什么是P问题、NP问题和NPC问题
- 格式:doc
- 大小:42.00 KB
- 文档页数:6
世界十大难题1、NP完全问题(NP-C问题)NP完全问题(NP-C问题),是世界七大数学难题之一。
NP的英文全称是Non-deterministicPolynomial的问题,即多项式复杂程度的非确定性问题。
简单的写法是NP=P?,问题就在这个问号上,到底是NP等于P,还是NP不等于P。
NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题。
而如果任何一个NP问题都能通过一个多项式时间算法转换为某个NP问题,那么这个NP问题就称为NP完全问题(Non-deterministicPolynomialcompleteproblem)。
NP完全问题也叫做NPC问题。
2、霍奇猜想霍奇猜想是代数几何的一个重大的悬而未决的问题。
由威廉·瓦伦斯·道格拉斯·霍奇提出,它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想,属于世界七大数学难题之一。
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
3、庞加莱猜想庞加莱猜想(Poincaréconjecture)是法国数学家庞加莱提出的一个猜想,其中三维的情形被俄罗斯数学家格里戈里·佩雷尔曼于2003年左右证明。
2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。
1904年,法国数学家亨利·庞加莱提出了一个拓扑学的猜想:“任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。
”简单地说,一个闭的三维流形就是一个有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。
4、黎曼假设黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。
np问题通俗解释
NP问题是指“非确定性多项式时间”问题,也称为不可解问题。
它是计算机科学中的一个重要问题类别。
通俗来说,NP问题是指那些可以在多项式时间内验证是否解
答正确的问题,但尚未找到可以在多项式时间内解决的算法。
也就是说,虽然我们可以在多项式时间内检查一个给定解是否正确,但我们目前还没有找到一种高效的方法来找到一个解。
在计算理论中,NP问题是与P问题相对的一个概念。
P问题
是指可以在多项式时间内解决的问题。
一个经典的例子是旅行商问题。
在旅行商问题中,我们需要找到一条路径,使得旅行商可以经过多个城市,每个城市只到达一次,并且回到起点,同时总路径长度最短。
虽然我们可以在多项式时间内计算出给定路径的总长度,但当前还没有找到一种可以在多项式时间内找到最短路径的方法。
目前来说,还没有找到一种通用的解决NP问题的方法。
因此,研究人员一直在努力寻找解决这些问题的有效算法,或者找到一种方法来证明这些问题不存在多项式时间解决的算法。
计算复杂性理论计算复杂性理论是计算机科学中重要的一个分支,它研究了计算问题的难度和可解性。
通过对问题的复杂性进行分析和分类,计算复杂性理论为我们提供了解决问题的指导原则和限制条件。
本文将介绍计算复杂性理论的基本概念、主要研究内容以及其在实际应用中的重要性。
一、基本概念1. P和NP问题在计算复杂性理论中,最基本的概念是P问题和NP问题。
P 问题是指可以在多项式时间内解决的问题,即存在一个算法可以在多项式时间内给出问题的正确答案。
而NP问题则是指可以在多项式时间内验证答案的问题,但尚未找到多项式时间内解决的算法。
P问题是NP问题的子集,即所有的P问题也是NP问题,但目前尚不清楚P问题和NP问题是否是相同的类。
2. NP完全性NP完全性是计算复杂性理论中的一个关键概念,它指的是一类最困难的NP问题。
一个问题被称为是NP完全的,如果它既是一个NP问题,又满足以下条件:对于任何一个NP问题,都可以用多项式时间的算法将其约化为该问题。
换句话说,如果我们能够找到一个多项式时间算法来解决一个NP完全问题,那么我们也可以用同样的算法来解决所有的NP问题。
3. NP难度除了NP完全性概念,计算复杂性理论还引入了NP难度的概念。
一个问题被称为是NP难度的,如果对于任何一个NP问题,都可以用多项式时间的算法将其约化为该问题。
虽然NP难度问题不一定是NP问题,但它们和NP完全问题一样,都是十分困难的问题。
二、主要研究内容1. 多项式时间算法计算复杂性理论的一个主要研究内容是寻找和分析多项式时间算法。
多项式时间算法是指可以在多项式时间内解决的算法,即其执行时间与输入规模呈多项式关系。
研究多项式时间算法的目标是寻找高效的解决方法,从而提高问题的可解性。
2. 算法复杂性分析算法复杂性分析是计算复杂性理论中的另一个重要内容。
通过对算法的复杂性进行全面的分析,我们可以预测算法在实际应用中的性能表现。
算法复杂性分析的主要方法包括时间复杂性分析和空间复杂性分析,通过对算法的时间和空间需求进行测量和评估,我们可以判断算法在给定条件下的可行性和效率。
P NP NPC三者问题阐述1)”P对NP问题”是什么意思?首先说明一下问题的复杂性和算法的复杂性的区别,下面只考虑时间复杂性。
算法的复杂性是指解决问题的一个具体的算法的执行时间,这是算法的性质;问题的复杂性是指这个问题本身的复杂程度,是问题的性质.比如对于排序问题,如果我们只能通过元素间的相互比较来确定元素间的相互位置,而没有其他的附加可用信息,则排序问题的复杂性是O(nlgn),但是排序算法有很多,冒泡法是O(n^2),快速排序平均情况下是O(nlgn)等等,排序问题的复杂性是指在所有的解决该问题的算法中最好算法的复杂性。
问题的复杂性不可能通过枚举各种可能算法来得到,一般都是预先估计一个值,然后从理论上证明。
为了研究问题的复杂性,我们必须将问题抽象,为了简化问题,我们只考虑一类简单的问题,判定性问题,即提出一个问题,只需要回答yes或者no的问题。
任何一般的最优化问题都可以转化为一系列判定性问题,比如求图中从A到B的最短路径,可以转化成:从A 到B是否有长度为1的路径?从A到B是否有长度为2的路径?…从A到B是否有长度为k的路径?如果问到了k的时候回答了yes,则停止发问,我们可以说从A到B的最短路径就是k。
如果一个判定性问题的复杂度是该问题的一个实例的规模n的多项式函数,则我们说这种可以在多项式时间内解决的判定性问题属于P类问题。
P类问题就是所有复杂度为多项式时间的问题的集合.然而有些问题很难找到多项式时间的算法(或许根本不存在),比如找出无向图中的哈米尔顿回路问题,但是我们发现如果给了我们该问题的一个答案,我们可以在多项式时间内判断这个答案是否正确。
比如说对于哈米尔顿回路问题,给一个任意的回路,我们很容易判断他是否是哈米尔顿回路(只要看是不是所有的顶点都在回路中就可以了)。
这种可以在多项式时间内验证一个解是否正确的问题称为NP问题.显然,所有的P类问题都是属于NP问题的,但是现在的问题是,P是否等于NP?这个问题至今还未解决。
P问题、NP问题、NPC问题、NP难问题的概念2010-04-15 21:35 | (分类:默认分类)转自/view/3e968900a6c30c2259019e8f.html你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。
他们没有搞清楚NP问题和NPC问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是NPC问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。
因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。
p问题和np问题
P/NP问题是在理论信息学中计算复杂度理论领域里没有解决的问题,它被“克雷数学研究所”在千禧年大奖难题中收录。
P/NP问题中包含了复杂度类P与NP的关系。
复杂度类P包含所有那些可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有其肯定解可以在给定正确信息的多项式时间内验证的决定问题组成,或者等效的说,那些解可以在非确定图灵机上在多项式时间内找出的问题的集合。
P问题就是能在多项式时间内解决的问题,NP问题就是能在多项式时间验证答案正确与否的问题。
用大白话讲大概就是这样。
所以P是否等于NP实质上就是在问,如果对于一个问题我能在多项式时间内验证其答案的正确性,那么我是否能在多项式时间内解决它?这个表述不太严谨,但通俗来讲就是如此。
P问题、NP问题、NP完全问题和NP难问题在讲P类问题之前先介绍两个个概念:多项式,时间复杂度。
(知道这两概念的可以⾃动跳过这部分)1、多项式:axn-bxn-1+c恩....就是长这个样⼦的,叫x最⾼次为n的多项式....咳咳,别嫌我啰嗦。
有些⼈说不定还真忘了啥是多项式了。
例如第⼀次看到的鄙⼈→_→2、时间复杂度我们知道在计算机算法求解问题当中,经常⽤时间复杂度和空间复杂度来表⽰⼀个算法的运⾏效率。
空间复杂度表⽰⼀个算法在计算过程当中要占⽤的内存空间⼤⼩,这⾥暂不讨论。
时间复杂度则表⽰这个算法运⾏得到想要的解所需的计算⼯作量,他探讨的是当输⼊值接近⽆穷时,算法所需⼯作量的变化快慢程度。
举个例⼦:冒泡排序。
在计算机当中,排序问题是最基础的,将输⼊按照⼤⼩或其他规则排好序,有利于后期运⽤数据进⾏其他运算。
冒泡排序就是其中的⼀种排序算法。
假设⼿上现在有n个⽆序的数,利⽤冒泡排序对其进⾏排序,①⾸先⽐较第1个数和第2个数,如果后者>前者,就对调他们的位置,否则不变②接着⽐较第2个数和第3个数,如果后者>前者,就对调他们的位置,否则不变③⼀直向下⽐较直到第n-1和第n个数⽐较完,第⼀轮结束。
(这时候最⼤的数移动到了第n个数的位置)④重复前三步,但是只⽐较到第n-1个数(将第⼆⼤的数移动到第n-1个数位置)⑤持续每次对越来越少的元素重复上⾯的步骤,直到没有任何⼀对数字需要⽐较。
举个实例:5,4,3,2,1,对其进⾏排序,先是⽐较5跟4变成4,5,3,2,1,第⼀轮结束后变成43215,可以计算,当对其排序完正好要经过4+3+2+1=10次⽐较,当然这是最复杂的情况,即完全反序。
可以知道对于n个数,⾄多要经过1+2+...+n-1即(n^2-n)/2次⽐较才能排好序。
这个式⼦⾥n的最⾼次阶是2,可知道当n→∞时,⼀次性对其⽐较次数影响很⼩,所以我们把这个算法的时间复杂度⽐作:o(n^2)。
取其最⾼次,可以看出,这是⼀个时间复杂度为多项式的表⽰⽅式。
NP问题规约NP问题规约是计算复杂性理论中的一个重要概念。
在计算复杂性理论中,P类问题是可以在多项式时间内解决的问题,而NP类问题是可以在多项式时间内验证一个解的问题。
NP问题规约指的是一个问题可以被多项式时间内归约到另一个问题,即一个问题的解可以在多项式时间内被用来解决另一个问题。
1. NP问题和P问题:P问题(可在多项式时间内解决的问题):这些问题的解法可以在多项式时间内验证。
例如,多项式时间内验证一个给定的数是否是素数就是一个P问题。
NP问题(可在多项式时间内验证的问题):这些问题的解可以在多项式时间内验证,但我们尚未找到一个能在多项式时间内解决它们的算法。
例如,旅行商问题是一个NP问题,因为如果给定一条路径,我们可以在多项式时间内验证它是否是最短路径。
2. NP问题规约:NP问题规约是指,如果问题A可以在多项式时间内归约到问题B,那么问题A就被规约到问题B。
这通常表示为 $A \leq_p B$。
这意味着,如果我们有一个能够在多项式时间内解决问题B的算法,我们也可以在多项式时间内解决问题A。
3. NP-完全问题:如果一个问题是NP问题,而且所有其他NP问题都可以在多项式时间内规约到它,那么这个问题被称为NP-完全问题。
证明一个问题是NP-完全的经典方法是通过展示它是一个NP问题,然后证明它是NP-困难的。
一个著名的NP-完全问题是布尔可满足性问题(SAT)。
4. 应用和重要性:问题等价性证明:NP问题规约在证明问题等价性中起着关键作用。
通过将一个问题规约到另一个已知的问题,我们可以证明它们是等价的。
算法设计:了解NP问题规约有助于设计更有效的算法。
如果我们可以将一个新问题规约到一个已知的问题,我们可以利用已知问题的算法来解决新问题。
计算复杂性理论:NP问题规约是计算复杂性理论中一项基础工具,有助于理解问题的相对难度和可解性。
总体而言,NP问题规约是计算复杂性理论中的一个强大的概念,它有助于我们理解问题的相对难度,设计高效的算法,并证明问题之间的等价性。
P问题、NP问题、NPC问题的概念这或许是众多OIer最大的误区之一。
你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NP C问题。
他们没有搞清楚NP问题和NPC问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC 问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是NPC问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O(n^3+n^2)的复杂度也就是O(n^3)的复杂度。
P问题是可以在多项式时间内被确定机(通常意义的计算机)解决的问题.
NP( 非确定多项式)问题,是指可以在多项式时间内被非确定机(他可以猜,他总是能猜到最能满足你需要的那种选择,如果你让他解决n皇后问题,他只要猜n 次就能完成----每次都是那么幸运)解决的问题.
NP完全NPC问题是指这样一类NP问题,所有的NP问题都可以用多项式时间划归到他们中的一个.所以显然NP完全的问题具有如下性质:它可以在多项式时间内求解,当且仅当所有的其他的NP-完全问题也可以在多项式时间内求解。
这样一来,只要我们找到一个NPC问题的多项式解,所有的NP问题都可以多项式时间内划归成这个NPC问题,再用多项式时间解决,这样NP就等于P了。
这或许是众多OIer最大的误区之一。
你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。
他们没有搞清楚NP问题和NPC问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是 NPC问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。
因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。
我们也说,O(n^100)的复杂度小于O(1.01^n)的复杂度。
P NP NPC三者问题阐述1)"P对NP问题"是什么意思?首先说明一下问题的复杂性和算法的复杂性的区别,下面只考虑时间复杂性。
算法的复杂性是指解决问题的一个具体的算法的执行时间,这是算法的性质;问题的复杂性是指这个问题本身的复杂程度,是问题的性质。
比如对于排序问题,如果我们只能通过元素间的相互比较来确定元素间的相互位置,而没有其他的附加可用信息,则排序问题的复杂性是O(nlgn),但是排序算法有很多,冒泡法是O(n^2),快速排序平均情况下是O(nlgn)等等,排序问题的复杂性是指在所有的解决该问题的算法中最好算法的复杂性。
问题的复杂性不可能通过枚举各种可能算法来得到,一般都是预先估计一个值,然后从理论上证明。
为了研究问题的复杂性,我们必须将问题抽象,为了简化问题,我们只考虑一类简单的问题,判定性问题,即提出一个问题,只需要回答yes或者no的问题。
任何一般的最优化问题都可以转化为一系列判定性问题,比如求图中从A到B的最短路径,可以转化成:从A 到B是否有长度为1的路径?从A到B是否有长度为2的路径?…从A到B是否有长度为k 的路径?如果问到了k的时候回答了yes,则停止发问,我们可以说从A到B的最短路径就是k。
如果一个判定性问题的复杂度是该问题的一个实例的规模n的多项式函数,则我们说这种可以在多项式时间内解决的判定性问题属于P类问题。
P类问题就是所有复杂度为多项式时间的问题的集合。
然而有些问题很难找到多项式时间的算法(或许根本不存在),比如找出无向图中的哈米尔顿回路问题,但是我们发现如果给了我们该问题的一个答案,我们可以在多项式时间内判断这个答案是否正确。
比如说对于哈米尔顿回路问题,给一个任意的回路,我们很容易判断他是否是哈米尔顿回路(只要看是不是所有的顶点都在回路中就可以了)。
这种可以在多项式时间内验证一个解是否正确的问题称为NP问题。
显然,所有的P 类问题都是属于NP问题的,但是现在的问题是,P是否等于NP?这个问题至今还未解决。
什么是P问题、NP问题和NPC问题Program Impossible | 2006-08-28 22:58| 71 Comments | 本文内容遵从CC版权协议转载请注明出自这或许是众多OIer最大的误区之一。
你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。
他们没有搞清楚NP问题和NPC问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC 问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是 NPC问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2 倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!) 的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。
因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。
我们也说,O(n^100)的复杂度小于O(1.01^n)的复杂度。
容易看出,前面的几类复杂度被分为两种级别,其中后者的复杂度无论如何都远远大于前者:一种是 O(1),O(log(n)),O(n^a)等,我们把它叫做多项式级的复杂度,因为它的规模n出现在底数的位置;另一种是O(a^n)和O(n!)型复杂度,它是非多项式级的,其复杂度计算机往往不能承受。
当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。
自然地,人们会想到一个问题:会不会所有的问题都可以找到复杂度为多项式级的算法呢?很遗憾,答案是否定的。
有些问题甚至根本不可能找到一个正确的算法来,这称之为“不可解问题”(Undecidable Decision Problem)。
The Halting Problem就是一个著名的不可解问题,在我的Blog上有过专门的介绍和证明。
再比如,输出从1到n这n个数的全排列。
不管你用什么方法,你的复杂度都是阶乘级,因为你总得用阶乘级的时间打印出结果来。
有人说,这样的“问题”不是一个“正规”的问题,正规的问题是让程序解决一个问题,输出一个“YES”或“NO”(这被称为判定性问题),或者一个什么什么的最优值(这被称为最优化问题)。
那么,根据这个定义,我也能举出一个不大可能会有多项式级算法的问题来:Hamilton回路。
问题是这样的:给你一个图,问你能否找到一条经过每个顶点一次且恰好一次(不遗漏也不重复)最后又走回来的路(满足这个条件的路径叫做Hamilton回路)。
这个问题现在还没有找到多项式级的算法。
事实上,这个问题就是我们后面要说的NPC问题。
下面引入P类问题的概念:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题。
P是英文单词多项式的第一个字母。
哪些问题是 P类问题呢?通常NOI和NOIP不会出不属于P类问题的题目。
我们常见到的一些信息奥赛的题目都是P问题。
道理很简单,一个用穷举换来的非多项式级时间的超时程序不会涵盖任何有价值的算法。
接下来引入NP问题的概念。
这个就有点难理解了,或者说容易理解错误。
在这里强调(回到我竭力想澄清的误区上),NP问题不是非P类问题。
NP问题是指可以在多项式的时间里验证一个解的问题。
NP问题的另一个定义是,可以在多项式的时间里猜出一个解的问题。
比方说,我RP很好,在程序中需要枚举时,我可以一猜一个准。
现在某人拿到了一个求最短路径的问题,问从起点到终点是否有一条小于100个单位长度的路线。
它根据数据画好了图,但怎么也算不出来,于是来问我:你看怎么选条路走得最少?我说,我RP很好,肯定能随便给你指条很短的路出来。
然后我就胡乱画了几条线,说就这条吧。
那人按我指的这条把权值加起来一看,嘿,神了,路径长度98,比100小。
于是答案出来了,存在比100小的路径。
别人会问他这题怎么做出来的,他就可以说,因为我找到了一个比100 小的解。
在这个题中,找一个解很困难,但验证一个解很容易。
验证一个解只需要O(n)的时间复杂度,也就是说我可以花O(n)的时间把我猜的路径的长度加出来。
那么,只要我RP好,猜得准,我一定能在多项式的时间里解决这个问题。
我猜到的方案总是最优的,不满足题意的方案也不会来骗我去选它。
这就是NP问题。
当然有不是NP问题的问题,即你猜到了解但是没用,因为你不能在多项式的时间里去验证它。
下面我要举的例子是一个经典的例子,它指出了一个目前还没有办法在多项式的时间里验证一个解的问题。
很显然,前面所说的Hamilton回路是NP问题,因为验证一条路是否恰好经过了每一个顶点非常容易。
但我要把问题换成这样:试问一个图中是否不存在Hamilton回路。
这样问题就没法在多项式的时间里进行验证了,因为除非你试过所有的路,否则你不敢断定它“没有Hamilton回路”。
之所以要定义NP问题,是因为通常只有NP问题才可能找到多项式的算法。
我们不会指望一个连多项式地验证一个解都不行的问题存在一个解决它的多项式级的算法。
相信读者很快明白,信息学中的号称最困难的问题——“NP问题”,实际上是在探讨NP问题与P类问题的关系。
很显然,所有的P类问题都是NP问题。
也就是说,能多项式地解决一个问题,必然能多项式地验证一个问题的解——既然正解都出来了,验证任意给定的解也只需要比较一下就可以了。
关键是,人们想知道,是否所有的NP问题都是P类问题。
我们可以再用集合的观点来说明。
如果把所有P类问题归为一个集合P中,把所有 NP问题划进另一个集合NP中,那么,显然有P属于NP。
现在,所有对NP问题的研究都集中在一个问题上,即究竟是否有P=NP?通常所谓的“NP问题”,其实就一句话:证明或推翻P=NP。
NP问题一直都是信息学的巅峰。
巅峰,意即很引人注目但难以解决。
在信息学研究中,这是一个耗费了很多时间和精力也没有解决的终极问题,好比物理学中的大统一和数学中的歌德巴赫猜想等。
目前为止这个问题还“啃不动”。
但是,一个总的趋势、一个大方向是有的。
人们普遍认为,P=NP不成立,也就是说,多数人相信,存在至少一个不可能有多项式级复杂度的算法的NP问题。
人们如此坚信P≠NP是有原因的,就是在研究NP问题的过程中找出了一类非常特殊的NP问题叫做NP-完全问题,也即所谓的 NPC问题。
C是英文单词“完全”的第一个字母。
正是NPC问题的存在,使人们相信P≠NP。
下文将花大量篇幅介绍NPC问题,你从中可以体会到NPC问题使P=NP变得多么不可思议。
为了说明NPC问题,我们先引入一个概念——约化(Reducibility,有的资料上叫“归约”)。
简单地说,一个问题A可以约化为问题B的含义即是,可以用问题B的解法解决问题A,或者说,问题A可以“变成”问题B。
《算法导论》上举了这么一个例子。
比如说,现在有两个问题:求解一个一元一次方程和求解一个一元二次方程。
那么我们说,前者可以约化为后者,意即知道如何解一个一元二次方程那么一定能解出一元一次方程。
我们可以写出两个程序分别对应两个问题,那么我们能找到一个“规则”,按照这个规则把解一元一次方程程序的输入数据变一下,用在解一元二次方程的程序上,两个程序总能得到一样的结果。
这个规则即是:两个方程的对应项系数不变,一元二次方程的二次项系数为0。
按照这个规则把前一个问题转换成后一个问题,两个问题就等价了。
同样地,我们可以说,Hamilton回路可以约化为TSP问题(Travelling Salesman Problem,旅行商问题):在Hamilton回路问题中,两点相连即这两点距离为0,两点不直接相连则令其距离为1,于是问题转化为在TSP问题中,是否存在一条长为0的路径。
Hamilton回路存在当且仅当TSP问题中存在长为0的回路。
“问题A可约化为问题B”有一个重要的直观意义:B的时间复杂度高于或者等于A的时间复杂度。
也就是说,问题A不比问题B难。
这很容易理解。
既然问题A能用问题B来解决,倘若B的时间复杂度比 A的时间复杂度还低了,那A 的算法就可以改进为B的算法,两者的时间复杂度还是相同。
正如解一元二次方程比解一元一次方程难,因为解决前者的方法可以用来解决后者。
很显然,约化具有一项重要的性质:约化具有传递性。
如果问题A可约化为问题B,问题B可约化为问题C,则问题A一定可约化为问题C。
这个道理非常简单,就不必阐述了。
现在再来说一下约化的标准概念就不难理解了:如果能找到这样一个变化法则,对任意一个程序A的输入,都能按这个法则变换成程序B的输入,使两程序的输出相同,那么我们说,问题A可约化为问题B。
当然,我们所说的“可约化”是指的可“多项式地”约化(Polynomial-time Reducible),即变换输入的方法是能在多项式的时间里完成的。
约化的过程只有用多项式的时间完成才有意义。
好了,从约化的定义中我们看到,一个问题约化为另一个问题,时间复杂度增加了,问题的应用范围也增大了。
通过对某些问题的不断约化,我们能够不断寻找复杂度更高,但应用范围更广的算法来代替复杂度虽然低,但只能用于很小的一类问题的算法。
再回想前面讲的P和NP问题,联想起约化的传递性,自然地,我们会想问,如果不断地约化上去,不断找到能“通吃”若干小NP问题的一个稍复杂的大NP问题,那么最后是否有可能找到一个时间复杂度最高,并且能“通吃”所有的 NP问题的这样一个超级NP问题?答案居然是肯定的。
也就是说,存在这样一个NP问题,所有的NP问题都可以约化成它。