AMS_2759-2C_低合金钢零件的热处理
- 格式:pdf
- 大小:178.48 KB
- 文档页数:13
__________________________________________________________________________________________________________________________________________ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.Copyright © 2014 SAE InternationalAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790Email: CustomerService@ SAE WEB ADDRESS:h ttp://SAE values your input. To provide feedbackon this Technical Report, please visit/technical/standards/AMS2759/2FAEROSPACE MATERIAL SPECIFICATIONAMS2759/2REV. FIssued 1984-10 Revised 2010-05 Reaffirmed 2014-04Superseding AMS2759/2EHeat Treatment of Low-Alloy Steel PartsMinimum Tensile Strength 220 ksi (1517 MPa) and HigherRATIONALEAMS2759/2F has been reaffirmed to comply with the SAE five-year review policy.1. SCOPEThis specification, in conjunction with the general requirements for steel heat treatment covered in AMS2759, establishes the requirements for heat treatment of low-alloy steel parts to minimum ultimate tensile strengths of 220 ksi (1517 MPa) and higher. Parts are defined in AMS2759. 2. APPLICABLE DOCUMENTSThe issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply. 2.1 SAE PublicationsAvailable from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), .AMS2418 Plating, Copper AMS2424 Plating, Nickel, Low-Stressed Deposit AMS2759 Heat Treatment of Steel Parts, General RequirementsARP1820 Chord Method of Evaluating Surface Microstructural Characteristics 2.2 ASTM PublicationsAvailable from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, .ASTM E 384 Microindentation Hardness of MaterialsDownloaded from SAE International by Daryl Jaeger, Wednesday, July 02, 20143. TECHNICAL REQUIREMENTS3.1 Heat TreatmentShall conform to AMS2759 and requirements specified herein.3.2 EquipmentShall conform to AMS2759. Furnace temperature uniformity requirements for annealing, subcritical annealing, normalizing, hardening, straightening, stress relieving, and baking shall be ±25 °F (±14 °C), and for tempering or aging shall be ±10 °F (±6 °C).3.3 Heating EnvironmentParts shall be controlled by type (See 3.3.1), and heat treated in the class of atmosphere (See 3.3.2), permitted in Table 1 for that type when heating above 1250 °F (677 °C). When heating parts at 1250 °F (677 °C) or below, Class A, B, or C atmosphere may be used (See 8.2).TABLE 1 - ATMOSPHERESPart Classification (1)Class A Class B Class CType 1 Permittted Permitted Permitted(3)Type 2 Permitted PROHIBITED (2) PermittedType 3 Permitted Permitted PROHIBITEDType 4 Permitted Permitted (3)(4) PROHIBITEDNOTES:(1) See 3.5.1.2.(2) Permitted provided the atmosphere is controlled to produce no carburization or nitridingas described in 3.5.1.(3) Prohibited if a specific requirement to control the surface carbon on all surfaces isspecified.(4) Not recommended for Aermet 100.3.3.1 Types of PartsThe heat treating processor shall determine the part type.Type 1: Parts with 0.020 inch (0.51 mm) or more to be machined off all surfaces after heat treatment and parts with as-forged, as-cast, or hot-finished mill surfaces at time of heat treatment with all surfaces to be machined off.Unless informed that all surfaces will have at least 0.020 inch (0.51 mm) machined off, the heat treating processor shall assume all surfaces will not and shall control the part as Type 2, 3, or 4, as applicable.Type 2: Forgings, castings, sheet, strip, plate, bar, rod, tubing, and extrusions with hot-finished surfaces at time of heat treatment and which will remain on the finished part.Type 3: Parts with finished machined surfaces or surfaces with less than 0.020 inch (0.51 mm) to be machined off any surface after heat treatment and parts with protective coating on all surfaces.Type 4: Parts that are partially machined with both unmachined (e.g., as-forged, as-cast, or hot- finished mill surfaces) and finished/near-finished surfaces (e.g., finished machined surfaces, or machined surfaces with less than0.020 inch (0.51 mm) to be machined off after heat treatment).3.3.1.1 If part type cannot be determined, the part shall be processed as Type 3.3.3.2 Classes of AtmospheresClass A: Argon, hydrogen, helium, nitrogen, nitrogen-hydrogen blends, vacuum, or neutral salt. Nitrogen from dissociated ammonia is not permitted.Class B: Endothermic, exothermic, or carbon-containing nitrogen-base (See 8.2).Class C: Air or products of combustion.3.3.3 AtmospheresAtmosphere furnaces shall be controlled to ensure that surfaces of heat treated parts are within the limits specified in 3.5.1. Salt baths shall be tested in accordance with AMS2759.Coatings3.3.4 ProtectiveA supplemental coating or plating is permitted, when approved by the cognizant engineering organization. Fine grain copper plating in accordance with AMS2418 or nickel plating in accordance with AMS2424 may be used without approval but the surface contamination specimens in 3.6.1 shall not be plated (See 8.3).3.4 Procedure3.4.1 PreheatingPreheating until furnace stabilization in the 900 to 1200 °F (482 to 649 °C) range is recommended before heating parts above 1300 °F (704 °C) if the parts have previously been heat treated to a hardness greater than 35 HRC, have abrupt changes of section thickness, have sharp reentrant angles, have finished machined surfaces, have been welded, have been cold formed or straightened, have holes, or have sharp or only slightly-rounded notches or corners.3.4.2 SoakingHeating shall be controlled, as described in AMS2759, such that either the heating medium or the part temperature, as applicable, is maintained at the set temperature in Table 2 or 3 for the soak time specified herein. Soaking shall commence when all control, indicating, and recording thermocouples reach the specified set temperature or, if load thermocouples as defined in AMS2759 are used, when the part temperature reaches the minimum of the furnace uniformity tolerance at the set temperature.3.4.2.1 Parts coated with copper plate or similar reflective coatings that tend to reflect radiant heat shall have their soaktime increased by at least 50%, unless load thermocouples are used.3.4.3 AnnealingShall be accomplished by heating to the temperature specified in Table 2, soaking for the time specified in Table 4, and cooling to below the temperature specified in Table 2 at the rate shown in Table 2 followed by air cooling to ambient temperature. Isothermal annealing treatments may be used providing equivalent hardness and microstructure are obtained. Isothermal annealing shall be accomplished by heating to the annealing temperature specified in Table 2, soaking for the time specified in Table 4, cooling to a temperature below the critical, holding for sufficient time to complete transformation, and air cooling to ambient temperature.Annealing3.4.4 SubcriticalShall be accomplished prior to hardening by heating in the range 1150 to 1250 °F (621 to 677 °C), soaking for the time specified in Table 4, and cooling to ambient temperature. Steel parts of the 9Ni - 4Co types shall be subcritical annealed as specified in Table 2.3.4.5 Pre-Hardening Stress RelievingShall be accomplished prior to hardening by heating in the range 1000 to 1250 °F (538 to 677 °C), soaking for not less than the time specified in Table 4, and cooling to ambient temperature.3.4.6 NormalizingShall be accomplished by heating to the temperature specified in Table 2, soaking for the time specified in Table 4, and cooling in air or atmosphere to ambient temperature. Circulating air or atmosphere is recommended for thicknesses greater than 3 inches (76.2 mm). Normalizing may be followed by tempering or subcritical annealing.3.4.7 Hardening (Austenitizing and Quenching)All parts, except those made from H-11, 52100, or M-50 steels, shall be in one of the following conditions prior to austenitizing: normalized, normalized and tempered, normalized and overaged, or hardened. If such parts have been normalized only, without tempering or overaging, they shall be preheated within the range of 850 to 1250 °F (454 to 677 °C) before exposure to the austenitizing temperature (See Table 2 Note 2). Welded parts and brazed parts with a brazing temperature above the normalizing temperature shall be normalized before hardening. Welded parts should be preheated in accordance with 3.4.1. Hardening shall be accomplished by heating to the austenitizing temperature specified in Table 2, soaking for the time specified in Table 4, and quenching as specified in Table 2. The parts shall be cooled to or below the quenchant temperature before tempering.3.4.8 Tempering or AgingShall be accomplished by heating quenched parts to the temperature required to produce the specified properties. Parts should be tempered within 2 hours of quenching (See 3.4.8.1). Tempering for specific tensile strengths for each alloy is shown in Table 3. Soaking time shall be not less than 2 hours plus 1 hour additional for each inch (25 mm) of thickness or fraction thereof greater than 1 inch (25 mm). Thickness is defined in AMS2759. When load thermocouples are used, the soaking time shall be not less than 2 hours. Multiple tempering is permitted. When multiple tempering is used, parts shall be cooled to ambient temperature between tempering treatments.3.4.8.1 Prior to final tempering parts may be snap tempered for 2 hours at a temperature, usually 400 °F (204 °C), thatis lower than the final tempering temperature (See 8.5.1).3.4.9 StraighteningWhen approved by the cognizant engineering organization, straightening shall be accomplished at either ambient temperature, during tempering, or by heating to not higher than 50 °F (28 °C) below the tempering temperature. Ambient temperature straightening or hot or warm straightening after tempering shall be followed by stress relieving. It is permissible to retemper at a temperature not higher than the last tempering temperature after straightening during tempering.3.4.10 Post-Tempering Stress RelievingWhen required by the cognizant engineering organization, parts shall, after operations which follow hardening and tempering, be stress relieved by heating the parts to 50 °F (28 °C) below the tempering temperature and soaking for not less than 1 hour plus 1 hour additional for each inch (25 mm) of thickness or fraction thereof greater than 1 inch (25 mm). When load thermocouples are used, the soaking time shall be not less than 1 hour. Stress relief is prohibited on parts that have been peened or thread- or fillet-rolled after hardening and tempering.3.5 PropertiesParts shall conform to the hardness specified by the cognizant engineering organization or to the hardness converted from the required tensile strength in accordance with AMS2759.3.5.1 SurfaceContaminationSalt baths and the protective atmosphere in furnaces for heating parts above 1250 °F (677 °C), when less than 0.020 inch (0.51 mm) of metal is to be removed from any surface, shall be controlled to prevent carburization or nitriding and to prevent complete decarburization (See 3.5.1.1). Partial decarburization shall not exceed 0.006 inch (0.15 mm) and a severity of 5 points HRC converted from Knoop. Depth and severity are described in ARP1820. Intergranular attack shall not exceed 0.0007 inch (0.018 mm). Rejection criterion for total depth of decarburization shall be the microhardness reading that has more than a 20-point Knoop, or equivalent, decrease in hardness from the core hardness. Rejection criterion for severity of decarburization is the difference between the HRC hardness (converted from Knoop) at 0.0003 inch (0.008 mm) and that of the core. Rejection criterion for carburization and nitriding shall be that the microhardness shall not exceed the core hardness by 20 points Knoop or more, or equivalent, at a depth of 0.0003 inch (0.008 mm). Tests shall be in accordance with 3.6.1. The requirements of this paragraph also apply to the cumulative effects of operations such as normalizing followed by austenitizing or austenitizing followed by reaustenitizing (See 3.5.1.4). For reheat treatments, the original specimen or a portion thereof shall accompany the parts and be tested after the reheat treatment.3.5.1.1 Unless specifically informed that at least 0.020 inch (0.51 mm) will be removed from all surfaces of parts, theheat treating processor shall heat treat the parts as if less than 0.020 inch (0.51 mm) will be removed from some surfaces and, therefore, shall heat treat using controlled atmosphere which will produce parts conforming to surface contamination requirements.3.5.1.2 Parts that will be machined after heat treatment, but which will have less than 0.020 inch (0.51 mm) of metalremoved from any machined surface may be reclassified as Type 1, as described in 3.3.1, and need not meet the requirements of 3.5.1 as heat treated, when it is demonstrated by tests (See 3.6.1.1) on each load that all surface contamination exceeding the requirements of 3.5.1 is removable from all machined surfaces, taking into account distortion after heat treatment.3.5.1.3 Furnaces used exclusively to heat treat parts that will have all contamination removed shall not require testing.3.5.1.4 The heat treating processor shall be responsible for determining whether cumulative heat treating operations atthat facility, as described in 3.5.1, have caused excessive surface contamination.3.6 Test MethodsShall be in accordance with AMS2759 and as follows:Contamination3.6.1 SurfaceTesting shall be performed by the microhardness method in accordance with ASTM E 384, supplemented, if necessary, by ARP1820. Test specimens shall be of the same alloy as the parts. Unless otherwise specified, test specimens shall be in the as-quenched condition except that secondary hardening steels, such as H-11, shall be tempered. In addition, the presence of total depth of decarburization, carburization, and nitriding shall be determined by etching with the appropriate etchant and examining at approximately 250X magnification. The depth of intergranular attack shall be determined on an unetched specimen at approximately 250X magnification (See 8.4).3.6.1.1 Testing for reclassification in 3.5.1.2 may be by any microhardness method if more than 0.002 inch (0.05 mm)is subsequently machined off all machined surfaces.4. QUALITY ASSURANCE PROVISIONSThe responsibility for inspection, classification of tests, sampling, approval, entries, records, and reports shall be in accordance with AMS2759 and as specified in 4.1 and 4.2. 4.1Classification of TestsThe classification of acceptance, periodic, and preproduction tests shall be as specified in AMS2759 and as specified in 4.1.1 and 4.1.2.4.1.1 Acceptance TestsIn addition to the tests specified in AMS2759, tests for surface contamination (3.5.1) shall be performed on each lot. Alternatively, if carbon potential is controlled automatically and either indicated or recorded, frequency of surface contamination tests may be in accordance with the sampling plan of 4.2. 4.1.2 Preproduction TestsIn addition to the tests specified in AMS2759, tests for surface contamination (3.5.1) shall be performed prior to any production heat treating on each furnace, each kind of atmosphere to be used in each furnace, and for each Class B atmosphere at two carbon potentials, up to 0.40% and over 0.40%. 4.2Alternative Sampling Plan4.2.1 An alternative test plan to meet the requirements of 4.1.1 is permitted for heat treatment processes verified bystatistical process control (SPC) to be stable and capable. 4.2.1.1 A process is considered stable when statistical evaluation of the product and process parameters show that allmeasured values fall within established control limits. 4.2.1.2 A process is considered capable when, after achieving and maintaining stability, all parts running to the processhave a minimum C pk of 1.33 with a confidence level of 90%. NOTE: C pk is defined as the smaller of either C pl or C pu as determined by Equation 1 or Equation 2:σ−=3LSLX C pl (Eq. 1) σ−=3XUSL C pu (Eq. 2) where:X = process averageLSL = lower specification limit* USL = upper specification limit**Specification limits are based on target values established by the supplierσ = estimated standard deviation4.2.2 The alternative test plan shall contain the following:4.2.2.1 Statistical analysis of the heat treatment process parameters and the product test results of properties forcontrol and capability (See 3.5).4.2.2.2 Documentation of the critical process parameters and of the product test results of properties on a control plan(See 3.5). A change in these process parameters of product test results will require review to determine if the process capability requires reverification.4.2.2.3 Periodic auditing of the heat treatment process parameters and the product test results of properties to verifycontinued control and capability (See 3.5).4.2.2.4 Monthly, or whenever needed by either the cognizant engineering authority or process constraints,decarburization shall be examined in accordance with 3.5.1.5. PREPARATION FOR DELIVERYIn accordance with AMS2759.6. ACKNOWLEDGMENTIn accordance with AMS2759.7. REJECTIONSIn accordance with AMS2759.8. NOTESIn accordance with AMS2759 and the following:8.1 A change bar (l) located in the left margin is for the convenience of the user in locating areas where technicalrevisions, not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document title indicates a complete revision of the document, including technical revisions. Change bars and (R) are not used in original publications, nor in documents that contain editorial changes only.8.2 Heating below 1400 °F (760 °C) with Class B atmospheres containing 5% or more of hydrogen (H2), carbonmonoxide (CO), or methane (CH4), may result in explosion and fire.8.3 When supplemental plating or coating, such as copper plate, is used, all atmosphere controls and surfacecontamination tests are still required.8.4 Use of a chromic-caustic etch to reveal intergranular attack/oxidation has been discontinued because (1) it is anenvironmental hazard (2) it is unnecessary for measurement of maximum depth of crevices, and (3) light etching zones extending beyond the crevices have been misinterpreted as manifestations of intergranular oxidation.8.5 Terms used in AMS are clarified in ARP1917 and as follows:8.5.1 Snap tempering is an immediate low temperature treatment to relieve stresses and prevent cracking prior to thenext operation. It is most often used prior to a refrigeration cycle. Final tempering to the specified requirements is performed after snap tempering.8.5.2 Marquenching(Martempering)Quenching an austenitized alloy in a salt or hot oil bath at a temperature in the upper part of, or slightly above, the martensite range and holding until temperature uniformity throughout the part is obtained, usually followed by air cooling through the martensite range to ambient temperature.8.6 Dimensions and properties in inch/pound units and the Fahrenheit temperatures are primary; dimensions andproperties in SI units and the Celsius temperatures are shown as the approximate equivalents of the primary units and are presented only for information.PREPARED BY AMS COMMITTEE “E” AND AMECTABLE 2A - ANNEALING, NORMALIZING, AND AUSTENITIZING TEMPERATURES AND QUENCHANTS,INCH/POUND UNITSMaterial DesignationAnnealing (1)Temperature, °FNormalizingTemperature, °FAustenitizing (2)Temperature, °FHardeningQuenchant4330V, 4330M (2) 4335, 4335M (2) 4340 (2)Hy-Tuf (2)300M (2)4340 Mod (2)H-11 (3)98BV40 (2)D6AC (2)521009Ni-4Co-0.30C (2) (5) M-50AF1410 (2) (5) AerMet ® 100 (2)157515501550140015501550160015501550( 6)( 8)--1650 (12)--165016501650172517001700--1600172516501700( 9)1650 (12)1650 (13)160016001500 (16)160016001600185015501625 (4)1550 (7)15502025 (10)15251625oil, polymeroil, polymeroil, polymeroil, polymeroil, polymeroil, polymerair, oil, polymeroil, polymeroil, polymeroil, polymer (5) (15)oil, polymer (5)salt (11)oil, polymer (5)air, oil, polymer (14)NOTES:1. Cool at a rate not to exceed 200 °F per hour to below 1000 °F, except cool 4330V, 4335V, and 4340 to below800 °F, and 300M to below 600 °F.2. All parts, except those made from H-11, 52100, or M-50 steels, shall be in one of the following conditions prior toaustenitizing: normalized, normalized and tempered, normalized and overaged, or hardened. If such parts have been normalized only, without tempering or overaging, they shall be preheated within the range of 850 to 1250 °F before exposure to the austenitizing temperature.3. H-11 parts shall be in the annealed condition prior to the initial austenitizing treatment.4. 1700 °F permitted for D6AC parts, when approved by the cognizant engineering organization.5. Immediately after quenching refrigerate parts made from 52100, 9Ni-4Co-0.30C, and AF1410 at -90 °F or lower,hold 1 hour minimum, and air warm to room temperature. For parts made from 52100 with high propensity to crack during refrigeration, a snap temper before refrigeration is recommended (See 8.5.1).6. Anneal parts made from 52100 at 1430 °F for 20 minutes, cool to 1370 °F at a rate not faster than 20 °F per hour,cool to 1320 °F at a rate not to exceed 10 °F per hour, cool to 1250 °F at a rate not faster than 20 °F per hour, and air cool to ambient temperature.7. 1500 °F permissible for parts made from 52100 requiring distortion control. Parts shall be hardened from thespherodize annealed condition or the normalized condition.8. 9Ni-4Co-0.30C parts shall be duplex subcritical annealed by heating at 1250 °F for 4 hours ± 1/4, air cooling toambient temperature, reheating at 1150 °F for 4 hours ± 1/4, and air cooling to ambient temperature or shall be annealed by heating at 1150 °F for not less than 23 hours minimum and air cooling to ambient temperature.9. Normalizing of M-50 parts should be avoided due to grain growth.10. M-50 parts shall be preheated to 1550 °F prior to austenitizing.11. For M-50 use 1125 °F followed by air cool to ambient temperature or air cool directly to ambient temperature.12. For AF1410, to facilitate machining, normalize and then heat to 1250 °F for not less than 6 hours and air cool.13. For Aermet ® 100, to facilitate machining, normalize and then heat to 1250 °F for not less than 16 hours and aircool.14. For AerMet ® 100, quench in oil (160 °F or lower), polymer, gas quench, or air cool below 400 °F within 2 hours.Within 8 hours of quenching, cool parts to -100 °F or lower, hold 1 hour per inch of thickness or fraction thereof, and warm in any convenient manner to room temperature.15. F or 52100 a salt marquench may be used if specified by the cognizant engineering organization (See 8.5.2).16. Parts made from 4340 may be austenitized at a set temperature of 1525 °F.Aermet® 100 is a registered trade name of Carpenter Technology.TABLE 2B - ANNEALING, NORMALIZING, AND AUSTENITIZING TEMPERATURES AND QUENCHANTS, SI UNITSMaterial DesignationAnnealing (1)Temperature, °CNormalizingTemperature, °CAustenitizing (2)Temperature, °CHardeningQuenchant4330V, 4330M (2) 4335, 4335M (2) 4340 (2)Hy-Tuf (2)300M (2)4340 Mod (2)H-11 (3)98BV40 (2)D6AC (2)521009Ni-4Co-0.30C (2) (5) M-50AF1410 (2) (5) Aermet ® 100 (2)857843843760843843871843843(6)(8)--899 (12)--899899899941927927--871941899927(9)899 (12)899 (13)871871815 (16)8718718711010843885 (4)843 (7)8431107 (10)829885oil, polymeroil, polymeroil, polymeroil, polymeroil, polymeroil, polymerair, oil, polymeroil, polymeroil, polymeroil, polymer ( 5) (15)oil, polymer (5)salt (11)oil, polymer (5)air, oil, polymer (14)NOTES:1. Cool at a rate not to exceed 111 °C per hour to below 538 °C, except cool 4330V, 4335V, and 4340 to below427 °C, and 300M to below 316 °C.2. All parts, except those made from H-11, 52100, or M-50 steels, shall be in one of the following conditions prior toaustenitizing: normalized, normalized and tempered, normalized and overaged, or hardened. If such parts have been normalized only, without tempering or overaging, they shall be preheated within the range of 454 to 677 °C before exposure to the austenitizing temperature.3. H-11 parts shall be in the annealed condition prior to the initial austenitizing treatment.4. 927 °C permitted for D6AC parts, when approved by the cognizant engineering organization.5. Immediately after quenching refrigerate parts made from 52100, 9Ni-4Co-0.30C, and AF1410 at -68 °C or lower,hold 1 hour minimum, and air warm to room temperature. For parts made from 52100 with high propensity to crack during refrigeration, snap temper before refrigeration is recommended (See 8.5.1).6. Anneal parts made from 52100 at 777 °C for 20 minutes, cool to 743 °C at a rate not faster than 11 °C per hour,cool to 716 °C at a rate not to exceed 6 °C per hour, cool to 677 °C at a rate not faster than 11 °C per hour, and air cool to ambient temperature.7. 816 °C permissible for parts made from 52100 requiring distortion control. Parts shall be hardened from thespherodize annealed condition or the normalized condition.8. 9Ni-4Co-0.30C parts shall be duplex subcritical annealed by heating at 677 °C for 4 hours ± 1/4, air cooling toambient temperature, reheating at 621 °C for 4 hours ± 1/4, and air cooling to ambient temperature or shall be annealed by heating at 621 °C for 23 hours minimum and air cooling to ambient temperature.9. Normalizing of M-50 parts should be avoided due to grain growth.10. M-50 parts shall be preheated to 843 °C prior to austenitizing.11. For M-50 use 607 °C followed by air cool to ambient temperature or air cool directly to ambient temperature.12. For AF1410, to facilitate machining, normalize and then heat to 677 °C for not less than 6 hours and air cool.13. For Aermet ® 100, to facilitate machining, normalize and then heat to 677 °C for not less than 16 hours and aircool.14. For AerMet ® 100, quench in oil (71 °C or lower), polymer, gas quench, or air cool below 204 °C within 2 hours.Within 8 hours of quenching, cool parts to -73 °C or lower, hold 1 hour per 25 mm of thickness or fraction thereof, and warm in any convenient manner to room temperature.15. For 52100 a salt marquench may be used if specified by the cognizant engineering organization (See 8.5.2).16. Parts made from 4340 may be austenitized at a set temperature of 829 °C.Aermet® 100 is a registered trade name of Carpenter Technology.。
ZG275阀体热处理工艺
一、加热
1. 加热温度:根据ZG275阀体的材料成分和热处理要求,加热温度应控制在780℃-850℃之间。
2. 加热速度:为了减少加热时产生的热应力,应采用缓慢加热的方式,加热速度不宜过快。
建议采用随炉加热或连续式加热炉进行加热。
3. 加热均匀性:为了确保热处理质量,应保证ZG275阀体在炉内均匀受热,避免局部过热或温度不均的现象。
二、保温
1. 保温时间:保温时间应根据ZG275阀体的厚度、材料成分和热处理要求而定。
一般而言,保温时间应控制在2-4小时之间。
2. 保温温度:在保温过程中,应保持温度稳定,温度波动不应超过±10℃。
3. 气氛控制:对于在保护气氛下进行热处理的ZG275阀体,应控制气氛的成分和湿度,以避免氧化和脱碳等缺陷的产生。
三、冷却
1. 冷却方式:根据ZG275阀体的热处理要求和材料特性,可选择油冷、水冷或空冷等方式进行冷却。
为了获得良好的机械性能,建议采用油冷或空冷方式。
2. 冷却速度:冷却速度对ZG275阀体的组织和性能有很大影响。
为了获得良好的组织和性能,应控制适当的冷却速度。
对于油冷或空冷方式,应控制油温或空气温度,以避免冷却不均和淬火开裂等问题。
3. 回火处理:根据需要,在冷却之后进行回火处理可以提高ZG275阀体的韧性和耐腐蚀性。
回火温度和时间应根据材料成分和热处理要求而定。
低合金钢热处理流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!低合金钢的热处理流程详解低合金钢,由于其良好的力学性能和耐腐蚀性,被广泛应用于各个工业领域。
AMS2759宇航材料规范宇航材料规范(AMS2759)是由美国国防部和国际宇航材料技术委员会(IAQG)共同制定的国际标准,用于指导和规范宇航材料的质量控制和热处理过程。
该规范的目的是确保宇航材料的性能和可靠性,以满足航天器和航空器在极端环境下的安全运行要求。
AMS2759规范适用于铝合金、钛合金、镍基合金和钢等常用于航空航天行业的材料。
它涵盖了热处理、淬火、回火、冷处理、时效等热处理工艺,以及表面处理,如酸洗、阳极处理和电镀等。
该规范还包括了检验、测试和认证方面的要求,确保材料的质量和性能符合标准。
AMS2759规范对热处理工艺进行了详细的规定,包括工艺参数、温度控制、保温时间和冷却速度等。
根据材料的不同性质和用途,可以选择不同的热处理过程,以达到理想的材料性能。
规范还明确了热处理过程中的监控和记录要求,以便对热处理过程进行追溯和分析。
除热处理外,AMS2759规范还对材料的表面处理进行了要求。
表面处理可以改善材料的耐腐蚀性能、附着力和美观度。
规范规定了不同表面处理方法的工艺参数和要求,以确保表面处理的质量和一致性。
在质量控制方面,AMS2759规范要求对材料进行严格的检验和测试。
规范列出了一系列的检验项目,包括化学成分分析、金相组织观察、硬度测试和力学性能测试等。
这些测试项目可以帮助确认材料的质量和性能是否符合标准要求。
最后,AMS2759规范还对质量认证和供应链管理提出了要求。
它要求供应商必须具备一定的质量管理体系,并通过第三方认证机构的审核和认证。
这样可以确保宇航材料的质量和可靠性,降低供应链风险。
总之,AMS2759宇航材料规范是一个广泛使用的国际标准,用于指导和规范宇航材料的质量控制和热处理过程。
通过遵循该规范的要求,可以确保宇航材料在极端条件下的安全运行,提高航天器和航空器的性能和可靠性。
同时,规范还对宇航材料的表面处理、检验和质量认证等方面提出了具体要求,进一步提高了宇航材料的质量和一致性。
AMS2759的20个分标准SAE-AMS2759_11-2005 Stress Relief of Steel Parts[P5].pdfSAE-AMS2759_2C-2000 低合金钢零件的热处理最小拉伸强度大于等于220KSI[中文版][P13].pdfSAE-AMS2759_3C-2000 沉淀硬化不锈钢和马氏体时效钢的热处理[中文版][P16].pdfSAE-AMS2759_3D-2005 Heat Treatment Precipitation-Hardening Corrosion-Resistant&Maraging Steel Parts[P16].pdfSAE-AMS2759_3D-2005 Heat Treatment Precipitation-Hardening Corrosion-Resistant&Maraging Steel Parts[P16][1].pdfSAE-AMS2759-11-1992 Ion Nitriding.pdfSAE-AMS2759-11-2005 Stress Relief of Steel Parts.pdfSAE-AMS27591-12A-2007 Gaseous Nitrocarburizing,Automatically Controlled by Potentials.pdf SAE-AMS2759-12A 2007 Gaseous Nitrocarburizing,Automatically Controlled by Potentials.pdfSAE-AMS2759-1C-2000 最低抗拉强度低于220 ksi (1517 MPa)低合金碳钢零件的热处理.pdf SAE-AMS2759-2C-2000 Heat Treatment of Low-A lloy Steel Parts Minimum Tensile Strength 220 ksi (1 51 7 MPa)&Higher.pdfSAE-AMS2759-2C-2000 中文版低合金钢零件的热处理最小拉伸强度大于等于220KSI(1517MPa).pdfSAE-AMS2759-3C-2000 中文版沉淀硬化不锈钢和马氏体时效钢的热处理.pdfSAE-AMS2759-3D-2005 Heat Treatment Precipitation-Hardening Corrosion-Resistant&Maraging Steel Parts.pdfSAE-AMS2759-4B-2001 Heat Treatment Austenitic Corrosion-Resistant Steel Parts.pdfSAE-AMS2759-5D-2004 Heat Treatment Martensitic Corrosion-Resistant Steel Parts.pdfSAE-AMS2759-6A-2002 Gas Nitriding&Heat Treatment of Low-Alloy Steel Parts.pdfSAE-AMS2759-7A-2006 Carburizing&Heat Treatment of Carburizing Grade Steel Parts.pdfSAE-AMS2759-9_8-1992 Ion Nitriding [P12].pdfSAE-AMS2759C-2000 Heat Treatment of Steel Parts General Requirements[P15].pdf。
机械零部件热处理相关标准随着现代制造技术的不断发展,机械零部件的热处理技术也在不断提高,这对于提高机械制造的质量和效率具有重要作用。
为了保证机械零部件热处理的标准化和规范化,国际上制定了一系列热处理标准,下面我们详细介绍一下。
1. GB/T1300-2016 金属材料热处理标准该标准是我国机械行业使用最为广泛的热处理标准之一,它规定了金属材料的淬火、回火、正火等一系列热处理工艺的技术要求,以及热处理后材料的性能检验和质量评定方法。
该标准对于保证机械零部件在使用过程中的强度、硬度、韧性等性能具有重要的意义。
2. ASTM A255-10 金属材料硬度测试标准该标准规定了金属材料的硬度测试方法和应用范围,主要包括布氏硬度测试、维氏硬度测试等多种测试方法。
通过该标准的检测,可以对机械零部件的硬度进行准确测量,为机械的设计和制造提供重要的技术支撑。
3. AMS 2759/9B-2013 热处理规范标准该标准主要针对航空航天和国防等领域的热处理工艺进行规范,旨在提高热处理质量和可靠性。
该标准主要包括热处理工艺评定方法、质量检测要求、材料应力消除工艺等内容,能够为机械零部件的热处理提供精准、可靠的技术支撑。
4. JIS G 3193-2008 热轧产品的尺寸、重量及形状公差标准该标准主要规定了热轧产品的尺寸、质量和形状公差等要求,为机械零部件的制造提供标准化的技术要求和检测方法。
以上是目前机械零部件热处理相关的几个标准,它们的制定和实施,为机械制造行业的高效、精准生产提供了可靠保障。
在实际应用中,机械制造企业需要根据自身的生产需求和技术条件,选择合适的标准进行执行,并加强对标准的监督和检查,确保机械零部件的热处理达到标准化和规范化的要求。
航空用材料说明书测高温1. SCOPE:1.1该规范涵盖热处理过程中的热处理设备。
他包括温度传感器、仪器使用、热处理设备、系统精确度测试以及温度均一性测量。
因此有必要保证不同的原材料在热处理过程中选用合适的规范。
1.2除非特别要求否则该分类不适用于加热或者中间热处理过程。
1.3实验室用炉的标准详见3.6。
2.适用性文件2.1 ASTM 发行:购买可联系ASTM, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959 或。
ASTM E 207 热电元件材料与参比热电元件在相似的电动势-稳定性能下进行热电动势测试。
ASTM E 220 比较法校准热电偶ASTM E 230 标准化热电偶的标准说明书及温度-电动势表ASTM E 608 矿务绝缘,金属屏蔽贱金属热电偶。
ASTM E 1129 热电偶连接器的标准说明书ASTM MNL 7 数据及控制绘图分析表述ASTM MNL 12 温度测量用热电偶3.技术要求目录3.1温度传感器............................................................... . (4)3.1.1通用传感器知识...................................................... .. (4)3.1.1.1传感器适用性的认证 (4)3.1.1.2温度与电压的转换 (4)3.1.1.3热电偶校准要求.................................................................. (4)3.1.1.4热电偶使用 (4)3.1.1.5扩展导线 (4)3.1.1.6导线圈-刻度校准要求 (4)3.1.1.7导线圈-最大允许长度 ........................................................................ (5)3.1.1.8 K和E型热电偶以二级标准或SAT传感器的再利用...................................... . ..5 3.1.1.10可损耗贱金属热电偶测试“U”公式. (5)3.1.2参比标准传感器 ..................................................................................... .5 3.1.3一级标准传感器..................................................................................... . .5 3.1.4二级标准传感器 ..................................................................................... .6 3.1.5温度均一测试传感器............................................................................... . .6 3.1.6系统精确度测试传感器 ............................................................................ .6 3.1.7控制、监控以及记录传感器. (6)3.1.8载荷传感器........................................................................................... . 6 3.2使用仪器 ................................................................................................. .7 3.2.4控制、监视以及记录仪器 .. (8)3.2.5仪器的校准(参见表3) (8)3.2.6仪器的记录........................................................................................... . .9 3.2.7仪器的电子记录 .. (9)3.3热处理设备 (10)3.3.1炉子分级(参见表6和表7).......... .. (10)3.3.1.1 A型仪器......................................................................................... . .10 3.3.1.2 B型仪器 . (11)3.3.1.3 C型仪器......................................................................................... . .11 3.3.1.4 D型仪器.... .. (11)3.3.1.5 E型仪器......................................................................................... . . .12 3.3.1.6.1仪器-冷却设备............................................................................... . .12 3.3.1.6.2仪器-淬火系统................................................................................ . 12 3.4系统准确度测试(SAT’s) (12)3.4.2系统准确度测试频率(参见表6及表7) (12)3.4.3系统准确度测试失效(失败) (13)3.4.4系统准确度测试步骤............................................................................ .. 13 3.4.4.2.1常驻测试传感器......................................................................... (13)3.4.4.8可选系统准确度测试步骤................................................................... . (15)3.4.5系统准确度测试仪器(参见表1及表3) (16)3.4.6系统准确度测试之记录......................................................................... .. 15 3.5炉温均一性测试................................................................................ . (16)3.5.2多重认证操作温度区间...................................................................... . (16)3.5.5起始TUS测温 (17)3.5.6 TUS测温周期 ...................................................................................... .17 3.5.7 TUS频率(参见表8及表9)................................................................... . .17 3.5.8 TUS过程中的炉参数 ............................................................................. .17 3.5.9插入TUS传感器时的炉温度..................... .. (18)3.5.10加载条件............................................................ .. (18)3.5.11气氛炉TUS测温................................................................................... ..18 3.5.12真空炉TUS测温............................................................................. .. (18)3.5.13批处理炉、盐浴炉、温度可控液态化浴炉及流态化 (18)3.5.13.1 TUS传感器数目(参见表11) (18)3.5.13.2 TUS传感器定位 (18)3.5.13.3 TUS测温数据采集 (19)3.5.13.4盐浴炉、温度可控液态化浴炉及流态化床的可选探头测试法 (19)3.5.14连续及半连续炉...................... . . . (20)3.5.14.1体积法-TUS传感器的数量及定位................... (20)3.5.14.2平面法-TUS传感器的数量............................... . (20)3.5.14.3平面法-TUS传感器的定位...................... . . . . .. (20)3.5.14.4 TUS测温数据采集 (20)3.5.15连续炉或半连续炉或蒸器炉或马沸炉的可选TUS测试法. . . . . . . . . . . . . . . . . . . . ..21 3.5.15.1探头探测法.......... . . (21)3.5.15.2性能测试 (21)3.5.16 TUS测温传感器失效............................................................. . (21)3.5.17 TUS测温通过及失效技术要求.......... . (22)3.5.18 A类或C类设备的冷热记录传感器位置变换.......... . (22)3.5.19 TUS测试失效 (23)3.5.20 TUS测温设备(参见表1及表3) (23)3.5.21 TUS 报告............................... . . . . (23)3.5.22 本说明出版前的TUS测试 (24)3.5.23辐射测试 (24)3.6 试验室用炉 (24)3.7记录 (24)4.0品质保证规定................... (25)表1 热电偶及热电偶校准...................... (25)表2 热电偶及扩展导线............................ . (26)表3 设备及设备校准 ................ (27)表4 炉子绘图记录仪解决方案............................... (28)表5 记录仪打印及绘图速率 (28)表6 炉子等级、设备型号、SAT测试间隔 (28)表7 原材料炉子等级、设备型号、SAT测试间隔 (29)表8 炉子等级、设备类型及温度均匀性间隔 (30)表9 原材料炉子分类、设备类型及温度均匀性间隔 (30)表10 允许的校准/测试间隔延展期 (31)表11 TUS传感器需要数量....... (31)8.1 注释............................................ . . . . . (32)8.2 表中专用名词释义 (32)3.1温度传感器:温度传感器必须遵守表1以及下列要求。
1. 范围本规范连同AMS 2759中提及的钢的热处理的一般要求一起,构成了马氏体不锈钢零件热处理的要求,涉及的零件在AMS 2759中作了规定。
1.1 应用本规范适用于以下钢制造的零件:403、410、416、420、422、431、440C 型和GREEK Ascoloy(UNS S40300、S41000、S41600、S42000、S42200、S43100、S44004、和S41800)。
2.有关文件在采购单有效期内的下列文件的出版物均作为本规范的一部分。
除非特别规定了一个专门的文件版本, 供应商可以按文件得补充修订版执行, 当参照的文件出现了更改而又未指定补充文件, 则使用该文件的上次版本。
2.1 SAE出版物:SAE,400 Commonwealth Drive, Warrendale, PA 15096-0001或 中的现版出版物。
AMS 2759 钢零件热处理的一般要求ARP 1820 评价表面显微组织的统计方法2.2 ASTM出版物ASTM,100 Barr Harbor Drive, P.O.Box C700,West Conshohocken,PA 19428-2959或中的现版出版物。
ASTM E 380 不锈钢零件清洗和除锈3. 技术要求3.1 热处理应符合AMS 2759和本规定的要求。
3.2 设备应符合AMS 2759的要求。
对于退火、不完全退火、硬化、校正、消除应力和烘烤所使用的炉子,其温度均匀性应达到±25℉(±14℃);对于回火使用的炉子,其温度均匀性应为±15℉(±8℃)。
3.3 加热气氛当加热温度超过1250℉(677℃)时,相应于各种不同类型(见3.3.1节)零件所允许使用的热处理气氛(见3.3.2节)列于表1;当零件加热温度小于等于1250℉(677℃)时可随意使用A级、B级、C级气氛(见8.2节)。
(1)对于要在1000 °F (538 °C)以上回火的零件,应禁止在含氢气气氛中奥氏体化。
AMS2759/1E最小拉伸强度低于220ksi(1517MPa)的低碳合金钢零件的热处理基本原理AMS2759/1E由一个允许在1525°F下奥氏体转化SAE4340的特别范围投票产生,并且包括对表3B标题的修正。
1.范围本规范,结合AMS275标准的钢材热处理通用要求,制定了最小极限拉伸强度低于220ksi (1517MPa)的低碳合金钢的热处理要求。
零件详细说明见AMS2759。
2.引用文件在订单实效之日起以下文件有效的版本在某种程度上构成本规范的一部分。
如果没有明确指定文件的版本,供应商可以使用后来的修订本。
而参考文件已经取消无效且还没有规定替代文件时,应采用该文件的最新版本。
2.1SAE出版物可从SAE International,400Commonwealth Drive,Warrendale,PA15096-0001获得,电话:877-606-7323(美国和加拿大境内)或724-776-4970(美国境外),网址:。
AMS2418镀铜AMS2424镀镍,低压喷镀AMS2759钢材零件的热处理通用要求ARP1820弦向法评估表面微观特征2.2ASTM出版物可从ASTM International,100Barr Harbor Drive,P.O.Box C700,West Conshohocken,PA 19428-2959获得,电话:610-832-9585,网址:。
ASTM A384材料微型硬度3.技术要求3.1热处理符合AMS2759和此处所讲的要求。
3.2设备符合AMS2759。
退火、亚临界退火、正火、淬火、矫直、应力消除和烘焙的熔炉温度均匀性要求为±25°F(±14°C),回火的为±15°F(±8°C),而H-11、D6AC和9Ni-4Co钢的为±10°F(±6°C)除外。
ams 2759e-2014 钢零件热处理通用要求引言概述:AMS 2759E-2014是美国航空材料规范委员会(SAE)制定的钢零件热处理通用要求。
该规范旨在确保钢零件在热处理过程中能够达到所需的力学性能和组织结构。
本文将从五个大点出发,详细阐述AMS 2759E-2014的内容要求。
正文内容:1. 热处理前准备1.1 清洁要求:钢零件在热处理前需要进行彻底的清洁,以确保表面没有杂质和污染物。
清洁方法可以包括溶剂清洗、碱洗、酸洗等。
1.2 表面保护:在热处理前,需要对钢零件进行表面保护,以防止氧化和腐蚀。
常用的表面保护方法有镀锌、镀镍、喷涂防氧化剂等。
2. 热处理工艺2.1 加热:根据钢材的组织结构和力学性能要求,选择适当的加热工艺。
加热温度、保温时间和冷却速率等参数需要根据具体情况进行控制。
2.2 淬火:淬火是钢零件热处理中的重要步骤,通过迅速冷却来改变钢的组织结构和性能。
淬火介质的选择、淬火温度和淬火时间等参数需要根据具体钢材的要求进行调整。
2.3 回火:回火是淬火后的一个步骤,通过加热和保温来减轻淬火引起的内应力和脆性。
回火温度和保温时间需要根据钢材的要求进行控制。
3. 热处理设备和工具3.1 加热炉:加热炉是进行热处理的主要设备,需要具备稳定的加热温度和均匀的加热能力。
常见的加热炉包括电阻炉、气氛炉和盐浴炉等。
3.2 淬火介质:淬火介质的选择需要根据钢材的要求和热处理工艺进行调整。
常用的淬火介质有水、油和气体等。
3.3 温度控制和测量:在热处理过程中,需要对加热温度、保温时间和冷却速率等进行精确的控制和测量。
常见的温度控制和测量设备有热电偶、红外线测温仪和温度控制器等。
4. 热处理后处理4.1 清洗:在热处理后,需要对钢零件进行清洗,以去除表面的残留物和氧化层。
清洗方法可以包括溶剂清洗、碱洗和酸洗等。
4.2 表面保护:在热处理后,需要对钢零件进行表面保护,以防止氧化和腐蚀。
常用的表面保护方法有镀锌、镀镍和喷涂防氧化剂等。
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.Copyright © 2003 SAE InternationalAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying,recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER:Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)Hydrogen Embrittlement Relief (Baking) of Steel Parts1.SCOPE:1.1Form:This specification covers the requirements for embrittlement relief (baking) of heat treated steel parts to remove hydrogen infused during plating and other chemical processing (e.g., stripping, chemical milling, pickling, and etching).1.2Application:This specification is applicable to parts made from carbon, low-alloy, and martensitic stainless steel heat treated to a minimum strength of 180 ksi (1241 MPa) or higher or heat treated to a minimum hardness of 40 HRC or equivalent, or harder. It is also applicable to threaded fasteners made from carbon, low-alloy, or martensitic stainless steels heat treated to a minimum strength of 150 ksi (1034 MPa) or 34 HRC or equivalent, parts made from high strength precipitation hardening stainless steels other than A-286, and steel parts which have been case hardened (carburized, nitrided, nitrocarburized, or carbonitrided). See 8.2.2.APPLICABLE DOCUMENTS:The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been canceled and no superseding document has been specified, the last published issue of that document shall apply.2.1SAE Publications:Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001 or .AMS 2750 PyrometryAMS 2759Heat Treatment of Steel PartsAEROSPACE MATERIALSPECIFICATIONAMS 2759/9BIssued NOV 1996RevisedAPR 2003Superseding AMS 2759/9A--``,,``,`,`,,,,,`,`,,``,,,``,,-`-`,,`,,`,`,,`---3.TECHNICAL REQUIREMENTS:3.1Pyrometry:Shall conform to AMS 2750. Temperature uniformity shall be ±25 °F (±14 °C).3.2Heat Treatment Equipment:Shall conform to AMS 2759 and requirements specified herein. Furnaces shall be circulating-air type.3.3Baking (See 8.2):Parts shall be baked after completion of each plating or other chemical process except when not required after etch inspection (surfactant addition to etchant) and under the following multiple step processing conditions:3.3.1Baking is not required after preplate strikes and after the nickel plate for diffused nickel-cadmium.3.3.2Baking is not required between steps in a multiple step (plating/chemical process) sequence ifinterruptions do not exceed two hours, baking is started within four hours after the final step, and total time between start of first step and start of baking does not exceed 24 hours.3.3.2.1When the conditions of 3.3.1 or 3.3.2 are not met, baking is required but the soaking time may bereduced for parts other than those covered by 3.3.2.2. The minimum soaking time shall be three hours for parts heat treated to a minimum strength of 240 ksi (1655 MPa) or lower, or a minimum hardness of 49 HRC or less; for higher strength or harder parts, the minimum soaking time shall be six hours.3.3.2.2For nickel plated parts heat treated to a minimum strength of 200 ksi (1379 MPa) or higher or aminimum hardness of 43 HRC, or equivalent, or harder, no reduction is permitted; baking soaktime between steps shall be as specified in Table 1.3.4Procedure:3.4.1Cleaning: Parts shall be clean prior to baking.3.4.2Racking and Spacing: Parts shall be placed in racks or trays, made of mesh or expanded metal, orsupported or suspended so as to allow free circulation of the heating medium, except small parts may be randomly arranged in trays providing that layers of parts are not thicker than two inches(51 mm) and the distance between the layers is not less than two inches (51 mm).3.4.2.1Thickness of layers of small parts randomly arranged in trays may be greater than two inches(51 mm) providing that tests have been made with load thermocouples to confirm that the centerof the coldest load will reach the set temperature minus 25 °F (14 °C) degrees withinone hour of loading.--` ` , , ` ` , ` , ` , , , , , ` , ` , , ` ` , , , ` ` , , -` -` , , ` , , ` , ` , , ` ---TABLE 1 - Minimum Baking Time (Hours) at Standard Temperature of375 °F (191 °C) Except Where Indicated by *SpecifiedTemper,Minimum Strength Platings(9)Platings(9)ChemicalTreatmentsChemicalTreatmentsSteel/Part or Minimum Cd &Ni Platings (9)Platings (9)Platings (9)Platings (9)Platings (9)Chem Etch Description Hardness (1)Cd-Ti(2)Cr Ag Au Sn Zn-Ni(3)(4) AISI 1095180 ksi(1241 MPa)or 40 HRC (5)23238335834NitridedNitrocarburizedAll883333834Music WireCarburizedCarbo-nitridedAll23*23*8* (8)8*5*5*23*8*8* 52100All23*23*8* (8)8*5*5*23*8*4* AF1410HP 9Ni-4Co-0.3CAerMet100All232388552384Other High Strength Carbon, Low-Alloy, Tool220 ksi(1517 MPa)46 HRC (6)2323233352384Lower Strength Carbon, Low-Alloy, Tool180 ksi(1241 MPa)or 40 HRC(5)(7)883333834440CStainless46 HRC (6)23*23*8* (8)5*5*8*23*8*NAMartensitic Stainless other than 440C220 ksi(1517 MPa)or 46 HRC(6)23238335238NAMartensitic Stainless180 ksi(1241 MPa)or 40 HRC (7)33333383NA17-7PH, 15-7PH 17-4PH, 15-5PH Stainless CH900, H900,H925,H950,RH9502323833383NACUSTOM 455PH13-8 MOStainless H950, H100033333383NA NOTES:*Nonstandard Temperatures: for parts tempered below 375 °F (191 °C), 275 °F (135 °C) for carburized: 300 °F (149 °C) for 52100 and 440C; 325 °F (163 °C) for music wire NA - Not applicable(1) Orequivalent(2)Includes electroless nickel unless age hardened within four hours(3) Chemical Processing: Etching, Stripping, Pickling, Chemical Milling(4) Etch Inspection, without surfactant addition to etchant, to detect abusive grinding/machining(5) Or higher, but having minimum less than 220 ksi (1517 MPa) or 46 HRC(6) Or higher minimum(7) Threaded fasteners - minimum 150 ksi (1034 MPa) and higher or 34 HRC or equivalent but minimum less than 180 ksi (1241 MPa) or 40 HRC or equivalent -three hours for all processes(8)If thin dense chrome (e.g. AMS 2438), 96 hours at 275 °F (135 °C) for parts tempered lower than 375 °F (191 °C) and 23 hours at 375 °F (191 °C) for parts temperedat 375 °F (191 °C) or higher.(9)For platings not listed, use baking time shown for cadmium.3.4.3Delay Time: The elapsed time between completion of plating or other chemical processingoperations and start of heating parts in the baking furnace shall not exceed four hours except,when baking is required after etch inspection to detect abusive grinding or machining, the elapsed time may be 24 hours.3.4.4Baking Set Temperature: Standard baking set temperature shall be 375 °F (191 °C); nonstandardbaking set temperatures shall be used for parts made from the following materials/conditions, as specified.3.4.4.1Carburized carbon and low-alloy steels, 275 °F (135 °C).3.4.4.2AISI 52100 and 440C heat treated to a minimum strength of 220 ksi (1517 MPa) or higher, or aminimum hardness of 46 HRC, or equivalent, or higher, 300 °F (149 °C).3.4.4.3Music wire, 325 °F (163 °C).3.4.5Baking Soak Times: Shall conform to Table 1.3.4.5.1Start of Soak Time: Soaking time shall commence when parts are placed in the furnace, thefurnace door(s) are closed, and the temperature indicated by the furnace control instrument iswithin 25 °F (14 °C) degrees of the set temperature.3.4.5.2Soaking Interruptions: If the delay time (3.4.3) is less than two hours, soaking may be interruptedfor the purpose of adding or removing parts. If the delay time (3.4.3) is two hours or more, parts shall be soaked for at least one hour before any such interruption.3.4.5.2.1If the temperature indicated by the control instrument drops more than 25 °F (14 °C) degreesbelow the set temperature, the time during which the indicated temperature was below thattemperature shall not be considered part of the soaking time of any parts in the furnace.3.5Records:Records shall be maintained which show the identification and the following for each lot:.3.5.1Date and time of completion of the plating or other chemical process.3.5.2Date and time of start of baking.3.5.3Date and time of start of soak.3.5.4Date and time of completion of baking.3.5.5Furnace control instrument set temperature.3.5.6Furnace identification.--``,,``,`,`,,,,,`,`,,``,,,``,,-`-`,,`,,`,`,,`---4.QUALITY ASSURANCE PROVISIONS:4.1Reports:Processor’s reports shall include the baking time and temperature and shall state that baking was performed in accordance with this specification.4.2Records:Shall be retained for at least five years, including all information required in 3.5, and shall beavailable for review by authorized representatives of purchaser.5.PREPARATION FOR DELIVERY:See AMS 2759.6.ACKNOWLEDGMENT:See AMS 2759.7.REJECTIONS:See AMS 2759.8.NOTES:8.1 A change bar ( l ) located in the left margin is for the convenience of the user in locating areas wheretechnical revisions, not editorial changes, have been made to the previous issue of this specification.An (R) symbol to the left of the document title indicates a complete revision of the specification, including technical revisions. Change bars and (R) are not used in original publications, nor inspecifications that contain editorial changes only.8.2Ordering Data:In order to ensure that the appropriate baking treatment is applied to each lot of parts, it is essential that the processor be furnished with information identifying the material and its minimum strength or hardness or, in the case of precipitation hardening stainless steel, its temper. Additionally, thetempering temperatures shall be furnished to the processor for carburized or carbonitrided parts and parts fabricated from music wire, 52100 and 440C.PREPARED UNDER THE JURISDICTION OF “AMEC” AND AMS COMMITTEE “B”--` ` , , ` ` , ` , ` , , , , , ` , ` , , ` ` , , , ` ` , , -` -` , , ` , , ` , ` , , ` ---。
SAE标准目录编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(SAE标准目录)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为SAE标准目录的全部内容。
ETA-UTP001 Revision 0(SAE J1263)[P19].pdf ETA-UTP001-Effective March 23,2001 Implementation of SAE J1263—1996.pdf NASA-SAE—88-1448 LDV Surveys Over Fighter Model at Moderate High Angles of Attack[P27].pdf SAE—Automotive Chassis Engineering Principles (SECOND EDITION)[P454].pdf SAE- Automotive Chassis—Engineering Principles [SECOND EDITION][P456]。
pdf SAE- Automotive Physical Layer SAE—J1708 DS36277。
pdf SAE- Structural Steel Designer's Handbook (Brockenbrough & Merritt)(3Rd Edition)[P1201].pdf SAE—174M-MAY1998 TORQUE—TENSION TEST PROCEDURESTEEL THREADED FASTENERS,METRIC SERIES。
pdf SAE-2006 Formula SAE—Chassis Design(Queen's University)[P18].pdf SAE—720709—1972 Design&Development of a High horsepower torque sensing variable speed drive。