北师大版八年级数学上实数检测试卷.docx
- 格式:docx
- 大小:93.61 KB
- 文档页数:3
八年级(上)数学《第2章实数》检测试卷一、选择题(共10小题)1.(﹣2)2的平方根是()A.2B.﹣2C.±2D.2.下列各数中,是无理数的是()A.3.1415B.C.D.3.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n4.若=0,则x的值是()A.﹣1B.0C.1D.25.(3分)下列各数中,不是无理数的是()A.B.C.πD.6.(3分)下列运算正确的是()A.=﹣1B.=3C.=±D.=62.(3分)一个数的算术平方根是3,则这个数是()A.B.9C.D.±98.已知实数a在数轴上的对应点位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1C.1D.2a﹣31.(4分)下面与互为相反数的是()A.B.C.5D.二、填空题(共10小题)11.(4分)在实数,0,﹣3.14,,0.2,中,无理数有个.13.在,,π,﹣1.6,这五个数中,有理数有个.12.(3分)比较大小:.1.﹣8的立方根是.12.﹣=.14.若在实数范围内有意义,则x的取值范围为.15.已知x=+,那么x2﹣2x的值是.16.若m<2<m+1,且m为整数,则m=.17.计算:=.18.与最简二次根式5是同类二次根式,则a=.19.计算:(﹣)﹣2﹣|﹣2|+÷=.三、解答题(共10小题)1.计算:(﹣2)2++62.计算:+|﹣1|.3.计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.4.计算:(1)2﹣6+3(2)(3+﹣4)÷5.计算:(1);(2).6.计算:①(+)×;②(4﹣3)÷2;③(+)(﹣);④(5+2)2.1。
八年级数学上册第二章《实数》测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028.20.解:因为m-15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-2=2+3(2-3)×(2+3)+3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。
北师大版八年级数学上册《第二章实数》测试卷-带答案学校班级姓名考号一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若成立,则x的值可以是()A.-2 B.0 C.2 D.33.下列运算正确的是()A.B.C.D.4.如图所示的数轴被墨迹污染了,则下列选项中可能被覆盖住的数是()A.B.﹣C.﹣D.﹣5.已知,且,则的值为()A.1 B.-7 C.-1 D.1或-76.是某三角形三边的长,则等于()A.B.C.10 D.47.已知,则代数式的值是()A.0 B.C.D.8.如图,长方形ABCD的边AD=2,AB=1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则点E表示的数是()A.+1 B.﹣1 C.D.1﹣二、填空题9.写出一个在1到4之间的无理数.10.计算:.11.请写出一个正整数m的值使得是整数;.12.已知:,则.13.如果的小数部分为a,的整数部分为b,则的值为.三、计算题14.计算:(1)(2)15.已知:16.已知和.(1)求的值.(2)若x的整数部分是a,y的小数部分是b,求的值.17.已知某正数的两个平方根分别是和,的立方根为-3.(1)求的值.(2)求的立方根.18.我们知道无理数都可以化为无限不循环小数,所以的小数部分不可能全部写出来,若的整数部分为a,小数部分为b,则,且b<1.(1)的整数部分是,小数部分是;(2)若的整数部分为m,小数部分为n,求的值.参考答案:1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】B9.【答案】10.【答案】611.【答案】812.【答案】13.【答案】114.【答案】(1)原式=﹣()××=﹣=﹣1﹣=﹣1(2)原式=3﹣1﹣3+=﹣115.【答案】解:∴ . ∴原式=16.【答案】(1)解:.(2)解:∵∴∴x的整数部分是,y的小数部分是∴.17.【答案】(1)解:∵某正数的两个平方根分别是和∴∴∵的立方根为-3∴∴∴(2)解:当时∴的立方根为4.18.【答案】(1)4;(2)解:∵∴∴m=5,-5 ∴。
第二章 实数综合测评(时间: 满分:120分)(班级: 姓名: 得分: )一、精心选一选(每小题3分,共30分)1.(-2)2的平方根是( )A .2B .-2C .±2D .±22.给出四个数-1,0,0.5,7,其中为无理数的是( )A. -1B. 0C. 0.5D.73.下列说法正确的是( )A .任何一个实数都可以用分数表示B .无理数化为小数形式后一定是无限小数C .无理数与无理数的和是无理数D .有理数与无理数的积是无理数4.如果x 是0.01的算术平方根,则x 的值是( )A .0.000 1B .±0.000 1C .0.1D .±0.15. 估算76-3的值在( )A .4与5之间B .5与6之间C .6与7之间D .7与8之间6.一个正方形的面积为8,则这个正方形的对角线的长是( )A .2B .2C .22D .47.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是( )A .123B .189C .169D .2488.下列计算中,不正确的是( ) A.12662⨯= B.63287-=C.178551÷⨯= D .()2321-=图19.在图1所示方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度为无理数的有( )A .1条B .2条C .3条D .4条10.将1、2、3、6按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A.1B.2C.32D.6二、细心填一填(每小题3分,共24分)11. 写出一个比4小的正无理数: .12.若a 21-有意义,则a 的取值范围是__________.13.a 是9的算术平方根,b 的算术平方根是9,则a +b =__________.14.若2-x +(y +3) 2=0,则x +y =__________.15.明明家的卫生间地面恰好由120块相同的正方形地砖铺成,若该地面的面积是10.8 m 2,则每块正方形地砖的边长是__________ cm .16.若4<a <10,则满足条件的整数a 有__________个.17.若实数a ,b 满足01=+++b a a ,则代数式a 2014+b 2015=________.18.如果正方体的体积扩大为原来的27倍,则边长扩大为原来的_______倍;若长方体的长、宽、高都扩大为原来的2倍,则表面积扩大为原来的_______ 倍.三、耐心做一做(共66分)19.(5分)将下列各数由小到大排列,并用“<”号连接起来:-π,0,32,-3.15,3.520. (每小题4分,共12分)计算:(1)30.040.125---3490.001⨯;(2)287512÷-⨯;(3)326)32)(23(---. 21.(每小题5分,共10分)求下列各式中x 的值.图2(1)25x 2-64=0;(2)343(x +3)3+27=0.22.(6分)如果一个正数x 的两个平方根分别为a +1和a -5.(1)求a 和x 的值;(2)求7x +1的立方根.23.(6分)图3所示是两个边长为2的正方形.(1)将这两个正方形剪拼成一个大正方形,并画出示意图;(2)求拼出的大正方形的边长.24.(8分)如图4,已知A ,B ,C 三点分别对应数轴上的数a ,b ,c .(1)化简:|a −b|+|c −b|+|c −a|;(2)若a=4y x +,b= −z 2,c= −4mn ,且满足x 与y 互为相反数,z 是绝对值最小的负整数,m ,n 互为倒数,试求98a+99b+100c 的值;25.(9分)据科学研究表明,可以利用身体的体重W (kg )和身高h (m )计算身体的脂肪水平,也称为身体质量指数BMI (Body Mass Index ),计算公式是BMI=2W h .已知男性的BMI 正常范围是24~27kg/m 2.若有一成年男子的体重是90 kg ,他的身体脂肪水平属于正常,你能估计他的身高的大概范围吗?(结果精确到0.01 m )26.(10分)观察下列一组等式,解答后面的问题: (2+1)( 2-1)=1,(3+2)(3-2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1,…(1)根据上面的规律,计算下列式子的值: ()11112016121324320162015⎛⎫+++++ ⎪++++⎝⎭. 图4 图3(2)利用上面的规律,比较1112-与1213-的大小.第二章 实数综合测评参考答案一、1. D 2. D 3. B 4. C 5. B 6. D 7. A 8. D 9. B10. D 提示:由图可知,(4,2)表示的数是6.因为前20排共有1+2+3+4+…+20=210个数,所以(21,2)表示的是第210+2=212个数. 由图中知这些数字按照1、2、3、6的顺序循环出现,212÷4=53,所以(21,2)表示的数是6.所以(4,2)与(21,2)表示的两数之积是666=⨯.二、11. 答案不唯一,如2 12. a ≤12 13. 84 14. -1 15. 30 16. 83 17. 2 18. 3 4三、19.-3.15<-π<0<32<3.5.20.(1)0;(2)28;(3)-5.21. 解:(1)根据题意,得6425x =±,解得85x =±. (2)根据题意,得3273343x +=-,解得247x =-. 22. 解:(1)由题意,得(a +1)+(a -5)=0,解得a=2. 所以a +1=3,a -5=-3.因为9的平方根是±3,所以x=9.(2)因为7x +1=7×9+1=64,所以64的立方根为4.23. 解:(1)答案不唯一,给出如下图形供参考.(2)设拼出的大正方形的边长为x ,则x 2=22+22,即x =22.24. 解:(1)由数轴,知a-b >0,c-b <0,c-a <0,所以|a −b|+|c −b|+|c −a|=(a-b )-(c-b )-(c-a )=a-b-c+b-c+a=2a-2c.(2)由题意,知x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4.所以98a+99b+100c=-99-400=-499.25. 解:当BMI=24时,h 2=W BMI =9015244=,则h=154≈1.94(m );当BMI=27时,h 2=W BMI =9010273=,则h=103≈1.83(m ). 所以这位成年男子的身高大约在1.83~1.94 m 之间.26. 解:(1)根据规律,可得n n n n -+=++111(n ≥1).111121324320162015⎛⎫++++ ⎪++++⎝⎭()20161+ =()()()()21324320162015⎡⎤-+-+-++-⎣⎦()20161+ =()20161-()20161+=2015. (2)因为111211121+=-,121312131+=-,又12131112+<+,所以1213111121-<-.所以1112->1213-.。
第二章实数测试题班 _______ 姓名 ______________ 成 _______一、(每小 3 分,共 30 分)1. 0.81 的算平方根是()A.± 0.9 B .- 0.9 C. 0.9 D.0.9 2.下列法正确的是 ( )A. 49 的平方根是± 7B.16 的平方根是 -4C. ( 6) 2的平方根是-6D.4 是( 4)2 的平方根3.在数22, 1.414 ,, 2+ 3 ,3 9 , - 2 ,0。
101001000⋯中,无理数有 ( ) 7A.4 个B. 5 个C. 6 个D.7 个4.x数 , 下列各式一定有意的是()A. 2B. 1C. xD. xx x25.若一个数的平方根与它的立方根完全相同,个数是()A.± 1,0 B. 1 C .- 1 D . 06.下列法:①任何数都有算平方根;②一个数如果有算平方根,那么它的算平方根一定是正数;③a2的算平方根是a;④( 4)2的算平方根是-4;⑤算平方根不可能是数.其中不正确的有()...A. 5 个B.4个C.3个D.2个7.下列等式正确的是()A.( 2) 22 B .16913C.366D.27 3 8.立方根等于它本身的数有()A.- 1,0 ,1B.0,1C.0 D . 19.下列法正确的是()A.0 没有立方根B. 一个数的立方根一定比个数小C. 一个数的立方根有两个D.一个非零的数的立方根, 仍然是一个非零的数10.下列法中,正确的有()①无理数就是开不尽方的数②无理数都是无限小数③无理数包括正无理数、0、无理数④无理数是无限不循小数⑤无理数都可以用数上的点来表示⑥无理数一定不能化成分数A.3 个B.4 个C.5 个D.6个11.若x 1 =1- x , x 的取范是()A .x≥ 1B .x≤ 1C.x> 1 D .x< 112.如图,数轴上表示1,的对应点分别为 A ,B ,点B关于点A的对称点为C ,则点C表示的数是()2A.-1B.1-C.2-D .- 2二、填空题每题 3 分,共 24 分)13. 25 的平方根是____, 81 的算术平方根是____。
初中数学试卷鼎尚图文**整理制作八年级第一学期<<实数>>检测试卷数 学 试 题一、选择题 (本题12小题,每小题3分,共36分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1. -0.333…, 4, 5, π-, 3π, 3.1415,2.010101…(相邻两个1之间有1 个0),76.0123456…(小数部分由相继的正整数组成),以上是无理数的有( )个 A.3个 B.4个 C. 5个 D. 6个 2.下列说法中,错误的是( )A.4的算术平方根是2B.81的平方根是±3C.8的立方根是±2 D.立方根等于-1的实数是-1 3.下列各式中,正确的是( )A. 2)2(2-=-B. 9)3(2=-C. 39±=±D. 393-=- 4.下列运算中正确的是( )A.1394=+B.12622-82==)(C. 24±=D. ∣32-∣=23- 5. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 6.若一个数的相反数、平方根、立方根都等于它本身,这个数是( ) A.-1 B.1 C.0 D.±17. 满足53<<-x 的整数x 是( )A.3,2,1,0,1,2--B.2,1,0,1-C.3,2,1,0,1,2--D.3,2,1,0,1-8. 下列二次根式中, 是最简二次根式的是( ) A.31B. 20C. 22D. 121 9.下列各组数中互为相反数的是( )A.-2与2)2(- B.-2与38- C.-2与21-D.2-与2 10..圆的面积增加为原来的4倍,则它的半径是原来的( ) A. 1倍 B. 倍2 C.2倍 D. 4倍。
11.一个正数x 的两个平方根是3a 1-+和a ,则x 的值为( )A. 1B. -1C. 2D. 4 12.如图所示: a 、b 表示两个实数 ,那么化简2()a b a b-++ 的结果是( )A :-2bB :2bC :―2aD :2a二、填空题(本题4小题,每小题3分,共12分)13. 81的平方根是 ,0.64的算术平方根是 , -0.027的立方根是 。
北师大版八年级上第二章实数测试卷一、选择题(本大题共6小题,共18.0分)1.实数的平方根()A. 3B. -3C. ±3D. ±2.一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A. 1B. -1C. 2D. -23.下列说法中,其中不正确的有任何数都有算术平方根;一个数的算术平方根一定是正数;的算术平方根是a;算术平方根不可能是负数.A. 0个B. 1个C. 2个D. 3个4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A. 0个B. 1个C. 2个D. 3个5.下列运算正确的是()A. B. C. D.6.当1<a<2时,代数式+|a-1|的值是()A. 1B.C.D.二、填空题(本大题共6小题,共18.0分)7.若的值在两个整数a与之间,则______ .8.计算:(-)(+)=______.9.把化为最简二次根式,结果是______.10.若的平方根为±3,则a= ______ .11.已知y=1++,则2x+3y的平方根为______.12.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、计算题(本大题共3小题,共22.0分)13.计算:①|-|+|-2|-|-1|②+-+(-1)2016.14.计算:(1)÷-×+(2)(3+2)(3-2)-(-)2.15.解方程:①(x-4)2=4;②.四、解答题(本大题共6小题,共42.0分)16.已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.17.已知:x2+y2-10x+2y+26=0,求(+y)(-y)的值.18.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数.因此,的小数部分不可能全部地写出来,但可以用-1来表示的小数部分.理由:因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:2+的小数部分为a,5-的小数部分为b,计算a+b的值.19.已知:a+b=-5,ab=1,求:的值.20.观察下列各式,发现规律:=2;=3;=4;…(1)填空:= ______ ,= ______ ;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.21.观察下列一组等式,解答后面的问题:(+1)(-1)=1,(+)(-)=1,(+)(-)=1,(+)(-)=1,…(1)根据上面的规律,计算下列式子的值:()(+1).(2)利用上面的规律,比较与的大小.答案和解析1.【答案】D【解析】【分析】本题考查平方根与算术平方根的概念,属基础题,掌握整数的平方根和算术平方根的概念是解决此类问题的关键,注意正数a的平方根有两个,是,据此进行解答即可.【解答】解:∵是9的算术平方根,∴=3,∵3的平方根是,∴的平方根是.故选D.2.【答案】B【解析】【分析】本题主要考查了平方根的定义有关知识,由于一个正数的两个平方根应该互为相反数,由此即可列方程解出a的值.【解答】解:由题意得:2a-1-a+2=0,解得:a=-1.故选B.3.【答案】D【解析】【分析】本题主要考查了算术平方根的理解,如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根;若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,解答此题根据算术平方根的定义进行判断即可.【解答】解:①负数没有算术平方根,故①错误;②0的算术平方根是0,故②错误;③当a<0时,a2的算术平方根是-a,故③错误;④算术平方根不可能是负数,故正确.所以不正确的有①②③,共3个.故选D.4.【答案】D【解析】【分析】利用实数的分类,无理数定义,立方根及平方根定义判断即可.此题考查了实数,相反数,绝对值,平方根及立方根,熟练掌握各自的定义是解本题的关键.【解答】解:①实数和数轴上的点是一一对应的,正确;②无理数不一定是开方开不尽的数,例如π,错误;③负数有立方根,错误;④16的平方根是±4,用式子表示是±=±4,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确,则其中错误的是3个,故选:D.5.【答案】C【解析】【分析】主要考查了实数的算术平方根和平方运算,一个实数的算术平方根为非负数,一个实数的平方为一个非负数.根据实数的算术平方根和平方运算法则计算,注意一个数的平方必是非负数.【解答】解:A、=2,故本选项错误;B、=5,故本选项错误;C、(-)2=7,故本选项正确;D、没有意义,故本选项错误.故选C.6.【答案】A【解析】【分析】本题考查了二次根式的性质与化简,解答本题的关键在于熟练掌握二次根式的性质.结合二次根式的性质求解即可.【解答】解:∵1<a<2,∴=|a-2|=-(a-2),|a-1|=a-1,∴+|a-1|=-(a-2)+(a-1)=2-1=1.故选A.7.【答案】5【解析】解:∵的值在两个整数a与a+1之间,4<<5,∴5<<6,∴a=5.故答案为:5.利用的取值范围,进而得出的取值范围进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.【答案】2【解析】解:原式=()2-()2=7-5=2.故答案为2.利用平方差公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.【答案】【解析】【分析】此题主要考查了二次根式的性质与化简,正确开平方是解题关键.直接利用二次根式的性质化简求出答案.【解答】解:,故答案为:10.【答案】81【解析】【分析】此题考查了平方根和算术平方根的有关知识,熟练掌握平方根的定义是解本题的关键,利用平方根的定义计算即可求出a的值.【解答】解:∵的平方根为±3,∴=9,解得:a=81,故答案为:81 .11.【答案】±2【解析】【分析】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键,先根据二次根式有意义的条件求出x的值,进而得出y 的值,根据平方根的定义即可得出结论.【解答】解:∵,∴x=,∴y=1,∴2x+3y=2×+3×1=4,∴2x+3y的平方根为±2.故答案为±2.12.【答案】【解析】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.根据所给例子,找到规律,即可解答.本题考查了实数平方根,解决本题的关键是找到规律.13.【答案】解:①|-|+|-2|-|-1|=-+2--+1=3-2;②+-+(-1)2016=2+2-0.5+1=4.5.【解析】此题主要考查了实数的运算,绝对值,有理数的乘方,算术平方根,立方根的有关知识.①首先根据绝对值的含义和求法进行运算,然后计算加法和减法即可.②首先计算乘方和开方,然后从左向右依次计算即可.14.【答案】解:(1)原式=-+2=4-+2=4+;(2)原式=18-12-(3-2+2)=6-5+2=1+2.【解析】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.(1)先进行二次根式的乘除运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式将给出的式子进行变形,然后再计算即可.15.【答案】解:①∵(x-4)2=4,∴x-4=2或x-4=-2,解得:x=6或x=2;②∵,∴(x+3)3=27,∴x+3=3,解得x=0.【解析】此题主要考查了平方根、立方根的含义和求法,要熟练掌握平方根、立方根的求法是解决本题的关键.(1)根据平方根的知识可得x-4=±2,再解一元一次方程,即可解答;(2)根据立方根的知识得出x+3=3,即可解答.16.【答案】解:由题意得:,∴a=5,b=2.∵9<13<16,∴3<<4.∴c=3.∴a+2b-c=6.∴a+2b-c的平方根是±.【解析】先依据算术平方根和平方根的定义列出关于a、b的方程组求得a、b的值,然后估算出的大小,可求得c的值,接下来,求得a+2b-c的值,最后求它的平方根即可.本题主要考查的是算术平方根、平方根的定义、估算无理数的大小,熟练掌握相关定义和方法是解题的关键.17.【答案】解:∵x2+y2-10x+2y+26=0,∴(x-5)2+(y+1)2=0,∴x=5,y=-1,∴(+y)(-y)=x-y2=5-(-1)2.=4.【解析】先配方,根据非负数的性质得出x,y的值,再代入计算即可.本题考查了二次根式的化简求值,掌握非负数的性质以及配方法是解题的关键.18.【答案】解:∵2=<<=3,∴4<2+<5,2<5-<3,∴a=2+-4=-2,b=5--2=3-,∴a+b=-2+3-=1.【解析】由2<<3即可得出a=-2、b=3-,将其相加即可得出结论.本题考查了估算无理数的大小,根据的范围找出a、b是解题的关键.19.【答案】解:∵a+b=-5,ab=1,∴a<0,b<0,∴原式=+=-(+)=-=5.【解析】先根据已知条件确定a,b的符号,再把代数式化简把已知代入求值.先化简再代入,应该是求值题的一般步骤;不化简,直接代入,虽然能求出结果,但往往导致繁琐的运算.20.【答案】(1)5;6(2)===2016.(3)观察,发现规律:=2;=3;=4;…,∴=(n+1)(n≥1).【解析】解:(1)∵=2;=3;=4;∴=5,=6.故答案为:5;6.(2)见答案.(3)见答案.【分析】(1)根据等式的变化,再写出后面两个等式即可;(2)通分后再开平方即可得出结论;(3)根据等式的变化找出变化规律“=(n+1)(n≥1)”,此题得解.本题考查了实数以及规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.21.【答案】解:(1)原式===2016-1=2015;(2)∵,,而,∴.【解析】本题主要考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.(1)利用分母有理化得到原式=,然后合并后利用平方差公式计算;(2)通过比较它们的倒数进行判断.。
第二章实数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015·天津中考)估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.(2015·安徽中考)与1+最接近的整数是()A.4B.3C.2D.13.(2015·南京中考)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.(2015·湖北宜昌中考)下列式子没有意义的是()A.B.C.D.5.(201512)A.43B.3C.32D.66. 若a,b为实数,且满足|a-2b-,则b-a的值为()A.2 B.0 C.-2 D.以上都不对7.若a,b均为正整数,且a7b32a+b的最小值是()A.3B.4C.5D.68.3a=-1b1,212c⎛⎫-⎪⎝⎭=0,则abc的值为()A.0 B.-1 C.-12D.129.(2014·福州中考)若(m-1)22n+0,则m+n的值是()A.-1B.0C.1D.210. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于()是有理数A .2B .8C .32D .22二、填空题(每小题3分,共24分)11.(2015·南京中考)4的平方根是_________;4的算术平方根是__________. 12.(2015·河北中考)若|a |=,则a =___________.13.已知:若 3.65≈1.910,36.5≈6.042,则365000≈ ,±0.000365≈ .14.绝对值小于π的整数有 .15.已知|a -5|+3b +=0,那么a -b = .16.已知a ,b 为两个连续的整数,且a >28>b ,则a +b = . 17.(2014·福州中考)计算:(2+1)(2-1)=________. 18.(2015·贵州遵义中考) += .三、解答题(共46分) 19.(6分)已知,求的值.20.(6分)若5+7的小数部分是a ,5-7的小数部分是b ,求ab +5b 的值. 21.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数a ,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >. 例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n ,因为,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+. 根据上述方法化简:42213-.22.(6分)比较大小,并说明理由: (1)与6; (2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是,5-的整数部分是b ,求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+;(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值;(3++⋅⋅⋅+的值.第二章 实数检测题参考答案一、选择题1.C 解析:11介于9和16之间,即9<11<16,则利用不等式的性质可以求得介于3和4之间.即∵ 9<11<16,∴ <<,∴ 3<<4,∴的值在3和4之间.故选C .2.B 解析:∵ 4.84<5<5.29,∴ 4.84<5< 5.29,即2.2<5<2.3,∴ 1+2.2<1+5<1+2.3, 即3.2<1+5<3.3,∴ 与1+5最接近的整数是3.3.C 解析:22 2.25 2.3, 2.25 2.3, 1.251 1.3,Q <<∴<<∴<-<510.60.652-∴<<,故选C . 4.A 解析:根据二次根式有意义的条件,当被开方数a ≥0时,二次根式有意义;当a <0时,在实数范围内没有意义.由于-3<0,所以没有意义.5.B 212432323=⨯=⨯=6.C 解析:∵ |a -2|2b -0,∴ a =2,b =0,∴ b -a =0-2=-2.故选C .7.C 解析:∵ a ,b 均为正整数,且a 7b 32 a 的最小值是3,b 的最小值是2,则a +b 的最小值是5.故选C . 8.C 解析:∵ 3a =-1b 1,212c ⎛⎫- ⎪⎝⎭=0,∴ a =-1,b =1,c =12,∴ abc =-12.故选C .9.A 解析:根据偶次方、算术平方根的非负性,由(m -1)22n +0,得m -1=0,n +2=0,解得m =1,n =-2,∴ m +n =1+(-2)=-1. 10.D 解析:由图得64的算术平方根是8,8的算术平方根是2故选D . 二、填空题11.2± 2 解析:∵ ()2224,24,=-=∴ 4的平方根是2±,4的算术平方根是2.12.1± 解析:因为02 0151=,所以1=a ,所以.1±=a13.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2;±0.000365=±43.6510-⨯≈±0.019 1.14.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.15.8 解析:由|a -5|+3b +=0,得a =5,b =-3,所以a -b =5-(-3) =8.16.11 解析:∵ a >28>b , a ,b 为两个连续的整数, 又25<28<36,∴ a =6,b =5,∴ a +b =11.17.1 解析:根据平方差公式进行计算,(2+1)(2-1)=()22-12=2-1=1.18. 43 解析:2733334 3.+=+= 三、解答题 19.解:因为,,即, 所以.故,从而,所以,所以.20.解:∵ 2<7<3,∴ 7<5+7<8,∴ a =7-2. 又可得2<5-7<3,∴ b =3-7.将a =7-2,b =3-7代入ab +5b 中,得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2.21.解:根据题意,可知,因为,所以.22. 分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小;(2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36,35<36,∴ 35<6.(2)∵ -5+1≈-2.236+1=-1.236,-22≈-0.707,1.236>0.707,∴ -5+1<-22.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴ =-2.又∵ -2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴ b =2,∴ +b =-2+2=.24. 解:(1)原式=62333223-+⨯ (2)原式=()266321343-+---=623663-+ =432213--. =136233-. 1(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)1(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)122334989999100+++⋅⋅⋅+++++++=-11001+10=9.。
一、选择题1.计算82÷的结果是()A.10B.6C.4 D.22.一个边长为bcm的正方形的面积与一个长为8cm、宽为5cm的长方形的面积相等,则b的值在()A.3与4之间B.4与5之间C.5与6之间D.6与7之间3.一个数的相反数是最大的负整数,则这个数的平方根是()A.1-B.1 C.±1D.04.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为()A.8 B.4 C.12D.145.一个正方体的体积扩大为原来的27倍,则它的棱长变为原来的()倍.A.2 B.3 C.4 D.5 6.下列二次根式中,不能..3合并的是()A12B8C48D108 7.下列计算正确的是()A235+=B623=C23(3)86-=-D321-=8.a2a的值不可以是()A.12B.8 C.18 D.289.58)A.58B.104C5D52210.172178a a b--=+a b-).A.3±B.3 C.5 D.5±11.下列计算正确的是()A235+=B236=C2434=D()233-=-12.在下列数中,是无理数的是( )A .2.1313313331…(两个1之间依次多一个3)B .0.101001-C .227D .364-二、填空题13.若x =2﹣1,则x 3+x 2﹣3x +2035的值为_____.14.计算:12466-的结果是_____.15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.16.已知mn 、是两个连续的整数,且410m n <,则m n +=_______________________.1783=______. 18.请你写出一个比3大且比4小的无理数,该无理数可以是:____. 19.若代数式2x x +有意义,则实数x 的取值范围是_________. 20.16的平方根是_________,算术平方根是__________.三、解答题21.计算:(1316132722581--;(2)()()()243332x x x x x x -⋅--÷-.22.计算:(1()233812-- (2)156035323.348273(33)13⎛-÷++ ⎝. 24.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.25.(1)观察探究:2212121212-===-=-⨯⨯⨯;322====⨯;1432===-=⨯. (2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果),; (3)拓展应用: ①; ②...+的值.26.计算:101|(2)2π-⎛⎫--+ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】=(a≥0,b>0)进行计算即可. 【详解】=2, 故选:D .【点睛】此题主要考查了二次根式的除法,关键是注意结果要化成最简二次根式. 2.D解析:D【分析】由于边长为bcm 的正方形的面积与长、宽分别为8cm 、5cm 的长方形的面积相等,根据面积公式列出等量关系式,由此求出b的值,再估计b在哪两个整数之间即可解决问题.【详解】解:∵边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,∴b2=5×8=40,,∵36<40<49,∴67.故选:D.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.3.C解析:C【分析】由于最大的负整数是-1,本题即求-1的相反数,进而求其平方根.【详解】解:最大的负整数是-1,根据概念,(-1的相反数)+(-1)=0,则-1的相反数是1,则这个数是1,1的平方根是±1,故选:C.【点睛】本题考查了相反数、负整数的概念及求一个数的平方根,正确掌握相关定义是解题的关键.4.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】1==.4故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.5.B解析:B【分析】根据正方体的体积公式解答.【详解】解:设原来正方体的棱长为a,则原来正方体的体积为3a,27a,由题意可得现在正方体的体积为3∵3a=,∴现在正方体的棱长为3a,故选:B.【点睛】本题考查立方根的应用,熟练掌握立方根的意义及正方体的体积计算方法是解题关键.6.B解析:B【分析】并的二次根式.【详解】解:AB被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C被开方数相同,是同类二次根式,能进行合并,故本选项错误;D故选B.【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.7.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.8.D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=12=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D .【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.9.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===, 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.10.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a ≥0,∴a=17,∴b+8=0,解得b=-8, ∴5==,故选:C .此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.11.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;D3=,故D错误;故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.12.A解析:A【分析】根据无理数的定义判断即可.【详解】解:A. 2.1313313331…(两个1之间依次多一个3)是无理数,符合题意;B. 0.101001-是有限小数,不是无理数,不符合题意;C. 227是分数,不是无理数,不符合题意;D. 4=-,是整数,不是无理数,不符合题意;故选:A.【点睛】本题考查了无理数的定义,解题关键是熟记无理数是无限不循环小数.二、填空题13.2034【分析】直接利用二次根式的混合运算法则代入计算即可【详解】解:x3+x2﹣3x+2035=x2(x+1)﹣3x+2035∵x=﹣1∴原式=(﹣1)2(﹣1+1)﹣3(﹣1)+2035=(3﹣解析:2034【分析】直接利用二次根式的混合运算法则代入计算即可.【详解】解:x 3+x 2﹣3x +2035,=x 2(x +1)﹣3x +2035,∵x﹣1,∴1)2﹣1+1)﹣3﹣1)+2035,=(3﹣)3+2035,=4﹣+3+2035,=2034.故答案为:2034.【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.14.【分析】化简成最简二次根式后合并同类二次根式即可【详解】==2-=故答案为:【点睛】本题考查了最简二次根式同类二次根式熟练进行最简二次根式的化简是解题的关键.【分析】化简成最简二次根式,后合并同类二次根式即可.【详解】=6,故答案为.【点睛】本题考查了最简二次根式,同类二次根式,熟练进行最简二次根式的化简是解题的关键. 15.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.【分析】估算确定出m 与n 的值即可求出m+n 的值【详解】解:∵∴即∴m=5n=6则m+n=5+6=11故答案为:11【点睛】此题考查了估算无理数的大小弄清无理数估算的方法是解本题的关键解析:11【分析】估算确定出m 与n 的值,即可求出m +n 的值.【详解】解:∵34<<, ∴526<+<,即56<<,∴m =5,n =6,则m +n =5+6=11,故答案为:11【点睛】此题考查了估算无理数的大小,弄清无理数估算的方法是解本题的关键. 17.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化【分析】 根据二次根式的性质进行化简.【详解】3=.. 【点睛】 本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.20.±44【解析】∵42=16(−4)2=16∴16的平方根为±4;算术平方根为4故答案为±44解析:±4 4【解析】∵42=16,(−4)2=16,∴16的平方根为±4;算术平方根为4.故答案为±4,4.三、解答题21.(1)4-2)2x【分析】(1)根据算术平方根和立方根的运算法则进行计算即可;(2)按照整式混合运算顺序和法则计算即可.【详解】解:(1)原式)()413=---41312=-+-4=-(2)原式()23323332x x x x =---+ 23323332x x x x =-+-=2x【点睛】本题考查了算术平方根、立方根和整式的运算,解题关键是熟记相关法则,准确进行计算.22.(1;(2)0【分析】(1)直接利用立方根的性质、绝对值的性质、二次根式的性质分别进行化简即可; (2)直接利用二次根式的性质化简即可.【详解】解:(1)原式=3-21;(20=.【点睛】本题考查实数的运算、二次根式的运算,熟练掌握运算法则是解题的关键.23.3【分析】先根据二次根式的乘除、立方根的定义进行计算,再根据运算法则计算即可求解.【详解】3(31⎛+- ⎝()(33313⎛⎫-÷+- ⎪ ⎪⎝⎭ ()131+12+3【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题关键.24.(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.25.(2),13-;(3)②910. 【分析】(2)根据所给实例的解题方法计算即可;(3)根据所给的实例进行变形计算即可;【详解】(2)======13-; (3)①()(1+===+n n n②原式=1191 (2221010)-++-+-=. 【点睛】本题主要考查了与实数有关规律题型,准确分析计算是解题的关键.26.1.【分析】利用二次根式的性质、绝对值的性质和负整数指数幂、零指数幂逐项计算即可求解.【详解】101|(2)2π-⎛⎫--+ ⎪⎝⎭12=+-+1=.【点睛】本题考查实数的混合运算,掌握二次根式的性质、绝对值的性质和负整数指数幂是解题的关键.。
八 年 级 上 册 数 学第二章 实数 单元测试卷(一卷)一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。
1、若x 2=a ,则下列说法错误的是( )(A )x 是a 的算术平方根 (B )a 是x 的平方(C )x 是a 的平方根 (D )x 的平方是a2、下列各数中的无理数是( )(A )16 (B )(C )113 (D )…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )(A )任何一个实数都可以用分数表示(B )无理数化为小数形式后一定是无限小数(C )无理数与无理数的和是无理数(D )有理数与无理数的积是无理数4、9=( )(A )±3 (B )3 (C )±81 (D )815、如果x 是的算术平方根,则x=( )(A ) (B )± (C ) (D )±6、面积为8的正方形的对角线的长是( )(A )2 (B )2 (C )22 (D )47、下列各式错误的是( )(A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-=8、4的算术平方根是( )(A )2 (B )2 (C )4 (D )169、下列推理不正确的是( )(A )a=b b a = (B )a=b 33b a =(C )b a = a=b (D )33b a = a=b10、如图(一),在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有( )条。
(A )1 (B )2 (C )3 (D )4二、填空题(每空2分,共20分)1、任意写一对和是有理数的无理数 。
(一)2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。
3、如果a 21-有意义,则a 的取值范围是 。
4、算术平方根等于本身的数有 。
5、a 是9的算术平方根,而b 的算术平方根是9,则=+b a 。
北师大版八年级数学上册第二章实数单元测试卷一、选择题(本大题共10小题,共30分)1. 在实数√3,π,−37,3.5,√163,0,3.102100210002,√4中,无理数共有( )A. 3个B. 4个C. 5个D. 6个 2. 下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)√83的平方根是±√2;(4)√8+183=2+12=212.共有多少个是错误的?( ) A. 1 B. 2 C. 3 D. 4 3. 在实数−2√5、0、−5、3中,最小的实数是( )A. −2√5B. 0C. −5D. 34. 估计√8+√18的值应在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间5. 在二次根式√0.2a ,√28,√10x ,√a 2−b 2中,最简二次根式有( )A. 1 个B. 2 个C. 3 个D. 4 个6. 如图,数轴上A ,B 两点对应的实数分别是1和√3.若点A 与点C 到点B 的距离相等,则点C 所对应的实数为( )A. 2√3−1B. 1+√3C. 2+√3D. 2√3+1 7. 计算:(2019−π)0+(−2)2−(12)−1的值为( )A. 3B. −5C. 4.5D. 3.58. 已知a −b =14,ab =6,则a 2+b 2的值是( )A. 196B. 208C. 36D. 2029. 如果√2.373≈1.333,√23.73≈2.872,那么√23703约等于( )A. 28.72B. 0.2872C. 13.33D. 0.133310. 已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是( )A. 30cm 2B. 30πcm 2C. 15cm 2D. 15πcm 2二、填空题(本大题共5小题,共15分)11. 实数227,√7,−8,√23,√36,π3中的无理数是____________ .12. 用计算器计算:√2018≈______(结果精确到0.01)13. √4+(−3)2−20140×|−4|+(16)−1=______.14. 将实数√5,π,0,−6由小到大用“<”号连起来,可表示为______.15. 定义新运算“☆”:a ☆b =√ab +1,则2☆(3☆5)=______.三、计算题(本大题共1小题,共8.0分)16. 计算:(1)−√11125; (2)√0.09−√0.25.四、解答题(本大题共5小题,共55分)17. 按要求把下列各数填入相应的括号里:2.5,−0.5252252225…(每两个5之间依次增加一个2),−102,0,13,2π−6,3.(1)非负数集合:{};(2)非负整数集合:{};(3)有理数集合:{};(4)无理数集合:{}.18.求下列各式中x的值。
八年级上学期第二章《实数》单元测试及答案一、选择(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.下列说法中正确的是().(A)4是8的算术平方根(B)16的平方根是4(C)是6的平方根(D)没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若,则().(A)-0.7 (B)±0.7 (C)0.7 (D)0.494.的立方根是().(A)-4 (B)±4 (C)±2 (D)-25.,则的值是().(A)(B)(C)(D)6.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.(A)1 (B)2 (C)3 (D)4+的值为()7.x是9的平方根,y是64的立方根,则x yA.3 B.7 C.3,7 D.1,7-=+-)8.2x1x1x1A. x ≥1B. x ≥-1C.-1≤x ≤1D. x ≥1或x ≤-19. 计算515202145+-所得的和结果是( ) A .0 B .5- C .5 D .5310. x --23 (x ≤2)的最大值是( )A .6B .5C .4D .3二、填空(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的)1.若,则是的__________,是的___________.2.9的算术平方根是__________,的平方根是___________. 3.下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)4.的立方根是__________,125的立方根是___________.5.若某数的立方等于-0.027,则这个数的倒数是____________.6.已知,则.7.和数轴上的点一一对应的数集是______.8. 估计200=__________(误差小于1);30=___________(误差小于0.1).9.一个正方体的体积变为原来的27倍,则它的棱长变为原来的 倍.10.如果一个正数的一个平方根是-a ,那么这个数的另一个平方根是______,这个数的算术平方根是______.三、计算(只要你认真思考, 仔细运算, 一定会解答正确的!每小题10分,共60分)1.化简下列各式:(1102982-; (2)(335)(335);2.甲同学用如下图示方法作出了C 点,表示数13,在△OA B 中,∠OAB =90°,OA =2,AB =3,且点O 、A 、C(1)请说明甲同学这样做的理由:(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点A .3.飞出地球,遨游太空,长期以来就是人类的一种理想,可是地球的引力毕竟太大了,飞机飞的再快,也得回到地面,炮弹打得再高,也得落向地面,只有当物体的速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度叫做第一宇宙速度.计算式子是:v=gR 千米/秒其中重力加速度g=0.0098千米/秒2,地球半径R=6370千米试求出第一宇宙速度的值.-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 64.如图所示,要在离地面5米处的电线杆处向两侧引拉线AB 和AC ,固定电线杆,生活经验表明,当拉线的固定点B (或C )与电线杆底端点D 的距离为其一侧AB 长度的31时,电线杆比较稳定,问一条拉线至少需要多长才能符合要求?试用你学过的知识进行解答.(精确到0.1米)5.自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.92t .有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落, 刚好另有一学生站在与下落的玻璃杯同一直线的地面上, 在玻璃杯下落的同时楼上的学生惊叫一声. 问这时楼下的学生能躲开吗? (声音的速度为340米/秒)6. 先阅读下列的解答过程,然后再解答:形如n m 2±的化简,只要我们找到两个数a 、b ,使m b a =+,n ab =,使得m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >例如:化简347+ 解:首先把347+化为1227+,这里7=m ,12=n ,由于4+3=7,1234=⨯即7)3()4(22=+,1234=⨯∴347+=1227+=32)34(2+=+由上述例题的方法化简:42213-;参考答案 一、1.C2.D3.B4.D5.B6. C7.D8.A9.D 10.D二、1.平方,平方根 2.3,±3 3.2.①②⑤⑥⑧,③④⑦; 4.;5 5. 6.0 7.实数集 8.14或15;5.5或5.4 9.3; 10.a ,|a|三、1.(1)3; (2)22.2.(1)在直角三角形OAB 中,由勾股定理可得:OB 2=OA 2+AB 2.所以,OC =OB =13,即点C 表示数13.(2)略.3. v=gR 0.00986370⨯≈7.90千米/秒4. 1.8米5. 楼下的学生能躲开,玻璃杯从19.6米高的楼上自由下落所用时间为t 119.64.9167, 声音从19.6米高的楼上到楼下学生听到所用时间为t 2=19.6340≈0.06,167>0.06,所以,楼下的学生能躲开. 6. 13242-72426-+2(76)76-=。
北师版八年级数学上册第二章实数综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.下列各数:3.141 59,364,1.010 010 001…(相邻两个1之间0的个数逐次加1),4.21··,π,227中,无理数有( )A .1个B .2个C .3个D .4个2.如果|a -2|+|b|=0,那么a ,b 的值为( )A .a =1,b =1B .a =-1,b =3C .a =2,b =0D .a =0,b =23.如果一个数的绝对值为a ,那么数a 在数轴上(如图)对应的点不可能是( )A .点MB .点OC .点PD .点N4.若(x +3)2=a -2,则a 的值可以是( )A .-1B .0C .1D .25.|1-2|=( )A .1- 2 B.2-1C .1+ 2D .-1-2 6. 若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .27.有下列计算:①3×5=15;②3100=310;③3227=23;④16=4.其中错误的是( ) A .① B .② C .③ D .④ 8.如果1-a =b ,那么a 的取值范围是( )A .a >1B .a <1C .a =1D .a≤19.如图,在长方形ABCD 中,AB =3,AD =1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于点M ,则点M 表示的数为( )A .2 B. 5-1 C. 10-1 D. 510.如图,一只蚂蚁从点A 出发,沿数轴向右爬2个单位长度到达B 点,点A 表示- 2.设点B 所表示的数为m ,则|m -1|+(m +6)0的值为( )A .2- 2B .2+ 2 C. 2 D .-2二.填空题(共8小题,3*8=24)11.-64的立方根是________.12. 计算3÷6的结果是________.13. 已知二次根式x 2的值为3,那么x 的值是________.14.设a ,b 是一个等腰三角形的两条边长,且满足a -5+|3-b|=0,则该三角形的周长是____________.15.已知a 为有理数,则式子a +2+-a 2的值是__________.16.有边长为5厘米的正方形和长为8厘米,宽为18厘米的长方形,现要制作一个面积为这两个图形面积之和的正方形,则此正方形的边长应为________厘米.17.若3x -4-4-3x =⎝⎛⎭⎫x -13y 2,则3x -12y 的值为________. 18.已知x =3+1,y =3-1,则x 2+2xy +y 2的值是__________.三.解答题(共7小题, 66分)19.(8分) 若x -3与y +2互为相反数,求6x +y 的平方根.20.(8分)已知a ,b 满足b =a 2-4+4-a 2+2,求代数式|a -2b|+ab 的值.。
初中数学试卷桑水出品八年级数学《实数》单元测试题班级 姓名________一、选择题(每小题3分,共36分) 1. 有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )A .1B .2C .3D .4 2.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.49 3.能与数轴上的点一一对应的是( )A 、整数B 、有理数C 、无理数D 、实数4.如果一个实数的平方根与它的立方根相等,则这个数是( ) A 、0 B 、正整数 C 、0和1 D 、1 5 . 下列说法错误的是( )A、a 2与(—a)2相等B、与互为相反数C、与是互为相反数D、与互为相反数6. 下列说法正确的是()A、0.25是0.5 的一个平方根B、正数有两个平方根,且这两个平方根之和等于0C 、 7 2 的平方根是7D 、负数有一个平方根7. 下列各数中,不是无理数的是 ( )A 、7B 、0.5C 、2πD 、0.151151115…)个之间依次多两个115(8. 下列说法正确的是( )A 、064.0-的立方根是0.4B 、9-的平方根是3±C 、16的立方根是316D 、0.01的立方根是0.000001 9. 若规定误差小于1, 那么60的估算值为( )A 、3B 、7C 、8D 、7或8 10a =-,则实数a 在数轴上的对应点一定在( )A 、原点左侧B 、原点右侧C 、原点或原点左侧D 、原点或原点右侧 11.若33b a +=0,则a 与b 的关系是( )(A )0==b a (B )b a = (C )0=+b a (D )ba 1=12..若一个自然数的算术平方根是m ,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是( )(A )12+m (B )12+m (C ) 1+m (D )1+m二、填空题(每小题3分,共12分)13.在数轴上表示的点离原点的距离是 。
北师大新版八年级数学上册《第2章实数》单元测试卷一、选择题1.的值等于()A.3 B.﹣3 C.±3 D.2.在﹣1.414,,π,3.,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5B.2C.3D.43.下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的是()A.①②B.②③C.③④D.②③④4.下列计算正确的是()A.=2B.•=C.﹣=D.=﹣35.下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根6.若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为()A.2B.0C.﹣2D.以上都不对7.若,则a的取值范围是()A.a>3B.a≥3C.a<3D.a≤38.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠29.下列运算正确的是()A.+x=xB.3﹣2=1C.2+=2D.5﹣b=(5﹣b)10.2015年4月25号,尼泊尔发生8.1级地震,为了储存救灾物资,特搭建一长方形库房,经测量长为40m,宽为20m,现准备从对角引两条通道,则对角线的长为()A.5mB.10mC.20mD.30m二、填空题11.的算术平方根是.12.﹣1的相反数是,绝对值是.13.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.14.若,则xy的值为.15.若的整数部分为a,的小数部分为b,则ab= .16.当x=﹣2时,代数式的值是.17.计算:﹣= ;(2+)÷= .18.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来.三、解答题(共66分)19.化简:(1)(π﹣2015)0++|﹣2|;(2)++3﹣.20.计算:(1)(2﹣3)2;(2)+﹣2.21.实数a、b在数轴上的位置如图所示,请化简:|a|﹣﹣.22.已知y=,求3x+2y的算术平方根.23.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.24.细心观察图形,认真分析各式,然后解答问题.()2+1=2 S1=()2+1=3 S2=()2+1=4 S3=…(1)推算出S10的值;(2)请用含有n(n是正整数)的等式表示上述变化规律;(3)求出S12+S22+S32+…+S102的值.25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?北师大新版八年级数学上册《第2章实数》单元测试卷参考答案与试题解析一、选择题1.的值等于()A.3 B.﹣3 C.±3 D.【考点】算术平方根.【分析】此题考查的是9的算术平方根,需注意的是算术平方根必为非负数.【解答】解:∵=3,故选A.【点评】此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2.在﹣1.414,,π,3.,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5B.2C.3D.4【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合各选项进行判断即可.【解答】解:所给数据中无理数有:π,,2+,3.212212221…,共4个.故选D.【点评】本题考查了无理数的定义,解答本题的关键是熟练掌握无理数的三种形式.3.下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的是()A.①②B.②③C.③④D.②③④【考点】实数与数轴.【分析】①②③根据数轴的上的点与实数的对应关系即可求解;④根据有理数、无理数的对应即可判定.【解答】解:①任何一个无理数都能用数轴上的点表示,故说法错误;②任何一个无理数都能用数轴上的点表示,故说法正确;③实数与数轴上的点一一对应,故说法正确;④有理数有无限个,无理数也有无限个,故说法错误.所以只有②③正确,故选B.【点评】本题考查了实数与数轴的对应关系,以及有理数与无理数的个数的判断.4.下列计算正确的是()A.=2B.•=C.﹣=D.=﹣3【考点】二次根式的混合运算.【分析】根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.【解答】解:A、=2,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣=2﹣,故C错误;D、=|﹣3|=3,故D错误.故选:B.【点评】此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质:=|a|.5.下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根【考点】立方根;平方根;算术平方根.【专题】计算题.【分析】一个正数的平方根有正负两个,且互为相反数,算术平方根只能为正;一个数的立方根的符号和被开方数的符号相同.据此可判断只有选项C不符合题意.【解答】解:A、3是(﹣3)2的算术平方根,正确;B、±3是(﹣3)2的平方根,正确;C、(﹣3)2的算术平方根是3,故本选项错误;D、3是(﹣3)3的立方根,正确.故选C.【点评】本题主要考查的是对平方根和算术平方根的区分,以及对立方根的考查,要求学生对这类题目熟练掌握.6.若a、b为实数,且满足|a﹣2|+=0,则b﹣a的值为()A.2B.0C.﹣2D.以上都不对【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据绝对值与二次根式的非负性,得出a与b的值,然后代入b﹣a求值即可.【解答】解:∵|a﹣2|+=0,∴a=2,b=0∴b﹣a=0﹣2=﹣2.故选C.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.若,则a的取值范围是()A.a>3B.a≥3C.a<3D.a≤3【考点】二次根式的性质与化简.【专题】计算题.【分析】根据题中条件可知a﹣3≥0,直接解答即可.【解答】解:,即a﹣3≥0,解得a≥3;故选B.【点评】本题主要考查二次根式的性质与化简,题中涉及使根式有意义的知识点,属于基础题.8.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2【考点】函数自变量的取值范围;二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:由分式及二次根式有意义的条件可得:x﹣1≥0,x﹣2≠0,解得:x≥1,x≠2,故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.9.下列运算正确的是()A.+x=xB.3﹣2=1C.2+=2D.5﹣b=(5﹣b)【考点】二次根式的加减法.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=(1+)x,错误;B、原式=,错误;C、原式为最简结果,错误;D、原式=(5﹣b),正确,故选D【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.10.2015年4月25号,尼泊尔发生8.1级地震,为了储存救灾物资,特搭建一长方形库房,经测量长为40m,宽为20m,现准备从对角引两条通道,则对角线的长为()A.5mB.10mC.20mD.30m【考点】勾股定理的应用.【分析】根据题意画出图形,再根据勾股定理可得AC=,再计算即可.【解答】解:如图所示:∵AB=40m,BC=20m,∴AC===20(m),故选:C.【点评】此题主要考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.二、填空题11.的算术平方根是\sqrt{10} .【考点】算术平方根.【专题】计算题.【分析】先利用算术平方根求出的值,继而即可得到结果.【解答】解:∵=10,∴10的算术平方根是,故答案为: 【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.﹣1的相反数是 1﹣\sqrt{2} ,绝对值是 \sqrt{2}﹣1 .【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数求出a ;根据绝对值的性质解答.【解答】解:﹣1的相反数是1﹣,绝对值是﹣1.故答案为:1﹣;﹣1.【点评】本题考查了实数的性质,主要利用了相反数的定义,绝对值的性质,本题难点在于要熟悉﹣1是正数.13.已知一个正数的平方根是3x ﹣2和5x+6,则这个数是 \frac{49}{4} .【考点】平方根.【专题】计算题.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x ﹣2+5x+6=0,解得x=﹣,所以3x ﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.14.若,则xy的值为8 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后相乘即可得解.【解答】解:根据题意得,x﹣2y=0,y+2=0,解得x=﹣4,y=﹣2,所以,xy=(﹣4)×(﹣2)=8.故答案为:8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若的整数部分为a,的小数部分为b,则ab= 3\sqrt{5}﹣6 .【考点】估算无理数的大小.【分析】根据,可得a的值,根据2<3,可得b的值,根据有理数的乘法,可得答案.【解答】解:34,a=3,2,b=﹣2,ab=3(﹣2)=3﹣6.故答案为:3﹣6.【点评】本题考查了估算无理数的大小,根据,可得a的值,根据2<3,可得b的值,是解题关键.16.当x=﹣2时,代数式的值是 5 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简.【解答】解:当x=﹣2时,代数式===5.【点评】主要考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式.②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.17.计算:﹣= \sqrt{5} ;(2+)÷= \sqrt{2}+\sqrt{3} .【考点】二次根式的混合运算.【专题】计算题.【分析】利用二次根式的加减法计算﹣;利用二次根式的除法法则计算(2+)÷.【解答】解:﹣=2﹣=;(2+)÷=2+=+.故答案为,+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来\sqrt{n+\frac{1}{n+2}}=(n+1)\sqrt{\frac{1}{n+2}}(n≥1).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).三、解答题(共66分)19.化简:(1)(π﹣2015)0++|﹣2|;(2)++3﹣.【考点】实数的运算;零指数幂.【专题】计算题.【分析】(1)原式第一项利用零指数幂法则计算,第二项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式利用算术平方根,立方根,以及二次根式性质化简,计算即可得到结果.【解答】解:(1)原式=1+2+2﹣=3+;(2)原式=4﹣3+3﹣3=3﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.计算:(1)(2﹣3)2;(2)+﹣2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)利用完全平方公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=12﹣12+18=30﹣12;(2)原式=2+﹣=+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.21.实数a、b在数轴上的位置如图所示,请化简:|a|﹣﹣.【考点】二次根式的性质与化简;实数与数轴.【分析】先根据二次根式的性质得出|a|﹣|a|﹣|b|,推出结果是﹣|b|,根据正数的绝对值等于它本身得出即可.【解答】解:∵从数轴可知:a<0<b,∴:|a|﹣﹣=|a|﹣|a|﹣|b|=﹣|b|=﹣b.【点评】本题考查了二次根式的性质,实数与数轴等知识点,解此题的关键是根据数轴得出a<0<b,注意:=|a|,当a≥0时,|a|=a,当a≤0时,|a|=﹣a.22.已知y=,求3x+2y的算术平方根.【考点】二次根式有意义的条件;算术平方根.【专题】计算题.【分析】根据二次根式的被开方数为非负数可得出x的值,进而得出y的值,代入代数式后求算术平方根即可.【解答】解:由题意得,,∴x=3,此时y=8;∴3x+2y=25,25的算术平方根为=5.故3x+2y的算术平方根为5.【点评】本题考查二次根式有意义的条件,比较简单,关键是掌握二次根式的被开方数为非负数,另外要仔细审题,题目要求的是算术平方根而不是平方根,这是同学们容易忽略的地方.23.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.【考点】二次根式的化简求值;整式的加减—化简求值.【分析】观察可知:(1)式是完全平方和公式,(2)是平方差公式.先转化,再代入计算即可.【解答】解:(1)当x=+1,y=﹣1时,原式=(x+y)2=(+1+﹣1)2=12;(2)当x=+1,y=﹣1时,原式=(x+y)(x﹣y)=(+1+﹣1)(+1﹣+1)=4.【点评】先化简变化算式,然后再代入数值,所以第一步先观察,而不是直接代入数值.24.细心观察图形,认真分析各式,然后解答问题.()2+1=2 S1=()2+1=3 S2=()2+1=4 S3=…(1)推算出S10的值;(2)请用含有n(n是正整数)的等式表示上述变化规律;(3)求出S12+S22+S32+…+S102的值.【考点】勾股定理;算术平方根.【专题】规律型.【分析】(1)由给出的数据直接写出OA102的长,从而得到S10的值即可;(2)分别求出OA12,OA22,OA33…和S1、S2、S3…S n,找出规律即;(3)首先求出S12+S22+S32+…+S n2的公式,然后把n=10代入即可.【解答】解:(1)∵OA12=1,OA22=2,OA32=3,∴OA102=10,∵S1=,S2=,S3=,…∴S10=;(2)由(1)得:OA n2=n,S n=;(3)∵S12=,S22=,S32=,…S102=,S12+S22+S32+…+S n2=+++…+=.【点评】本题主要考查勾股定理的知识点,解答本题的关键是熟练运用勾股定理,此题难度不大.25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2 ,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1 + 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
一、选择题1.,2π,0.其中无理数出现的频率为( )A .0.2B .0.4C .0.6D .0.8 2.81的平方根是( )A B .9- C .9 D .9± 3) A .3 B .﹣3 C .±3 D .64.下列各式中,正确的是( )A B .C 3=-D 4=-5.,则x+y 的值为( )A .-3B .3C .-1D .1 6.下列各式计算正确的是( )A +=B .26=(C 4=D = 7.下列说法不正确...的是( ) A .8的立方根是2B .23xy -的系数是13-C .对顶角相等D .若AC BC =,则点C 是线段AB 的中点 8.若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( )A .a 是5的平方根B .b 是5的平方根C .1a -是5的算术平方根D .1b -是5的算术平方根9.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或210.合并,则a 的值不可以是( )A .12B .8C .18D .2811.下列计算正确的是( )A +=B =C 4=D 3=- 12.下列说法错误的是( )A a 可以是正数、负数、零B a 不可能是负数C .数a 的平方根一定有两个,它们互为相反数D .数a 的立方根只有一个二、填空题13.数轴上A 点表示的数是1-,点B ,C 分别位于点A 的两侧,且到A 的距离相等,若B 表示的数是3-,则点C 表示的数是 ____________. 14.计算:34011|3|(23)2-⎫⎛-+---+-= ⎪⎝⎭____. 15.若2|1|0++-=a b ,则2020()a b +=_________.16.已知10+3的整数部分是x ,小数部分是y ,求x ﹣y 的相反数_____. 17.若236A ⨯=,则A =_____________.18.计算:182-÷=_________. 19.23-分母有理化后得__________. 20.如图所示,在数轴上点A 所表示的数为a ,则a 的值为____________________.三、解答题21.计算:(123234(212-1338-π+1)0×1(3- 22.设a 为正整数,对于一个四位正整数,若千位与百位的数字之和等于a ,十位与个位的数字之和等于1a -,则称这样的数为“a 级收缩数”.例如在正整数2634中,因为268+=,34781+==-,所以2634是“8级收缩数”,其中8a =.(1)直接写出最小的“6级收缩数”和最大“7级收缩数”;(2)若一个“6级收缩数”的千位数字与十位数字之积为6,求这个“6级收缩数”. 23.(1)计算:﹣2020159(2)求x 的值:23x ﹣10=6.24.计算(13182536 (2)()()422386()x y x y +-;(3)先化简﹐再求值: ()23112()()()24a a a a -+-+-+,其中12a =- 25.在数轴上点A 为原点,点B 表示的数为b ,点C 表示的数c ,且已知b 、c 满足b 1+=0,(1)直接写出b 、c 的值:b=______,c=_______;(2)若BC 的中点为D ,则点D 表示的数为________;(3)若B 、C 两点同时以每秒1个单位长度的速度向左移动,则运动几秒时,恰好有AB=AC ?26.已知3m -的平方根是6±,3=,求m n +的算术平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】解:∵2=π是无限不循环小数, ∴π是有理数,∴由30.65=可得无理数出现的频率为0.6, 故选C .【点睛】 本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键. 2.D解析:D【分析】根据平方根的定义求解.【详解】∵2(9)±=81,∴81的平方根是9±,故选:D .【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.3.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】.4.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C3=-,此项正确;D4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.5.D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D.【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.6.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212=(;C==D==故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.7.D解析:D【分析】依次根据立方根、单项式、对等角和中点的定义去判断即可.【详解】解:A. 8的立方根是2,正确,不符合题意;B.23xy-的系数是13-,正确,不符合题意;C.对顶角相等,正确,不符合题意;D. 在同一条直线上,若AC BC=,则点C是线段AB的中点,原说法错误,符合题意.故选:D.【点睛】本题考查立方根、单项式、对等角和中点的定义.注意D选项中要在同一条直线上.8.C解析:C【分析】根据方程解的定义和算术平方根的意义判断即可.【详解】∵方程2(1)5x-=的解分别为,a b,∴2(1)5a-=,2(1)5b-=,∴a-1,b-1是5的平方根,∵a b>,∴11a b->-,∴a-1是5的算术平方根,故选C.【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键. 9.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去. ②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 10.D解析:D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D .【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.11.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A 错误;B =,故B 正确;C ==C 错误;D3=,故D错误;故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.12.C解析:C【分析】按照平方根和立方根的性质判断即可.【详解】a可以是正数、负数、零,正确,不符合题意;中的a不可能是负数,正确,不符合题意;C. 0的平方根只有0,故原说法错误,符合题意;D. 数a的立方根只有一个,正确,不符合题意;故选:C.【点睛】本题考查了平方根和立方根的性质,解题关键是掌握平方根和立方根的性质.二、填空题13.【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:设点C所表示的数为c则解得:故答案为:【点睛】此题主要考查了数轴上两点之间中点求法我们把数和点对应起来也就是把数和形结合起来二者解析:-2【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可.【详解】解:设点C所表示的数为c,则1-=解得:2-+故答案为:2-【点睛】此题主要考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.14.【分析】原式第一项利用有理数的乘方运算法则第二项利用绝对值的代数意义第三项利用负整数指数幂的法则第四项利用零指数幂的运算法则分别化简各项后再进行加减运算即可【详解】解:=-1+3+8+1=11故答案解析:11【分析】原式第一项利用有理数的乘方运算法则,第二项利用绝对值的代数意义,第三项利用负整数指数幂的法则,第四项利用零指数幂的运算法则分别化简各项后,再进行加减运算即可.【详解】解:34011|3|(22-⎛⎫-+---+ ⎪⎝⎭=-1+3+8+1=11.故答案为:11.【点睛】 此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.15.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】 ∵|1|0-=b0,|1|0b -≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.16.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】<,解:∵12∴1,∴1010+1=11,即x=11,∴101011﹣1,即y1,∴x﹣y=111)=111=12∴x﹣y的相反数为﹣(1212.12.【点睛】在1~2之间.17.【分析】利用实数的除法法则计算即可【详解】解:∵∴A=故答案为:【点睛】本题主要考查了实数的运算熟练掌握实数的除法法则是解题关键解析:【分析】利用实数的除法法则计算即可.【详解】解:∵A=∴A==故答案为:【点睛】本题主要考查了实数的运算,熟练掌握实数的除法法则是解题关键.18.【分析】根据二次根式的除法法则运算即可【详解】解:解法一===-4解法二==-4故答案为:-4【点睛】本题考查了二次根式的除法可以直接被开方数相除也可以先化简两个二次根式再相除解析:4-【分析】根据二次根式的除法法则运算即可.【详解】解:解法一,===-4.解法二,=2-,=-4.故答案为:-4.【点睛】本题考查了二次根式的除法,可以直接被开方数相除,也可以先化简两个二次根式再相除.19.【分析】根据分数的性质:分子分母同时乘以计算求出结果【详解】故答案为:【点睛】此题考查分数的性质分母有理化的计算方法根据分母得到分子分母都乘以使分母有理化是解题的关键解析:2+【分析】根据分数的性质:分子、分母同时乘以2+【详解】2==,故答案为:2+【点睛】此题考查分数的性质,分母有理化的计算方法,根据分母得到分子、分母都乘以2+分母有理化是解题的关键.20.【分析】根据图示得到圆的半径为所以A点表示的数为【详解】∵圆的半径为∴A点表示的数为故答案为【点睛】此题主要考查了实数与数轴之间的对应关系关键是要判断出圆的半径然后根据实数计算法则求解即可解析:1-【分析】A点表示的数为1--【详解】∵圆的半径为,∴A点表示的数为1-故答案为1-【点睛】此题主要考查了实数与数轴之间的对应关系,关键是要判断出圆的半径,然后根据实数计算法则求解即可.三、解答题21.(1)1;(2)2-【分析】(1)先用平方差进行计算,再合并;(2)先化简各数再计算.【详解】解:(1-=2-3+2=1.(2-π+1)0×1-==-2.【点睛】本题考查了二次根式的计算和0指数与负指数,解题关键是明确0指数和负指数的意义,准确熟练的运用二次根式运算法则进行计算.22.(1)最小的“6级收缩数”为:1505,最大的“7级收缩数”为:7060;(2)这个“6级收缩数”为:2432、3323或6014【分析】(1)根据“a 级收缩数”的定义可写出所有的可能性,进而即可确定最小的“6级收缩数”以及最大的“7级收缩数”;(2)在第(1)问的基础上,结合条件“一个“6级收缩数”的千位数字与十位数字之积为6”将所拥有的可能性进行分类讨论,即可得到答案.【详解】解:(1)∵千位与百位的数字之和等于6,十位与个位的数字之和等于5∴千位与百位上的数字可能是0和6、1和5、2和4、3和3、4和2、5和1、6和0,十位与个位上的数字可能是0和5、1和4、2和3、3和2、4和1、5和0∴最小的“6级收缩数”为:1505;同理,∵千位与百位的数字之和等于7,十位与个位的数字之和等于6∴最大的“7级收缩数”为:7060.(2)设这个“6级收缩数”千位上的数字为x ,十位上的数字为y ,则这个“6级收缩数”百位上的数字为6x -,个位上的数字为615y y --=-∵09x ≤<,069x ≤-≤,09y ≤≤,059y ≤-≤∴06x ≤<,05y ≤≤∵6xy =∴当1x =时,6y =,不合题意舍去;当2x =时,3y =,符合题意,此时,百位是4,个位是2,为2432;当3x =时,2y =,符合题意,此时,百位是3,个位是3,为3323;当4x =时,32y =,不合题意舍去; 当5x =时,65y =,不合题意舍去; 当6x =时,1y =,符合题意,此时,百位是0,个位是4,为6014∴这个“6级收缩数”为:2432、3323或6014.【点睛】本题考查了新定义问题以及分类讨论的数学思想,认真审题是解题的关键.23.(1)2)x=2.【分析】(1)根据实数的混合运算的基本顺序依次计算即可;(2)根据立方根的定义求解即可.【详解】(1)原式(2)∵23x ﹣10=6,∴23x =16,∴3x =8,∴x=2.【点睛】本台考查了实数的混合运算和立方根的定义,熟练掌握混合运算的基本顺序和立方根的定义是解题的关键.24.(1)526-;(2)8122x y ;(3)22a +;1【分析】(1)根据立方根、平方根的性质计算,即可得到答案;(2)根据幂的乘方、合并同类项的性质计算,即可得到答案;(3)根据完全平方公式、平方差公式、整式加减运算的性质计算,即可完成化简;再结合代数式的性质计算,即可得到答案.【详解】(1 1256=-+ 526=-;(2)()()422386()x y x y +-812812x y x y =+8122x y =;(3)()23112()()()24a a a a -+-+-+ 22(69148)a a a a =---++-2269148a a a a =++-+--22a =+; 当12a =-时,原式12212⎛⎫=⨯-+= ⎪⎝⎭. 【点睛】本题考查了立方根、平方根、幂的乘方、合并同类项、乘法公式、整式加减运算、代数式的知识;解题的关键是熟练掌握立方根、平方根、幂的乘方、乘法公式、整式加减运算的性质,从而完成求解.25.(1)-1;7;(2)3;(3)运动3秒时,恰好有AB=AC .【分析】(1)根据非负数的和为零,可知绝对值和根号下的式子同时为零,可得答案; (2)根据中点坐标公式,可得答案;(3)设第x 秒时,AB=AC ,可得关于x 的方程,解方程,可得答案.【详解】解:(1)b 1+=0,∴b+1=0,c−7=0,∴b=−1,c=7,故答案为:−1,7.(2)由中点坐标公式, 得1732-+=, ∴D 点表示的数为3,故答案为:3.(3)设第x 秒时,AB=AC ,由题意,得x+1=7−x ,解得x=3,∴第3秒时,恰好有AB=AC .【点睛】本题主要考查实数与数轴,难度一般,熟练掌握绝对值和二次根式的非负性以及数轴的基础知识是解题的关键.26.m n +的算术平方根为【分析】根据算术平方根和立方根的定义列式求出m 、n 的值,然后代入代数式求出m +n 的值,再根据算术平方根的定义解答.【详解】解:∵3m -的平方根是6±,∴23(6)m -=±,∴39m =, ∵3=,∴3427n +=,∴6n =,∴m n +==.【点睛】本题考查了算术平方根和平方根、立方根的定义,是基础题,熟记概念并列式求出m 、n 的值是解题的关键.。
初中数学试卷 桑水出品
八年级第一学期<<实数>>检测试卷
数 学 试 题
一、选择题 (本题12小题,每小题3分,共36分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. -0.333…, 4, 5, π-, 3π, 3.1415,
2.010101…(相邻两个1之间有1
个0),76.0123456…(小数部分由相继的正整数组成),以上是无理数的有( )个
A.3个
B.4个
C. 5个
D. 6个
2.下列说法中,错误的是( )
A.4的算术平方根是2
B.81的平方根是±3
C.8的立方根是±2 D.立方根等于-1的实数是-1
3.下列各式中,正确的是( )
A. 2)2(2-=-
B. 9)3(2=-
C. 39±=±
D. 393-=-
4.下列运算中正确的是( ) A.1394=+ B.12622-82==)(
C. 24±
= D. ∣32-∣=23- 5. 若a 和a -都有意义,则a 的值是( )
A.0≥a
B.0≤a
C.0=a
D.0≠a
6.若一个数的相反数、平方根、立方根都等于它本身,这个数是( )
A.-1
B.1
C.0
D.±1
7. 满足53<<-x 的整数x 是( )
A.3,2,1,0,1,2--
B.2,1,0,1-
C.3,2,1,0,1,2--
D.3,2,1,0,1-
8. 下列二次根式中, 是最简二次根式的是( )
A. 31
B. 20
C. 22
D. 121 9.下列各组数中互为相反数的是( ) A.-2与2)2(- B.-2与38- C.-2与2
1- D.2-与2 10..圆的面积增加为原来的4倍,则它的半径是原来的( )
A. 1倍
B. 倍2
C. 2倍
D. 4倍。
11.一个正数x 的两个平方根是3a 1-+和a ,则x 的值为( )
A. 1
B. -1
C. 2
D. 4
12.如图所示: a 、b 表示两个实数 ,那么化简2()a b a b -++ 的结果是
( ) A :-2b B :2b C :―2a D :2a
二、填空题(本题4小题,每小题3分,共12分)
13. 81的平方根是 ,0.64的算术平方根是 , -0.027的立方根是 。
14. 25-的相反数是 , 2的倒数是 ,-36的绝对值是 。
15.比较大小:3 2; 310 5; 6 2.35.(填“>”或“<”)
16.若x< 3 则23-x )(的化简结果是________________;
三、计算题(共52分)
17. 计算(每题4分,共24分)
① 2328-+ ②9273
1⋅+ ③ 0)31(33
122-++ ④)31)(21(-+
⑤ 2)3322(+ ⑥)32)(32(-+
18(6分).若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式
a
c b -的值。
19(6分).若a a a =-+-20102009,求22009-a 的值. 20(6分) 如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;
①,使三角形的三边长分别为2,3,13(在图①中画出一个既可);(2分)
②,使三角形为钝角三角形且面积为4(在图②中画出一个既可),并计算你所画三角形的三边的长。
(4
分)。
21(本题10分).分析探索题:细心观察如图(1),认真分析各式,然后解答问题.
12OA =21)1(2=+ S 1=21;
2
2OA =31)2(2=+ S 2=22;
23OA =41)3(2=+ S 3=23
……
(1)请用含有n (n 为正整数)的等式n s = ; (2)推算出OA 10= .
(3)求出2
10232
221S S S S ++++ 的值.。