第4章 曲线曲面讲解
- 格式:ppt
- 大小:1.25 MB
- 文档页数:30
数学知识点归纳曲线与曲面的性质与刻数学知识点归纳:曲线与曲面的性质与刻在数学中,曲线与曲面是常见的几何对象,它们具有许多独特的性质与刻画方法。
本文将对曲线与曲面的性质和刻画方法进行归纳总结。
一、曲线的性质与刻画曲线是二维几何对象,它可以用参数方程或者隐函数表示。
常见的曲线有直线、圆、椭圆等。
1. 直线直线是最简单的曲线,它具有以下性质:- 无限延伸性:直线没有起点和终点,可以无限延伸。
- 线段性质:直线上的两点可以唯一确定一条直线段。
- 斜率:直线的斜率表示了其倾斜程度,可以通过两点的坐标计算得到。
2. 圆圆是一个平面上距离圆心相等的点的轨迹,它具有以下性质:- 对称性:圆具有中心对称性,任意点与圆心的距离相等。
- 弧长与扇形面积:圆的弧长与扇形面积可以通过圆心角计算得到。
- 切线:圆上的切线与半径垂直。
3. 椭圆椭圆是平面上离两个固定点距离之和为常数的点的轨迹,它具有以下性质:- 中心:椭圆有一个中心点,是两个焦点的中点。
- 长短轴:椭圆有两个重要的参数,即长轴和短轴。
- 离心率:椭圆的离心率决定了其形状,范围在0到1之间。
二、曲面的性质与刻画曲面是三维几何对象,它可以用参数方程或者隐函数表示。
常见的曲面有球面、圆柱面、圆锥面等。
1. 球面球面是空间中到定点距离相等的点的轨迹,它具有以下性质:- 中心和半径:球面由一个中心点和半径确定。
- 表面积和体积:球面的表面积和体积可以通过半径计算得到。
- 切平面:球面上的切平面与法线垂直。
2. 圆柱面圆柱面是空间中直线与一个固定曲线平行移动形成的曲面,它具有以下性质:- 直母线:圆柱面上的任意一条直线与轴线平行。
- 侧面积和体积:圆柱面的侧面积和体积可以通过圆柱的高和底面积计算得到。
3. 圆锥面圆锥面是空间中直线与一个固定点旋转形成的曲面,它具有以下性质:- 顶点和母线:圆锥面由一个顶点和沿着一个直线运动的所有点组成。
- 侧面积和体积:圆锥面的侧面积和体积可以通过圆锥的高和底面积计算得到。
曲面与曲线知识点总结一、曲线与曲面的基本概念曲线是在平面上的点按照特定的规则所组成的图形,而曲面则是在三维空间内的点按照特定的规则所组成的图形。
在数学上,我们可以用函数来描述曲线和曲面,从而研究它们的性质和特点。
1.1 曲线的性质曲线可以是直线、圆、椭圆、抛物线、双曲线等不同类型的图形。
我们可以通过曲线的方程以及参数方程来描述它的形状和位置。
曲线的长短、曲率、切线、法线等性质对于描述曲线的形态和特点至关重要。
1.2 曲面的性质曲面可以是球面、圆柱面、圆锥面、双曲面、抛物面等不同类型的图形。
我们可以用二元函数或者参数方程来描述曲面的形状和位置。
曲面的曲率、切线、法线等性质是研究曲面形态的重要工具。
1.3 直角坐标系和参数方程在研究曲线和曲面的性质时,我们可以使用直角坐标系、参数方程和极坐标系等不同的数学工具来描述它们的形态和位置关系。
不同的描述方法可以帮助我们更好地理解曲线和曲面的性质。
二、曲线的方程与性质曲线方程是研究曲线性质的重要工具,通过曲线方程我们可以得到曲线的形状、位置、长度、曲率等重要信息。
2.1 一元曲线的方程一元曲线的方程可以用直角坐标系的方程或者参数方程来表示。
常见的一元曲线包括直线、圆和椭圆、抛物线、双曲线等。
这些曲线都有各自的特点和性质,通过曲线方程我们可以了解它们的形状和位置关系。
2.2 二元曲线的方程二元曲线的方程可以用参数方程或者隐式方程来表示。
常见的二元曲线包括螺线、双曲线、阿基米德螺线等。
通过曲线方程我们可以了解二元曲线的性质和特点。
2.3 曲线的性质曲线的性质包括长度、曲率、切线、法线等重要内容。
通过曲线方程和导数的求解,我们可以求得曲线的长度、曲率和切线、法线等相关信息,从而了解曲线的形态和特点。
三、曲面的方程与性质曲面方程是研究曲面性质的重要工具,通过曲面方程我们可以得到曲面的形状、位置、曲率等重要信息。
3.1 一元曲面的方程一元曲面的方程可以用隐式方程或者参数方程来表示。
第四章 曲面的第二基本形式与曲面上的曲率§5 曲面上的曲率概念利用上一节所作的准备,围绕曲面弯曲状况的刻画,本节将引入曲面上的基本的和重要的曲率概念,并简要讨论相关的几何体.一.主曲率定义1 曲面 S 上的点 P 处的法曲率关于切方向的两个最值,分别称为曲面 S 在点 P 处的主曲率;使得法曲率达到最值的两个切方向,分别称为曲面 S 在点 P 处的主方向.注记1 ① Weingarten 变换的特征值和特征方向,分别是曲面的主曲率和主方向.② 当两个主曲率 κ1(P ) ≠ κ2(P ) 时,曲面在点 P 处有且仅有正交的两组主方向,每一组的单位化向量分别就是Weingarten 变换的单位正交特征向量.而当两个主曲率 κ1(P ) = κ2(P ) 时,曲面在点 P 处的任何非零切向都是主方向,Weingarten 矩阵 ω(P ) = κ1(P )I 2 ,即 Ω(P ) = κ1(P )g (P ) .主曲率和主方向的计算,自然归结为Weingarten 变换的特征值和特征方向的计算,也就是Weingarten 矩阵的特征值和特征方向的计算.即: ① 对于主曲率的算法,当易知Weingarten 矩阵 ω 之时,方程为 (4.3) 式,或直接写为(5.1) |ω - λI 2 | = 0 ;等价地,当易知系数矩阵 Ω 和 g 之时,其方程可变形为(5.2) |Ω - λg | = 0 .② 对于主方向的算法,各种等价算式为a = a i r i ≠ 0 为主方向,即非零切方向 a 1:a 2 为主方向 ⇔ ∃λ , ∍(a 1, a 2)ω = λ(a 1, a 2) , (a 1, a 2) ≠ (0, 0)⇔ ∃λ , ∍(a 1, a 2)Ω = λ(a 1, a 2)g , (a 1, a 2) ≠ (0, 0)⇔ det. ⎝⎛⎭⎫(a 1, a 2)Ω (a 1, a 2)g = 0⇔(a2)2-a1a2 (a1)2g11g12g22Ω11Ω12Ω22= 0 .主方向所对应的微分方程通常写为(5.3)(d u2)2-d u1d u2 (d u1)2g11g12g22Ω11Ω12Ω22= 0 .定义2若曲面S在点P处的两个主曲率相等,则称点P为曲面S上的一个脐点.若曲面S处处为脐点,则称曲面S为全脐曲面.若脐点处的主曲率为零,则称之为平点;若脐点处的主曲率不为零,则称之为圆点.注记2全脐曲面S的法曲率只与点有关而不依赖于切向选取,故只有平面和球面两类;平面上各点为平点,球面上各点为圆点.全脐曲面主方向所对应的微分方程是蜕化的恒等式.二.Gauss曲率和平均曲率定义3对于正则曲面S,其在点P处的两个主曲率的乘积K,称为其在点P处的Gauss曲率或总曲率;其在点P处的两个主曲率的算术平均值H,称为其在点P处的平均曲率.注记3①注意到(4.4)-(4.5) 式,Gauss曲率和平均曲率分别具有用Weingarten矩阵或两个基本形式系数的表达式,分别列为(5.4)K=|ω|=|Ω||g|=LN-M2EG-F2,(5.5) H= tr.ω2=LG- 2MF+NE2(EG-F2).②主曲率方程 (4.3) 式现可改写为(5.6)λ2- 2Hλ+K= 0 ;其中H 2-K= (κ1-κ2)24≥ 0 .③Gauss曲率在容许参数变换下不变;平均曲率在保向参数变换下不变,在反向参数变换下变号.④当曲面三阶连续可微时,Gauss曲率和平均曲率分别是连续可微函数;此时,两个主曲率函数(5.7)κi=H±H2-K , i= 1, 2处处连续,并且在非脐点处连续可微.⑤ 平均曲率等于法曲率按切方向的积分平均值(留作习题). ⑥ 平均曲率不是等距不变量.反例如圆柱面和平面.例1 证明可展曲面的Gauss 曲率 K ≡ 0 .证明 对可展曲面 S 的直纹面参数化 r (u , v ) = a (u ) + v l (u ) ,由可展定义得知 n v ≡ 0 ,故其第二基本形式系数满足M = - r u ∙n v ≡ 0 , N = - r v ∙n v ≡ 0 ,于是K = LN - M 2 EG - F 2≡ 0 . □ 在上例中,若取准线使 a '∙l ≡ 0 且 |l | ≡ 1 ,则可展曲面 S 的第一和第二基本形式系数矩阵同时对角化,Weingarten 矩阵则为特征值对角阵,而且(5.8) κ1 = L E, κ2 ≡ 0 . 三.Gauss 映射和第三基本形式Gauss 在考察曲面的弯曲程度刻画时,注意到曲面的单位法向在单位球面上的行为对于曲面弯曲状况的反映,并进一步明确了两者的依赖程度,进而在曲面论中做出了卓有成效的工作.观察熟知的一些曲面,比如平面、圆柱面、圆锥面、椭球面、双叶双曲面、双曲抛物面等等,可以直观感受到单位法向不同的行为和曲面不同的弯曲状况之间有着密切联系.定义4 对于 C 3 正则曲面 S : r (u 1, u 2) 及其单位法向量场 n (u 1, u 2) ,曲面 S 到以原点为心的单位球面 S 2(1) 上的映射(5.9) G : S →S 2(1) r (u 1, u 2)→G (r (u 1, u 2)) = n (u 1, u 2)称为曲面 S 的Gauss 映射.二次微分形式(5.10) Ⅲ = d n ∙d n图4-5称为曲面S的第三基本形式.性质①n1⨯n2=K r1⨯r2.②|K(P)|=limU收缩至P A(G(U))A(U),其中P∈U⊂S, U为单连通区域,A(G(U)) 是G(U)⊂S2(1) 的面积,A(U) 是U⊂S的面积.③Ⅲ- 2HⅡ+KⅠ= 0 .证明①由Weingarten公式得n1⨯n2= [-(ω11r1+ω12r2)]⨯[-(ω21r1+ω22r2)]=|ω|r1⨯r2=K r1⨯r2.②A(U) =⎰⎰r-1(U)| r1⨯r2| d u1d u2 ,A(G(U)) =⎰⎰r-1(U) | n1⨯n2| d u1d u2=⎰⎰r-1(U)|K|| r1⨯r2| d u1d u2.而由积分中值定理,∃P*∈U使⎰⎰r-1(U) |K|| r1⨯r2| d u1d u2=|K (P*)|⎰⎰r-1(U)| r1⨯r2| d u1d u2.故而lim U收缩至P A(G(U))A(U)= limP*→P|K (P*)|=|K (P)|.③结论用系数矩阵等价表示为(Ω g-1)g(Ω g-1)T- 2HΩ+K g≡ 0⇔Ω g-1Ω- 2HΩ+K g≡ 0⇔Ω g-1Ω g-1- 2HΩ g-1+K I2≡ 0⇔ωω- (tr.ω)ω+|ω|I2≡ 0 .而最后的等式对于二阶方阵总成立(用特征值理论则知是显然的),用元素计算可直接验证为ωi kωk j- (tr.ω)ωi j+|ω|δi j=ωi1ω1j+ωi2ω2j- (ω11+ω22)ωi j+ (ω11ω22-ω12ω21)δi j≡ 0 .□习题⒈对于螺面r= (u cos v , u sin v , u+v) ,试求:①主曲率κ1和κ2;②Gauss曲率和平均曲率.⒉试求球面的Gauss曲率和平均曲率与球面半径的关系.⒊试证:平均曲率等于法曲率按切方向的积分平均值,即 2πH(P) =⎰2πκ(P, θ) dθ.⒋试证:直纹面的Gauss曲率处处非正.⒌设正则曲面S: r(u1, u2) 当常数μ足够小时 1 - 2μH+μ2K> 0 .按参数相同作对应曲面S*: r*(u1, u2) =r(u1, u2) +μn(u1, u2) ,其中n为曲面S的单位法向量场.试证:①S和S* 在对应点具有相同的单位法向和法线;②S和S* 在对应点的Weingarten矩阵具有关系式ω* =ω (I2-μω )-1;③S和S* 在对应点的Gauss曲率和平均曲率具有关系式K* =K1 - 2μH+μ2K,H* =H-μK1 - 2μH+μ2K;④S的曲率线对应于S* 的曲率线.⒍已知曲面S在一点处沿着一组等分周角的m个切方向的法曲率分别为κn(1), …,κn(m),m> 2 .试证:S在该点的平均曲率H=κn(1)+…+κn(m)m.⒎试证:曲面S的第三基本形式恒为零的充要条件为S是平面.。
曲线曲面从参数表示的基础知识
连续性
设计一条复杂曲线时,常常通过多段曲线组合而成,这需要解决曲线段之间如何实现光滑连接的问题。
曲线间连接的光滑度的度量有两种:一种是函数的可微性,把组合参数曲线构造成在连接处具有直到n阶连续导矢,即n阶连续可微,这类光滑度称之为C n或n阶参数连续性。
另一种称为几何连续性,组合曲线在连接处满足不同于C n的某一组约束条件,称为具有n阶几何连续性,简记为G n。
曲线光滑度的两种度量方法并不矛盾,C n连续包含在G n连续之中。
下面我们来讨论两条曲线的
若要求在结合处达到G0连续或C0连续,即两曲线在结合处位置连续:
P(1)=Q(0) ()
若要求在结合处达到G1连续,就是说两条曲线在结合处在满足G0连续的条件下,并有公共的切矢:
当a=1时,G1连续就成为C1连续。
若要求在结合处达到G2连续,就是说两条曲线在结合处在满足G1连续的条件下,并有公共的曲率矢:
代入()得:
这个关系式为:
图两条曲线的连续性
我们已经看到,C1连续保证G2连续,C1连续能保证G2连续,但反过来不行。
也就是说C n连续的条件比G n连续的条件要苛刻。
曲线曲面总结引言曲线和曲面是数学中重要的概念,在多个领域得到广泛应用。
本文将对曲线和曲面的基本概念、性质和应用进行总结和讨论。
曲线的基本概念曲线是平面上的一个点的集合,其特点是在数学上可以通过参数方程或者函数方程进行描述。
曲线可以分为直线和曲线两类,直线是一种特殊的曲线,可以通过两点确定。
曲线的形状可以是直线、圆、椭圆、抛物线、双曲线等。
曲线的一些重要概念包括曲线的弧长、曲线的切线、曲率等。
曲线的性质曲线的性质主要包括长度、切线和曲率等。
曲线的长度是曲线弧线的长度,可以通过积分来计算。
曲线的切线是曲线某一点的切线方向,可以通过导数来计算。
曲线的曲率是衡量曲线弯曲程度的物理量,越弯曲的地方曲率越大。
曲线的性质对于曲线的实际应用有重要的影响。
曲面的基本概念曲面是三维空间中一组点的集合,可以用函数或参数方程进行描述。
曲面可以分为平面和曲面两类,平面是特殊的曲面,可以通过三个点或一个点和法向量确定。
曲面的形状可以是球面、柱面、锥面、椭球面、双曲面等。
曲面的一些重要概念包括曲面的面积、曲面的切平面、法向量等。
曲面的性质曲面的性质主要包括面积、法向量和曲率等。
曲面的面积是曲面上一部分的面积大小,可以通过积分来计算。
曲面的法向量是曲面上某一点的法向量方向,可以通过求偏导数来计算。
曲面的曲率是衡量曲面局部弯曲程度的物理量,曲率越大表示曲面弯曲得越厉害。
曲面的性质对于曲面的几何特征和物理特性具有重要的意义。
曲线和曲面的应用曲线和曲面在各个学科和领域中都有广泛应用。
在计算机图形学中,曲线和曲面用于表示和绘制复杂的图形和图像。
在物理学中,曲线和曲面用于描述物体的运动轨迹和形状变化。
在工程学中,曲线和曲面用于设计和制造各种产品的表面形状。
在统计学中,曲线和曲面用于拟合和分析数据模型。
曲线和曲面的应用涵盖了多个学科和行业,对于提升科学研究和实际应用都具有重要意义。
结论曲线和曲面是数学中重要的概念,具有广泛的应用。
本文对曲线和曲面的基本概念、性质和应用进行了总结和讨论。
曲面知识点总结1. 曲面的概念曲面是三维空间中的一种特殊几何体,可以用一定的方程或参数化形式来描述。
在数学上,曲面是平面与立体之间的一种过渡形式,具有一定的曲率和形状特征。
2. 曲面的分类曲面可以根据其形状特征和几何性质进行分类,常见的曲面包括球面、圆锥面、双曲面、抛物面等。
根据曲面方程类型的不同,曲面也可以分为代数曲面和解析曲面两种类型。
3. 曲面的参数化曲面的参数化是指通过一组参数的变化来描述曲面上的点的位置。
通过将曲面的参数方程代入,可以得到曲面上的各个点的坐标,从而更好地理解和分析曲面的性质和特点。
4. 曲面的法向量曲面的法向量是指曲面在某一点处的法线方向。
通过法向量的概念,可以描述曲面的曲率和几何特征,也可以用于计算曲面上的曲线积分和曲面积分等几何分析问题。
5. 曲面的切平面和切线在曲面上的某一点处,可以定义曲面的切平面和切线,用于描述曲面在该点处的局部几何性质。
切平面和切线的几何性质可以帮助理解曲面的曲率和法向量等重要概念。
6. 曲面积分曲面积分是对曲面上的函数或矢量场进行积分的概念。
曲面积分可以用于计算曲面的面积、质量、质心等物理属性,也可以用于描述曲面上的场强、通量等物理量。
曲面积分具有重要的物理和数学应用价值。
7. 曲面的方程曲面的方程是描述曲面几何性质和形状特征的数学表达式。
常见的曲面方程包括隐式方程、参数方程、标准方程等,可以用于描述曲面的曲率、焦点、直角坐标系等重要几何性质。
8. 曲面的应用曲面是数学、物理和工程等领域中重要的数学工具,具有广泛的应用价值。
例如,在物理学中,曲面可以用于描述电场、磁场、流体流动等现象;在工程学中,曲面可以用于设计曲线、曲面、雕刻等工艺;在计算机图形学中,曲面可以用于构建三维模型、渲染图像等。
9. 曲面的演化随着数学和物理相关领域的发展,曲面的研究也在不断发展和演化。
例如,曲面的微分几何和流形理论为曲面研究提供了更深入的理论基础;曲面的主题几何和拓扑理论为曲面的分类和性质研究提供了新的视角。