高等数学教案4
- 格式:doc
- 大小:745.50 KB
- 文档页数:39
第四章 不定积分知识结构图: ⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧分部积分法第二换元积分法第一换元积分法直接积分法求不定积分基本公式性质几何意义定义不定积分原函数教学目的要求:1.理解原函数与不定积分的概念,理解两者的关系,理解不定积分与导数的关系;掌握不定积分的几何意义与基本性质。
2.理解与掌握积分的基本公式,掌握不定积分的基本运算,会熟练地用直接积分法、第一类换元积分法、第二换元积分法(代数换元)、分部积分法求不定积分。
3.了解不定积分在经济问题中的应用。
教学重点:1.原函数与不定积分的概念2.不定积分的性质与基本积分公式 3.直接积分法 4.换元积分法 5.分部积分法 教学难点:1.不定积分的几何意义2.凑微分法、分部积分法求不定积分第一节 不定积分的概念与基本公式【教学内容】原函数与不定积分的概念、不定积分的几何意义、不定积分的基本性质、不定积分的基本公式。
直接积分法求函数的不定积分。
【教学目的】理解原函数与不定积分的概念,理解不定积分的几何意义;理解并掌握不定积分的基本性质;熟练掌握用直接积分法计算一些简单函数的不定积分。
【教学重点】1.原函的概念;2.不定积分的概念;3.不定积分的几何意义;4.不定积分的基本性质;5.不定积分的基本公式;6.直接积分法计算不定积分。
【教学难点】1.理解不定积分的几何意义;2.记忆不定积分公式。
【教学时数】2学时 【教学进程】一、原函数与不定积分的概念(一)原函数的概念前面我们所学的知识是:已知一个函数,求这个函数的导数;在现实生活中往往有:已知一个函数的导数,求原来这个函数的问题,如:①已知曲线上任意一点p(x,y)处的切线斜率为x k 2=,求此曲线的方程。
②已知某产品的边际成本MC ,要求该产品总成本的变化规律()C C q =. 1.原函数定义定义4.1 设)(x f 是定义在区间I 内的已知函数.如果存在可导函数)(x F ,使对于任意的I x ∈,都有)()(x f x F ='或dx x f x dF )()(=则称函数)(x F 是函数)(x f 的一个原函数。
第四章 不定积分§4-1 不定积分的概念与性质一、不定积分的概念1.原函数定义定义1:如果在区间I 上,可导函数()F x 的导数为()f x ,即对任一xI ,都有()()F x f x 或()()dF x f x dx ,则称()F x 为()f x 在区间I 上的一个原函数。
例:(sin )cos x x ,则sin x 是cos x 的一个原函数;1(sin 1)(sin )(sin 3)cos 2x xx x ,则都是cos x 的原函数。
2.原函数性质定理1:如果()f x 在区间I 上连续,则在该区间原函数一定存在。
定理2:如果()F x 是()f x 的一个原函数,则()F x C 是()f x 的全体原函数,且任一原函数与()F x 只差一个常数。
例:验证2211cos 2,sin 2,cos 233x x x 都是sin 2x 的原函数 证:2211(cos 2)sin 233(sin 2)sin 2(cos 2)sin 2x x x x xx,则三个函数都是sin 2x 的原函数3.不定积分定义定义2:()f x 的全体原函数称为()f x 的不定积分,记作()f x dx ,其中称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量。
说明:如果()F x 是()f x 在区间I 上的一个原函数,则()F x C 就是()f x 的不定积分,即()()f x dxF x C例1:求23x dx解:因为32()3x x ,所以3x 是23x 的一个原函数则233x dx x C例2:求1dx x解:当0x时,1(ln )x x当0x 时,11ln()x xx 所以1 ln ||(0)dx x C xx4.不定积分几何意义在相同横坐标的点处切线是平行的,切线斜率都为()f x ,可由()yF x 沿y 轴平移得到。
例:一条积分曲线过点(1,3),且平移后与231y x x 重合,求该曲线方程解:设2()31f x x x C由于曲线过(1,3) 则3131C ,2C2()31f x xx二、不定积分性质性质1:[()()]()()f x g x dx f x dx g x dx性质2:()(0)()0(0)kf x dx k kf x dxdxC k性质3:(())(),()()f x dx f x f x dx f x C三、基本积分表(1)kdx kx C (k 是常数) (2)111ααx dxx C α(3)1ln ||dx x C x (4)x xe dx e C (5)ln x xa a dxC a(6)sin cos xdxxC(7)cos sin xdx x C (8)221sec tan cos dx xdx x C x(9)221csc cot sin dx xdx x C x (10)sec tan sec x xdx xC(11)csc cot csc x dx xC (12)21arctan 1dxx C x(13)21arcsin 1dx x C x例1:求51dx x解:55154111514dx x dxx CC x x例2:求x xdx解:313522223512x x xdx x dxCx C例3:求3(sin )xx dx解:433(sin )sin cos 4x x x dx xdxx dxxC例4:求2(1)x dx x解:22(1)211(2)x x x dx dx x dx xx x2122ln ||2x xdx dxdx xx C x注:根式或多项式函数需化成αx 形式,再利用公式。
《高等数学教案》word版第一章:函数与极限1.1 函数的概念与性质定义函数的概念讨论函数的性质(单调性、奇偶性、周期性等)1.2 极限的概念与性质引入极限的概念探讨极限的性质与运算1.3 无穷小与无穷大定义无穷小与无穷大的概念比较无穷小与无穷大的大小关系1.4 极限的运算法则极限的加减乘除法则极限的复合函数法则第二章:导数与微分2.1 导数的概念与性质引入导数的概念探讨导数的性质(单调性、极值等)2.2 导数的计算法则基本导数公式和、差、积、商的导数法则2.3 微分的方法与应用微分的概念与方法微分在近似计算与优化问题中的应用第三章:泰勒公式与微分中值定理3.1 泰勒公式的概念与性质引入泰勒公式的概念探讨泰勒公式的性质与应用3.2 微分中值定理的概念与证明罗尔定理、拉格朗日中值定理、柯西中值定理微分中值定理的应用(导数与函数的极值关系等)第四章:积分与微分方程4.1 积分的基本概念与方法引入积分的概念探讨积分的方法(牛顿-莱布尼茨公式、换元积分、分部积分等)4.2 微分方程的基本概念与方法引入微分方程的概念探讨微分方程的解法(常微分方程、线性微分方程等)第五章:线性代数基础5.1 向量的概念与运算定义向量的概念探讨向量的运算(加减、数乘、点积、叉积等)5.2 矩阵的概念与运算定义矩阵的概念探讨矩阵的运算(加减、数乘、转置、逆矩阵等)5.3 线性方程组的概念与解法引入线性方程组的概念探讨线性方程组的解法(高斯消元法、矩阵求逆法等)5.4 行列式的概念与性质定义行列式的概念探讨行列式的性质与计算方法第六章:概率论基础6.1 随机事件与概率定义随机事件与概率的概念探讨概率的计算(古典概率、条件概率、独立事件等)6.2 随机变量及其分布引入随机变量的概念探讨离散型随机变量与连续型随机变量的分布律6.3 期望与方差定义期望与方差的概念探讨期望与方差的计算及其性质第七章:线性代数进阶7.1 特征值与特征向量定义特征值与特征向量的概念探讨特征值与特征向量的计算及其应用7.2 二次型定义二次型的概念探讨二次型的标准型与判定定理7.3 线性空间与线性变换引入线性空间与线性变换的概念探讨线性变换的性质与计算第八章:常微分方程与应用8.1 常微分方程的基本概念定义常微分方程的概念探讨常微分方程的解法(分离变量法、积分因子法等)8.2 常微分方程的应用探讨常微分方程在物理、生物学等领域的应用8.3 线性微分方程组引入线性微分方程组的概念探讨线性微分方程组的解法与应用第九章:复变函数基础9.1 复数的基本概念与运算定义复数的概念探讨复数的运算(加减、乘除、共轭等)9.2 复变函数的概念与性质引入复变函数的概念探讨复变函数的性质(解析性、奇偶性等)9.3 复变函数的积分与级数探讨复变函数的积分(柯西积分定理、柯西积分公式等)探讨复变函数的级数(泰勒级数、洛朗级数等)第十章:实变函数与泛函分析初步10.1 实函数的基本概念与性质定义实函数的概念探讨实函数的性质(单调性、有界性等)10.2 泛函分析的基本概念引入泛函分析的概念探讨赋范线性空间与希尔伯特空间的基本概念10.3 赋范线性空间的基本定理探讨赋范线性空间中的基本定理(闭区间上的有界线性算子等)重点解析第一章:函数与极限重点:函数的概念与性质、极限的概念与性质、无穷小与无穷大、极限的运算法则。
第四章 微分中值定理和导数的应用本章知识◆ 微分中值定理 ◆ 洛必达法则◆ 函数单调性的判定 ◆ 函数的极值及其求法 ◆ 函数的最值及其应用 ◆ 曲线的凹凸性和拐点 ◆ 曲线的渐近线◆ 导数在经济分析中的应用本章重点:拉格朗日中值定理,洛必达法则,函数单调性的判定,函数极值、最值的求法和实际应用本章难点:函数最值的应用,弹性函数 4.1微分中值定理 4.1.1罗尔定理定理(罗尔(Rolle )中值定理):若 f (x)满足: (1)在[a, b]上连续, (2)在(a, b)内可导, (3)f (a) = f (b),则至少存在一点(,)a b ξ∈,使得()0.f ξ'=罗尔中值定理的几何意义两端高度相同的一段连续曲线上,若除端点外它在每一点都有不垂直于x 轴的切线,则在其中必至少有一条切线平行于x 轴.4.1.2拉格朗日(Lagrange)中值定理定理:拉格朗日(Lagrange)中值定理若 f (x)满足: (1)在[a, b]上连续,(2)在(a, b)内可导,则至少存在一点(,)a b ξ∈,使得()()().f b f a f b a ξ-'=-拉格朗日(Lagrange)中值定理的几何意义在曲线弧AB 上,至少存在一点C ,该点的切线平行于AB 。
拉氏公式精确地表达了函数在一个区间上的增量与函数在这区间内某点处的导数之间的关系.'(,),()0,()()x a b f x f x c c ∈==推论:如果对于任意有则为常数()()(,)()()()x a b f x g x f x g x c c ''∈=+/推论:如果对于任意,有=则为常数4.2洛必达法则洛必达法则型型及基本不定式:001.2.4∞∞()(),()(),()0lim .()0x a x x a x f x g x f x g x →→∞→→∞∞∞如果当或时两个函数与都趋于零或都趋于无穷大那么极限称为或型未定式 定理 (洛必达法则):(),()(1),()();(2)(),()()()0;()(3)lim ();()()()lim lim .()(),.()().x a x a x a f x g x x a f x g x a a f x g x g x f x g x f x f x g x g x x f x g x →→→→'''≠'''='→∞设满足:当时函数及都趋于零在点的某领域内点本身可以除外及都存在且存在或为无穷大那么当时该法则仍然成立当及都趋于无穷大时,该法则仍注1:注2然成立:注意:洛必达法则是求未定式的一种有效方法,与其它求极限方法结合使用,效果更好.()()()()()()()()()()()()x g x f x g x f x g x f x g x f x g x f x g x f x x x x x x x x x x ''''=''=''∞∞''∞∞→→→→→00000lim lim lim 00lim 200lim1续使用洛必达法则,即仍满足定理,则可以继,”型不定式,且函数”或“还是“)若”型不定式”或“必须是“)注意使用洛必达法则是必须4.2.2其他不定式000,,0,1,∞⋅∞∞-∞∞型未定式解法关键:将其它类型未定式化为洛必达法则可解决的类型。
《高等数学》课程教案一、教学目标1. 知识与技能:使学生掌握高等数学的基本概念、理论和方法,培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:激发学生对高等数学的兴趣,培养学生的逻辑思维和抽象思维能力,引导学生认识高等数学在自然科学和社会科学中的重要地位。
二、教学内容1. 第一章:极限与连续教学重点:极限的定义、性质,函数的连续性,无穷小比较,洛必达法则。
2. 第二章:导数与微分教学重点:导数的定义,求导法则,高阶导数,隐函数求导,微分方程。
3. 第三章:积分与面积教学重点:不定积分,定积分,积分计算方法,面积计算,弧长与曲线长度。
4. 第四章:级数教学重点:数项级数的概念,收敛性判断,功率级数,泰勒级数,傅里叶级数。
5. 第五章:常微分方程教学重点:微分方程的基本概念,一阶线性微分方程,可分离变量的微分方程,齐次方程,线性微分方程组。
三、教学方法1. 采用讲授法,系统地讲解高等数学的基本概念、理论和方法。
2. 运用示例法,通过典型例题展示解题思路和技巧。
3. 组织练习法,让学生在课堂上和课后进行数学练习,巩固所学知识。
四、教学评价1. 过程性评价:关注学生在课堂上的参与程度、思维品质和问题解决能力。
2. 终结性评价:通过课后作业、单元测试、期中考试等方式,检验学生掌握高等数学知识的情况。
五、教学资源1. 教材:《高等数学》及相关辅助教材。
2. 课件:制作精美、清晰的课件,辅助课堂教学。
3. 习题库:提供丰富的习题,供学生课后练习。
4. 网络资源:利用网络平台,提供相关的高等数学学习资料和在线答疑。
5. 辅导资料:为学生提供补充讲解和拓展知识点的辅导资料。
六、第六章:多元函数微分学教学重点:多元函数的极限与连续,偏导数,全微分,高阶偏导数,方向导数,雅可比矩阵与行列式。
七、第七章:重积分教学重点:二重积分,三重积分,线积分,面积分,体积积分,重积分的计算方法,对称性原理。
八、第八章:常微分方程的应用教学重点:常微分方程在物理、生物学、经济学等领域的应用,求解方法,数值解法,稳定性分析。
高一数学必修四教案(6篇)高一数学必修四教案(6篇)高一数学必修四教案1 教学准备教学目的1·掌握平面向量的数量积及其几何意义;2·掌握平面向量数量积的重要性质及运算律;3·理解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4·掌握向量垂直的条件·教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程一、复习引入:1·向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结〔1〕请学生回忆本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?〔2〕在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。
〔3〕你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2·4 A组2、7题课后小结〔1〕请学生回忆本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?〔2〕在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。
〔3〕你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2·4 A组2、7题板书高一数学必修四教案2 教学准备教学目的o理解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·o通过学生对向量与数量的识别才能的训练,培养学生认识客观事物的数学本质的才能·教学重难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·教学难点:平行向量、相等向量和共线向量的区别和联络·教学过程〔一〕向量的概念:我们把既有大小又有方向的量叫向量。
高中数学必修4教案6篇教学目标1、把握平面对量的数量积及其几何意义;2、把握平面对量数量积的重要性质及运算律;3、了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4、把握向量垂直的条件。
教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。
(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高中数学必修4优秀教案篇二教学预备教学目标一、学问与技能(1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进展角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系。
(6) 使学生通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。
二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并把握弧度制的定义,领悟定义的合理性。
依据弧度制的定义推导并运用弧长公式和扇形面积公式。
以详细的实例学习角度制与弧度制的互化,能正确使用计算器。
三、情态与价值通过本节的学习,使同学们把握另一种度量角的单位制---弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。
《高等数学》标准教案第一章:函数与极限1.1 函数的概念与性质教学目标:了解函数的定义,掌握函数的性质及常见函数类型。
教学内容:函数的定义,函数的单调性、奇偶性、周期性。
教学方法:通过实例讲解,引导学生理解函数的概念,运用性质进行分析。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质及求解方法。
教学内容:极限的定义,极限的性质,无穷小与无穷大,极限的求解方法。
教学方法:通过具体例子,引导学生理解极限的概念,运用性质及方法求解极限。
第二章:微积分基本概念2.1 导数与微分教学目标:理解导数的定义,掌握基本导数公式及微分方法。
教学内容:导数的定义,基本导数公式,微分的方法及应用。
教学方法:通过实际例子,引导学生理解导数的概念,运用公式及方法进行微分。
2.2 积分与微分方程教学目标:理解积分的概念,掌握基本积分公式及解微分方程的方法。
教学内容:积分的定义,基本积分公式,微分方程的解法。
教学方法:通过具体例子,引导学生理解积分的概念,运用公式及方法解微分方程。
第三章:多元函数微分学3.1 多元函数的概念与性质教学目标:了解多元函数的定义,掌握多元函数的性质及常见类型。
教学内容:多元函数的定义,多元函数的性质,常见多元函数类型。
教学方法:通过实例讲解,引导学生理解多元函数的概念,运用性质进行分析。
3.2 多元函数的求导法则教学目标:理解多元函数求导法则,掌握多元函数的求导方法。
教学内容:多元函数的求导法则,多元函数的求导方法。
教学方法:通过具体例子,引导学生理解多元函数求导法则,运用方法进行求导。
第四章:重积分与曲线积分4.1 二重积分及其应用教学目标:理解二重积分的定义,掌握二重积分的计算方法及应用。
教学内容:二重积分的定义,二重积分的计算方法,二重积分在几何及物理中的应用。
教学方法:通过具体例子,引导学生理解二重积分的概念,运用计算方法进行计算。
4.2 曲线积分的概念与应用教学目标:理解曲线积分的定义,掌握曲线积分的计算方法及应用。
高中数学必须4教案
课题:直线的斜率及倾斜角
教学目标:
1.了解直线的斜率的概念及计算方法。
2.能够计算直线倾斜角的大小。
3.能够应用直线的斜率及倾斜角解决相关问题。
教学重点:
1.直线的斜率的概念及计算方法。
2.直线倾斜角的计算方法。
3.应用直线的斜率及倾斜角解决相关问题。
教学难点:
1.直线倾斜角的计算方法。
2.应用直线的斜率及倾斜角解决相关问题。
教具准备:
1.黑板、粉笔
2.直尺、毫米纸
3.教材相关课文
教学过程:
1.复习上节课内容,引入本节课的主题。
2.讲解直线的斜率概念及计算方法,并通过例题进行讲解。
3.讲解直线倾斜角的计算方法,并通过例题进行讲解。
4.学生进行练习,巩固所学知识。
5.讲解应用题,引导学生总结应用直线斜率及倾斜角解决问题的方法。
6.布置作业。
教学反思:
本节课主要介绍了直线的斜率及倾斜角的概念及计算方法,通过例题的讲解,学生能够掌握相关知识,并能够应用于解决相关问题。
课后需要进行适当的复习和巩固,确保学生能够掌握所学内容。
课时:2课时教学目标:1. 理解多元函数微分学的概念,掌握偏导数的计算方法。
2. 理解隐函数存在定理,掌握隐函数的偏导数计算方法。
3. 掌握复合函数的偏导数计算方法,理解函数的极值存在的充分条件。
4. 培养学生分析问题和解决问题的能力,提高学生的数学素养。
教学重点:1. 偏导数的计算方法。
2. 隐函数的偏导数计算方法。
3. 复合函数的偏导数计算方法。
4. 函数的极值存在的充分条件。
教学难点:1. 偏导数的计算。
2. 隐函数的偏导数计算。
3. 复合函数的偏导数计算。
教学过程:一、导入1. 复习一元函数的导数和微分,引导学生理解多元函数微分学的概念。
2. 举例说明偏导数的实际应用,激发学生的学习兴趣。
二、新课讲解1. 偏导数的概念及计算方法- 引导学生理解偏导数的定义,掌握偏导数的计算方法。
- 通过实例讲解偏导数的计算过程,让学生掌握计算技巧。
2. 隐函数存在定理及偏导数计算- 介绍隐函数存在定理,让学生理解其含义和应用。
- 通过实例讲解隐函数的偏导数计算方法,让学生掌握计算技巧。
3. 复合函数的偏导数计算- 介绍复合函数的偏导数计算方法,让学生理解其原理。
- 通过实例讲解复合函数的偏导数计算过程,让学生掌握计算技巧。
4. 函数的极值存在的充分条件- 介绍函数的极值存在的充分条件,让学生理解其含义和应用。
- 通过实例讲解如何判断函数的极值,让学生掌握判断技巧。
三、课堂练习1. 学生独立完成课本上的相关习题,巩固所学知识。
2. 教师巡视指导,解答学生在练习过程中遇到的问题。
四、课堂小结1. 回顾本节课所学内容,强调重点和难点。
2. 对学生进行鼓励,提高学生的学习信心。
五、课后作业1. 完成课后习题,巩固所学知识。
2. 查阅相关资料,了解多元函数微分学的应用。
教学反思:本节课通过讲解多元函数微分学的概念、偏导数的计算方法、隐函数的偏导数计算方法、复合函数的偏导数计算方法以及函数的极值存在的充分条件,使学生掌握了多元函数微分学的基本知识。
高中数学必修4教资教案
课程名称:高中数学必修4
课时安排:共40课时,每周3课时,共13周完成
教学目标:通过本教材的教学,使学生能够有效掌握高中数学必修4的相关知识和技能,提高学生的数学素养和解决问题的能力。
第一课时:集合与常用逻辑符号
教学内容:
1. 了解集合的概念和性质。
2. 掌握集合的表示方法和常用符号。
3. 学习常用的逻辑符号及其意义。
教学重点:理解集合的概念和常用逻辑符号的含义。
教学难点:如何用常用逻辑符号表示命题、复合命题的判断。
教学方法:示例分析法、讨论交流法
教学过程:
1. 引入集合的概念,讲解集合的定义和性质。
2. 介绍集合的表示方法和常用符号,并通过例题进行讲解。
3. 学习常用的逻辑符号及其含义,讲解逻辑符号的运用。
4. 练习题目,巩固学生对集合和逻辑符号的理解。
作业:完成课后习题,熟练掌握集合和逻辑符号的用法。
课后反思:本节课主要是介绍集合的概念和常用逻辑符号,学生在掌握这些基本知识的基础上,可以更好地理解后续内容。
备注:本教案为高中数学必修4教材第一章的教学内容,旨在帮助学生建立良好的数学基础,为以后更深入的学习打下坚实的基础。
课题极限存在准则与两个重要极限、无穷小阶的比较课时2课时(90 min)教学目标知识技能目标:(1)掌握极限存在准则与两个重要极限。
(2)理解无穷小阶的比较。
思政育人目标:通过学习极限存在准则与两个重要极限、无穷小阶的比较,培养学生的逻辑思维、辩证思维和创新思维能力;引导学生养成独立思考和深度思考的良好习惯;树立学生实事求是、一丝不苟的科学精神教学重难点教学重点:极限存在准则Ⅰ、极限存在准则Ⅱ教学难点:利用两个重要极限公式求极限的方法教学方法讲授法、问答法、讨论法、演示法、实践法教学用具电脑、投影仪、多媒体课件、教材教学设计第1节课:考勤(2 min)→知识讲解(35 min)→问题讨论(10 min)第2节课:知识讲解(20 min)→问题讨论(10 min)→课堂测验(10 min)→课堂小结(5 min)教学过程主要教学内容及步骤设计意图第一节课考勤(2 min)⏹【教师】清点上课人数,记录好考勤⏹【学生】班干部报请假人员及原因培养学生的组织纪律性,掌握学生的出勤情况知识讲解(35 min)⏹【教师】讲解准则Ⅰ与第一个重要极限,并通过例题讲解介绍其应用准则Ⅰ(夹逼准则)设数列{}na,{}nb,{}nc满足:(1)00N n N+∃∈>Z,时,n n na c b,(2)lim limn nn na b a→∞→∞==(a为常数),则limnnc a→∞=.学习极限存在准则与两个重要极限。
边做边讲,及时巩固练习,实现教学做一体化2例1 求222111lim 2n n n n n n →∞⎛⎫+++⎪+π+π+π⎝⎭.解 对n ∀∈N ,有22221112n nn n n n n n n n n ⎛⎫+++⋅=⎪+π+π+π+π+π⎝⎭, 2222221112n n n n n n n n n n ⎛⎫+++⋅=⎪+π+π+π+π+π⎝⎭, 而1limlim 11n n n n n→∞→∞==π+π+,2221lim lim 11n n n n n →∞→∞==π+π+. 由夹逼准则可知222111lim 12n n n n n n →∞⎛⎫+++= ⎪+π+π+π⎝⎭.上述数列极限存在准则可以推广到函数的极限:准则Ⅰ'(夹逼准则) 若函数()()()f x g x h x ,,在点0x 的某去心邻域内满足: (1)()()()g x f x h x ,(2)0lim ()lim ()x x x x g x h x A →→==,则有0lim ()x x f x A →=.作为准则Ⅰ及准则Ⅰ'的应用,下面证明一个重要极限:0sin lim1x xx→=.证明 在图1-25所示的单位圆中,设圆心角BOA x ∠=,AD 切圆O 于A ,且与OB 延长线相交于D ,于是有AOB AOB OAD S S S <<△△△扇形,即111sin tan 222x x x <<,sin tan x x x <<,不等式两边同时3除以sin x 得11sin cos x x x<<, 不等式两边同时取倒数得sin cos 1x x x <<,02x π⎛⎫∈ ⎪⎝⎭,. 当02x π⎛⎫∈- ⎪⎝⎭,时,02x π⎛⎫-∈ ⎪⎝⎭,,有sin()cos()1x x x--<<-,同样可得sin cos 1x x x <<.所以当22x ππ⎛⎫∈- ⎪⎝⎭,时,sin cos 1xx x<<.又因为0limcos cos01x x →==,0lim11x →=,由判别准则I 知0sin lim 1x xx →=.图1-25例2 求0tan limx xx→.解 00tan sin 11limlim 11cos cos0x x x x x x x →→=⋅=⋅=.例3 求0sin limx kxx→.解 设t kx =,则当0x →时,0t kx =→,于是4000sin sin sin limlim lim 1x x t kx k kx tk k k x kx t →→→==⋅=⨯=.例4 求0sin limsin x axbx→.解 0000sin sin limsin lim lim sin sin sin lim x x x x ax axax a x x bx bx bx bx x→→→→===. 例5 求sin 2()limx x x →π-π-π.解 设t x =-π,则x →π时,0t →,所以0sin 2()sin 2limlim 2x t x tx t→π→-π==-π.⏹ 【学生】掌握准则Ⅰ与第一个重要极限⏹ 【教师】讲解准则Ⅱ与第二个重要极限,并通过例题讲解介绍其应用定义1 如果数列{}n a 满足121n n a a a a +,则称数列是单调递增的;如果数列{}n a 满足121n n a a a a +,则称数列是单调递减的.单调递增数列与单调递减数列统称为单调数列.准则Ⅱ(单调有界原理) 单调有界的数列必存在极限. 不妨设{}n a 是一单调递增的数列,且0M ∃>,使对n ∀,n a M ,则数列{}n a 的通项n a 随n 的增大而不断在数轴上向右平移,但不会超过点M .因此,n a 必然无限接近于某个实数()n a a a M <<,a 便是数列{}n a 的极限,如图1-26所示.图1-265证明:1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.(详见教材)例6 求4lim 1xx x →∞⎛⎫+⎪⎝⎭. 解法1 设4t x=,则当x →∞时,0t →,所以 4144004lim 1lim(1)lim[(1)]e xt t x t t t t x →∞→→⎛⎫+=+=+= ⎪⎝⎭. 解法2 44444444lim 1lim 1lim 1e xxxx x x x x x ⋅→∞→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 例7 求21lim 1xx x →∞⎛⎫- ⎪⎝⎭.解22(2)2111lim 1lim 1lim 1e x x xx x x x x x --⋅---→∞→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫-=+=+=⎢⎥ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 例8 求431lim 12x x x -→∞⎛⎫+ ⎪⎝⎭.解43432221111lim 1lim 1lim 1lim 11e 2222x x x x x x x x x x x --⋅→∞→∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫+=+⋅+=+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭结论 一般地,有公式lim 1e bx cab x a x +→∞⎛⎫+= ⎪⎝⎭.例9 求123lim 21x x x x +→∞+⎛⎫⎪+⎝⎭.解63121233112323e 22lim lim lim lim 1e 1212111e 122xxx x x x x x x x x x x x x x +→∞→∞→∞→∞⎛⎫⎛⎫++ ⎪ ⎪++⎛⎫⎛⎫⎝⎭=⋅=⋅== ⎪ ⎪ ⎪++⎝⎭⎝⎭⎛⎫ ⎪+ ⎪+ ⎪⎝⎭⎝⎭⏹ 【学生】掌握准则Ⅱ与第二个重要极限问题讨论 (10 min )⏹ 【教师】组织学生讨论以下问题1.夹逼准则与极限的定义有何内在联系?2.单调递增(递减)有上界(下界)的数列一定是有界数列吗?⏹ 【学生】讨论、发言通过课堂讨论,活跃课堂气氛,加深学生对知识点的理解第二节课知识讲解 (20 min )⏹ 【教师】讲解无穷小阶的比较,并通过例题讲解介绍其应用定义1 设α,β是同一变化过程中的两个无穷小量, (1)若lim0αβ=,则称α是比β高阶的无穷小量,记为()o αβ=.(2)若limαβ=∞,则称α是比β低阶的无穷小量. (3)若lim c αβ=(c 是不等于零的常数),则称α与β是同阶无穷小量.特别地,若1c =,则称α与β是等价无穷小量,记作~αβ.例1 证明:当0x →时,211cos ~2x x -. 证明 因为22220002sin sin1cos 22lim lim lim 1222x x x x x x x x x →→→⎛⎫ ⎪-=== ⎪ ⎪⎝⎭,所学习无穷小阶的比较。
高等数学教案第四章不定积分教学目的:第四章不定积分1、理解原函数概念、不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、不定积分的概念;2、不定积分的性质及基本公式;3、换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I上, 可导函数F(x)的导函数为f(x), 即对任一x∈I, 都有F '(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数.例如因为(sin x)'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为(x)'=1, 所以x是1的原函数. 2x2x提问:cos x和1还有其它原函数吗? 2x原函数存在定理如果函数f(x)在区间I上连续, 那么在区间I上存在可导函数F(x), 使对任一x ∈I 都有F '(x)=f(x).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f(x)在区间I上有原函数F(x), 那么f(x)就有无限多个原函数,F(x)+C都是f(x)的原函数, 其中C是任意常数.第二, f(x)的任意两个原函数之间只差一个常数, 即如果Φ(x)和F(x)都是f(x)的原函数, 则Φ(x)-F(x)=C (C为某个常数).高等数学课程建设组1高等数学教案第四章不定积分定义2 在区间I上, 函数f(x)的带有任意常数项的原函数称为f(x)(或f(x)dx )在区间I上的不定积分, 记作⎰f(x)dx.其中记号⎰称为积分号, f(x)称为被积函数, f(x)dx称为被积表达式, x 称为积分变量. 根据定义, 如果F(x)是f(x)在区间I上的一个原函数, 那么F(x)+C就是f(x)的不定积分, 即⎰f(x)dx=F(x)+C.因而不定积分⎰f(x)dx可以表示f(x)的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以⎰cosxdx=sinx+C.因为x是1的原函数, 所以 2x例2. 求函数f(x)=1的不定积分. x解:当x>0时, (ln x)'=1, x⎰1dx=lnx+C(x>0); x当x<0时, [ln(-x)]'=1⋅(-1)=1, -xx⎰1dx=ln(-x)+C(x<0). x合并上面两式, 得到⎰1dx=ln|x|+C(x≠0). x例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解设所求的曲线方程为y=f(x), 按题设, 曲线上任一点(x, y)处的切线斜率为y'=f'(x)=2x,,即f(x)是2x 的一个原函数.因为⎰2xdx=x2+C,高等数学课程建设组2 ⎰1dx=x+C. x高等数学教案第四章不定积分故必有某个常数C使f(x)=x 2+C, 即曲线方程为y=x 2+C.因所求曲线通过点(1, 2), 故2=1+C, C=1.于是所求曲线方程为y=x2+1.积分曲线: 函数f(x)的原函数的图形称为f(x)的积分曲线.从不定积分的定义, 即可知下述关系: d[⎰f(x)dx]=f(x), dx或 d[⎰f(x)dx]=f(x)dx;又由于F(x)是F '(x)的原函数, 所以⎰F'(x)dx=F(x)+C,或记作⎰dF(x)=F(x)+C.由此可见, 微分运算(以记号d表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)⎰kdx=kx+C(k是常数), (2)⎰xμdx=1xμ+1+C, +1(3)⎰1dx=ln|x|+C, x(4)⎰exdx=ex+C, x(5)⎰axdx=a+C, lna(6)⎰cosxdx=sinx+C,(7)⎰sinxdx=-cosx+C, (8)⎰1dx=sec2xdx=tanx+C, ⎰cos2x(9)⎰12=⎰csc2xdx=-cotx+C, sinx高等数学课程建设组3高等数学教案第四章不定积分(10)⎰1=arctanx+C, 1+x(11)⎰1=arcsinx+C, -x2(12)⎰secxtanxdx=secx+C,(13)⎰cscxcotdx=-cscx+C,(14)⎰sh x dx=ch x+C,(15)⎰ch x dx=sh x+C.例4例5 ⎰xdx=⎰x-3dx=-3+1x-3+1+C=-2x+C.111⎰x2xdx=⎰5x2dx7+1122=x+C=x2+C=2x3+C. +17725例6 ⎰dx=⎰xx-4x3dx=-4+1x3-+13+C-1=-3x3+C=-3+C. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰[f(x)+g(x)]dx=⎰f(x)dx+⎰g(x)dx.这是因为, [⎰f(x)dx+⎰g(x)dx]'=[⎰f(x)dx]'+[⎰g(x)dx]'=f(x)+g(x).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即⎰kf(x)dx=k⎰f(x)dx(k是常数, k ≠0).例7. ⎰x(x-5)dx=⎰5x2dx-725(x21-5x2)dx 5x2dx-51x2dx =⎰⎰15x2dx3=⎰⎰22 =x2-5⋅x2+C. 7332(x-1)3x-3x+3x-1=(x-3+3-1)dx 例8 ⎰dx=⎰⎰22xx2xx=⎰xdx-3⎰dx+3⎰1dx-⎰1=1x2-3x+3ln|x|+1+C. x2xx高等数学课程建设组4高等数学教案第四章不定积分例9 ⎰(ex-3cosx)dx=⎰exdx-3⎰cosxdx=ex-3sinx+C. 例10 ⎰2xexdx=⎰(2e)xdx=xx(2e)x+C=2e+C. ln(2e)1+ln22x+(1+x2)1+x+x 例11 ⎰=⎰=⎰(12+1)dx 22x(1+x)x(1+x)1+xx=⎰12dx+⎰1dx=arctanx+ln|x|+C. x1+x44(x2+1)(x2-1)+1xx-1+1 例12 ⎰=⎰=⎰dx 1+x21+x21+x2=⎰(x2-1+1dx=⎰x2dx-⎰dx+⎰11+x1+x=1x3-x+arctanx+C. 3例13 ⎰tan2xdx=⎰(sec2x-1)dx=⎰sec2xdx-⎰dx= tan x - x + C .例14 ⎰sin2x dx=⎰1-cosxdx=1⎰(1-cosx)dx 222=例15 1(x-sinx)+C. 2⎰1=4⎰12=-4cotx+C. sinxsin2cos222高等数学课程建设组5高等数学教案第四章不定积分 §4. 2 换元积分法一、第一类换元法设f(u)有原函数F(u), u=ϕ(x), 且ϕ(x)可微, 那么, 根据复合函数微分法, 有d F[ϕ(x) ]=d F(u)=F '(u)d u= F' [ϕ(x) ] dϕ(x)= F '[ϕ(x) ]ϕ'(x)d x ,所以 F '[ϕ(x)]ϕ'(x)dx= F '[ϕ(x)] dϕ(x)= F '(u)d u= d F(u)=d F[ϕ(x) ],因此⎰F'[ϕ(x)]ϕ'(x)dx=⎰F'[ϕ(x)]dϕ(x)=⎰F'(u)du=⎰dF(u)=⎰dF[ϕ(x)]=F[ϕ(x)]+C.即⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=[⎰f(u)du]u=ϕ(x)=[F(u) +C] u = ϕ(x) = F[ϕ(x)]+C.定理1 设f(u)具有原函数, u=ϕ(x)可导, 则有换元公式⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=⎰f(u)du=F(u)+C=F[ϕ(x)]+C .被积表达式中的dx 可当作变量x的微分来对待, 从而微分等式ϕ'(x)dx =du可以应用到被积表达式中.在求积分⎰g(x)dx时, 如果函数g(x)可以化为g(x)= f[ϕ(x)]ϕ'(x)的形式, 那么⎰g(x)dx=⎰f[ϕ(x)]ϕ'(x)dx=[⎰f(u)du]u=ϕ(x).例1. ⎰2cos2xdx=⎰cos2x⋅(2x)'dx=⎰cos2xd(2x)=⎰cosudu=sinu+C=sin 2x+C .例2. ⎰3+2x=2⎰3+2x(3+2x)'dx=2⎰3+2xd(3+2x) 11111=1⎰1dx=1ln|u|+C=1ln|3+2x|+C. 2u22例3. ⎰2xexdx=⎰ex(x2)'dx=⎰exd(x2)=⎰eudu=eu+C=ex+C.例4. ⎰x-x2dx=1⎰-x2(x2)'dx=1⎰-x2dx2 22=-1⎰-x2d(1-x2)=-1⎰u2du=-1u2+C 223=-1(1-x2)2+C. 3高等数学课程建设组6 3132222高等数学教案第四章不定积分例5. ⎰tanxdx=⎰sinxdx=-⎰1dcosx cosxcosx =-⎰1du=-ln|u|+C u=-ln|cos x|+C .=-ln|coxs|+C. 即⎰tanxdx类似地可得⎰cotxdx=ln|sinx|+C.熟练之后, 变量代换就不必再写出了.例6. ⎰a+xdx=a⎰111dx1+(2a=1⎰1x=1arctanx+C. a1+()2aaaa即 n+C. ⎰a2+x2=aarcta11x例7. ⎰chx=a⎰chxx=a shx+C. aaaa例8. 当a>0时,1=111xdx=⎰dx=arcs+C. ⎰aaaxxa2-x222-(-(aa⎰即⎰1=arcsx+C. 22a-x例9. ⎰x2-a2dx=2a⎰x-a-x+a)dx=2a[⎰x-adx-⎰x+adx] 1111111=1[⎰1d(x-a)-⎰1(x+a)] 2ax-ax+a=1[ln|x-a|-ln|x+a|]+C=1ln|x-a|+C. 2a2ax+a即⎰x-a=2aln|x+a|+C.⎰x(1+2lnx)=⎰1+2lnx=2⎰dxdlnx1d(1+2lnx) 1+2lnx11x-a 例10.=1ln|1+2lnx|+C. 2高等数学课程建设组7高等数学教案第四章不定积分例11. ⎰e=2⎰ed=2⎰e3xdx 3x=2e+C. 3含三角函数的积分:例12. ⎰sin3xdx=⎰sin2x⋅sinxdx=-⎰(1-cos2x)dcosx=-⎰dcosx+⎰cos2xdcosx=-cosx+1cos3x+C. 3例13. ⎰sin2xcos5xdx=⎰sin2xcos4xdsinx=⎰sin2x(1-sin2x)2dsinx=⎰(sin2x-2sin4x+sin6x)dsinx=1sin3x-2sin5x+1sin7x+C. 357例14. ⎰cos2xdx=⎰1+cos2xdx=1(⎰dx+⎰cos2xdx) 22=1⎰dx+1⎰cos2xd2x=1x+1sin2x+C. 2424例15. ⎰cos4xdx=⎰(cos2x)2dx=⎰[1(1+cos2x)]2dx 2=1⎰(1+2cos2x+cos22x)dx 4=1⎰3+2cos2x+1cos4x)dx 422=1(3x+sin2x+1sin4x)+C 428=3x+1sin2x+1sin4x+C. 8432例16. ⎰cos3xcos2xdx=1⎰(cosx+cos5x)dx 2=1sinx+1sin5x+C. 2101dx 例17. ⎰cscxdx=⎰1dx=⎰sinx2sincos22高等数学课程建设组8高等数学教案第四章不定积分dxdtanx=ln|tanx|+C=ln |csc x -cot x |+C . =⎰=⎰2tancos2tan222xdx 即⎰csc=ln |csc x -cot x |+C .例18. ⎰secxdx=⎰csc(x+πdx=ln|csc(x+ π)-cot(x+ π)|+C 222=ln |sec x + tan x | + C.xdx 即⎰sec=ln |sec x + tan x | + C.二、第二类换元法定理2 设x =ϕ(t)是单调的、可导的函数, 并且ϕ'(t)≠0. 又设f [ϕ(t)]ϕ'(t)具有原函数F(t), 则有换元公式⎰f(x)dx=⎰f[ϕ(t)]ϕ'(t)dt=F(t)=F[ϕ-1(x)]+C.其中t=ϕ-1(x)是x=ϕ(t)的反函数.这是因为{F[ϕ-1(x)]}'=F'(t)dt=f[ϕ(t)]ϕ'(t)1=f[ϕ(t)]=f(x). dxdt例19. 求⎰2-x2dx(a>0).解: 设x=a sin t , - π<t< π, 那么a2-x2=2-a2sin2t=acost, 22dx =a cos t d t , 于是⎰a2-x2dx=⎰acost⋅acostdt=a2⎰cos2tdt=a21t+1sin2t)+C. 24因为t=arcsin22x, sin2t=2sintcost=2x⋅a-x, 所以 aaa⎰2a11a-xdx=a(t+sin2t)+C=arcsinx+1xa2-x2+C. 2a224222解: 设x=a sin t , - π<t< π, 那么 22高等数学课程建设组9高等数学教案第四章不定积分⎰a2-x2dx=⎰acost⋅acostdt2 =a2⎰cos2tdt=a21t+1sin2t)+C=aarcsinx+1xa2-x2+C. 2a224提示:2-x2=a2-a2sin2t=acost, dx=acos tdt .22提示: t=arcsinx, sin2t=2sintcost=2x⋅-x. aaa例20. 求⎰dx(a>0). x2+a2解法一: 设x=a tan t, - π<t< π, 那么 22x2+a2=2+a2tan2t=a+tan2t=a sec t , dx=a sec 2t d t , 于是⎰2dxasect=sectdt= ln |sec t + tan t |+C . =⎰⎰asectx2+a222因为sect=x+a, tant=x, 所以 aa⎰dx= ln |sec t + tan t |+C=ln(x+x2+a2)+C=ln(x+x2+a2)+C, 1aax2+a2其中C 1=C-ln a .解法一: 设x=a tan t, - π<t< π, 那么 22⎰dx=asec2tdt=sectdt=ln|sect+tant|+C ⎰asect⎰x2+a222xx+a =+)+C=ln(x+x2+a2)+C1, aa其中C 1=C-ln a .提示:x2+a2=2+a2tan2t=asect , dx=a sec 2t dt ,22提示:sect=x+a, tant=x. aa解法二: 设x=a sh t , 那么高等数学课程建设组10高等数学教案第四章不定积分⎰dx=⎰ach t=⎰dt=t+C=arshx+C ach tax2+a2 ⎛⎫ =ln x+(x)2+1⎪+C=ln(x+x2+a2)+C1, a⎝a⎭其中C 1=C-ln a .提示: x2+a2=2sh2t+a2=a ch t , dx =a ch t d t .例23. 求⎰dx(a>0). x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2x2-a2=a2sec2t-a2=a2t-1=a tan t ,于是⎰dx=⎰asecttant=⎰sectdt= ln |sec t + tan t |+C . atantx2-a222因为tant=x-a, sect=x, 所以 aa⎰dx= ln |sec t + tan t |+C =ln|x+x2-a2|+C=ln(x+x2-a2)+C, 1aax2-a2其中C 1=C-ln a .当x<a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a2=-ln(-x+x2-a2)+C=ln(-x-x2-a2)+C1,22-x-x-a=ln+C=ln(-x-x2-a2)+C1, a其中C 1=C-2ln a .综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2高等数学课程建设组11高等数学教案第四章不定积分⎰dx =⎰asecttant=⎰sectdt22atantx-a22 =ln|sect+tatn|+C=lnx+x-a)+C aa(+x2-a2)+C, =lnx其中C 1=C-ln a .当x<-a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a22222-x-x-a =-ln(-x+x-a)+C=ln+C a =ln(-x-x2-a2)+C1,其中C 1=C-2ln a .提示:x2-a2=2sec2t-a2=a2t-1=atant .22x-a提示:tant=, sect=x. aa综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2补充公式:(16)⎰tanxdx=-ln|cosx|+C,(17)⎰cotxdx=ln|sinx|+C,(18)⎰secxdx=ln|secx+tanx|+C,(19)⎰cscxdx=ln|cscx-cotx|+C, (20)⎰(21)⎰(22)⎰(23)⎰1=1x+C, aaa+x221=1ln|x-a|+C,2ax+ax-a1=arcsinx+C, aa2-x2 dx=ln(x+x2+a2)+C, x2+a2高等数学课程建设组12高等数学教案第四章不定积分(24)⎰dx=ln|x+x2-a2|+C. x2-a2§4. 3 分部积分法设函数u=u(x)及v=v(x)具有连续导数. 那么, 两个函数乘积的导数公式为(uv)'=u'v+uv',移项得 uv'=(uv)'-u'v.对这个等式两边求不定积分, 得⎰uv'dx=uv-⎰u'vdx, 或⎰udv=uv-⎰vdu,这个公式称为分部积分公式.分部积分过程:⎰uv'dx=⎰udv=uv-⎰vdu=uv-⎰u'vdx= ⋅⋅⋅.例1 ⎰xcosxdx=⎰xdsinx=xsinx-⎰sinxdx=x sin x-cos x+C .例2 ⎰xexdx=⎰xdex=xex-⎰exdx=xex-ex+C.例3 ⎰x2exdx=⎰x2dex=x2ex-⎰exdx2=x2ex-2⎰xexdx=x2ex-2⎰xdex=x2ex-2xex+2⎰exdx=x2ex-2xex+2ex+C =ex(x2-2x+2 )+C.例4 ⎰xlnxdx=1⎰lnxdx2=1x2lnx-1⎰x2⋅1dx 222x=1x2lnx-1⎰xdx=1x2lnx-1x2+C. 2224例5 ⎰arccosxdx=xarccosx-⎰xdarccosx=xarccosx+⎰x1 -x21- =xarccosx-1⎰(1-x2)d(1-x2)=xarccosx--x2+C. 2例6 ⎰xarctanxdx=1⎰arctanxdx2=1x2arctanx-1⎰x2⋅1dx 2221+x=1x2arctanx-1⎰(1-1dx 221+x高等数学课程建设组13高等数学教案第四章不定积分 =1x2arctanx-1x+1arctanx+C. 222例7 求⎰exsinxdx.解因为⎰exsinxdx=⎰sinxdex=exsinx-⎰exdsinx=exsinx-⎰excosxdx=exsinx-⎰cosxdex=exsinx-excosx+⎰exdcosx=exsinx-excosx+⎰exdcosx=exsinx-excosx-⎰exsinxdx,所以⎰exsinxdx=1ex(sinx-cosx)+C. 2例8 求⎰sec3xdx.解因为⎰sec3xdx=⎰secx⋅sec2xdx=⎰secxdtanx=secxtanx-⎰secxtan2xdx=secxtanx-⎰secx(sec2x-1)dx=secxtanx-⎰sec3xdx+⎰secxdx=secxtanx+ln|secx+tanx|-⎰sec3xdx,cxdx=1(secxtanx+ln|secx+tanx|)+C. 所以⎰se32例9 求In=⎰dx, 其中n为正整数. (x+a) 解 I1=⎰2dx2=1x+C; ax+aa当n>1时,用分部积分法, 有2dxxx ⎰=+2(n-1)⎰ (x+a)(x+a)(x+a)高等数学课程建设组14高等数学教案第四章不定积分 =x1a2dx, +2(n-1)[-⎰(x+a)(x+a)(x+a)x+2(n-1)(In-1-a2In), 22n-1(x+a)即 In-1=于是 In=1[x+(2n-3)In-1]. 2a(n-1)(x+a)以此作为递推公式, 并由I1=例10 求⎰edx. 1xarctan+C即可得In. aa解令x =t 2 , 则 , dx=2tdt. 于⎰edx=2⎰tetdt=2et(t-1)+C=2e(x-1)+C.⎰edx=⎰ed(x)2=2⎰xed=2⎰xdex=2xex-2⎰exdx=2xe-2e+C=2e(x-1)+C.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)令ϕ(x)=u⎰f(u)du,⎰u(x)v'(x)dx=⎰u(x)dv(x) =u(x)v(x)-⎰v(x)du(x).哪些积分可以用分部积分法?⎰xcosxdx, ⎰xexdx, ⎰x2exdx;⎰xlnxdx, ⎰arccosxdx, ⎰xarctanxdx;⎰exsinxdx, ⎰sec3xdx.⎰2xexdx=⎰exdx2=⎰eudu= ⋅⋅⋅ ,⎰x2exdx=⎰x2dex=x2ex-⎰exdx2= ⋅⋅⋅ .高等数学课程建设组15 22高等数学教案第四章不定积分 §4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:P(x)a0xn+a1xn-1+⋅⋅⋅+an-1x+an , =Q(x)b0xm+b1xm-1+⋅⋅⋅+bm-1x+bm其中m和n都是非负整数; a0, a1, a2, ⋅⋅⋅ , an及b0, b1, b2, ⋅⋅⋅ , bm都是实数, 并且a0≠0, b0≠0. 当n<m时, 称这有理函数是真分式; 而当n≥m时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如x3+x+1=x(x2+1)+1=x+1. x2+1x2+1x2+1真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰解 x+3dx. x2-5x+6x+3⎰x-5x+6dx=⎰(x-2)(x-3)dx=⎰(x-3-x-2)dx x+365=⎰6dx-⎰5dx=6ln|x-3|-5ln|x-2|+C. x-3x-2提示: (A+B)x+(-2A-3B)x+3, =A+B=(x-2)(x-3)x-3x-2(x-2)(x-3)A+B=1, -3A-2B=3, A=6, B=-5.分母是二次质因式的真分式的不定积分:例2 求⎰解 x-2dx. x+2x+32⎰x2+2x+3dx=⎰2x2+2x+3-3x2+2x+3)dx x-212x+21=1⎰22x+2-3⎰21 2x+2x+3x+2x+3d(x2+2x+3)d(x+1)1 =⎰2 -3⎰2x+2x+3(x+1)2+()2=1ln(x2+2x+3)-3arctanx+1+C. 21(2x+2)-3x-2=1⋅x-2-3⋅1=提示: .x+2x+3x+2x+32x+2x+3x+2x+3例3 求⎰1dx. x(x-1)2高等数学课程建设组16高等数学教案第四章不定积分解⎰x(x-1)2dx=⎰[x-x-1+(x-1)2dx 1111=⎰1dx-⎰1dx+⎰12dx=ln|x|-ln|x-1|-1+C. xx-1x-1(x-1)提示: 1=1-x+x=-1+1 x(x-1)(x-1)2x(x-1)2x(x-1)2=-1-x+x+12=1-1+12. x(x-1)(x-1)xx-1(x-1)二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x、cos x表成tanx的函数, 然后作变换u=tanx: 222tanx2tanx==2u, sinx=2sinxcosx=22sec21+tan21+u2221-tan2x=1-u2. cosx=cos2x-sin2x=22sec21+u2变换后原积分变成了有理函数的积分.例4 求⎰1+sinxdx. sinx(1+cosx)2x2u2du. 1-u 解令u=tan, 则sinx=, cosx=, x=2arctan u , dx=2221+u1+u1+u2(1+2u)2du=1(u+2+1)du 于是⎰1+sinxdx=⎰sinx(1+cosx)2⎰u2u(1+1-u1+u1+u1+u21u=(+2u+ln|u|)+C=1tan2x+tanx+1ln|tanx|+C. 2242222解令u=tanx, 则 2高等数学课程建设组17高等数学教案第四章不定积分(1+2u2 ⎰1+sinxdx=⎰⋅22du 2sinx(1+cosx)2u(1+1-u1+u1+u21+u22 =1u+2u+ln|u|)+C=1⎰(u+2+1du 222u=1tan2x+tanx+1ln|tanx|+C. 42222说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如, 三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰x-1dx. x解设x-1=u, 即x=u2+1, 则⎰1+sinxdx=⎰1+sinxd(1+sinx)=ln(1+sinx)+C. cosx1⎰x-1dx=u⋅2udu=2u2⎰u2+1⎰u2+1x=2⎰(1-1)du=2(u-arctanu)+C 1+u=2(x-1-arctanx-1)+C.例6 求⎰dx. 1+x+2 解设x+2=u. 即x=u3-2, 则dx=1⋅3u2du=3u2-1+1du ⎰1++2⎰1+u⎰1+u2 =3⎰(u-1+1du=3(u-u+ln|1+u|)+C 1+u2=3x+2)2-x+2+ln|1+x+2|+C. 2例7 求⎰dx. (1+x)x 解设x=t 6, 于是dx =6t 5d t , 从而高等数学课程建设组18高等数学教案第四章不定积分 dx6t5dt=6t2=6(1-1)dt=6(t-arctant)+C=⎰(1+x)x⎰(1+t2)t3⎰1+t2⎰1+t2=6(x-arctanx)+C.例8 求⎰1+xdx. xx解设+x=t, 即x=21, 于是 xt-1-2t ⎰1+xdx=⎰(t2-1)t⋅xx(t-1)2 =-2⎰tdt=-2⎰(1+1)dt t-1t-1=-2t-ln|t-1|+C t+1=-2+x-ln+x-x+C. x+x+练习1. 求⎰dx. 2+cosx1-t2x2 解: 作变换t=tan, 则有dx=, x=dt, cos1+t221+t22dt221tdx1=⎰1+t2=2⎰⎰ =ddt⎰2t1-t2+cosx3+t31+()22+1+t23=2arctant3+C=231xtan)+C. 232. 求⎰sin5xdx. 4cosx4(1-co2sx)2sin5xsinx 解: ⎰dx=-⎰dcosx=-⎰dcosx cos4xco4sxco4sx21 =-⎰(1-+)dcosx cos2xcos4x=-cosx-3. 求⎰3x+1dx. x2-3x+221++C. 3cosx3cosx高等数学课程建设组19高等数学教案第四章不定积分解: ⎰3x+13x+174=dxdx=(-⎰(x-2)(x-1)⎰x-2x-1)dx x2-3x+211dx-4⎰dx x-2x-1=7ln|x-2|-4ln|x-1|+C.§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax+b的积分 =7⎰1.⎰dx=1ln|ax+b|+C ax+ba2.⎰(ax+b)μdx=3.⎰1(ax+b)μ+1+C(μ≠-1) a(μ+1)xdx=1(ax+b-bln|ax+b|)+C ax+ba224.⎰xdx=13[1(ax+b)2-2b(ax+b)+b2ln|ax+b|]+C ax+ba25.⎰6.⎰7.⎰8.⎰9.⎰dx=-1lnax+b+C x(ax+b)bxdx1+alnax+b+C =-x2(ax+b)bxb2xx1(ln|ax+b|+b)+C dx=(ax+b)2a2ax+bx2dx=1ax+b-2bln|ax+b|-b2)+C (ax+b)2a3ax+bdx11lnax+b+C =-x(ax+b)2b(ax+b)b2xxdx. (3x+4)2例1求⎰解: 这是含有3x+4的积分, 在积分表中查得公式x1b⎰(ax+b)2dx=a2(ln|ax+b|+ax+b)+C.高等数学课程建设组20高等数学教案第四章不定积分现在a=3、b=4, 于是x14⎰(3x+4)2dx=9ln|3x+4|+3x+4)+C. 二、含有+b的积分1.⎰ax+bdx=2ax+b)3+C 3a2.⎰x+bdx=22(3ax-2b)ax+b)3+C 15a3.⎰x2+bdx=4.⎰5.⎰2(15a2x2-12abx+8b2)ax+b)3+C 105a3xdx=2(ax-2b)+b+C 3a2+bx2dx=2(3a2x2-4abx+8b2)+b+C 15a3+b1ln+b-+C (b>0)ax+b+ 2arctanax+b+C (b<0)-b-b⎧⎪6.⎰dx=⎨x+b⎪⎩7.⎰dx=-+b-a⎰dx bx2bx+bx2+b8.⎰+bdx=+b+b⎰dx xx+b9.⎰2+bdx=-+b+a⎰dx xx2x+b三、含x2±a2的积分1.⎰2.⎰3.⎰x2+a2dx=1arctanx+C aadxx2n-3dx =+⎰(x2+a2)n2(n-1)a2(x2+a2)n-12(n-1)a2(x2+a2)n-1dx=1lnx-a+C x2-a22ax+aax+C (b>0)b x-b+C (b<0)x+b四、含有ax2+b(a>0)的积分⎧1arctandx=⎪1.⎰2⎨ax+b⎪1ln⎩2ab2.⎰xdx=1ln|ax2+b|+C ax2+b2a高等数学课程建设组21高等数学教案第四章不定积分 3.⎰4.⎰5.⎰6.⎰7.⎰x2dx=x-bdx ⎰2ax+baaax2+bdx1lnx2+C =x(ax2+b)2b|ax2+b|dxx2(ax2+b)1dx =-1-a⎰2bxbax+bdxaln|ax2+b|-1+C =x3(ax2+b)2b2x22bx2dx=x11dx+⎰(ax2+b)22b(ax2+b)2bax2+b五、含有ax2+bx+c (a>0)的积分六、含有x2+a2 (a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=arshx+C=ln(x+x2+a2)+C a1x2+a2dxx+C x2+a2)3a2x2+a2x=x2+a2+Cx2+a2x1dx=-+C x2+a2)3x2+a2x2=xx2+a2-a2ln(x+x2+a2)+C 22x2+a2x2xdx=-+ln(x+x2+a2)+C 22322x+a)x+a22dx=1lnx+a-a+C |x|xx2+a2ax22+a2dx=-x2+C ax2+a2 9.⎰x2+a2dx=xx2+a2+aln(x+x2+a2)+C 222例3求⎰dx. xx2+9dxdx=1⎰, xx2+92xx2+(322解: 因为⎰所以这是含有x2+a2的积分, 这里a=3. 在积分表中查得公式 2高等数学课程建设组22高等数学教案第四章不定积分 dx1ln2+a2-a+C. =⎰xx2+a2a|x|x2+(3)2-3dx+C=1lnx2+9-3+C. 于是⎰=1⋅2ln|x|32|x|xx2+923七、含有x2-a2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=xarch|x|+C=ln|x+x2-a2|+C 1ax2-a2|x|dxx=-+C x2-a2)3a2x2-a2xdx=x2-a2+C 22x-ax1dx=-+C x2-a2)3x2-a2x2dx=xx2-a2+a2ln|x+2-a2|+C 22x2-a2x2xdx=-+ln|x+x2-a2|+C x2-a2)3x2-a2dx=1arccosa+C |x|xx2-a2ax222dx=x2-a+C ax2-a29.⎰2-a2dx=xx2-a2-aln|x+x2-a2|+C 222八、含有2-x2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰dx=arcsinx+C a2-x2dxx=-+C a2-x2)3a22-x2xdx=2-x2+C 22-xx1dx=+C a2-x2)32-x2x2dx=-x2-x2+a2arcsinx+C 22a2-x2x2xdx=-arcsinx+C aa2-x2)32-x2高等数学课程建设组23高等数学教案第四章不定积分 7.⎰8.⎰22dx=1lna--x+C |x|x2-x2ax222dx=-2-x+C ax2-x229.⎰a2-x2dx=x2-x2-aarcsinx+C 22a九、含有ax2+bx+c(a>0)的积分十、含有±x-a或x-a)(x-b)的积分 x-b十一、含有三角函数的积分1.⎰secxdx=ln|secx+tanx|+C2.⎰cscxdx=ln|cscx-cotx|+C3.⎰secxtanxdx=secx+C4.⎰cscxcotxdx=-cscx+C5.⎰sin2xdx=x-1sin2x+C 246.⎰cos2xdx=x+1sin2x+C 247.⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx nn8.⎰cosnxdx=1cosn-1xsinx+n-1⎰cosn-2xdx nn9.⎰sinaxcosbxdx=-1cos(a+b)x-1cos(a-b)x+C 2(a+b)2(a-b)1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)10.⎰sinaxsinbxdx=-11.⎰cosaxcosbxdx=1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)atanx+bdx2=arctan+C (a2>b2) 12.⎰2222a+bsinxa-b-b高等数学课程建设组24高等数学教案第四章不定积分atanx+b-2-a2dx=213.⎰ln+C (a2<b2) a+bsinx2-a2atan+b+2-a2214.⎰dxa+barctan(a-btanx)+C (a2>b2) =2a+bcosxa+ba-ba+b2a+b+C (a2<b2) a+bb-atanx+dxa+bln14.⎰=2a+bcosxa+bb-atanx-2例2求⎰dx. 5-4cosxdx2a+barct(a-btax)+C (a2>b2). a-ba+b25+(-4)5-(-4)x)+C arct(ta5-(-4)5+(-4)2解: 这是含三角函数的积分. 在积分表中查得公式 =⎰a+bcoxsa+bdx2这里a=5、b=-4, a 2>b2, 于是 =⎰5-4coxs5+(-4)=2arctan(3tanx)+C. 32例4 求⎰sin4xdx.解: 这是含三角函数的积分. 在积分表中查得公式⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx, ⎰sin2xdx=x-1sin2x+C. nn24这里n=4, 于是⎰sin4xdx=-1sin3xcosx+3⎰sin2xdx=-1sin3xcosx+3x-1sin2x)+C. 444424高等数学课程建设组25。
高中数学四教案
教学目标:学生能够理解直线与点的位置关系,能够利用直线与点的位置关系解决问题。
教学重点:直线与点的位置关系的基本概念及运用。
教学难点:运用直线与点的位置关系解决问题。
教学过程:
一、复习导入(5分钟)
复习上节课所学的相关知识,引导学生思考直线与点的位置关系。
二、讲解直线与点的位置关系(10分钟)
1. 引导学生认识直线与点的位置关系,讲解相关概念。
2. 通过例题展示直线与点的位置关系。
三、练习与讨论(15分钟)
1. 学生自主完成练习题,老师及时指导。
2. 学生展示答案,进行讨论与分析。
四、巩固与拓展(10分钟)
1. 布置作业,巩固所学知识。
2. 提出拓展性问题,激发学生思考。
五、课堂总结(5分钟)
总结本节课所学内容,强调重点难点。
教学反思:
本节课重在让学生理解直线与点的位置关系,引导学生思考相关问题,提高解决问题的能力。
需注意引导学生多角度思考问题,注重培养学生的逻辑思维和创新能力。
第1章 函数、极限与连续无穷小与无穷大【教学目的】:1. 了解无穷小与无穷大的定义;2. 掌握无穷小的性质;3. 掌握无穷小和无穷大的关系;4. 学会两个无穷小量的比较;5. 熟练使用等价无穷小计算极限。
【教学重点】:1. 掌握无穷小的性质;2. 学会两个无穷小量的比较;3. 熟练使用等价无穷小计算极限。
【教学难点】:1. 学会两个无穷小量的比较;2. 熟练使用等价无穷小计算极限。
【教学时数】:2学时【教学过程】:1.3.1 无穷小量1、无穷小量定义1 如果当0x x →(或∞→x )时,函数)(x f 的极限为0,那么就称函数)(x f 为0x x →(或∞→x )时的无穷小量,简称无穷小.记作()0lim 0=→x f x x (或()0lim =∞→x f x ) 注意:(1))(x f 是否为无穷小量与自变量的变化过程密切相关.0→x 时,x sin 是无穷小量,而2π→x 时,x sin 不是无穷小量. (2)无穷小量不是一个很小的数,而是极限为零的一个变量.特殊地,函数0)(≡x f ,它在自变量的任何变化过程中均为无穷小量.2、无穷小的性质性质1 有限个无穷小量的代数和是无穷小量.性质2 有限个无穷小量的乘积是无穷小量.性质3 有界函数与无穷小量的乘积是无穷小量.特别地,常量与无穷小量的乘积是无穷小量.例1 求xx x 1sin lim 0→. 解 因为0lim 0=→x x ,所以x 是0→x 时的无穷小;而|x 1sin |≤1,所以x 1sin 是有界函数,根据无穷小的性质3,可知01sin lim 0=→xx x .1.3.2 无穷大量定义2 如果当0x x →时,函数)(x f 的绝对值无限增大,那么称函数)(x f 为当0x x →时的无穷大量,简称无穷大.如果函数)(x f 为当0x x →时的无穷大,那么它的极限是不存在的.但为了便于描述函数的这种变化趋势,也称“函数的极限是无穷大”,并记作∞=→)(lim 0x f x x 例如:当0→x 时,x 1无限增大,所以当0→x 时x1是无穷大量.即∞=→x x 1lim 0. 定理1 在自变量的同一变化过程中,如果函数)(x f 是无穷大量,那么)(1x f 是无穷小量;反之,如果函数)(x f 是无穷小量,且)(x f ≠0,那么)(1x f 是无穷大量.1.3.3 无穷小的比较定义3 设βα,均为x 的函数0lim 0=→x x α,0lim 0=→βx x ,且0≠β(0x 可以是∞±或∞), (1) 如果0lim 0=→βαx x ,则称当0x x →时α是β的高阶无穷小,或称β是α的低阶无穷小,记作)(βαo =,(0x x →); (2) 如果C a x =→βαlim ,(0≠C ),则称当0x x →时α与β是同阶无穷小;特别地,当1=C 时,称当0x x →时α与β是等价无穷小,记作βα~(0x x →).常用的等价无穷小为:当x → 0时:x x ~sin ,x x ~tan ,x x ~arcsin ,x x ~arctan ,221~cos 1x x -, x e x ~1-,x x ~)1ln(+,x nx n 1~11-+. 例6 求x x e x x x 2sin )cos 1()1(lim 20--→.解 因为x →0时 x e x~1-, x 2sin ~2x , x cos 1-~x 221, 所以 1221lim 2sin )cos 1()1(lim 22020=⋅⋅=--→→x x x x x x e x x x x .【教学小节】:无穷小与无穷大是极限运算的重要工具。
《高等数学》教案高等数学教案教学目标:1.理解函数概念、函数的表示及其图象。
2.掌握函数与方程的关系。
3.掌握函数的基本运算和初等函数的性质及其变换。
4.学会利用导数进行函数的研究与运算。
5.培养学生逻辑思维和数学建模能力。
6.培养学生数学运算、分析及解决实际问题的能力。
教学内容:第一章函数及其图象1.1函数的概念1.2函数的表示及其图象1.3函数的性质及其应用1.4反函数第二章三角函数2.1弧度制2.2任意角与弧度制的关系2.3三角函数的概念及其图象2.4一些常用三角函数的性质及其应用2.5反三角函数及其应用第三章一元二次函数和二次方程3.1一元二次函数及其性质3.2二次方程的一般形式及其解法3.3二次函数与二次方程的应用第四章一次函数与一次方程组4.1一次函数的概念及其图象4.2一次函数的性质及其应用4.3一次方程组的概念及其解法4.4一次函数与一次方程组的应用第五章指数函数与对数函数5.1指数函数的概念及其性质5.2对数函数的概念及其性质5.3指数方程与对数方程的解法5.4指数函数与对数函数的应用第六章高等函数6.1幂函数与比值函数6.2高次多项式函数与有理函数6.3函数的复合6.4函数的反函数6.5复函数及其性质第七章几何应用与优化问题7.1平面解析几何7.2空间解析几何7.3曲线的切线与法线7.4函数的极值与最值教学方法:1.课堂讲授:通过讲解理论知识,引导学生理解和掌握基本概念、性质和定理。
2.课堂讨论:引导学生运用所学知识,通过问题讨论和解决实例,培养学生的问题求解能力和创造力。
3.数学建模:通过实际问题的模型化和解决,培养学生的逻辑思维和数学建模能力。
4.实验探究:通过实验活动,让学生亲自动手操作,观察现象,总结规律,加深对知识的理解和记忆。
评价方式:1.作业评价:通过课后作业和习题解答,评价学生对所学知识的理解和运用能力。
2.课堂表现评价:通过学生的回答问题、讨论和提问活跃程度,评价学生的参与度和表现水平。
第四章不定积分§4.1 不定积分的概念与性质1.如果在区间I上,可导函数(xf,即对任一F的导数为))(xx∈,都有I'或xF=f(x())((=,)dF)dxxfx那么函数)(xF称为)(xf在区间I上的一个原函数.2.连续函数一定有原函数,即如果函数)(xf在区间I上连续,那么在区间I上存在一个可导函数)(xx∈都有F,使对任一I '.xfF=())(x3.如果在区间I上)(xF是f )(x f的一个原函数,那么) (x有无限多个原函数,且C(F+)x 是)(xf的全体原函数(其中C是任意常数).4.不定积分: 如果在区间I 上)(xf的一个原函数,F是)(x那么C x F +)(称为)(x f 的不定积分,记为⎰dx x f )(,即⎰dx x f )(C x F +=)(. 例1.⎰dx x 2C x +=331. 例2.⎰dx x 1C x +=ln . 5.积分与导数(或微分)的关系:① []⎰dx x f dx d )()(x f =. ② []⎰dx x f d )(dx x f )(=. ③ ⎰'dx x F )(C x F +=)(.④ ⎰)(x dF C x F +=)(.6.基本积分表: ⑴⎰kdx C kx += (k 是常数). ⑵⎰dx x μC x ++=+11μμ )1(-≠μ. ⑶⎰dx x 1C x +=ln . ⑷⎰+dx x211C x +=arctan . ⑸⎰-dx x211C x +=arcsin . ⑹⎰xdx cos C x +=sin . ⑺⎰xdx sin C x +-=cos .⑻⎰dx x 2cos 1⎰=xdx 2secC x +=tan . ⑼⎰dx x 2sin 1⎰=xdx 2cscC x +-=cot .⑽⎰⋅xdx x tan sec C x +=sec . ⑾⎰⋅xdx x cot csc C x +-=csc . ⑿⎰dx e x C e x +=. ⒀⎰dx a x C a ax +=ln .例3.⎰dx x 31C x +-=-221.例4.⎰⋅dx x x 2⎰=dx x 25 C x +=2772.7.不定积分的性质: ① ⎰±dx x g x f )]()([⎰±⎰=dx x g dx x f )()(. ② ⎰⋅dx x f k )( )0( )(≠⎰=k dx x f k . 例5.⎰-⋅dx x x )5(2 ⎰-=dx x x )5(2125 C x x +-=232731072.例6.⎰-dx x e x )cos 3(⎰=dx e x ⎰-xdx cos 3 C x e x+-=sin 3. 例7.⎰dx e x x 2⎰=dx e x)2( C e e x+=)2ln()2( C e xx ++⋅=2ln 12. 例8.⎰+++dx x x x x )1(122⎰+++=dx x x x x )1()1(22 ⎰++=dx x x)111(2C x x ++=ln arctan .例9.⎰+dx x x 241⎰++--+=dx xx x x 2224111 ⎰++-=dx x x )111(22C x x x ++-=arctan 313. 例10.⎰xdx 2tan ⎰-=dx x )1(sec 2C x x +-=tan .例11.⎰⋅dx x x x22cos sin 2cos⎰⋅-=dx x x x x 2222cos sin sin cos ⎰-=dx x x )sec (csc 22 C x x +--=tan cot . 例12.⎰⋅dx x x 2cos 2sin 122⎰=dx x 2sin 14 ⎰=xdx 2csc 4 C x +-=cot 4. §4.2 换元积分法1.第一换元法: 设)(u f 具有原函数,)(x u φ=可导,则⎰'⋅dx x x f )()]([ϕϕ ⎰=du u f x u )( )( ϕ. 例1.⎰xdx 2cos 2⎰'⋅=dx x x )2(2cos⎰=udu x u cos 2 C u +=sin C x +=2sin . 例2.⎰+dx x521 ⎰'++=dx x x )52(52151 ⎰++=)52(52151x d xC x ++=52ln 51. 例3.⎰⋅dx ex x22⎰=22dxe xC e x +=2.例4.⎰-⋅dx x x 21⎰---=)1(12122x d x C x +-⋅-=232)1(3221C x +--=232)1(31. 例5.⎰xdx tan ⎰-=x d xcos cos 1 C x +-=cos ln .例6.求⎰+dx x a 221 (0≠a ). 解: 原式⎰+=dx ax a 22)(111 ⎰+=ax d a x a 2)(111 C a x a +=arctan 1. 例7.求⎰-dx x a 221(0>a ).解: 原式⎰-=dx ax a 2)(111⎰-=a x d a x 2)(11C ax +=arcsin . 例8.求⎰-dx ax 221 (0≠a ). 解:原式⎰+--=dx a x a x a )11(21 )11(21⎰+-⎰-=dx a x dx a x a -⎰--=)(1[21a x d ax a ])(1⎰++a x d axC a x a x a++--=)ln (ln 21. 例9.⎰+dx x x )ln 21(1 ⎰++=)ln 21(ln 21121x d x C x ++=ln 21ln 21. 例10.⎰dx xe x 3 ⎰=)3(323x d e x C e x+=332.例11.⎰xdx3sin⎰--=x d x cos )cos 1(2⎰+⎰-=x xd x d cos cos cos 2C x x ++-=3cos 31cos . 例12.⎰⋅xdx x 52cos sin⎰-⋅=x d x x sin )sin 1(sin 222⎰-⎰=x xd x xd sin sin 2sin sin 42⎰+x xd sin sin 6x x 53sin 52sin 31-= C x ++7sin 71. 例13.⎰xdx 2cos⎰+=dx x )2cos 1(21)22cos 21(21⎰+⎰=x xd dx C x x ++=)2sin 21(21. 例14.⎰xdx csc ⎰=dx xsin 1⎰⋅=dx xx 2cos2sin 121 ⎰⋅=dx x x2cos2tan 1212 ⎰=dx xx 2tan2sec 212⎰=2tan2tan1xd xC x+=2tan ln .因为x x x x x sin 2sin22cos2sin 2tan 2==x x xx cot csc sin cos 1-=-=,所以C x x xdx +-=⎰cot csc ln csc .例15.⎰xdx sec ⎰=dx xcos 1 ⎰+=dx x )2sin(1π ⎰++=)2()2sin(1ππx d x C x x ++-+=)2cot()2csc(ln ππC x x ++=tan sec ln .例16.⎰xdx6sec⎰+=xdxx 222sec )tan 1(⎰++=x d x x tan )tan tan 21(42C x x x +++=53tan 51tan 32tan . 例17.⎰⋅xdx x 2cos 3cos⎰+=dx x x )5cos (cos 21 ⎰+⎰=)5cos cos (21xdx xdx C x x ++=)5sin 51(sin 21 C x x ++=5sin 101sin 21. 2.第二换元法: 设)(t x ψ=是单调的、可导的函数,且0)(≠'t ψ. 又设)]([t f ψ)(t ψ'具有原函数,则⎰dx x f )(⎰'=dt t t f t x )()]([ )( ψψψ. 例18.求)0( 22>⎰-a dx x a .解: 令)22( sin ππ≤≤-=t t a x .⎰-dx x a 22⎰⋅=tdta t a cos cos⎰+=dt t a )2cos 1(22C t t a ++=)2sin 21(22C t t a t a +⋅+=cos sin 2222C x a x a x a +-+=22221arcsin 2.例19.求)0( 122>⎰+a dx ax . 解: 令)22( tan ππ<<-=t t a x .⎰+dx ax 221⎰=dt t a t a sec sec 2⎰=tdt sec 1tan sec ln C t t ++=122)ln(C ax a a x +++=C a x x +++=)ln(22)ln (1a C C -=.例20.求)0( 122>⎰-a dx ax .解: 当a x >时,令t a x sec =)20(π<<t .⎰-dx ax 221⎰⋅=dt t a t t a tan tan sec ⎰=tdt sec1)tan ln(sec C t t ++=122)ln(C ax a a x ++-=C a x x +-+=)ln(22)ln (1a C C -=.当a x -<时,令t a x sec -=)02(<<-t π.⎰-dx ax 221⎰-⋅-=dt t a t t a tan tan sec ⎰=tdt sec1tan sec ln C t t ++=122)ln(C aa x a x +---=C a x x +---=)ln(22)ln (1a C C -=.综上所述,⎰-dx ax 221C a x x +-+=22ln . 例21.求⎰-dx x x 52)1(. 解: 令t x -=1.)1(52⎰-dx x x⎰--=)()1(52dt t t ⎰+--=dt t t t 5221 ⎰+--=---dt t t t )2(345C t t t ++-=---234213241 34)1(32)1(41x x ---= C x +-+2)1(41. 例22.求13⎰-dx x x .解: 令12+=tx .13⎰-dx x x ⎰+=tdt t t 2)1(32 ⎰+++=dt t t t )133(2246C t t t t ++++=)5371(2357C t t t t ++++=)15371(224623)1(53)1(71[12-+--=x x xC x ++-+]1)1(.§4.3 分部积分法1.分部积分公式: 设)(x u u =及)(x v v =具有连续导数.⎰'dx v u ⎰'-=vdx u uv .或 ⎰udv ⎰-=vdu uv . 例1. cos ⎰⋅xdx x⎰-⋅=xdx x x sin sinC x x x ++⋅=cos sin .例2. ⎰⋅dx e x x⎰-⋅=dx e e x xxC e e x xx+-⋅=.例3. 2⎰⋅dx e xx⎰-⋅=dx xe e x xx22C e xe e x xxx+--⋅=)(22C x x e x++-=)22(2.例4.求 ln⎰⋅xdx x⎰-⋅=xdx x x 21ln 212C x x x +-⋅=2241ln 21. 例5. arccos⎰xdx⎰-+=dx xx x x 21arccos x d x x x +⎰---=)1()1(121arccos 2212C x x x +--=21)1(21arccos 212C xx x +--=21arccos .例6. arctan⎰xdx x⎰+-=dx xx x x 222121arctan 21 ⎰+--=dx x x x )111(21arctan 2122 C x x x x +--=)arctan (21arctan 212 C x x x +-+=21arctan )1(212. 例7.求 sin ⎰xdx e x.解: sin ⎰xdx ex⎰+-=xdxe x e xx cos cos⎰-+-=xdxe x e x e xxxsin sin cos解得sin ⎰xdx e xC x x e x +-=)cos (sin 21. 例8.求 sec 3⎰xdx . 解: sec 3⎰xdx⎰-=xdx x x x 2tan sec tan sec⎰--=dx x x x x )1(secsec tan sec 2⎰+⎰-=xdx xdx x x sec sec tan sec 3xx x x tan sec ln tan sec ++=⎰-xdx 3sec解得sec 3⎰xdx x x x x tan sec ln tan (sec 21++=C +.例9.求 sin ⎰dx x . 解: 令2t x =,则 sin ⎰dx x ⎰=tdt t sin 2⎰+-=tdt t t cos 2cos 2 C t t t ++=sin 2cos 2 C x x x ++=)sincos(2.§4.4 有理函数的积分 1.任一多项式)(x Q 在实数范围内能分解成一次因式和二次因式的乘积:βα)()()(0b x a x b x Q --=μλ)()(22s rx x q px x ++++ 其中042<-q p, (042)<-s r .2.任一有理真分式)()(x Q x P 可分解成部分分式之和:a x A a x A x Q x P -++-=αα)()()(1……………………bx B b x B -++-+ββ)(1λ)(211q px x N x M ++++)(2q px x N x M ++++λλ………………………………μ)(211s rx x S x R ++++)(2s rx x S x R ++++μμ例如. ①2541232++++x x x x )2()1(122+++=x x x 21)1(2+++++=x C x B x A ,右边分母通分,分子相加后比较等式两边分子同次幂的系数得 ⎪⎩⎪⎨⎧=++=++=+1220231C B A C B A C B解得2=A ,4-=B ,5=C,则2541232++++x x x x 2514)1(22+++-++=x x x .②3243-++x x x )3)(1(42++-+=x x x x312++++-=x x C Bx x A , 右边分母通分,分子相加后比较等式两边分子同次幂的系数得 ⎪⎩⎪⎨⎧=-=+-=+4310C A C B A B A解得1=A ,1-=B ,1-=C,则3243-++x x x 31112++--+-=x x x x . 3.几个有理函数的积分:① 25⎰-dx x )2(215⎰--=x d x C 2ln 5+-=x . ② )2(33⎰-dx x )2()2(133⎰--=x d x C )2(232+--=-x .③ 52232⎰+-+dx x x x52342232⎰+-+=dx x x x5231022232⎰+-+-=dx x x x ⎰+--=dx x x x 5222232⎰+-+dx x x 52152 ⎰+-+-=)52(5212322x x d x x ⎰+-+dx x 222)1(15 )52ln(232+-=x x ⎰-+-+)1(2)1(1522x d x )52ln(232+-=x xC x +-+21arctan 25. 218P15.令2tanx u =,则u x arctan 2=,⎰+dx xcos 31 ⎰+⋅+-+=du u u u 222121131 ⎰+=du u 22412 ⎰+=du u 2211121 C u +=21arctan 21C x +=)2tan 21arctan(21. 218P 22.令4xu =,则4u x =,⎰+dx xx 41 ⎰⋅+=du u uu 3241 ⎰++-=du u u )111(4 C u u u +++-=)1ln(4422C x x x +++-=)1ln(44244.218P 23.令xx u +-=11,则2211uu x +-=.⎰+-xdx x x 11 ⎰+-⋅-+⋅=du u u u u u ])1(4[112222⎰+--=du u u u )1)(1(4222 ⎰+-=du u 11⎰--du u11 ⎰++du u212 uu -++-=1ln )1ln(C u ++arctan 2xx x x ++-+--=1111lnC xx ++-+11arctan2.。