第2章 晶体结合
- 格式:ppt
- 大小:6.61 MB
- 文档页数:45
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
固体材料是由大量的原子(或离子)组成约1 mol / cm 3原子(或离子)结合成晶体时,外层电子作重新分布,外层电子的不同分布产生了不同类型的结合力.Na Cl +=NaCl 离子键共价键金属键结合力类型决定了晶体的微观结构乃至宏观物理性质.本章主要介绍不同结合类型中原子间相互作用与晶体内能、晶体的微观结构和宏观物理性质之间的联系.共价键结合(金刚石)--原子间束缚非常强,导电性差金属键结合(金属Cu )--对电子束缚较弱,良导体——原子的电子分布核外电子的分布遵从泡利不相容原理、能量最低原理和洪特规则.能量最低原理电子在原子核外排布时,要尽可能使电子的能量最低1s、2s、2p、3s、3p、4s、3d、4p、4d……泡利不相容原理每一轨道中只能客纳自旋相反的两个电子.洪特规则电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行——原子的电子分布_----电离能_----电离能_----电离能_----电子亲和能_----原子电负性_----原子电负性2.Pauling鲍林提出的电负性计算方法(较通用):_----原子电负性•横向•电离能•亲和能•电负性按结合力的性质和特点,晶体可分为5种类型:离子晶体(离子结合)共价晶体(共价结合)金属晶体(金属结合)氢键晶体(氢键结合)如何理解各种晶体呢?离子晶体:正离子与负离子的吸引力就是库仑力.共价结合:靠近的两个电负性大的原子各出一个电子形成电子共享的形式.金属结合:原子实依靠原子实与电子云间的库仑力紧紧地吸引着.氢键结合:氢先与电负性大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合.分子结合:电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力.可见, 所有晶体结合类型都与库仑力有关.原子间相互作用势能----结合力的共性吸引力排斥力库仑引力库仑斥力泡利原理引起(1)吸引力和排斥力都是原子间距离r 的函数.注:(2)吸引力是长程力,排斥力短程力.(3)当r =r 0时, 原子间合力为零, 原子处于平衡.类比于弹簧振子()()⎟⎠⎞⎜⎝⎛−−=−=++11n m r nB r mA dr r du r f 为什么排斥力是短程力?()()()B A r u r u r u +−=+=()()⎜⎛−−=−=nB mA r du r f设晶体中第i个原子与第j个原子之间的相互作用势能u(r)为ij()()∑∑∑==NNNr u r u U 1晶体的结合能:()()∑=N r u Nr u晶格常数由于晶格具有周期性,设临近两原子间距R,则晶体体积可写成体弹性模量单位压强引起的体积的相对变化率。
第二章 晶体的结合组成晶体的原子能够保持中性稳定的周期性排列,说明原子之间有着强烈的相互作用力。
晶体粒子之间的相互作用力包括两种类型:吸引力和排斥力。
当原子受到压缩时,这种作用表现为斥力;当晶体受到拉伸时,这种作用表现为引力。
当斥力和引力平衡时,晶体保持一定的体积和外形。
因此,晶体结构取决于组成晶体的原子的性质及相互作用。
从能量的观点来看,一块晶体处于稳定状态时,它的总能量0E (原子的动能和相互作用势能的总和)比组成这晶体的原子处于自由状态时的总能量N E 低。
两者之差被定义为晶体的结合能W :即0N W E E =-。
结合能就是把晶体分离成自由原子所需要的能量。
对于晶体中原子相互作用的研究,实际上是量子力学的多粒子问题。
由于问题的复杂性,只能采取多种近似的方法进行处理。
本章首先介绍晶体结合类型的物理本质,然后利用经典理论重点讨论离子晶体和分子晶体的结合能。
§2-1晶体的结合类型与原子电负性对原子结合成晶体起主要作用的是各原子的最外层的电子。
按原子间相互作用的性质,可把晶体分为离子晶体、共价晶体、金属晶体、分子晶体和氢键晶体等等。
2.1.1晶体的结合类型 1.离子晶体离子晶体是由正、负离子所组成,依赖离子之间的静电相互作用结合成晶体。
最典型的离子晶体是碱金属元素和卤族元素之间形成的化合物,它们的晶体结构也比较简单,分别属于NaCl 或CsCl 两种典型结构。
在NaCl 晶体中,Na +和Cl -离子相间排列,每一种离子都是以异性离子为最近邻,总的库仑作用的效果是吸引的。
同时,由于Na +和Cl -离子都具有满电子壳层结构,当两个离子相互接近电子云发生重叠时,除静电相互作用外,由于泡利不相容原理,它们之间将产生很强的排斥作用,晶体正是依靠库仑吸引和排斥相平衡结合成稳定的结构。
由于离子具有满壳层电子结构,其电荷分布近似于球对称,所以离子键是没有方向性的,是晶格配位数较高的结构。
这种离子键是相当强的,其结合能的数量级约为800kJ/mol ,离子间的吸引能的数量级约为几eV ,因此一般离子晶体的熔点较高,硬度较大。
第二章晶体的结合填空体1.晶体的结合类型为:离子结合分子结合、金属结合和氢键结合。
2.共价结合的特点—方向性和饱和性。
3.晶体中原子的相互作用力可分为两类吸引力—和排斥力。
4.一般固体的结合可概括为范德瓦耳斯结合、金属结合、离子结合和共价结合四种基本类型。
5.金属具有延展性的微观根源是金属原子容易相对滑动。
6.石墨晶体的结合涉及到的结合类型有共价结合、氢键结合和金属结合。
7.GaAs晶体的结合涉及到的结合类型有共价结合和离子结合。
二、基本概念1.电离能始原子失去一个电子所需要的能量。
2.电子的亲和能电子的亲和能:一个中性原子获得一个电子成为负离子所释放出的能量。
3.电负性描述化合物分子中组成原子吸引电子倾向强弱的物理量。
4.共价键原子间通过共享电子所形成的化学键。
5.离子键两个电负性相差很大的元素结合形成晶体时,电负性小的原子失去电子形成正离子,电负性大的得到电子形成负离子,这种靠正、负离子之间库仑吸引的结合成为离子键。
6.范德瓦尔斯力答:分子晶体的粒子间偶极矩相互作用以及瞬时偶极矩相互诱生作用力称为范德瓦耳斯力。
7.氢键答:氢原子处于两个电负性很强的原子(如氟、氧、氮、氯等)之间时,可同时受两个原子的吸引而与它们结合,这种结合作用称为氢键。
8.金属键答:在金属中,组成金属的原子的价电子已脱离母原子而成为自由电子,自由电子为整个晶体共有,而剩下的离子实就好像沉浸在自由电子的海洋中。
自由电子与离子实间的互相吸引作用具有负的势能,使势能降低形成稳定结构。
这种公有化的价电子(自由电子)与离子实间的互作用称为金属键。
三、简答题1.共价结合为什么有“饱和性”和“方向性”答:饱和性:当一个原子与其它原子结合时,能够形成共价键的数目有一个最大值,这个最大值决定于它所含的未配对的电子数,这个特性称为共价键的饱和性。
方向性:两个原子在以共价键结合时,必定选取尽可能使其电子云密度为最大的方位,电子云交迭得越厉害,共价键越稳固。