中的每一个地方,全面禁止生产和使用是不可能的。
故选B。
4. (2015·福建厦门)某同学体内缺少维生素,该同学饮食中需适量增加的食物是A.米饭、面条B.蔬菜、水果C.瘦肉、鸡蛋D.奶油、花生油【答案】B【解析】水果、蔬菜中富含维生素,因此本题选B。
A中食物富含糖类,C中食物富含蛋白质,D中食物富含油脂。
5.(2015•山东潍坊)青少年每天应从食物中摄取足够的蛋白质以保证身体成长的需要。
下列食物中富含蛋白质的是A.牛肉B.米饭C. 苹果D.豆油【答案】A【解析】牛肉富含蛋白质;米饭主要成分是淀粉,属于糖类;苹果富含维生素;豆油属于油脂。
6.(2015·广东揭阳)下列有关化学科学认识正确的是()A、一定条件下可用石墨制得金刚石B、“绿色食品”就是绿颜色的食品C、氮气不与任何物质反应D、纯牛奶中不含任何化学物质【答案】A【解析】A、石墨和金刚石都是碳元素的同素异形体,在一定温度与催化剂的条件下,可以进行转化,故A正确;B、绿色食品是指无污染、无公害的食品,故B错误;C、氮气在一定的条件下,可以与其他物质发生化学反应,故C错误;D、牛奶中含有丰富的蛋白质等化学物质,故D错误。
15.(2015•湖南郴州)下列食物中富含蛋白质的是()A.米饭B.鸡蛋C.酸豆角D.苹果【答案】B【解析】A.米饭中含有大量的淀粉,淀粉属于糖类,故不符合题意;B.鸡蛋中含有大量的蛋白质,故符合题意;C.酸豆角中富含大量的维生素,故不符合题意;D.苹果富含大量的维生素,故不符合题意。
解读高考真题,探寻备考思路一、2010—2015年全国Ⅰ卷《经济学》部分双向细目表备考启示:1、2010-2015年计算题的计算量在弱化;2、2010-2015年突出考查核心主干知识和综合运用,比如消费、汇率、企业经营、财政、市场和宏观调控等。
3、2010-2015年核心主干知识有规律考查,连续考或隔1-2年考查一次,比如14、13、12、11、10年考企业经营;15年考汇率、13年考汇率、2010年考汇率4、2010-2015年从设问方式来看,选择题倾向考原因类、意义类;主观题倾向考意义类和措施类;5、2010-2015年从能力要求来看,选择题基本上离不开调动和运用知识能力,也就是说与教材靠得比较近;而主观题答案只能见到教材考点影子。
二、2010—2015年全国Ⅰ卷《哲学》部分双向细目表备考启示:1、2010-2015年对第1单元考查比较少,侧重考查第2、3、4单元2、2010-2015年必考认识论、辩证法,而且认识论部分大多数考查第6课第2框”在实践中追求和发展真理”、辩证法部分大多数考查第7课第1框“联系三个特点”3、2010-2015年考点重复出现概率较高,如唯物论(15、14、13、11年都是意识能动作用)、辩证法(14、13、12、11年考查矛盾观和辩证否定4、2010-2015年从设问方式来看:选择题倾向于推理类;主观题倾向于评析类和原因类。
三、2010—2015年全国Ⅰ卷《政治》部分双向细目表备考启示:1、2010-2015年考点出现频率最高是第1单元“公民”和第2单元“政府”和(都是6年考5次)、其次是第3单元“国际社会"(6年考4次)四、2010—2015年全国Ⅰ卷《文化》部分双向细目表2、2010-2015年考点重复频率比较高,比如政府(5次考查当中,政府职能5次出现)、公民(4次考查当中,3次出现民主决策3、2010-2015年从设问方式来看,选择题和主观题倾向于考查意义类,主观题有时考措施类备考启示:1、2010-2015年选择题只考一道选择题、甚至不考2、2010-2015年考点出现频率最高是第2单元“文化传承与创新”,甚至还全部考第2单元(比如14、13、12年);其次是第1单元3、2010-2015年考点重复频率比较高,比如第2单元文化多样性(14、13、12年连续考);文化创新(14、11年考)4、2010-2015年从设问方式来看,选择题和主观题倾向考原因类、意义类。
2015年B1类试题修正版(1102道)一、单选题(440道)1.兔瘟最常见的剖检变化是脏器的_。
A.出血和坏死B.萎缩C.衰竭D.化脓性炎2.炭疽病是由炭疽芽孢杆菌引起的一种人畜共患传染病,该病是我国规定的_动物疫病。
A.一类B.二类C.三类D.四类3.幼龄动物感染产肠毒素性大肠杆菌,最主要的临床症状是_。
A.呕吐B.出血C.腹泻D.呼吸困难4.动物突然死亡,生前无明显症状的疾病类型是_。
A.最急性型B.亚急性型C.慢性型D.急性型5.货主在屠宰、出售或者运输动物以及出售或者运输动物产品前,应当向当地_申报检疫。
A.兽医主管部门B.动物卫生监督机构C.动物疫病预防控制机构D.商业部门6.吞咽时可盖住喉口,防止食物进入气管的一块软骨是_。
A.会厌软骨B.甲状软骨C.勺状软骨D.环状软骨7._对环境具有很强的抵抗力,其污染的土壤、水源及场地可形成持久的疫源地。
A.炭疽芽胞B.大肠杆菌C.沙门氏菌D.布氏杆菌8.活鸡心脏采血的进针部位为_。
A.胸部肌肉较厚部位B.胸两侧肋骨部C.胸前口D.鸡背部椎骨两侧9.以下属于公益性动物卫生职能的是_。
A.动物疾病诊疗B.兽药、饲料经营C.动物防疫D.动物保健10.炎症是动物的一种防御性的应答反应。
其基本病理变化包括_。
A.变质、渗出和增生B.变质、增生和肥大C.变性、渗出和坏死D.变质、坏死和增生11.在炎症过程中,若外周血白细胞总数显著减少或突然减少,则表示_。
A.机体抵抗力降低B.患畜死亡C.慢性炎症D.痊愈12.细菌进入血液的现象,称为_。
A.菌血症B.毒血症C.败血症D.脓毒败血症13.当人或动物缺乏_时,容易患夜盲症。
A.维生素A B.维生素B2 C.维生素B6 D.维生素C 14.旋毛虫的幼虫主要寄生在_。
A.脂肪B.肺C.横纹肌D.肾15.省内发生高致病性禽流感疫情期间,要对禽类免疫状况进行监测,对保护率低于_的禽群要按规范立即组织紧急免疫。
A.60% B.70% C.80% D.90%16.仔猪红痢是由_引起的肠毒血症。
数学建模2010-2015试题2015年A: 太阳影⼦定位如何确定视频的拍摄地点和拍摄⽇期是视频数据分析的重要⽅⾯,太阳影⼦定位技术就是通过分析视频中物体的太阳影⼦变化,确定视频拍摄的地点和⽇期的⼀种⽅法。
1.建⽴影⼦长度变化的数学模型,分析影⼦长度关于各个参数的变化规律,并应⽤你们建⽴的模型画出2015年10⽉22⽇北京时间9:00-15:00之间天安门⼴场(北纬39度54分26秒,东经116度23分29秒)3⽶⾼的直杆的太阳影⼦长度的变化曲线。
2.根据某固定直杆在⽔平地⾯上的太阳影⼦顶点坐标数据,建⽴数学模型确定直杆所处的地点。
将你们的模型应⽤于附件1的影⼦顶点坐标数据,给出若⼲个可能的地点。
3. 根据某固定直杆在⽔平地⾯上的太阳影⼦顶点坐标数据,建⽴数学模型确定直杆所处的地点和⽇期。
将你们的模型分别应⽤于附件2和附件3的影⼦顶点坐标数据,给出若⼲个可能的地点与⽇期。
4.附件4为⼀根直杆在太阳下的影⼦变化的视频,并且已通过某种⽅式估计出直杆的⾼度为2⽶。
请建⽴确定视频拍摄地点的数学模型,并应⽤你们的模型给出若⼲个可能的拍摄地点。
如果拍摄⽇期未知,你能否根据视频确定出拍摄地点与⽇期?B:“互联⽹+”时代的出租车资源配置出租车是市民出⾏的重要交通⼯具之⼀,“打车难”是⼈们关注的⼀个社会热点问题。
随着“互联⽹+”时代的到来,有多家公司依托移动互联⽹建⽴了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴⽅案。
请你们搜集相关数据,建⽴数学模型研究如下问题:(1) 试建⽴合理的指标,并分析不同时空出租车资源的“供求匹配”程度。
(2) 分析各公司的出租车补贴⽅案是否对“缓解打车难”有帮助?(3) 如果要创建⼀个新的打车软件服务平台,你们将设计什么样的补贴⽅案,并论证其合理性。
2014年A:嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12⽉2⽇1时30分成功发射,12⽉6⽇抵达⽉球轨道。
2010年北京市高级中等学校招生考试数学试卷学校 姓名 准考证号考 生 须 知 1. 本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的1. -2的倒数是 (A) -21 (B) 21 (C) -2 (D) 2。
2. 2010年6月3日,人类首次模拟火星载人航天飞行试验 “火星-500”正式启动。
包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的 “火星之旅”。
将12480用科学记数法表示 应为 (A) 12.48⨯103 (B) 0.1248⨯105 (C) 1.248⨯104 (D) 1.248⨯103。
3. 如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于 (A) 3 (B) 4 (C) 6 (D) 8。
4. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为 (A) 20 (B) 16(C) 12 (D) 10。
5. 从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是 (A) 51 (B) 103 (C ) 31 (D) 21。
6. 将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为 (A) y =(x +1)2+4 (B) y =(x -1)2+4(C) y =(x +1)2+2 (D) y =(x -1)2+2。
7. 10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,身高的方差依次为2甲S ,2乙S ,则下列关系中完全正确的是 (A) 甲x =乙x ,2甲S >2乙S (B) 甲x =乙x ,2甲S <2乙S (C) 甲x >乙x ,2甲S >2乙S (D)甲x <乙x ,2甲S >2乙S 。
2010年全国新课标卷生物1.下列有关细胞的叙述,正确的是A.病毒是一类具有细胞结构的生物B.蓝藻细胞具有细胞核且DNA分子呈环状C.人体所有细胞的细胞周期持续时间相同D.内质网膜和高尔基体膜都具有流动性2.下列关于呼吸作用的叙述,正确的是A.无氧呼吸的终产物是丙酮酸B.有氧呼吸产生[H]的在线粒体基质中与氧结合生成水C.无氧呼吸不需要O2的参与。
该过程最终有[H]的积累D.质量相同时,脂肪比糖原有氧氧化释放的能量多3.若要在普通显微镜下观察到质壁分离、RNA和脂肪,下列四组材料中应选择的一组是A.水稻胚乳和花生子叶 B.天竺葵叶和水稻胚乳C.紫色洋葱和花生子叶 D.天竺葵叶和紫色洋葱4.水中氧含量随水温的升高而下降。
生活在寒温带湖泊中的某动物,其血液中的血红蛋白含量与其生活的水温有关。
右图中能正确表示一定温度范围内该动物血液中血红蛋白含量随水温变化趋势的曲线是A.甲 B.乙 C.丙 D.丁5.将神经细胞置于相当于细胞外液的溶液(溶液S)中,可测得静息电位。
给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。
适当降低溶液S中的Na+浓度,测量该细胞的静息电位和动作电位,可观察到A.静息电位值减小 B.静息电位值增大C.动作电位峰值升高 D.动作电位峰值降低6.在白花豌豆品种栽培园中,偶然发现了一株开红花的豌豆植株,推测该红花表现型的出现是花色基因突变的结果。
为了确定该推测是否正确,应检测和比较红花植株与白花植株中A.花色基因的碱基组成 B.花色基因的DNA序列C.细胞的DNA含量 D.细胞的RNA含量29.将同种大鼠分为A、B两组,A组大鼠除去淋巴细胞后,产生抗体的能力丧失:从B组大鼠中获得淋巴细胞并转移到A组大鼠后,发现A组大鼠能够重新获得产生抗体的能力。
请回答:(1)上述实验验可以说明___是免疫反应所需的细胞.(2)为了证明接受了淋巴细胞的A组大鼠重新获得了产生抗体的能力,需要给A组大鼠注射___,任何检测相应的抗体。
★2010年全国各地中考数学选择题、填空题答案及参考解答第一部分 选择题1.C解:设抛物线的对称轴与x 轴交于点E如图1,当∠CAD =60°时,则DE =1,BE =3 ∴B (1+3,0),C (1,-1)将B (1+3,0),C (1,-1)代入y =a (x -1)2+k ,解得k =-1,a =31∴y =31(x -1)2-1如图2,当∠ACB =60°时,由菱形性质知A (0,0),C (1,3) 将A (0,0),C (1,3)代入y =a (x -1)2+k ,解得k =-3,a =3 ∴y =3(x -1)2-3同理可得:y =-31(x -1)2+1,y =-3(x -1)2+3所以符合条件的抛物线的解析式共4个3.D解:设DE =x ,则EC =x 2,BD =x 6,BC =x +x 8 由△AGF ∽△ABC 得:xx x 22+=xx x 8+,∴x4=16,x =2,∴正方形DEFG 的面积为4∴S △ABC =1+1+3+4=94.C解:如图,过A 作BC 的垂线交CB 的延长线于H ,则HD =AH ,HC =3AH∴HC -HD =(3-1)AH =3,∴AH =23(3+1),HB =23(3+1)-3=23(3-1) ∴AB =22HB AH+=235.B6.D∠ACD 、∠BAD 、∠ODA 、∠ODE 、∠OED7.D解:如图,则有⎩⎨⎧a2+1=r2(2-a )2+(21)2=r2解得:a =1613,r =161758.A解:如图,连结BD S 1=21π×32-S △ABD -S 弓形=2π,S 2=21AB ·BC -S △ABD -S 弓形 S 1-S 2=21π×32-21AB ·BC =2π,AB ·BC =8π,BC =34π9.B解:由已知得:AB +AC +BC =2CD +AC +BC =2+AC +BC =52+,∴AC +BC =5 ∴(AC +BC )2=AC 2+BC 2+2AC ·BC =5又AC 2+BC 2=AB 2=(2CD )2=4,∴2AC ·BC =1∴S △ABC =21AC ·BC =4110.C解:如图,延长AD 至E ,使DE =AD ,连结BE 、CE ,则四边形ABEC是平行四边形 ∴BE =AC =13,∴AB 2+AE 2=52+122=169=132=BE 2∴△ABD 是直角三角形∴BD =22AD AB+=2265+=61,∴BC =61211.A解:如图,延长MN 交BC 的延长线于点E∵∠AMB =∠NMB ,∠AMB =∠MBC ,∠NMB =∠MBC ,∴BE =ME 易知△NDM ≌△NCE ,∴CE =MD ,MN =NE ,∴ME =2MN 设正方形边长为2,MD =x ,则AM =2- x ,DN =1,BE =x +2在直角三角形DMN 中,由勾股定理得:MN =12+x ,∴ME =122+x∴x +2=122+x ,解得:x =0(不合题意,舍去),或x =34B AD CAB CD EDBCAMNE∴AM =2-34=32,AM :AB =3112.A解:设正方形DEFG 的边长为x ,△ABC 的BC 边上的高为h由△AGF ∽△ABC 得:a x =h x h -,∴x =h a ah +,∴S 2=2)(h a ah +又S 1=ah 21,∴212S S =222221)(h a h a ah+=ah h a 2)(+·41≥ah h a 22)(·41=1 ∴S 1≥2S 213.B解:由△BEM ∽△AED 得:边上的高边上的高AD BM =AD BM =21,∴BM 边上的高=31AB =31∴S 阴影=2(21-31)=3114.C 解:如图,连结OE 、OF 、OC 、OD 、OG∵AE 、BF 为半圆的切线,∴OE ⊥AE ,OF ⊥BF ,又AE =BF ,OE =OF ∴△AOE ≌△BOF ,∴∠AOE =∠BOF∵CD 切半圆于G ,∴CF =CG .仿上可得∠COF =∠COG ,同理∠DOE =DOG ∵∠AOE +∠DOE +∠DOG +∠COG +∠COF +∠BOF =180°,∴∠AOE +∠DOE +∠COF =90° ∴∠BCO =90°-∠COF =∠AOE +∠DOE =∠AOD同理∠BOC =∠ADO ,∴△BCO ∽△AOD ,∴BC/AO =BO/AD设AO =BO =a ,则y =xa 215.B解:用排除法:从函数图象可以看出:①的支出费用减少,反映了建议(1);③的支出费用没改变,提高了车票价格,反映了建议(2);②、④不符合题意。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷2至6页。
第Ⅰ卷一. 选择题:本大题共12小题。
(1)设复数z 满足1+z1z-=i ,则|z|=(A )1 (B )2 (C )3 (D )2 (2)=- 10sin 160cos 10cos 20sin(A )32- (B )32 (C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是(A )(-33,33)(B )(-36,36)(C )(223-,223) (D )(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为ABC 所在平面内一点→→=BC BC 3,则(A )→→→+-=AC AB AD 3431 (B)→→→-=AC AB AD 3431(C )→→→+=AC AB AD 3134 (D)→→→-=AC AB AD 3134(8)函数f(x)=的部分图像如图所示,则f (x )的单调递减区间为(A)Z k k k ∈+-),43,41(ππ (B)Z k k k ∈+-),432,412(ππ(C)Zkkk∈+-),43,41((D)Zkkk∈+-),432,412((9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)52)(yxx++的展开式中,25yx 的系数为(A)10 (B)20 (C)30 (D)60(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
历年试题汇编历年试题汇编06年试题 (2)07年试题 (4)08年试题 (6)09年试题 (8)10年试题 (10)11年试题 (11)12年试题 (14)13年试题 (16)14年试题 (16)15年试题 (22)16年试题 (25)06年试题一.填空题(每题3分,共24分)1.设随机事件A,B 互不相容,且P(A) = 0.3,)(B P =0.6,则)(A B P =______.2.将C,C,E,E,I,N,S 等7个字母随机的排成一行,那么怡好排成英文单词SCINENCE 的概率为________.3.一射手对同一目标独立地进行四次射击,若于少命中一次的概率为80/81,则该射手的命中率为________.4.甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6,0.5,现已知目标被命中,则它是甲射中的概率为_______.5.设随机变量)(~22n χχ,则E(2χ)_______,D(2χ)_______.6.设D(X)=3,Y=3X+1,则Y X ,ρ=________.7.某型号螺丝钉的重量是相互独立同分布的随机变量。
其期望是1两,标准差是0.1两。
则100个该型号螺丝钉重量不超过10.3斤的概率近似为_________(答案用标准正态分布函数表示)8.设4321,,,X X X X 是来自正态总体N(0,22)的样本,令243221)()(X X X X Y -++=,则当C=_________时,C )2(~2χY . 二.计算题(共50)1.(10分)已知男人中有5%是色盲,女人中有0.25%是色盲,今从男女人数相等的人群中随机地挑选一人,怡好是色盲患者,问此人是男性的概率是多少?2.(10分)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
3.(10分)某型号电子管寿命(以小时计)近似地服从)20,160(2N 分布,随机的选取四只,求其中没有一只寿命小于180小时的概率(答案用标准正态分布函数表示)。
2010年水平考试模拟试题(一)第I 卷(选择题共48分)以下每小题只有一个选项符合题意。
每小题 3分,共16小题。
1 •光导纤维已成为信息社会必不可少的高科技材料。
下列物质可用于制造光导纤维的是A •金刚石B •大理石C •铝合金D •二氧化硅2.下列气体中无色、无味的是A • SO 2B • CI 2C . NO 2D • N 23 •能将溶液和胶体区分开的方法是A .过滤B .观察颜色、状态C .利用丁达尔效应D .闻气味 4•垃圾是放错了位置的资源,应分类回收利用。
生活中废弃的塑料制品、旧轮胎、废纸等属于 A .单质B .有机物C .氧化物D .无机物5.下列物质属于离子化合物的是A. CO 2 B . H 2O C . NaOH D . HCI 6 .下列物质中,主要成分属于硅酸盐的是A. 烧碱 B .水泥C .石灰石D .胆矶 7.欲配制浓度为1.00 mol/L 的氯化钠溶液100 mL ,用不到的仪器是A.分液漏斗 B .容量瓶 &下列物质与水反应生成强酸的是A . Na 2OB . SO 3 9.下列化学用语表示正确的是10 .实验室用锌粒与 2 mol/L 的硫酸溶液制取氢气,下列措施不能增大化学反应速率的是C .玻璃棒D .烧杯C . CO 2D . NH 3A .氯化钙的化学式 CaClC .乙烯的结构简式 CH 2CH 2B . HCl 的电子式 D .氯原子的结构示意图A. 向该硫酸溶液中加等体积的水C .改用热的2 mol/L 的硫酸溶液11. 下列反应属于氧化还原反应的是A . H 2SO 4+ 2NaOH = Na 2SO 4 + 出0 B. 改用3 mol/L 的硫酸溶液 D .用锌粉代替锌粒 △B . 2NaHCO 3==^Na 2CO 3+ 出0+ CO 2 T12. 下列反应属于吸热反应的是D •木炭在氧气中燃烧B .是最简单的有机物 D .与氯气在光照条件下能发生取代反应年同异岁 F 列有关说法不正确的是B. Cu 是正极 D •正极上发生氧化反应15 .在①NaOH ②AI (OH ) 3③H 2SO 4三种物质中,与盐酸和氢氧化钠溶液均能反应的是A .只有②B .②和③C .①和③D .①②③16 •用N A 表示阿伏加德罗常数的值,下列说法错误的是A. 32 g O 2中含有的氧原子的个数为 2N AB. 24 g Mg 变为Mg 2+时失去的电子数为 2N AC. 标准状况下,22.4 L 氢气中含有氢分子的个数为 2 N AD.1L 1.00 mol/L 的氯化钠溶液中含有钠离子的个数为 N A第H 卷(非选择题共28分)化学I 化学n (必修模块)17. _______________ (4分)现有下列四种物质 ①乙烯、②乙酸、③淀粉、④蛋白质。
2010-2015新课标全国卷分类汇编(解析几何)1.(2015课标全国Ⅰ,理5) 已知00(,)M x y 是双曲线2:12xC y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的 取值范围是(A)( (B) ( (C) ( (D) ( 答案:A解析:由条件知F 1(-,0),F 2(,0),=(--x 0,-y 0),=(-x 0,-y 0),-3<0.①又=1,=2+2.代入①得,∴-<y 0<2.(2015课标全国Ⅰ,理14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为答案:+y 2=解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a ,0)(a >0),所以=4-a ,解得a =,故圆心为,此时半径r =4-,因此该圆的标准方程是+y 2=3. (2015课标全国Ⅰ,理20)在直角坐标系xOy 中,曲线2:4x C y =与直线:(0)l y kx a a =+>交于,M N 两点。
(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程.(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠说明理由。
解:(1)由题设可得M (2,a ),N (-2,a ),或M (-2,a ),N (2,a ).又y'=,故y =在x =2处的导数值为,C 在点(2,a )处的切线方程为y -a =(x -2),即x -y -a =0. y =在x =-2处的导数值为-,C 在点(-2,a )处的切线方程为y -a =-(x +2),即x +y +a=0.故所求切线方程为x -y -a =0和x +y +a =0.5分(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0.故x 1+x 2=4k ,x 1x 2=-4a. 从而k 1+k 2==当b=-a时,有k1+k2=0,则直线PM的倾角与直线PN的倾角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.12分4.(2015课标全国Ⅱ,理7)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=()A.2B.8 C.4D.10答案:C解析:设圆的方程为x2+y2+Dx+Ey+F=0,将点A,B,C代入,得解得则圆的方程为x2+y2-2x+4y-20=0.令x=0得y2+4y-20=0,设M(0,y1),N(0,y2),则y1,y2是方程y2+4y-20=0的两根,由根与系数的关系,得y1+y2=-4,y1y2=-20,故|MN|=|y1-y2|==4.5. (2015课标全国Ⅱ,理11)已知A,B为双曲线E的左、右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为()A.B.2 C.D.答案:D解析:设双曲线的标准方程为=1(a>0,b>0),点M在右支上,如图所示,∠ABM=120°,过点M向x轴作垂线,垂足为N,则∠MBN=60°.∵AB=BM=2a,∴MN=2a sin 60°=a,BN=2a cos 60°=a.∴点M坐标为(2a,a),代入双曲线方程=1,整理,得=1,即=1.∴e2=1+=2,∴e=.6.(2015课标全国Ⅱ,理20)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C 有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.解:(1)设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M=,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.因为直线l 过点,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-x. 设点P 的横坐标为x P . 由,即x P =.将点的坐标代入l 的方程得b =,因此x M =.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是=2×,解得k 1=4-,k 2=4+.因为k i >0,k i ≠3,i =1,2, 所以当l 的斜率为4-或4+时,四边形OAPB 为平行四边形.7.(2014课标全国Ⅰ,理4)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ).A B .3 C D .3m 答案:A解析:由题意,可得双曲线C 为22=133x y m -,则双曲线的半焦距c .不妨取右焦点),0,其渐近线方程为y x=,即0x y =.所以由点到直线的距离公式得d ==故选A.8.(2014课标全国Ⅰ,理10)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C的一个交点.若4FP FQ =,则|QF |=( ).A .72B .3C .52D .2答案:B解析:如图,由抛物线的定义知焦点到准线的距离p =|FM |=4.过Q 作QH ⊥l 于H ,则|QH |=|QF |. 由题意,得△PHQ ∽△PMF , 则有||||3||||4HQ PQ MF PF ==,∴|HQ |=3.∴|QF |=3.9.(2014课标全国Ⅰ,理20)已知点A (0,-2),椭圆E :22221x y a b +=(a >b >0)F 是椭圆E的右焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.分析:(1)由过A (0,-2),F (c,0)的直线AF 或过两点的直线斜率公式可求c ,再由c e a ==a ,由b 2=a 2-c 2可求b 2,则椭圆E 的方程可求. (2)由题意知动直线l 的斜率存在,故可设其斜率为k ,写出直线方程,并与椭圆方程联立,消去y ,整理成关于x 的一元二次方程,利用弦长公式求出弦PQ 的长|PQ |,利用点到直线的公式求出点O 到直线PQ 的距离d ,则由12OPQ S PQ d ∆=⋅,可将S △OPQ 表示成关于k 的函数,转化为求函数f (k )的最大值问题.注意k 应使得一元二次方程的判别式大于0.解:(1)设F (c,0),由条件知,23c =c =又2c a =,所以a =2,b 2=a 2-c 2=1. 故E 的方程为2214x y +=. (2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入2214x y +=,得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即23k >时,1,2281k x ±=+.从而12PQ x =-=.又点O 到直线PQ 的距离d =,所以△OPQ 的面积S △OPQ =12d PQ ⋅=241k +.t =,则t >0,2444OPQ t S t t t∆==++.因为44t t +≥,当且仅当t =2,即2k =±时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为2y x =-或2y x =-. 10.(2014课标全国Ⅱ,理10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ).ABC .6332D .94答案:D解析:由已知得3,04F ⎛⎫⎪⎝⎭,故直线AB 的方程为3tan 304y x ⎛⎫=︒- ⎪⎝⎭,即34y x =-. 设A (x 1,y 1),B (x 2,y 2),联立23,y x y x ⎧=-⎪⎨⎪=⎩①②将①代入②并整理得217303216x x -+=,∴12212x x +=, ∴线段|AB |=x 1+x 2+p =21322+=12. 又原点(0,0)到直线AB的距离为38d ==. ∴1139||122284OAB S AB d ∆==⨯⨯=.11.(2014课标全国Ⅱ,理16)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是__________.答案:[-1,1]解析:如图所示,设点A (0,1)关于直线OM 的对称点为P ,则点P 在圆O 上, 且MP 与圆O 相切,而点M 在直线y =1上运动,由圆上存在点N 使∠OMN =45°,则∠OMN ≤∠OMP =∠OMA ,∴∠OMA ≥45°,∴∠AOM ≤45°. 当∠AOM =45°时,x 0=±1.∴结合图象知,当∠AOM ≤45°时,-1≤x 0≤1,∴x 0的范围为[-1,1].12.(2014课标全国Ⅱ,理20)设F 1,F 2分别是椭圆C :22221x y a b+=(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .分析:在第(1)问中,根据椭圆中a ,b ,c 的关系及题目给出的条件可知点M 的坐标,从而由斜率条件得出a ,c 的关系,再利用离心率公式可求得离心率,注意离心率的取值范围;在第(2)问中,根据题目条件,O 是F 1F 2的中点,MF 2∥y 轴,可得a ,b 之间的一个关系式,再根据条件|MN |=5|F 1N |,可得|DF 1|与|F 1N |的关系,然后可求出点N 的坐标,代入C 的方程,可得a ,b ,c 的另一关系式,最后利用a ,b ,c 的关系式可求得结论.解:(1)根据c=2,bM ca⎛⎫⎪⎝⎭,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得12ca=,2ca=-(舍去).故C的离心率为1 2 .(2)由题意,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故24ba=,即b2=4a.①由|MN|=5|F1N|得|DF1|=2|F1N|,设N(x1,y1),由题意知y1<0,则112,22,c x cy(--)=⎧⎨-=⎩即113,21,x cy⎧=-⎪⎨⎪=-⎩代入C的方程,得2229114ca b+=.②将①及c=22941144a aa a(-)+=. 解得a=7,b2=4a=28,故a=7,b=13.(2013课标全国Ⅰ,理4)已知双曲线C:2222=1x ya b-(a>0,b>0)的离心率为2,则C的渐近线方程为().A.y=14x±B.y=13x±C.y=12x±D.y=±x答案:C解析:∵cea==,∴22222254c a bea a+===.∴a2=4b2,1=2ba±.∴渐近线方程为12y x=±.14.(2013课标全国Ⅰ,理10)已知椭圆E:2222=1x ya b+(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为().A.22=14536x y+B.22=13627x y+C.22=12718x y+D.22=1189x y+答案:D解析:设A(x1,y1),B(x2,y2),∵A,B在椭圆上,∴2211222222221,1,x ya bx ya b⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y ya b(+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a .又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 15.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1,解得k=4±当ky =代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2.所以|AB |2118|7x x -=.当4k =-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.16.(2013课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ).A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x 答案:C解析:设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF |=x 0+2p =5,则x 0=5-2p . 又点F 的坐标为,02p ⎛⎫⎪⎝⎭,所以以MF 为直径的圆的方程为(x -x 0)2p x ⎛⎫- ⎪⎝⎭+(y -y 0)y =0.将x =0,y =2代入得px 0+8-4y 0=0,即202y -4y 0+8=0,所以y 0=4.由20y =2px 0,得16252p p ⎛⎫=- ⎪⎝⎭,解之得p =2,或p =8.所以C 的方程为y 2=4x 或y 2=16x .故选C.17.(2013课标全国Ⅱ,理12)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ).A .(0,1) B.112⎛⎫⎪ ⎪⎝⎭C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 答案:B18.(2013课标全国Ⅱ,理20)(本小题满分12分)平面直角坐标系xOy 中,过椭圆M :2222=1x y a b +(a >b >0)右焦点的直线0x y +=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 解:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则221122=1x y a b +,222222=1x y a b +,2121=1y y x x ---,由此可得2212122121=1b x x y y a y y x x (+)-=-(+)-. 因为x 1+x 2=2x 0,y 1+y 2=2y 0,0012y x =,所以a 2=2b 2.又由题意知,M 的右焦点为0),故a 2-b 2=3.因此a 2=6,b 2=3.所以M 的方程为22=163x y +. (2)由220,1,63x y x y ⎧+=⎪⎨+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或0,x y =⎧⎪⎨=⎪⎩因此|AB |. 由题意可设直线CD 的方程为y=x n n ⎛+<< ⎝, 设C (x 3,y 3),D (x 4,y 4).由22,163y x n x y=+⎧⎪⎨+=⎪⎩得3x 2+4nx +2n 2-6=0.于是x 3,4. 因为直线CD 的斜率为1,所以|CD |43|x x -=由已知,四边形ACBD的面积1||||2S CD AB =⋅=当n =0时,S .所以四边形ACBD .19.(2012课标全国,理4)(设21,F F 是椭圆:E 12222=+by a x )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为︒30的等腰三角形,则E 的离心率为 A.21 B.32 C.43 D.54【解析】选C.画图易得,21F PF △是底角为30 的等腰三角形可得212PF F F =,即3222a c c ⎛⎫-= ⎪⎝⎭, 所以34c e a ==.20.(2012课标全国,理8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B ,两点,34||=AB ,则的实轴长为 A.2B. 22C. 4D. 8【解析】选C.易知点(4,-在222x y a -=上,得24a =,24a =.21.(2012课标全国,理20)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 两点 (Ⅰ) 若90BFD ∠=︒,ABD △面积为24,求p 的值及圆F 的方程; (Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.解: (Ⅰ)由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =.点A 到准线l 的距离d FB FD ===.由ABD S =△, 11222BD d p ⨯⨯=⨯=2p ∴=.圆F 的方程为()2218x y +-=.(Ⅱ)由对称性,不妨设点(),A A A x y 在第一象限,由已知得线段AB 是圆F 的在直径,90o ADB ∠=,2BD p ∴=,32A y p ∴=,代入抛物线:C py x 22=得A x .直线m 的斜率为3AF k ==.直线m 的方程为02x +=. 由py x 22= 得22x y p=,x y p '=.由x y p '==, x p =.故直线n 与抛物线C 的切点坐标为,36p ⎛⎫ ⎪ ⎪⎝⎭,直线n的方程为0x -=. 所以坐标原点到m ,n3=.22.(2011课标全国,理7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为 (A(B(C )2 (D )3【解析】:通径224b AB a a==,得2222222b a a c a =⇒-=,c e a ==,选B 23.(2011课标全国,理14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,。
2010年普通高等学校招生全国统一考试(新课标全国卷)历史部分一、选择题:本题共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
24.西周分封制在中国历史上影响深远。
下列省、自治区中,其简称源自西周封国国名的是A.河南、河北 B.湖南、湖北C.山东、山西 D.广东、广西25.柳宗元在(封建论》中评价秦始皇废封建、行郡县说:“其为制,公之大者也……公天下之端自秦始。
”郡县制为“公天下”之开端,主要体现在A.百姓不再是封君的属民 B.更有利于皇帝集权C.制度法令的统一 D.依据才干政绩任免官吏26.王安石提出“形者,有生之本”,与之相对立的观点是A.“心外无物” B.“天地为万物之本”C.“夫形于天地之间者,物也” D.“舍天地则无以为道”27.表2明代洪武至弘治年间(1368~1505)檄州祁门土地买卖契约情况表表2反映了A.宝钞在民间的信用降低 B.社会经济大幅度衰退C.生活资料均可作为支付手段 D.白银始终是主要流通货币28.亚里士多德在《政治学》中认为,世上有两种形式的平等,即数量平等和比值平等。
数量平等是绝对平均主义;比值平等则根据个人的实际价值,按比例分配与之相称的事物。
根据上述观点,通常所说的“分数面前人人平等”应该是A.更接近于数量平等 B.更接近于比值平等C.数量平等高于比值平等 D.既非数量平等又非比值平等29.图4是英国1782年的一幅漫画。
此漫画反映了A.英国国际地位下降B.英美关系亲近友好C.英国承认美国独立D.英国愿与美国和解30.19世纪中期,许多与西学相关的“日本新词”来自中国。
而在20世纪初年,大量与西学相关的“日本新词”,如劳动、方针、政策、理论等迅速传入中国。
出现这一变化的决定性因素是A.中国留学日本人数增多 B.中国在甲午战争中战败C.日本明治维新成效显著 D.日本先于中国接触西学31.1902~1906年,京师大学堂师范馆共有学生512人,其中举人62人、贡生48人、生员232人、监生84人。
2010-2015广东省公务员行测资料(数量关系)2010年第一部分数量关系(共15题,参考时限15分钟)一、数字推理。
每道题给出一个数列,但其中缺少一项,要求报考者仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从四个供选择的答案中选出最合适、最合理的一个来填补空缺项,使之符合原数列的排列规律。
例题: 1 3 5 7 9 ( )A.7 B.8 C.11 D.13答案:C(原数列是一个奇数数列,故应选C)请开始答题:1.1/8,1/6, 9/22,27/40,()A.27/16 B.27/14 C.81/40 D.81/442.3,4,12,18,44,()A.44 B.56 C.78 D.793.4,5,15,6,7,35,8,9,()A.27 B.15 C.72 D.634.1526,4769,2154,5397A.2317 B.1545 C.1469 D.52135.暂无二、数学运算。
每道题给出一道算术式子,或者表达数量关系的一段文字,要求报考者熟练运用加、减、乘、除等基本运算法则,利用基本的数学知识,准确、迅速地计算出结果。
例题:84.78元、59.50元、121.61元、12.43元以及66.50元的总和是()。
A.343.73元 B.343.83元 C.344.73元 D.344.82元答案:D(5个数据的最后一位数之和是2,只有D符合要求)请开始答题:6.暂无7.暂无8.有一些信件,把它们平均分成三分后还剩2封,将其中两份平均三等分还多出2封,问这些信件至少有多少封()A.20 B.26 C.23 D.299.报社将一定的奖金分发给征文活动获奖者,其中一等奖学金是二等的2倍,二等奖学金是3等的1.5倍,如果一、二、三等奖学各评选两人,那么一等奖获得者将得2400元奖金;如果一等奖只评选一人,二、三等奖各评选两人,那么一等奖的奖金是()A. 2800元B. 3000元C. 3300元D. 4500元10.公司某部门80%的员工有本科以上学历,70%有销售经验。
2010普通高等学校招生全国统一考试(新课标Ⅰ)理科综合能力测试化学试题7.下列各项表达中正确的是A.Na2O2的电子式为B.106g的乙醇和丙醇混合液完全燃烧生成的CO2为112L (标准状况)C.在氮原子中,质子数为7而中子数不一定为7D. Cl-的结构示意图为8.分子式为C3H6Cl2的同分异构体共有(不考虑立体异构)A.3种B.4种C.5种D.6种9.下列各组中的反应,属于同一反应类型的是A.由溴丙烷水解制丙醇;由丙烯与水反应制丙醇B.由甲苯硝化制对硝基甲苯;由甲苯氧化制苯甲酸C.由氯代环己烷消去制环己烯;由丙烯加溴制1,2-二溴丙烷D.由乙酸和乙醇制乙酸乙酯;由苯甲酸乙酯水解制苯甲酸和乙醇10.把500mL有BaCl2和KCl的混合溶液分成5等份,取一份加入含a mol硫酸钠的溶液,恰好使钡离子完全沉淀;另取一份加入含b mol硝酸银的溶液,恰好使氯离子完全沉淀。
则该混合溶液中钾离子浓度为A.0.1(b-2a)mol/L B.10( 2a-b)mol/L C.10(b-a)mol/L D.10(b-2a)mol/L 11.己知:HCN(aq)与NaOH(aq)反应的∆H=-12.1kJ/mol;HCl(aq)与NaOH(aq)反应的∆H=-55.6kJ/mol。
则HCN在水溶液中电离的∆H等于A.-67.7 kJ/mol B.-43.5 kJ/mol C.+43.5 kJ/mol D.+67.7kJ/mol12.根据右图,可判断出下列离子方程式中错误的是A. 2Ag(s)+Cd2+(aq)==2Ag+(aq)+Cd(s)B. Co2+(aq)+Cd(s)==Co(s)+Cd2+(aq)C. 2Ag+(aq)+Cd(s)==2Ag(s)+Cd2+(aq)D. 2Ag+(aq)+Co(s)==2Ag(s)+Co2+(aq)主要成分,经过一系列反应可得到B和C。
单质C可与E的浓溶液发生反应,G为砖红色沉淀。
2010年新课标卷图1所示区域降水季节分配较均匀。
2010年5月初,该区域天气晴朗,气温骤升,出现了比常年严重的洪灾。
据此完成l~3题。
1.形成本区域降水的水汽主要来源于A.太平洋 B.印度洋 C.大西洋 D.北冰洋2.自2009年冬至2010年4月底,与常年相比该区域可能A.降水量偏少,气温偏高 B.降水量偏多,气温偏高C.降水量偏少,气温偏低 D.降水量偏多,气温偏低3.2010年5月初,控制该区域的天气系统及其运行状况是A.气旋缓慢过境 B.冷锋缓慢过境C.反气旋缓慢过境 D.暖锋缓慢过境图2曲线为某国2000年不同年龄人口数量与0与1岁人口数量的比值连线。
18~65周岁人口为劳动力人口,其余为劳动力人口负担的人口。
假定只考虑该国人口的自然增长且该国从2001年起控制人口增长,使每年新生人口都为2000年新生人口的80%.据此完成4~5题。
4.该国劳动力人口负担最轻、最重的年份分别是A.2019年,2066年 B.2066年,2019年C.2001年,2019年 D.2001年,2066年5.出生人口的减少将最先影响该国劳动力人口的A.数量 B.职业构成 C.性别构成 D.年龄构成表1示意我国沿海某鞋业公司全球化发展的历程。
读表l,完成6~8题。
6.该公司①、②阶段的主要发展目标是A.开拓国际市场 B.建立品牌形象C.吸引国外资金 D.降低生产成本7.该公司在尼日利亚、意大利建生产基地,可以A.降低劳动成本 B.增强集聚效应C.便于产品销售 D.便于原料运输8.该公司在意大利设立研发中心便于利用当地的A.市场 B.资金C.原料 D.技术图3所示区域内自南向北年降水量由约200mm增至500mm左右,沙漠地区年降水量仅50mm左右。
据此完成9~11题。
9.图中甲地区夏季降水量最接近A.50mm B.150mmC.200mm D.250mm10.解决该区域农业用水紧缺的可行措施有①引湖水灌溉②海水淡化③改进灌溉技术④建水库调节径流A.①② B.②③ C.③④ D.①④11.甲地区农业发达,其成功之处在于A.提高了水资源的数量和质量 B.调节了降水的季节分配C.调节了降水的年际变化 D.提高了水资源的利用率2010年新课标卷选择题部分解析1-3题【答案】 C D C此题设计巧妙,要求学生有缜密的心思和较强的知识迁移能力。
首先根据图中的经纬度,确定该区域为新疆(备考中要求学生记忆乌鲁木齐的经纬度88°E,44°N,很有必要),这是考生必须能够做到的。
定位后,就可确定第1题,北疆的水汽主要来自大西洋。
第2题的迷惑性非常大,不仔细审题很多学生都会选择B,但那样出题就过于直白了。
一定要注意时间段,材料中说的是“2010年5月初,该区域气温骤升”,试题问的是“自2009年冬至2010年4月底”,正是因为之前的气温偏低,积雪没有完全融化,等到5月气温骤升,“出现了比常年严重的洪灾”予以应证。
第3题的关键依然在材料中给了提示“2010年5月初,该区域天气晴朗”,必须选择能够使天气晴朗的天气系统(锋面和气旋天气系统都是会带来降水的天气系统,而高压天气系统中心盛行下沉,天气晴朗),这道题不应该错。
4-5题【答案】 A B给学生造成困难最大的是第4题。
文科学生很难一下子理解这两个年代时间是怎么计算出来的。
但答题要讲究技巧,也就是猜也要有根据,不是完全的瞎猜,要尽去揣摩出题人的心理。
该题就是个简单的计算题,出题人想要考生重视地理的文理综合性,所以一定要把出题人给的数据用上,关键要注意劳动力人口的年龄为18~65周岁,且该国是从2001年开始控制新生人口,所以2000年以前出生的人口较多,要过18年后才全部成长为劳动力人口,所以要到2000+18即2019年该国的人口负担最轻,同样道理这批人65年后全部成为老年人,这时,也就是2000+65即2066年人口负担最重。
第5题得分率很低,出题人的意图重在考察考生审析设问,推理分析能力。
问题设置中的关键词是“最先”,这个词是别有用意的。
出生人口的减少没有使劳动力的数量马上减少,而是依然上升,性别构成当然不受出生率影响,年龄构成就是固定的18~65岁,看来这些都不是答案。
至于为什么最先影响的就是劳动力的职业构成呢?仔细想想还真有个理儿:出生率减少,婴幼儿托儿所就会减少,婴幼儿教师就会过剩而转行,必然回家待业或去做其他哟。
6-8题【答案】 A C D该组试题考查产业转移相关知识,难度不大。
审题利用表格中的信息,分析整理即能得到答案。
第6题,①、②阶段都是产品销往国外,所以是A。
第7题,我国在国外建厂的例子有很多,原因不外乎就是加强本土化,接近市场,降低产品运费。
第8题,在发达国家设置了研发中心,资料中还特意强调米兰是时尚之都,所以看重的是领先的技术。
9-11题【答案】 A B D死海附近地区再一次出现在了高考的试卷上,也再一次验证高考试题不在乎覆盖面,区域地理不是轮流坐庄,想考哪就考哪,没有概率,一切以能力立意。
根据图中的经纬度和海陆位置,再结合降水量,确定该区域应为地中海气候与热带沙漠气候的过渡带。
第9题的关键词是“夏季”,不管甲地是地中海气候还是热带沙漠气候,他夏季的降水量都会很少。
这是以色列某地的气候资料,情况确实如此。
第10题考查水资源的开发利用“解决该区域农业用水紧缺的可行措施”,在干旱半干旱地区,径流量小,且多为季节性河流,所以建水库调节径流不如海水淡化有效,何况西亚的海水淡化是卓有成效的,还有以色列的滴灌技术十分先进和普遍。
第11题的D选项水到渠成,是很明显的答案。
2011年新课标卷日本某汽车公司在中国建有多个整车生产厂和零部件生产厂。
2011年3月11日东日本大地震及随后的海啸、核辐射灾害,使该公司在灾区的土厂停产。
受其影响,该公司在中国的整车生产厂也被迫减产。
据此完成1~2题。
1.该公司在中国建零部件生产厂,主要目的是 A .避免自然灾害对本土汽车生产的影响 B .为其中国整车厂配套,降低整车生产成本 C .利用中国廉价劳动力,为其日本整车厂服务 D .建立其全球整车生产的零部件供应基地 2.中国整车生产厂被迫减产是由于该公司在灾区有A .研发中心B .一般零部件厂C .核心零部件厂D .整车厂第二次世界大战以后,美国通过大量技术投入和大规模专业化生产,成为世界最大的大豆生产国和出口国。
巴西自20世纪70年代开始种植大豆,在积极培育优良品种的同时,鼓励农民组建农场联合体,实现了大豆的规模化生产与经营。
目前,巴西的大豆产量、出口量仅次于美国。
中国曾是世界最大的大豆生产国和出口国,近些年大豆的质量下降(品种退化,出油率低),生产成本较高,成为世界最大的大豆进口国。
据此完成3~5题。
3.巴西大豆总产量增加的潜力大于美国,主要是因为巴西 A .技术力量较雄厚 B .气候条件较优越 C .可开垦的土地资源较丰富 D .劳动力较充足 4.在国际市场上,巴西大豆价格低于美国的主要原因是巴西 A .专业化水平较高 B .科技投入较大 C .劳动生产率较高 D .劳动力价格较低 5.中国要提高大豆质量亟需 A .加大科技投入 B .扩大种植面积 C .增加劳动力投入 D .加大化肥使用量 读图1,完成6~8题。
6.图示区域内最大高差可能为A .50mB .55mC .60mD .65m 7.图中①②③④附近河水流速最快的是A .①B .②C .③D .④8.在图示区域内拟建一座小型水库,设计坝高约13 m 。
若仅考虑地形因素,最适宜建 坝处的坝顶长度约A .15mB .40mC .90mD .65m图2,显示青藏铁路从拉萨向北上坡段某处的景观。
其中T 是为保护铁路而建的工程 设施。
据此完成9~11题。
9.据图文信息可以推断A .该段铁路沿等高线布线B .该段河流冬季结冰C .铁路沿P 箭头指示向拉萨延伸D .P 箭头指示北方10.M 、N 间的堆积物来源于A .坡B .河流C .沟D .原地 11.T 设施的主要作用是A .防御坡部位崩塌对铁路的危害B .防御沟部位洪水及泥沙对铁路的危害C .防御河流洪水对铁路的危害D .方便野生动物穿越铁路线聚落河流、池等高线0 50m图1图22011年新课标卷选择题部分解析1-2题【答案】B C【解析】该组题从日本地震的热点切入,考察工业联系与工业区位。
该题要结合题内题外知识解答。
日本汽车公司在中国建厂的主要区位条件是市场,目的是降低生产成本。
题目材料提供了关键信息:日本某汽车公司在中国建有多个整车生产厂和零部件生产厂。
在中国建的零部件厂是为中国的整车生产厂提供服务,以降低生产成本。
第1题,在中国建零部件厂发生在地震之前,A不正确。
中国的整车生产使用中国生产的配件,减少运费,成本降低,B正确。
汽车制造厂是资金与技术指向型工业,而不是劳动力指向型工业,C不正确。
中国生产的零部件主要是供应中国的整车生产,D不正确。
第2题,由于技术保密等原因,部分核心零部件与主要研发机构仍在日本,地震造成了在日本的核心零部件厂停产,中国的整车生产自然被迫减产,而研发中心主要是开发新产品,研究新技术,改进生产工艺,转化为具体的生产过程需要一定的时间。
故A不正确,C正确。
3-5题【答案】C D A【解析】本组题也是热点问题(转基因大豆)切入,着重考查学生获取解读信息的能力。
第3题,巴西人口比美国少,巴西高原面积广大,适宜大豆种植,“20世纪70年代开始种植大豆”,开发种植较晚是最大的优势,美国农业区域专业化程度高,大豆生产区气候条件优越,生产技术水平高,但可以用的土地资源有限,所以巴西的增产潜力大是因为可开垦土地多,故C正确。
第4题,巴西大豆的专业化水平、科技投入、劳动生产率都没有美国高。
巴西是发展中国家,劳动力价格便宜,D正确。
第5题,中国大豆种植历史悠久,“品种退化”严重,所以要提高大豆质量亟需加大科技投入,A正确。
中国后备耕地资源少,不能扩大种植面积,增加劳动力投入,加大化肥使用量不能提高大豆质量。
【评析】1~5题主要考察学生“获取和解读地理信息”的能力,能够从题目的文字表述中获取地理信息,包括读取题目的要求和各种有关地理事物定性分析的信息。
要正确解答这些题目,必须认真审题,仔细阅读试题材料,回忆所学相关原理,分析试题要求进行推断。
本组题难度不大,但选择项的迷惑性很强,导致考生容易出错。
第1、3题有较好的区分度。
6-8题【答案】C C B【解析】本组题考查等高线的判读,地形与河流等地理事物联系能力。
第6题,图中最高处海拔在80—85米之间,最低处海拔在20—25之间,所以最大高差无限接近65米,但不能是65米。
C 正确。
第7题,①②③④四处,③处等高线最密集,流速最快。
C正确。