三角形知识点总结
- 格式:docx
- 大小:2.66 MB
- 文档页数:18
三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、HL (RtA^RtA)2、等腰三角形的判定及性质性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等”)③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰【即:DE+DF=CP,(D为BC上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)④等边三角形是轴对称图形,有3条对称轴。
判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角 形。
③有一个角是60度的等腰三角形是等边三角形。
结论总结:①高二亘边【即: AD =巨AB 】 2 2②面积二三3边2【即:S=三3AB 2】4 A ABC 4 4、直角三角形的性质及判定 性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。
④斜边中 线等于斜边一半判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
”)5、线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质③一边中线等于这边一半的三角形是直角三角形结论总结:直角三角形斜边上的高二 直角边的乘积 斜边(1)线段垂直平分线的性质及判定【即:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点人、B 为圆心, 以大于AB 的一半长为半径作弧,两弧交于点乂、N ;作直线MN ,则直线MN 就是线段 AB 的垂直平分线。
关于三角形的知识点总结三角形是几何学中的重要概念,广泛应用于各个领域。
它具有独特的性质和特征。
本文将对三角形的定义、性质及分类进行总结,并介绍一些与三角形相关的重要定理。
1. 三角形的定义三角形是由三条线段连接起来形成的一个平面图形。
它由三个顶点和三条边组成,其中每条边连接两个顶点,而每个顶点又与其他两个顶点相连。
三角形的边可以是不等长的,但只能有一对边是平行的。
2. 三角形的性质(1)内角和:三角形的三个内角之和总是等于180度。
即∠A + ∠B + ∠C = 180°,其中∠A、∠B、∠C为三角形各内角度数。
(2)外角和:三角形的三个外角之和总是等于360度。
即∠D + ∠E + ∠F = 360°,其中∠D、∠E、∠F为三角形各外角度数。
(3)边长关系:在三角形ABC中,若边长满足a+b>c,a+c>b,b+c>a,则该三条边可以构成一个三角形。
3. 三角形的分类(1)按照边长分类:- 等边三角形:三边长度相等的三角形,内角也相等,每个内角都为60度。
- 等腰三角形:两边长度相等的三角形,内角均不相等。
- 普通三角形:三边长度各不相等的三角形,内角均不相等。
(2)按照角度分类:- 直角三角形:一个内角为90度的三角形。
直角三角形中的两条边相互垂直,分别称为直角边和斜边。
- 钝角三角形:一个内角大于90度的三角形。
钝角三角形的其他两个内角均为锐角。
- 锐角三角形:三个内角都小于90度的三角形。
4. 三角形的重要定理(1)勾股定理:直角三角形中,直角边的平方等于两条斜边的平方之和。
即a² + b² = c²,其中a、b分别为直角边的长度,c为斜边的长度。
(2)正弦定理:在任意三角形ABC中,三条边的比值与对应的正弦值相等。
即a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的内角。
【三角形】1、三角形的定义:山三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形有3条高,3个顶点,3个角。
3、三角形具有稳定性。
4、边的特性:任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:按照角分:锐角三角形,直角三角形,钝角三角形。
按照边分:不等边三角形、等腰三角形(包括等边三角形)。
7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
(其他两个角必定是锐角)9、有一个角是钝角的三角形叫做钝角三角形。
(其他两个角必定是锐角)10、每个三角形至少有两个锐角;每个三角形至多有1个直角;每个三角形至多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
(等腰三角形的特点:两腰相等,两个底角相等)12、三条边都相等的三角形叫等边三角形(正三角形)(三边相等, 三个角相等,都是60度)13、等边三角形是特殊的等腰三角形。
14、三角形的内角和等于180° ;四边形的内角和是360° :五边形的内角和是540° o多边形的内角和=180度x(多边形的边数・2)15、用2个相同的三角形可以拼成一个平行四边形。
16、用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。
17、用2个相同的等腰直角的三角形可以拼成一个正方形、一个平行四边形、一个大的等腰的直角的三角形。
请浏览后下载,资料供参考,期待您的好评与关注!锐角三角形的三条高(三条虚线)直角三角形的三条高多边形内角和问题底(一条虚线加两条直角边)直角边三角形:180°钝角三角形的三条高(三条虚线)四边形:360°在四边形内部画一条线, 将其分成两个三角形,内角和=180° X2=360°等腰三角形(两条边相等, 两个底角相等)等边三角形(三条边都相等,每个角都是60° )五边形:540°在五边形内部画两条线,将其分成三个三角形,内角和=180° X3=540°底边六边形:720°在六边形内部画三条线,将其分成四个三角形,内角和=180° X4=720°请浏览后下戦•资料供参考,期待您的好评与关注!。
完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。
变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。
利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。
②已知两边和其中一个角的对角,求其他两个角及另一边。
例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。
4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。
二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。
三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。
三角形知识点总结三角形是平面几何中最简单的多边形之一、它由三条线段连接在一起形成,每个角都是由两条边围成。
三角形是几何学中重要的图形,需要掌握一些基本的概念和性质。
下面将对三角形的知识点进行总结。
一、基本概念1.三角形的定义:三角形是由三条线段连接在一起形成的平面图形。
2.顶点:三角形的三个连接点被称为顶点。
3.边:三角形的三条线段被称为边。
4.角:三角形的三个内角被称为角。
内角和:三角形的内角和等于180度。
外角:三角形的補角称为外角,每个外角等于与之相对的内角的补角。
5.边界:三角形的边界由三条边组成。
二、三角形的分类根据三角形的边长和角度特点,对三角形进行分类:1.根据边长分类:等边三角形:三条边的边长相等。
等腰三角形:两条边的边长相等。
普通三角形:三条边的长度都不相等。
2.根据角度分类:直角三角形:有一个内角为90度。
钝角三角形:有一个内角大于90度。
锐角三角形:三个内角都小于90度。
三、三角形的性质1.内角和性质:三角形的内角和等于180度。
证明:假设三角形的三个内角分别为A、B、C,根据直线的性质,我们可以得到角A和角C是同一直线上的对立角,角B和直线上的角C是同一直线上的外角。
角A+角B=180度(补角关系)角B+角C=180度(补角关系)由上面两个等式可以得到:角A+角B+角C=180度2.外角性质:三角形的外角等于与之相对的内角的补角。
证明:同样假设三角形的三个内角为A、B、C,根据直线的性质可以得到:角A+角B+直线上的角C=180度(内角和等于180度)直线上的角C+角D=180度(补角关系)由上面两个等式可以得到:角A+角B=角D3.等边三角形的性质:等边三角形的三个内角都是60度。
证明:假设等边三角形的三个内角分别为A、B、C,假设边长为a,根据等边三角形的性质,三条边的边长都是a,我们可以使用正弦定理得到:a/sinA = a/sinB = a/sinC由于a ≠ 0,所以sinA = sinB = sinC在三角函数的取值范围内,只有60度的正弦值等于根号3/2,所以角A=角B=角C=60度。
三角形知识点总结三角形是几何学中最基本的形状之一,其具有丰富的性质和应用。
本文旨在总结和探讨与三角形相关的知识点,包括基本概念、性质、特殊三角形和常见解题方法等。
一、基本概念1. 三角形定义:三角形是由三条线段构成的几何图形,其中的三条线段称为三角形的边。
2. 顶点和边:三角形有三个顶点和三条边,顶点由大写字母表示,边由小写字母表示。
3. 内角和外角:三角形内部的角称为内角,三角形外部的角称为外角。
二、性质1. 内角和:三角形的内角和等于180度,即三个内角的度数之和为180度。
2. 外角和:三角形的外角和等于360度,即三个外角的度数之和为360度。
3. 直角三角形:一条边是直角的三角形称为直角三角形,直角三角形的两条边相互垂直。
4. 等腰三角形:两条边相等的三角形称为等腰三角形,等腰三角形的两个底角相等。
5. 等边三角形:三条边长度相等的三角形称为等边三角形,等边三角形的三个内角都是60度。
三、特殊三角形1. 直角三角形:直角三角形是最常见的特殊三角形,其特点是一个内角为90度。
2. 等腰三角形:等腰三角形的两条边相等,其两个底角也相等。
3. 等边三角形:等边三角形的三条边相等,其三个内角都是60度。
4. 直角等腰三角形:直角等腰三角形是一个内角为90度且两条边相等的三角形。
5. 正三角形:正三角形是指既是等边三角形又是等腰三角形的三角形。
四、解题方法1. 直角三角形的解题方法:直角三角形的性质很容易利用,可以通过三角函数来求解其中的未知量。
2. 三角形的面积计算:三角形的面积可以通过底边长和高的乘积的一半来计算,也可以利用海伦公式来计算。
3. 利用相似三角形求解:相似三角形具有一些比较特殊的性质,可以通过利用相似三角形的边长比例来解题。
4. 角平分线定理:角平分线定理是指一个角的平分线将对边分成与两个邻边成比例的两部分,可以通过角平分线定理来求解三角形的边长。
五、总结通过对三角形的基本概念、性质、特殊三角形和解题方法的总结和探讨,可以加深我们对三角形的理解和应用。
三角形知识点总结一、知识框架:三角形的分类:1、按边分:普通三角形、等腰三角形在等腰三角形中,腰和底相等的三角形是等边三角形;2、按角分: 锐角三角形、直角三角形、钝角三角形直角三角形的两个锐角互余;二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线;三角形的三条中线相交于一点,这一点叫做三角形的重心;5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.1、多边形内角和公式:n边形的内角和等于n-2·180°2、多边形的外角和:多边形的外角和为360°.多边形对角线的条数:1、从n边形的一个顶点出发可以引n-3条对角线;2、把多边形分成n-2个三角形,n边形共有nn-3/2条对角线;。
三角形知识点归纳三角形是平面几何中的一个基本图形,具有许多重要的性质和特点。
以下是对于三角形的知识点的归纳:一、基本概念与性质1.三角形的定义:由三条线段组成,两边之和大于第三边的图形。
2.三角形的要素:三个顶点、三条边和三个内角。
3.三角形的分类:a.根据边长分类:等边三角形(三边相等)、等腰三角形(两边相等)、普通三角形(三边都不相等)。
b.根据角度分类:锐角三角形(三个内角都小于90°)、直角三角形(一个内角为90°)、钝角三角形(一个内角大于90°)。
4.三角形的内角和定理:三角形的三个内角之和等于180°。
即:∠A+∠B+∠C=180°。
5.三角形两边之和大于第三边的性质。
即:AB+BC>AC,AC+BC>AB,AB+AC>BC。
二、三角形的特殊性质与定理1.等边三角形的性质:三条边都相等,三个内角都为60°。
2.等腰三角形的性质:a.两边相等对应的两个内角也相等。
b.底边上的两个角称为底角,底角相等的等腰三角形的两边相等。
3.直角三角形的性质:a.一个内角为90°。
b.符合勾股定理:直角三角形两直角边的平方和等于斜边的平方;即a^2+b^2=c^24.锐角三角形的性质:a.三个内角都是锐角。
b.不存在边相等的锐角三角形。
5.钝角三角形的性质:a.一个内角大于90°。
b.一条边大于余下两边之和。
6.三角形的中位线与重心:a.三角形的中位线是连接三角形两边中点的线段。
b.三角形的重心是三条中线的交点,是三角形内部的一个点。
c.三角形的重心将中位线分成1:2的比例。
7.三角形的高与垂心:a.三角形的高是从一个顶点到与对边垂直的线段。
b.三角形的垂心是三条高的交点,是三角形内部的一个点。
8.三角形的外心与外接圆:a.三角形的外心是三条垂直平分线的交点,是三角形外部的一个点。
b.三角形的外接圆是以三个顶点为圆心的圆,包含三角形的三个顶点。
小学三角形知识点归纳
一、三角形的定义
三角形是由三条线段所组成的图形,其中每相邻两条线段的端点相连或重合。
二、三角形的高
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段称为三角形的高,对边称为三角形的底。
一个三角形只有三条高。
三、三角形的特性
1.物理特性:稳定性,例如自行车的三角架和电线杆上的三角架。
2.边的特性:任意两边之和大于第三边。
四、表示三角形
为了方便表达,我们用字母A、B、C来表示一个三角形的三个顶点,即三角形可以表示为△ABC。
五、三角形的分类
1.根据角的大小:
(1)锐角三角形:三个角都是锐角的三角形。
(2)直角三角形:有一个角是直角的三角形。
(3)钝角三角形:有一个角是钝角的三角形。
2.根据边的长度:
(1)不等边三角形:三条边长度都不相等的三角形。
(2)等腰三角形:两条边相等的三角形。
特殊情况下,等腰三
角形的三条边都相等,这种三角形叫做等边三角形或正三角形。
3.特殊情况:
(1)等边三角形:三条边都相等的三角形,也叫做正三角形。
(2)等腰三角形是等边三角形的特例。
六、三角形的内角和
(1)一个三角形的内角和等于180度。
(2)图形的拼组:
a.两个完全相同的三角形可以拼成一个平行四边形。
b.两个相同的直角三角形可以拼成一个平行四边形、一个长方形或一个大三角形。
c.两个相同的等腰直角三角形可以拼成一个平行四边形、一个正方形和一个大的等腰直角三角形。
七、密铺
可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
三角形知识点总结一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.(三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。
(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)注意:△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形4、三角形的主要线段的定义:(1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段.如图:(1)AD是△ABC的BC上的中线.(2)BD=DC= BC.注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点(重心)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段如图:(1)AD是△ABC的∠BAC的平分线.(2)∠1=∠2= ∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部且交于三角形内部一点(内心)③角平分线上的点到角的两边距离相等(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.如图:①AD是△ABC的BC上的高线;②AD⊥BC于D;③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形的三条高的交点在三角形内部;钝角三角形的三条高的交点在三角形的外部:直角三角形的三条高的交点在直角顶点上。
三角形三条高所在直线交于一点(垂心)③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)(4)三角形的中垂线:过三角形一条边中点所做的垂直于该条边的线段如图:DE是△ABC的边BC的中垂线;DE⊥BC于D;BD=DC注意:①三角形的中垂线是直线;②三角形的三条中垂线交于一点(外心)小总结:内心:三条角平分线的交点,也是三角形内切圆的圆心.性质:到三边距离相等.外心:三条中垂线的交点,也是三角形外接圆的圆心.性质:到三个顶点距离相等.重心:三条中线的交点.性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍.垂心:三条高所在直线的交点.5、三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是任意两边之和大于第三边.6、三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.7、三角形的内角和定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
(完整版)三角形全章知识点总结三角形全章知识点总结
1.三角形的定义
三角形是由三条边和三个内角组成的图形。
2.三角形的分类
- 根据边长分类:
- 等边三角形:三条边长度相等。
- 等腰三角形:两条边长度相等。
- 普通三角形:三条边长度都不相等。
- 根据角度分类:
- 直角三角形:有一个内角为直角(90度)。
- 钝角三角形:有一个内角大于直角。
- 锐角三角形:三个内角都小于直角。
3.三角形的性质
- 三角形内角和等于180度。
- 三角形的任意两边之和大于第三边。
- 等边三角形的三个角都相等,每个角为60度。
- 等腰三角形的两个底角相等,顶角大于底角。
- 直角三角形的两个锐角的正弦、余弦、正切关系等于对边、邻边和斜边的比值。
4.三角形的计算公式
- 周长(P):P = a + b + c,其中a、b、c分别为三角形的三边长度。
- 面积(A):A = 1/2 * 底 * 高,其中底为底边长度,高为顶点到底边的垂直距离。
5.三角形的重要定理
- 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的三边长度,A、B、C为对应的内角。
- 余弦定理:c^2 = a^2 + b^2 - 2ab * cosC,其中a、b、c为三角形的三边长度,C为对应的内角。
- 正切定理:tanA = sinA/cosA,其中A为三角形的一个内角。
以上是关于三角形的全章知识点总结。
希望能对您的学习有所帮助!。
三角形知识点总结一、三角形的分类1.三角形的定义:由不在同一条直线上的三条线段首尾顺次相连组成的图形叫做三角形.2.三角形的基本元素:3.(1)三角形的三条边:即组成三角形的线段.4.(2)三角形的角:即相邻两边所组成的角叫做三角形的内角;三角形的一边与另一边的延长线所组成的角叫做三角形的外角.5.(3)三角形的顶点:即相邻两边的公共端点.6.三角形的特征:7.(1)三条线段不在同一直线上,且首尾顺次相接;8.(2)三角形是一个封闭的图形.9.三角形的符号:三角形用符号“△”表示.顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”.注意:(1)△ABC是三角形ABC的符号标记,单独的△没有意义;(2)三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.(3)平时所说的三角形的角是指三角形的内角.(4)三角形三个顶点的字母的次序可以任意调换.△ABC也可以写成“△BAC”“△BCA”“△ACB”等.10.三角形的分类按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形注意:(1)三角形的两种分类方法是各自独立的,同一个三角形可能同时属于两个不同的类别.如等腰直角三角形按边分类属于等腰三角形,而按角分类则属于直角三角形.(2)一个三角形中,最多有三个锐角,最少有两个锐角,最多有一个直角,最多有一个钝角. (3)从角的方面判断一个三角形的形状的方法:①若最大内角为锐角,则该三角形是锐角三角形;②若最大内角为直角,则该三角形是直角三角形;③若最大内角为钝角,则该三角形是纯角三角形.二、三角形三边关系1. 定理:三角形任意两边之和大于第三边:在ABC △中,a ,b ,c 为三边长,则有a b c +>,b c a +>,a c b +>2. 推论:三角形任意两边之差小于第三边.在ABC △中,a ,b ,c 为三边长,则有a b c -<,b c a -<,c a b -<.3. 应用:①判断三条线段能否组成三角形;②已知三角形的两边,求第三边的取值范围.三、三角形的高、中线、角平分线 定义 如图,从ABC △的顶点A 向它所对的边BC 所在的直线画垂线,垂足为D ,所得线段AD 叫做ABC △的边BC 上的高.如图,连接ABC △的顶点A 和它所对的边BC 的中点D ,所得线段AD 叫做ABC △的边BC 上的中线.如图,画BAC ∠的平分线AD 交BAC ∠所对的边BC 于点D ,所得线段AD 叫做ABC△的角平分线.四、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.五、三角形的内角1. 三角形内角和定理:三角形内角和等于180°.2. 直角三角形的性质及判定性质:直角三角形两锐角互余.判定:有两个角互余的三角形是直角三角形.°=90A B ABC +⇔∠∠△是直角三角形六、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角,叫作三角形的外角.2.性质:三角形的外角等于与它不相邻的两个内角的和.3.结论:三角形一个顶点处有2个外角,三角形共有6个外角,可推出其中三个不相邻的外角和为360°.七、三角形中的角度计算1. “8字”形结论:∠A+∠B=∠C+∠D ;2. 双垂直结论:∠CAD=∠CBE ;结论:∠A=∠BCD ,∠B=∠ACD ;BC结论:∠CAD=∠CBE.3.与角平分线有关条件:∠1=∠2,∠3=∠4,结论:∠BOC=90°+12∠A;条件:∠1=∠2,∠3=∠4,结论:∠O=12∠A;DB CC条件:∠1=∠2,∠3=∠4,结论:∠BOC=90°-12∠A ;4. 四边形的外角∠1与∠2是四边形ABCD 的外角,结论:∠1+∠2=∠A+∠B ;结论:∠BOC=∠A+∠B+∠CBC八、多边形的内角和、外角和1.在同一平面内,由一些线段首尾顺次连接组成的图形叫多边形.2.n边形对角线条数:()32 n n-3.n边形的内角和:(n-2)×180°4.多边形的外角和:360°。
三角形知识点总结一、基本概念三角形是由三条线段所组成的,三个顶点和三个角所围成的图形。
三角形是几何学中最基本的图形之一。
三角形的三个边和三个内角相对应,可以根据边的长度和角的大小不同分类。
二、分类1.根据边的长度分类(1)等边三角形:三条边长度相等的三角形。
(2)等腰三角形:两条边长度相等的三角形。
特点是顶角的角度相等。
(3)普通三角形:三条边长度各不相等的三角形。
2. 根据角的大小分类(1)锐角三角形:三个角均小于90度的三角形。
(2)直角三角形:其中包含一个90度的角。
(3)钝角三角形:其中至少一个角大于90度。
三、性质1. 三角形内角和定理:三角形三个内角的度数之和为180度。
2. 直角三角形的性质:直角三角形中,斜边的长度等于两直角边的长度平方和的平方根。
直角三角形中,两条直角边的长度相等。
3. 等腰三角形的性质:等腰三角形两边相等对应的两个角相等,等腰三角形的顶角所对的线段相等。
4. 等边三角形的性质:等边三角形的三边相等,三个角均为60度。
5. 在直角三角形中,三条中线长度相等,且中线的公共点是斜边上离直角最远的点。
6. 三角形中,任意两边之和大于第三边。
7. 三角形中,最长边所对的角是最大的。
8. 三角形中,最小角所对的边是最小的。
四、重要定理1. 余弦定理:a² = b² + c² - 2bc cosA,b² = a² + c² - 2ac cosB,c² = a² + b² - 2ab cosC。
2. 正弦定理:a/sinA = b/sinB = c/sinC。
3. 分角线定理:一个三角形的三个角平分线所截的边成比例。
4. 中线定理:三角形任意两边的中线夹角等于三角形的第三边的一半。
五、解题技巧1. 首先分析题目中给出的条件和要求,确定所需求解的内容。
2. 根据所给条件,利用三角形的性质、定理和公式进行推导计算。
三角形(一)1.三角形的分类:⑴按角分类:分为锐角三角形、直角三角形,钝角三角形⑵按边分类:分为普通三角形和等腰三角形,等腰三角形的相等的两条边叫做腰,另外一条边叫做底边,腰和底边的夹角叫做底角;三边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形,2.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
3.三角形的高:⑴高的定义:从三角形的一个顶点向它的对边所在直线画垂线,顶点和垂足之间的线段就是高。
⑵三角形有三个顶点,有且只有三条高。
锐角三角形的三条高都在三角形内部,直角三角形两条直角边就是两条高,第三条高在三角形内部,钝角三角形两条高在外部一条高在内部。
⑶任意三角形三条高所在的直线都交于一点。
4.三角形的中线:⑴中线的定义,把三角形的一个顶点和它的对边中点连接起来的线段叫做中线。
⑵中线分割开的三角形面积相等,等底同高的三角形面积相等⑶三角形有且只有三条中线,三条中线交于一点5.三角形的角平分线:⑴三角形有且只有三条角平分线,三条角平分线交于一点⑵在等腰三角形中,底边上的高线,中线,角平分线重合为一条,叫做三线合一,是等腰三角形的一条重要性质,在等边三角形中三条边上的高线,中线和角平分线三线合一。
6.三角形的稳定性:三角形具有稳定性三角形(二)——全等三角形1.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形。
2.在一组全等三角形中重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
3.全等三角形表示方法:⑴对于两个全等三角形,只要确定了对应关系后,我们就可以用一个新的符号——全等号(≌)来表示两个三角形全等,读作全等于。
⑵书写全等的时候顶点的顺序一定要按照顶点的对应关系表示,假设有三角形ABC和三角形DEF全等,再假设A重合D,B重合E,C重合F,那么就应该写作“△ABC ≌ △DEF”,4.全等三角形的性质:全等三角形的对应边相等,对应角也相等,所有对应的一切都相等5.判定全等:⑴SSS判定全等:三边分别相等的两个三角形全等,简称SSS⑵SAS判定全等:两边和它们的夹角分别相等的两个三角形全等,简称SAS;两边和一边的邻角分别相等的两个三角形不一定全等。
三角形全部知识点的总结三角形是几何学中的重要概念,其形式多样,内容包括角度、边长、面积等多个方面。
本文将从不同角度对三角形的全部知识点进行总结,包括基本概念、性质、分类、相似三角形、勾股定理、三角形的面积公式等内容。
一、基本概念1. 三角形定义:三角形是由三条线段组成的图形。
2. 顶点、边、内角:三角形有三个顶点和三条边,每个三角形内部有三个内角。
3. 内角和:三角形的内角和为180°,即三个内角的度数之和等于180度。
4. 根据内角的大小,三角形可以分为锐角三角形、直角三角形和钝角三角形。
二、性质1. 外角性质:三角形的一个内角和与其相邻的一个外角的度数之和为180°。
2. 等边三角形:三条边都相等的三角形称为等边三角形,其三个内角均为60°。
3. 等腰三角形:两边相等的三角形称为等腰三角形,其两个底角(底边所对的两个内角)相等。
4. 直角三角形:一个内角为90°的三角形称为直角三角形,其中直角边为直角的对边。
5. 锐角三角形:三个内角都小于90°的三角形称为锐角三角形。
6. 钝角三角形:三个内角中有一个大于90°的三角形称为钝角三角形。
三、分类1. 根据边长:三角形可以分为等边三角形、等腰三角形和普通三角形。
2. 根据角度:三角形可以分为锐角三角形、直角三角形和钝角三角形。
四、相似三角形1. 相似三角形定义:如果两个三角形的对应角相等,则这两个三角形是相似三角形。
2. 相似三角形的性质:具有相似性质的三角形,其对应边的比值相等。
3. AAA相似判定:如果两个三角形的对应角相等,则这两个三角形是相似三角形。
4. SSS相似判定:如果两个三角形的对应边的比值相等,则这两个三角形是相似三角形。
5. SAS相似判定:如果两个三角形的一个对应角相等,而另外两个对应边的比值相等,则这两个三角形是相似三角形。
五、勾股定理勾股定理是三角形中一条重要的定理,可以用于计算三角形边长。
三角形的知识点整理一、三角形的定义与性质1. 定义:三角形是由三条线段所围成的封闭图形。
2. 性质:(1)三角形的内角和为180度;(2)任意两边之和大于第三边;(3)任意两角之和大于第三角;(4)三角形的边数、角数和面积都是有限的。
二、三角形的分类1. 根据边长:(1)等边三角形:三条边的长度相等;(2)等腰三角形:两边的长度相等;(3)普通三角形:三边的长度都不相等。
2. 根据角度:(1)锐角三角形:三个内角都小于90度;(2)直角三角形:一个内角为90度;(3)钝角三角形:一个内角大于90度。
三、三角形的重要定理1. 直角三角形的勾股定理:直角三角形的斜边的平方等于两腰的平方和。
2. 正弦定理:在任意三角形ABC中,有a/sinA = b/sinB = c/sinC,其中a、b、c分别为三边的长度,A、B、C分别为对应的内角。
3. 余弦定理:在任意三角形ABC中,有c² = a² + b² - 2abcosC,其中a、b、c分别为三边的长度,C为对应的内角。
4. 高度定理:在任意三角形ABC中,三条高的平方之和等于三边的平方和。
四、三角形的相关应用1. 三角形的相似性:根据三角形的相似性质,可以解决许多实际问题,如影子的长度与物体的高度、建筑物的高度与影子长度之间的关系等。
2. 三角形的面积计算:可以利用海伦公式或三角形的底边和高来计算三角形的面积,这在测绘、建筑、物理等领域有着广泛的应用。
3. 三角形的角平分线:角平分线将一个角分成两个相等的角,可以应用于求解角度相等的问题,如导弹的角度控制、射击的角度调整等。
4. 三角形的余弦定理在物理学、工程学等领域有着广泛的应用,如力的合成与分解、平衡力的计算、桥梁的设计等。
总结:三角形作为平面几何中的基本图形,具有独特的性质和特点。
通过对三角形的分类、重要定理和相关应用的整理和阐述,可以更好地理解和应用三角形的知识,为解决实际问题提供帮助。
三角形初中所有知识点
1. 三角形的定义:由三条边和三个顶点组成的图形。
2. 三角形的分类:按照边长分为等腰三角形、等边三角形、普通三角形;按照角度分为锐角三角形、钝角三角形、直角三角形。
3. 三角形的性质:
- 三角形的内角和为180度。
- 两边之和大于第三边,任意两边之差小于第三边。
- 等腰三角形的底边的中线、高线、角平分线相等。
- 等边三角形的三条边相等,内角都是60度。
- 直角三角形的两个锐角的和为90度。
4. 三角形的元素:
- 三边:三边可以通过勾股定理判断是否为直角三角形,也可以通过边长比较判断三角形的大小。
- 三个角:角可以通过正弦定理、余弦定理、正切定理等推导出各种三角形的关系。
- 三个顶点:顶点可以通过坐标系进行表示,从而计算三角形的面积、重心、外心、内切圆等相关特征。
5. 三角形的求解:
- 通过边长计算:可以使用海伦公式计算三角形的面积,也可以使用勾股定理判断是否为直角三角形。
- 通过角度计算:可以使用正弦定理、余弦定理、正切定理等求解三角形的边长和角度。
6. 三角形的应用:
- 在几何学中,三角形是最基本的图形,几乎所有的几何问题都与三角形相关。
- 在建筑和工程等实际应用中,我们经常需要计算三角形的面积、角度、边长等。
这只是三角形中某些主要的知识点,还有详细的推导公式、三角函数、相似三角形、海森伯公式等等相关知识点。
解三角形最全知识点总结一、基本概念1. 三角形的定义三角形是由三条边和三个角组成的平面几何图形。
它是三边相交于三个顶点而成的基本图形,常用符号Δ表示。
2. 三角形的分类根据三角形的边长和角度大小,三角形可以分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等5种类型。
3. 三角形的元素三角形的元素包括三边、三角、三个顶点、三个内角和三个外角等。
4. 三角形的性质三角形中的基本性质有:两边之和大于第三边、两角之和大于第三角、外角等于两个不相邻内角之和等。
二、性质定理1. 三角形内角和定理三角形内角和定理是几何学中的经典定理之一,它指出任意三角形内角的和等于180°。
2. 三角形外角和定理三角形的外角和定理是指三角形外角等于它对应内角的和,即三角形的一个外角等于与它相对的两个内角之和。
3. 直角三角形的性质直角三角形是一个内含有一个直角的三角形,它的两条边相对于直角的边长满足勾股定理。
4. 等腰三角形的性质等腰三角形是指两边边长相等的三角形,它的两条边角度相等,即底角相等。
5. 等边三角形的性质等边三角形是指三条边和三个角都相等的三角形,它是所有内角相等的三角形。
6. 中位线定理在三角形中,连接边上中点的直线称为中位线,中位线定理指出中位线的中点构成的线段等于底边的一半。
7. 外心定理外心定理是指三角形外接圆的圆心,外接圆定理指出外心是三角形三边的平分线的交点。
8. 内切圆定理内切圆定理是指三角形内切圆和三角形三边接触点构成的线段等于三角形的半周长。
9. 海伦公式海伦公式是指用三角形三边的长度来求三角形面积的公式,其中s为半周长。
10. 正弦定理正弦定理是三角形中用角的正弦比例来求边长的公式,可表示为a/sinA=b/sinB=c/sinC。
11. 余弦定理余弦定理是三角形中用边长和角度的余弦比例来求边长的公式,可表示为a²=b²+c²-2bc*cosA。
三角形知识点总结三角形知识点总结一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形. (三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形4、三角形的主要线段的定(2)正多边形:各边相等,各角都相等的多边形叫做正多边形(3)多边形的内角和为(n-2)*180度;多边形的外角和为360度二、等腰三角形1、等腰三角形的概念定义:有两边相等的三角形叫做等腰三角形,其中相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角2、三角形的性质(1)等腰三角形的两个底角相等(简称为“等边对等角”)(2)等腰三角形的顶角平分线、底边上的高线、底边上的中线互相集合(简称为“三线合一”)3、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”)注意:要正确区分等腰三角形的性质和判定4、等边三角形定义:三边都相等的三角形叫做等边三角形注意:等边三角形是等腰三角形的特殊情况,它是底边与腰相等的等腰三角形5、等边三角形的性质和判定性质:(1)等边三角形的三条边都相等(1)等边三角形的每一个角都等于60度判定:(1)各边或角都相等的三角形是等边三角形(2)有一个角等于60度的等腰三角形是等边三角形相关规律:(1)边长为a的等边三角形面积等于(2)等边三角形的内心、外心、垂心和重心重合于一点三、直角三角形1、定义:有一个角为直角的三角形称为直角三角形。
在直角三角形中,直角相邻的两条边称为直角边。
直角所对的边称为斜边。
直角三角形直角所对的边也叫作“弦”。
若两条直角边不一样长,短的那条边叫作“勾”,长的那条边叫作“股”。
2、分类:直角三角形如图所示:分为两种情况,有普通的直角三角形,还有等腰直角三角形(属于特殊情况)3、判定定理等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹亦直角锐角45,斜边上中线角平分线垂线三线合一,等腰直角三角形斜边上的高为外接圆的半径R。
直角三角形是一种特殊的三角形4、特殊性质它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方。
如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)性质2:在直角三角形中,两个锐角互余。
如图,若∠BAC=90°,则∠B+∠C=90°性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
该性质称为直角三角形斜边中线定理。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:射影定理图(1)(AD)²=BD·DC。
(2)(AB)²=BD·BC。
(3)(AC)²=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
证明:先证明定理的前半部分,Rt△ABC中,∠ACB=90°,∠A=30°,那么BC=AB/2∵∠A=30°∴∠B=60°(直角三角形两锐角互余)取AB中点D,连接CD,根据直角三角形斜边中线定理可知CD=BD∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形)∴BC=BD=AB/2再证明定理的后半部分,Rt△ABC中,∠ACB=90°,BC=AB/2,那么∠A=30°取AB中点D,连接CD,那么CD=BD=AB/2(直角三角形斜边上的中线等于斜边的一半)又∵BC=AB/2∴BC=CD=BD∴∠B=60°∴∠A=30°性质7:如图,在Rt△ABC中∠BAC=90°,AD是斜边上的高,则:证明:S△ABC=1/2*AB*AC=1/2*AD*BC两边乘以2,再平方得AB²*AC²=AD²*BC²运用勾股定理,再两边除以,最终化简即得性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
判定方法:判定1:有一个角为90°的三角形是直角三角形。
判定2:若,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。
那么这个三角形为直角三角形。
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
参考直角三角形斜边中线定理判定7:一个三角形30°角所对的边等于某一邻边的一半,则这个三角形为直角三角形。
四、勾股定理勾股定理内容:如果直角三角形两直角边分别为a,b,斜边为c,那么 a +b =c ;即直角三角形两直角边长的平方和等于斜边长的平方。
如果三角形的三条边a,b,c满足a +b =c ,那么这个三角形是直角三角形。
(称勾股定理的逆定理)五、全等三角形能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。
1、性质(1)全等三角形的对应角相等。
(2)全等三角形的对应边相等。
(3)能够完全重合的顶点叫对应顶点。
(4)全等三角形的对应边上的高对应相等。
(5)全等三角形的对应角的角平分线相等。
(6)全等三角形的对应边上的中线相等。
(7)全等三角形面积和周长相等。
(8)全等三角形的对应角的三角函数值相等。
2、全等三角形的判定•SSS(边边边):三边对应相等的三角形是全等三角形。
•SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。
•ASA(角边角):两角及其夹边对应相等的三角形全等•AAS(角角边):两角及其一角的对边对应相等的三角形全等。
•HL(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
下列两种方法不能验证为全等三角形:•AAA(角角角):三角相等,不能证全等,但能证相似三角形•SSA(边边角):其中一角相等,且非夹角的两边相等。
六、相似三角形三个角对应相等、三条边对应成比例的两个三角形叫做相似三角形。
1、预备定理平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线与线段成比例的证明)2、判定定理常用的判定定理有以下6条:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
(AA)判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
(SSS)判定定理4:两个三角形三边对应平行,则两个三角形相似。
(简叙为:三边对应平行,两个三角形相似。
)判定定理5:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(简叙为:斜边与直角边对应成比例,两个直角三角形相似。
)(HL)判定定理6:如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(简叙为:全等三角形相似)。
相似的判定定理与全等三角形基本相同,因为全等三角形是特殊的相似三角形。
3、一定相似符合下面的情况中的任何一种的两个(或多个)三角形一定相似:(1)两个全等的三角形全等三角形是特殊的相似三角形,相似比为1:1。
补充:如果△ABC∽△A‘B’C‘,∴AB/A’B‘=AC/A’C‘=BC/B'C’=K当K=1时,这两个三角形全等。
(K为它们的比值)(2)任意一个顶角或底角相等的两个等腰三角形两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。
(3)两个等边三角形两个等边三角形,三个内角都是60度,且边边相等,所以相似。
(4)直角三角形被斜边上的高分成的两个直角三角形和原三角形由于斜边的高形成两个直角,再加上一个公共的角,所以相似。
4、性质定理(1)相似三角形对应角相等,对应边成正比例。
(2)相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
(3)相似三角形周长的比等于相似比。
(4)相似三角形面积的比等于相似比的平方。
(5)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(6)若a/b =b/c,即b²=ac,b叫做a,c的比例中项(7) a/b=c/d等同于ad=bc.( 8)不必是在同一平面内的三角形里。
5、推论推论一:腰和底对应成比例的两个等腰三角形相似。
推论二:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论三:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
6、射影定理直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
例如:(前提:∠BAD+∠DAC=90度,AD⊥BC)公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC,(3)(AC)^2;=CD·BC。