一元二次方程根与系数的关系(沪科版八年级下)
- 格式:pdf
- 大小:2.79 MB
- 文档页数:13
一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系;(重点)2.会利用根与系数的关系解决有关的问题.(难点)一、情境导入 解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什么联系?(1)x 2-2x =0;(2)x 2+3x -4=0;(3)x 2-5x +6=0.方程x 1 x 2 x 1+x 2 x 1·x 2x 2-2x =0 x 2+3x -4=0 x 2-5x +6=0二、合作探究探究点一:一元二次方程的根与系数的关系利用根与系数的关系,求方程3x 2+6x -1=0的两根之和、两根之积. 解析:由一元二次方程根与系数的关系可求得. 解:这里a =3,b =6,c =-1.Δ=b 2-4ac =62-4×3×(-1)=36+12=48>0, ∴方程有两个不相等的实数根. 设方程的两个实数根是x 1,x 2, 那么x 1+x 2=-2,x 1·x 2=-13.方法总结:如果方程ax 2+bx +c =0(a ≠0),Δ=b 2-4ac ≥0,有两个实数根x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:一元二次方程的根与系数的关系的应用 【类型一】 利用根与系数的关系求代数式的值设x 1,x 2是方程2x +4x -3=0的两个不相等的实数根,利用根与系数的关系,求下列各式的值:(1)(x 1+2)(x 2+2); (2)x 2x 1+x 1x 2.解析:先确定a ,b ,c 的值,再求出x 1+x 2与x 1x 2的值,最后将所求式子做适当变形,把x 1+x 2与x 1x 2的值整体代入求解即可.解:根据根与系数的关系,得x 1+x 2=-2,x 1x 2=-32.(1)(x 1+2)(x 2+2)=x 1x 2+2(x 1+x 2)+4=-32+2×(-2)+4=-32;(2)x 2x 1+x 1x 2=x 22+x 21x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=(-2)2-2×(-32)-32=-143. 方法总结:先确定a ,b ,c 的值,再求出x 1+x 2与x 1x 2的值,最后将所求式子做适当的变形,把x 1+x 2与x 1x 2的值整体带入求解即可.变式训练:见《学练优》本课时练习“课后巩固提升”第7题 【类型二】 已知方程一根,利用根与系数的关系求方程的另一根已知方程5x 2+kx -6=0的一个根为2,求它的另一个根及k 的值.解析:由方程5x 2+kx -6=0可知二次项系数和常数项,所以可根据两根之积求出方程另一个根,然后根据两根之和求出k 的值. 解:设方程的另一个根是x 1,则2x 1=-65,∴x 1=-35.又∵x 1+2=-k5,∴-35+2=-k5,∴k =-7.方法总结:对于一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac ≥0),当已知二次项系数和常数项时,可求得方程的两根之积;当已知二次项系数和一次项系数时,可求得方程的两根之和.变式训练:见《学练优》本课时练习“课堂达标训练”第4题 【类型三】 判别式及根与系数关系的综合应用已知α、β是关于x 的一元二次方程x +(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,求m 的值.解析:利用韦达定理表示出α+β,αβ,再由1α+1β=-1建立方程,求m 的值.解:∵α、β是方程的两个不相等的实数根,∴α+β=-(2m +3),αβ=m 2.又∵1α+1β=α+βαβ=-(2m +3)m2=-1, 化简整理,得m 2-2m -3=0. 解得m =3或m =-1.当m =-1时,方程为x 2+x +1=0,此时Δ=12-4<0,方程无解, ∴m =-1应舍去.当m =3时,方程为x 2+9x +9=0,此时Δ=92-4×9>0,方程有两个不相等的实数根. 综上所述,m =3.易错提醒:本题由根与系数的关系求出字母m 的值,但一定要代入判别式验算,字母m 的取值必须使判别式大于0,这一点很容易被忽略.变式训练:见《学练优》本课时练习“课后巩固提升”第8题 三、板书设计让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神。
沪科版数学八年级下册《17.4 一元二次方程的根与系数的关系》教学设计1一. 教材分析《17.4 一元二次方程的根与系数的关系》是沪科版数学八年级下册的一个重要内容。
本节内容是在学生已经掌握了方程的解法、根的判别式的基础上,进一步引导学生探究一元二次方程的根与系数之间的关系,培养学生的抽象概括能力,也为后续学习一元二次方程的应用打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了方程的基本概念和解法,对根的判别式也有了一定的了解。
但学生对于根与系数之间的关系可能存在一定的困惑,因此,在教学过程中,教师需要引导学生通过观察、实验、猜想、验证等方法,逐步发现并理解根与系数之间的关系。
三. 教学目标1.让学生理解一元二次方程的根与系数之间的关系。
2.培养学生通过观察、实验、猜想、验证等方法探索问题的能力。
3.提高学生运用一元二次方程解决实际问题的能力。
四. 教学重难点1.教学重点:一元二次方程的根与系数之间的关系。
2.教学难点:理解并运用根与系数之间的关系解决实际问题。
五. 教学方法1.引导法:教师引导学生通过观察、实验、猜想、验证等方法,发现并理解根与系数之间的关系。
2.互动法:教师与学生进行提问、讨论,促进学生对知识的理解和运用。
3.案例分析法:教师给出实际问题,引导学生运用一元二次方程解决。
六. 教学准备1.教学课件:制作课件,展示一元二次方程的根与系数之间的关系。
2.实际问题:准备一些实际问题,用于引导学生运用一元二次方程解决。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元二次方程的解法和根的判别式,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一元二次方程的根与系数之间的关系,引导学生观察、实验、猜想、验证,让学生通过自主学习发现并理解这一关系。
3.操练(10分钟)教师给出一些练习题,让学生运用所学知识解决问题,巩固对根与系数之间关系的理解。
4.巩固(10分钟)教师继续给出练习题,让学生进一步巩固对根与系数之间关系的理解。
(沪科版)八年级数学下册名师教学设计:一元二次方程的根与系数的关系一. 教材分析《一元二次方程的根与系数的关系》是沪科版八年级数学下册的一章节,主要介绍了如何通过一元二次方程的根来确定方程的系数,以及根的判别式、根与系数之间的关系。
这一章节的内容是整个初中数学的重要基础,对于学生理解一元二次方程的性质,以及解决相关问题具有重要意义。
二. 学情分析学生在学习本章节之前,已经掌握了一元二次方程的解法,对代数式、方程式的基本概念有一定的了解。
但部分学生对于根与系数之间的关系理解不够深入,对于如何运用根的判别式解决实际问题还不够熟练。
因此,在教学过程中,需要关注学生的学习差异,引导学生通过实际问题来理解根与系数的关系,提高学生的解题能力。
三. 教学目标1.理解一元二次方程的根与系数之间的关系;2.学会运用根的判别式判断一元二次方程的根的情况;3.能够运用一元二次方程的根与系数的关系解决实际问题。
四. 教学重难点1.教学重点:一元二次方程的根与系数之间的关系,根的判别式的运用;2.教学难点:如何引导学生通过实际问题来理解根与系数的关系,提高学生的解题能力。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过实际问题来探索一元二次方程的根与系数的关系,提高学生的解题能力。
六. 教学准备1.准备相关的一元二次方程案例;2.准备与本章节相关的练习题;3.准备PPT,用于展示案例和讲解知识点。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考一元二次方程的根与系数之间的关系。
例如,已知一个一元二次方程的两个根分别为2和-3,求该方程的系数。
2.呈现(15分钟)通过PPT展示一元二次方程的根与系数之间的关系,讲解根的判别式的运用。
结合案例,让学生理解并掌握如何通过一元二次方程的根来确定方程的系数。
3.操练(15分钟)让学生分组进行练习,运用一元二次方程的根与系数的关系来解决实际问题。
z根与系数的关系分类讨论思想:当问题所给的对象不能进行统一研究时,我们就需要对研究对象进行分类,然后对每一类分别进行研究,得出每一类的结论,最后综合各类的结果,得到整个问题的解答。
分类讨论的分类并非是随心所欲的,而是要遵循以下基本原则:1. 不重(互斥性)不漏(完备性);2. 按同一标准划分(同一性);3. 逐级分类(逐级性)。
一、一元二次方程的根与系数的关系如果一元二次方程ax !+bx +c =0(a ≠0)的两个实数根是,那么,. 注意:它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.【典例1】已知:关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !.(1)若|x "|+|x !|=2√2,求k 的值; (2)当k 取哪些整数时,x ",x !均为整数; (3)当k 取哪些有理数时,x ",x !均为整数. 【思路点拨】(1)分两种情况:①若两根同号,②若两根异号;根据根与系数的关系结合根的判别式解答即可; (2)根据根与系数的关系可得若x "+x !=−!#为整数,可得整数k =±1,±2,然后结合两根之积、解方程分别验证即可;(3)显然,当k =−1时,符合题意;由两根之积可得k 应该是整数的倒数,不妨设k ="$,则方程可变形21x x ㄑa b x x -=+21ac x x =21◆思想方法◆典例分析◆知识点总结z为x !+2mx +m −2=0,即为(x +m )!=m !−m +2,再结合整数的意义即可解答. 解:(1)∵Δ=2!−4k (1−2k )=4−4k +8k !=88k !−"!k +"!9=88k −"%9!+&!>0, ∴不论k 为何值,关于x 的一元二次方程kx !+2x +1−2k =0都有两个实数根x ",x !, ∵关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !, ∴x "+x !=−!#,x "x !="'!##,分两种情况:①若两根同号,由|x "|+|x !|=2√2可得:x "+x !=2√2,或x "+x !=−2√2, 当x "+x !=2√2时,则−!#=2√2,解得k =−√!!; 当x "+x !=−2√2时,则−!#=−2√2,解得k =√!!; ②若两根异号,由|x "|+|x !|=2√2可得:(x "−x !)!=8, 即(x "+x !)!−4x "x !=8, ∴8−!#9!−4×"'!##=8,解得:k =1, 综上,k 的值为1或 ±√!!; (2)∵关于x 的一元二次方程kx !+2x +1−2k =0有两个实数根x ",x !, ∴x "+x !=−!#,x "x !="'!##,若x ",x !均为整数, 则x "+x !=−!#为整数, ∴整数k =±1,±2, 当k =±2时,x "x !="'!##不是整数,故应该舍去;当k =1时,此时方程为x !+2x −1=0,方程的两个根不是整数,故舍去;当k =−1时,此时方程为−x !+2x +3=0,方程的两个根为x "=−1,x !=3,都是整数,符合题意; 综上,当k 取−1时,x ",x !均为整数; (3)显然,当k =−1时,符合题意; 当k 为有理数时,由于x "x !="'!##="#−2为整数,zxx∴k 应该是整数的倒数,不妨设k ="$ (m ≠0),m 为整数, 则方程kx !+2x +1−2k =0即为x !+2mx +m −2=0, 配方得:(x +m )!=m !−m +2, 即x =−m ±√m !−m +2,当m =2即k ="!时,方程的两根为x "=0,x !=−4,都是整数,符合题意;当m ≠2时,m !−m +2=(m −"!)!+&%不是完全平方数,故不存在其它整数m 的值使上式成立; 综上,k =−1或"!.1.(22-23九年级上·湖北襄阳·自主招生)设方程ax !+bx +c =0(a ≠0)有两个根x "和x !,且1<x "<2<x !<4,那么方程cx !−bx +a =0的较小根x )的范围为( ) A ."!<x )<1 B .−4<x )<−2C .−"!<x )<−"%D .−1<x )<−"!【思路点拨】由根与系数的关系得出x "+x !=−*+,x "⋅x !=,+,再设方程cx !−bx +a =0的为m ,n ,根据根与系数的关系得出m +n =−("-!+"-"),mn ="-"⋅-!,从而得出方程cx !−bx +a =0的两根为−"-",−"-!,然后由1<x "<2<x !<4,求出−"-",−"-!的取值范围,从而得出结论.【解题过程】解:∵方程ax !+bx +c =0(a ≠0)有两个根x "和x !, ∴x "+x !=−*+,x "⋅x !=,+,设方程cx !−bx +a =0的两根为m ,n , 则m +n =*,,mn =+,,∵m +n =*,=−*+⋅(−+,),mn ="-"⋅-!,∴m +n =−(x "+x !)⋅"-"⋅-!=−-"/-!-"⋅-!=−("-!+"-"),∴方程cx !−bx +a =0的两根为−"-",−"-!,◆学霸必刷∵1<x"<2,2<x!<4,∴"!<"-"<1,"%<"-!<"!,∴−1<−"-"<−"!,−"!<−"-!<−"%,∵−"-"<−"-!,∴方程cx!−bx+a=0的较小根x)的范围为−1<x)<−"!.故选:D.2.(22-23九年级下·安徽安庆·阶段练习)若方程x!+2px−3p−2=0的两个不相等的实数根x"、x!满足x"!+x")=4−(x!!+x!)),则实数p的所有值之和为()A.0 B.−)%C.−1D.−0%【思路点拨】先根据一元二次方程解的定义和根与系数的关系得到x"!+2px"−3p−2=0,x"+x!=−2p,进而推出x")=3px"+2x"−2px"!,则x")+x"!=3px"+2x"−2px"!+x"!,x!)+x!!=3px!+2x!−2px!!+ x!!,即可推出(3p+2)(x"+x!)+(1−2p)(x"!+x!!)=4,然后代入x"+x!=−2p,x"!+x!!= (x"+x!)!−4p得到2p(4p+3)(p+1)=0,再根据判别式求出符号题意的值即可得到答案.【解题过程】解:∵x"、x!是方程x!+2px−3p−2=0的两个相等的实数根,∴x"!+2px"−3p−2=0,x"+x!=−2p,x"x!=−3p−2,∴x"!+2px"=3p+2,∴x")+2px"!=3px"+2x",∴x")=3px"+2x"−2px"!,∴x")+x"!=3px"+2x"−2px"!+x"!,同理得x!)+x!!=3px!+2x!−2px!!+x!!,∵x"!+x")=4−(x!!+x!)),∴x"!+x")+(x!!+x!))=4,∴3px"+2x"−2px"!+x"!+3px!+2x!−2px!!+x!!=4,∴(3p+2)(x"+x!)+(1−2p)(x"!+x!!)=4,∴(3p+2)(−2p)+(1−2p)[(−2p)!−2(−3p−2)]=4,∴−6p!−4p+(1−2p)(4p!+6p+4)=4,∴−6p!−4p+4p!+6p+4−2p(4p!+6p+4)=4,∴−2p!+2p−2p(4p!+6p+4)=0,∴−2p(4p!+6p+4+p−1)=0,∴2p(4p!+7p+3)=0,∴2p(4p+3)(p+1)=0,解得p"=0,p!=−1,p)=−)%,∵Δ=(2p)!+4(3p+2)>0,∴p!+3p+2>0,∴(p+1)(p+3)>0,∴p=−1不符合题意,∴p"+p)=−)%∴符合题意,故选B.3.(22-23八年级下·安徽合肥·期末)若关于x的一元二次方程x!−2x+a!+b!+ab=0的两个根为x"=m,x!=n,且a+b=1.下列说法正确的个数为( )①m·n>0;②m>0,n>0;③a!≥a;④关于x的一元二次方程(x+1)!+a!−a=0的两个根为x"= m−2,x!=n−2.A.1B.2C.3D.4【思路点拨】根据根与系数的关系得x"x!=mn=a!+b!+ab,利用a+b=1消去b得到mn=a!−a+1=8a−"!9! +)%>0,从而即可对①进行判断;由于x"+x!=m+n=2>0,x"x!=mn>0,利用有理数的性质可对②进行判断;根据根的判别式的意义得到Δ=4−4(a!+b!+ab)≥0,即4−4(a!−a+1)≥0,则可对③进行判断;利用a!+b!+ab=a!−a+1把方程x!−2x+a!+b!+ab=0化为(x−1)!+a!−a+1=0,由于方程(x−1)!+a!−a=0可变形为[(x+2)−1]!+a!−a=0,所以x+2=m或x+2=n,于是可对④进行判断.【解题过程】解:根据根与系数的关系得x"x!=mn=a!+b!+ab,∵a+b=1,∴b=1−a,∴mn=a!+(1−a)!+a(1−a)=a!−a+1=8a−"!9!+)%>0,所以①正确;∵x"+x!=m+n=2>0,x"x!=mn>0,∴m>0,n>0,所以②正确;∵Δ≥0,∴4−4(a!+b!+ab)≥0,即4−4(a!−a+1)≥0,∴a≥a!,所以③错误;∵a!+b!+ab=a!−a+1,∴方程x!−2x+a!+b!+ab=0化为(x−1)!+a!−a+1=0,即(x−1)!+a!−a=0,∵方程(x+1)!+a!−a=0可变形为[(x+2)−1]!+a!−a=0,∴x+2=m或x+2=n,解得x"=m−2,x!=n−2,所以④正确.故选:C.4.(22-23九年级上·浙江·自主招生)设a、b、c、d是4个两两不同的实数,若a、b是方程x!−8cx−9d=0的解,c、d是方程x!−8ax−9b=0的解,则a+b+c+d的值为.【思路点拨】由根与系数的关系得a+b,c+d的值,两式相加得的值,根据一元二次方程根的定义可得a!−8ac−9d= 0,代入可得a!−72a+9c−8ac=0,同理可得c!−72c+9a−8ac=0,两式相减即可得a+c的值,进而可得a+b+c+d的值.【解题过程】解:由根与系数的关系得a+b=8c,c+d=8a,两式相加得a+b+c+d=8(a+c).因为a是方程x!−8cx−9d=0的根,所以a!−8ac−9d=0,又d=8a−c,所以a!−72a+9c−8ac=0①同理可得c!−72c+9a−8ac=0②①-②得(a−c)(a+c−81)=0.因为a≠c,所以a+c=81,所以a+b+c+d=8(a+c)=648.故答案为648.5.(23-24九年级上·江苏南通·阶段练习)已知实数a,b,c满足:a+b+c=2,abc=4.求|a|+|b|+|c|的最小值【思路点拨】用分类讨论的思想,解决问题即可.【解题过程】解:不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,,且b+c=2−a,bc=%+=0的两实根,于是b,c是一元二次方程x!−(2−a)x+%+≥0,即(a!+4)(a−4)≥0,∴Δ=(2−a)!−4×%+所以a≥4.又当a=4,b=c=−1时,满足题意.故a,b,c中最大者的最小值为4.因为abc=4>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,不妨设a>0,b<0,c<0,则|a|+|b|+|c|=a−b−c=a−(2−a)=2a−2,∵a≥4,故2a−2≥6,当a=4,b=c=−1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.故答案为:6.6.(22-23九年级上·四川成都·期末)将两个关于x的一元二次方程整理成a(x+ℎ)!+k=0(a≠0,a、h、k均为常数)的形式,如果只有系数a不同,其余完全相同,我们就称这样的两个方程为“同源二次方程”.已知关于x的一元二次方程ax!+bx+c=0(a≠0)与方程(x+1)!−2=0是“同源二次方程”,且方程ax!+ bx+c=0(a≠0)有两个根为x"、x!,则b-2c=,ax"+x"x!+ax!的最大值是.【思路点拨】利用ax!+bx+c=0(a≠0)与方程(x+1)!−2=0是“同源二次方程”得出b=2a,c=a−2,即可求出b−2c;利用一元二次方程根与系数的关系可得x"+x!=−2,x"x!=+'!+,进而得出ax"+x"x!+ax!=−28a+"+9+1,设a+"+=t(t>0),得a!−t⋅a+1=0,根据方程a!−t⋅a+1=0有正数解可知Δ=t!−4≥0,求出t的取值范围即可求出ax"+x"x!+ax!的最大值.【解题过程】解:根据新的定义可知,方程ax!+bx+c=0(a≠0)可变形为a(x+1)!−2=0,∴a(x+1)!−2=ax!+bx+c,展开,ax!+2ax+a−2=ax!+bx+c,可得b=2a,c=a−2,∴b−2c=2a−2(a−2)=4;∵x"+x!=−2,x"x!=+'!+,∴ax"+x"x!+ax!=a(x"+x!)+x"x!=−2a++'!+=−28a+"+9+1,∵方程ax!+bx+c=0(a≠0)有两个根为x"、x!,∴Δ=b!−4ac=(2a)!−4a(a−2)=8a≥0,且a≠0,∴a>0,设a+"+=t(t>0),得a!−t⋅a+1=0,∵方程a!−t⋅a+1=0有正数解,∴Δ=t!−4≥0,解得t≥2,即a+"+≥2,∴ax"+x"x!+ax!=−28a+"+9+1≤−3.故答案为:4,-3.7.(23-24九年级上·山东济南·期末)已知xy+x+y=44,x!y+xy!=484,求x)+y).【思路点拨】本题主要考查了代数式求值、一元二次方程的根与系数的关系、因式分解的应用等知识点,综合应用所学知识成为解题的关键.设xy=m,x+y=n,等量代换后可得44=m+n、484=mn,则m、n为t!−44t+484=0的根,可解得m=n=22,然后再对x)+y)变形后将m=n=22代入计算即可.【解题过程】解:设xy=m,x+y=n,∴44=xy+x+y=m+n,484=x!y+xy!=xy(x+y)=mn,∴m、n为t!−44t+484=0的根,∴m=n=22,∴x)+y)=(x+y)(x!+y!−xy)=(x+y)[(x+y)!−3xy]=n[n!−3m]=n)−3mn=9196.8.(2024九年级·全国·竞赛)记一元二次方程x!+3x−5=0的两根分别为x"、x!.(1)求"-"'"+"-!'"的值;(2)求3x"!+6x"+x!!的值.【思路点拨】本题考查了一元二次方程根与系数的关系、一元二次方程的解.在利用根与系数的关系x"⋅x!=,+,x"+x!=−*+时,需要弄清楚a、b、c的意义.(1)利用根与系数的关系求得求"-"'"+"-!'"的值的值;(2)由一元二次方程的解可得x"!+3x"−5=0,再利用根与系数的关系求解即可.【解题过程】(1)∵x"+x!=−3,x"x!=−5,∴1x"−1+1x!−1=x!−1+x"−1 (x"−1)(x!−1)=x"+x!−2 x"x!−(x"+x!)+1=−3−2−5−(−3)+1=5;(2)∵x"是一元二次方程x!+3x−5=0的根,∴x"!+3x"−5=0,∴x"!+3x"=5,又∵x"+x!=−3,x"x!=−5,∴3x"!+6x"+x!!=2(x"!+3x")+(x"+x!)!−2x"x!=29.9.(23-24九年级下·北京·开学考试)已知关于x的方程x!−2mx+m!−n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为符合条件的最小整数,且该方程的较大根是较小根的3倍,求m的值.【思路点拨】本题考查一元二次方程根的判别式及根与系数的关系,对于一元二次方程ax!+bx+c=0(a≠0),当判别式Δ>0时方程有两个不相等的实数根,Δ=0时方程有两个相等的实数根,Δ<0时方程没有实数根,若方程的两个实数根为x"、x!,则x"+x!=−*+,x"⋅x!=,+.(1)根据方程x!−2mx+m!−n=0有两个不相等的实数根得出判别式Δ>0,列出不等式即可得答案;(2)根据(1)中结果得出n值,利用一元二次方程根与系数的关系列方程求出m的值即可.【解题过程】(1)解:∵关于x的方程x!−2mx+m!−n=0有两个不相等的实数根,∴Δ=(−2m)!−4(m!−n)>0,解得:n>0.(2)设方程的两个实数根为x"、x!,且x">x!,∴x"+x!=2m,x"⋅x!=m!−n,由(1)可知:n>0,∵n为符合条件的最小整数,∴n=1,∵该方程的较大根是较小根的3倍,∴x"=3x!,∴4x!=2m,3x!!=m!−1,∴3×$!%=m!−1,解得:m"=−2,m!=2.当m=2时,x!=1,则x"=3x!=3,符合题意,当m=−2时,x!=−1,则x"=3x!=−3<x!,与x">x!不符,舍去,∴m=2.10.(23-24九年级上·安徽淮南·阶段练习)若关于x的一元二次方程x!+2x−m!−m=0.(1)若α和β分别是该方程的两个根,且αβ=−2,求m的值;(2)当m=1,2,3,⋅⋅⋅,2024时,相应的一元二次方程的两个根分别记为α"、β",α!、β!,⋅⋅⋅,α!1!%、β!1!%,求"2"+"3"+"2!+"3!+⋯+"2!#!$+"3!#!$的值.【思路点拨】(1)根据一元二次方程的根与系数的关系进行求解即可;(2)根据一元二次方程的根与系数的关系x"+x!=−*+,x"⋅x!=,+可得:"-"+"-!=-"/-!-"⋅-!=!$!/$,进一步可寻找"2!#!$+"3!#!$的规律,即可求解.【解题过程】(1)解:∵关于x的一元二次方程x!+2x−m!−m=0,α和β分别是该方程的两个根,∴αβ=−m!−m∵αβ=−2,∴−2=−m!−m∴m=1或m=−2;(2)解:设方程x!+2x−m!−m=0的两个根为:x",x!则x"+x!=−*+=−2,x"⋅x!=,+=−m!−m,∴" -"+"-!=-"/-!-"·-!=!$!/$=!$($/")∴" 2"+"3"=!"×!,"2!+"3!=!!×),"2%+"3%=!)×%…..1α!1!%+1β!1!%=22024×2025∴" 2"+"3"+"2!+"3!+⋯+"2!#!$+"3!#!$=2×8""×!+"!×)+...+"!1!%×!1!09=2×X1−12+12−13+...+12024−12025Y=2×X1−1 2025Y=4048 202511.(22-23九年级上·湖北武汉·期中)已知α、β是关于x的一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根(1)直接写出m的取值范围(2)若满足"2+"3=−1,求m的值.(3)若α>2,求证:β>2;【思路点拨】(1)根据一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根,得Δ>0,即可列式作答;(2)结合一元二次方程根与系数的关系,得α+β=−(2m+3)和αβ=m!,因为"2+"3=−1,所以!$/)$!=1,解得m"=3,m2=−1,结合m>−)%,即可作答;(3)因为(α−2)(β−2)=αβ−2(α+β)+4,结合α+β=−(2m+3)和αβ=m!,得m!+2(2m+3)+ 4=(m+2)!+6,则(α−2)(β−2)≥6>0,又因为α>2,即可证明β>2.【解题过程】(1)解:∵一元二次方程x!+(2m+3)x+m!=0的两个不相等的实数根∴Δ=b!−4ac=(2m+3)!−4×1×m!=4m!+12m+9−4m!=12m+9>0,即m>−)%;(2)解:∵"2+"3=323+223=2/323=−1,且α+β=−*+=−(2m+3),αβ=,+=m!∴!$/)$!=1整理得m!−2m−3=0,解得:m"=3,m2=−1∵由(1)知m>−)%,∴m=3检验:当m=3时,m!≠0,即m=3;(3)证明:因为(α−2)(β−2)=αβ−2(α+β)+4,把α+β=−(2m+3)和αβ=m!代入上式,得m!+2(2m+3)+4=m!+4m+10=(m+2)!+6,∵(m +2)!≥0, ∴(m +2)!+6≥6 ∴(α−2)(β−2)≥6>0 ∵α>2, ∴α−2>0, ∴β−2>0, 即β>2.12.(22-23九年级·浙江·自主招生)已知方程x !+4x +1=0的两根是α、β. (1)求|α−β|的值; (2)求Z 23+Z 32的值;(3)求作一个新的一元二次方程,使其两根分别等于α、β的倒数的立方.(参考公式:x )+y )=(x +y)(x !+y !−xy ). 【思路点拨】(1)利用一元二次方程根与系数的关系可得α+β=−4,αβ=1,再求得(α−β)!的值,进而求得|α−β|的值.(2)先根据二次根式的性质将Z 23+Z 32化为√293+93√2,然后通分化简可得2/3923,最后将α+β=−4,αβ=1代入计算即可;(3)由题意可得新一元二次方程的两个根为8"29)和8"39),然后求得8"29)+8"39)和8"29)8"39)的值,然后根据一元二次方程根与系数的关系即可解答. 【解题过程】(1)解:∵方程x !+4x +1=0的两根是α、β ∴α+β=−4,αβ=1∴(α−β)!=(α+β)!−4αβ=12 ∴|α−β|=2√3;(2)解:由(1)可知:α<0,β<0,∵[\αβ+\βα]!=αβ+βα+2=α!+β!αβ+2=(α+β)!−2αβαβ+2=16,∴Z23+Z32=4(负值舍去);(3)解:由题意可得新一元二次方程的两个根为8"29)和8"39)则8"29)+8"39)=(1α+1β)^X1αY!+X1βY!−1αβ_=α+βαβ^α!+β!α!β!−1αβ_=α+βαβ^(α+β)!−2αβα!β!−1αβ_=−41`16−21!−1a=−52X 1αY)X1βY)=X1αβY)=1所以新的一元二次方程x!+52x+1=0.13.(22-23九年级上·福建泉州·期末)已知关于x的方程mx!−(m−1)x+2=0有实数根.(1)若方程的两根之和为整数,求m的值;(2)若方程的根为有理根,求整数m的值.【思路点拨】(1)根据关于x的方程mx!−(m−1)x+2=0有两个根,且为实数根,先利用一元二次方程的根的判别式确定m的取值范围,再根据一元二次方程的根与系数的关系,可知x"+x!=$'"$,若方程的两根之和为整数,即$'"$为整数,即可确定m的值;(2)分两种情况讨论:当m=0时,此时关于x的方程为x+2=0,求解可得x=−2,符合题意;当m≠0时,对于关于x的方程mx!−(m−1)x+2=0可有x=($'")±√$!'"1$/"!$,若方程的根为有理根,且m为整数,则Δ=m!−10m+1为某一有理数的平方,据此分析即可获得答案.【解题过程】(1)解:∵关于x的方程mx!−(m−1)x+2=0有两个根,且为实数根,∴m ≠0,且Δ=[−(m −1)]!−4m ×2=m !−10m +1≥0, 根据一元二次方程的根与系数的关系,可知x "+x !=−'($'")$=$'"$,若方程的两根之和为整数,即$'"$为整数,∵$'"$=1−"$,∴"$是整数, ∴m =±1,当m =1时,Δ=1−10+1=−8<0,不符合题意; 当m =−1时,Δ=1+10+1=12>0,$'"$='"'"'"=2,为整数,符合题意;∴m 的值为−1;(2)当m =0时,此时关于x 的方程为x +2=0,解得x =−2; 当m ≠0时,对于关于x 的方程mx !−(m −1)x +2=0的根为:x =($'")±√$!'"1$/"!$,若方程的根为有理根,且m 为整数, 则Δ=m !−10m +1为完全平方数, 设m !−10m +1=k !(k 为正整数), 则:m ="1±√"11'%/%#!!=5±√24+k !,∵m 为整数,设24+k !=n !(n 为正整数), ∴(k +n )(n −k )=24,∴b k +n =12n −k =2 或b k +n =6n −k =4 或b k +n =8n −k =3 或b k +n =24n −k =1 , 解得:bk =5n =7 或b k =1n =5 或d k =0!n =""!(不合题意,舍去)或d k =!)!n =!0!(不合题意,舍去) ∴m !−10m +1=1!=1或m !−10m +1=5!=25; 当m !−10m +1=1时,解得m =10或m =0(舍去); 当m !−10m +1=25时,解得m =−2或m =12,综上所述,若方程的根为有理根,则整数m 的值为0或10或−2或12.14.(22-23九年级下·浙江·自主招生)设m 为整数,关于x 的方程(m !+m −2)x !−(7m +2)x +12=0有两个整数实根. (1)求m 的值.(2)设△ABC 的三边长a,b,c 满足c =4√2,m !+a !m −12a =0,m !+b !m −12b =0.求△ABC 的面积. 【思路点拨】(1)设原方程的两个解分别为x ",x !,根据两个整数实根,则x "+x !=&$/!$!/$'!,x "x !="!$!/$'!都是整数,进而分类讨论,即可求解;(2)由(1)得出的m 的值,然后代入将m !+a !m −12a =0,m !+b !m −12b =0进行化简,得出a ,b 的值.然后再根据三角形三边的关系来确定符合条件的a ,b 的值,用三角形的面积公式得出三角形的面积. 【解题过程】(1)解:∵m !+m −2≠0, ∴m ≠−2或m =1, ∵方程有两个实数根,∴Δ=b !−4ac =[−(7m +2)]!−4×12×(m !+m −12) =m !−20m +580=(m −10)!+480>0 设原方程的两个解分别为x ",x !∴x "+x !=&$/!$!/$'!,x "x !=∴m !+m −2=1,2,3,4,6,12 m !+m −2=1,解得:m ='"±√")!(舍去) m !+m −2=2,解得:m ='"±√"&!(舍去) m !+m −2=3,解得:m ='"±√!"!(舍去)m !+m −2=4,解得:m =−3或m =2 m !+m −2=6,解得:m ='"±√))!(舍去)m !+m −2=12,解得:m ='"±√"!;!(舍去) 当m =−3时,&$/!$!/$'!='!"/!%=−";%不是整数,舍去当m =2时,&$/!$!/$'!="%/!%=4符合题意,综上所述,m=2;(2)把m=2代入两等式,化简得a!−6a+2=0,b!−6b+2=0,当a=b时,a=b=3±√7,当a≠b时,a、b是方程x!−6x+2=0的两根,而Δ>0,根据根与系数的关系可得,a+b=6>0,ab=2>0,则a>0、b>0,①a≠b,c=4√2时,由于a!+b!=(a+b)!−2ab=36−4=32=c!,故△ABC为直角三角形,且∠C=90°,S<=>?="!ab=1;②a=b=3−√7,c=4√2时,因2(3−√7)<4√2,故不能构成三角形,不合题意,舍去;;③a=b=3+√7,c=4√2时,因2(3+√7)>4√2,故能构成三角形,S<=>?="!×4√2×Z l3+√7m!−l2√2m!=4n4+3√7;综上,△ABC的面积为1或4n4+3√7.15.(22-23九年级上·湖南常德·期中)阅读材料:材料1:若关于x的一元二次方程ax!+bx+c=0(a≠0)的两个根为x1,x2,则x"+x!=−*+,x"x!=,+.材料2:已知一元二次方程x!−x−1=0的两个实数根分别为m,n,求m!n+mn!的值.解:∵一元二次方程x!−x−1=0的两个实数根分别为m,n,∴m+n=1,mn=−1,则m!n+mn!=mn(m+n)=−1×1=−1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x!−3x−1=0的两个根为x1,x2,则x"+x!=___________,x"x!=___________.(2)类比应用:已知一元二次方程x!−3x−1=0的两根分别为m、n,求A$+$A的值.(3)思维拓展:已知实数s、t满足s!−3s−1=0,t!−3t−1=0,且s≠t,求"B −"C的值.【思路点拨】(1)直接利用一元二次方程根与系数的关系求解即可;(2)利用一元二次方程根与系数的关系可求出m+n=−*+=3,mn=,+=−1,再根据A$+$A=$!/A!$A=($/A)!'!$A$A,最后代入求值即可;(3)由题意可将s、t可以看作方程x!−3x−1=0的两个根,即得出s+t=−*+=3,s⋅t=,+=−1,从而可求出(t−s)!=(t+s)!−4st=13,即t−s=√13或t−s=−√13,最后分类讨论分别代入求值即可.【解题过程】(1)解:∵一元二次方程x!−3x−1=0的两个根为x1,x2,∴x"+x!=−*+=−')"=3,x"⋅x!=,+=−""=−1.故答案为:3,−1;(2)∵一元二次方程x!−3x−1=0的两根分别为m、n,∴m+n=−*+=3,mn=,+=−1,∴A $+$A=$!/A!$A=(m+n)!−2mnmn=3!−2×(−1)−1=−11;(3)∵实数s、t满足s!−3s−1=0,t!−3t−1=0,∴s、t可以看作方程x!−3x−1=0的两个根,∴s+t=−*+=3,st=,+=−1,∵(t−s)!=(t+s)!−4st=3!−4×(−1)=13∴t−s=√13或t−s=−√13,当t−s=√13时," B −"C=C'BBC=√")'"=−√13,当t−s=−√13时," B −"C=C'BBC='√")'"=√13,综上分析可知,"B −"C的值为√13或−√13.16.(23-24八年级上·北京海淀·期中)小聪学习多项式研究了多项式值为0的问题,发现当mx +n =0或px +q =0时,多项式A =(mx +n )(px +q )=mpx !+(mq +np )x +nq 的值为0,把此时x 的值称为多项式A 的零点.(1)已知多项式(3x +1)(x −2),则此多项式的零点为__________;(2)已知多项式B =(x −1)(bx +c )=ax !−(a −1)x −+!有一个零点为1,求多项式B 的另一个零点; (3)小聪继续研究(x −3)(x −1),x (x −4)及8x −0!98x −)!9等,发现在x 轴上表示这些多项式零点的两个点关于直线x =2对称,他把这些多项式称为“2系多项式”.若多项式M =(2ax +b )(cx −5c )=bx !−4cx −2a −4是“2系多项式”,求a 与c 的值. 【思路点拨】(1)根据多项式的零点的定义即可求解;(2)根据多项式的零点的定义将x =1代入ax !−(a −1)x −+!=0,求得a =2,再解一元二次方程即可求解;(3)令cx −5c =0,求得M 的一个零点为5,根据“2系多项式”的定义求得方程bx !−4cx −2a −4=0的两个根为x "=−1,x !=5,再利用根与系数的关系即可求解. 【解题过程】(1)解:令(3x +1)(x −2)=0, ∴3x +1=0或x −2=0, ∴x =−")或x =2,则此多项式的零点为−")或2; 故答案为:−")或2;(2)解:∵多项式B =(x −1)(bx +c )=ax !−(a −1)x −+!有一个零点为1,∴将x =1代入ax !−(a −1)x −+!=0,得a −(a −1)−+!=0,解得a =2,∴B =2x !−x −1=(x −1)(2x +1), 令2x +1=0,解得x =−"!, ∴多项式B 的另一个零点为−"!;(3)解:∵M=(2ax+b)(cx−5c)=bx!−4cx−2a−4是“2系多项式”,令cx−5c=0,解得x=5,即M的一个零点为5,∴设M的另一个零点为y,则D/0!=2,解得y=−1,即2ax+b=0时,x=−1,则−2a+b=0①,令M=bx!−4cx−2a−4=0,根据题意,方程bx!−4cx−2a−4=0的两个根为x"=−1,x!=5,∴x"+x!=−'%,*=5+(−1)=4,x"⋅x!='!+'%*=5×(−1)=−5,∴c=b②,5b−2a−4=0③,解①②③得c=b=1,a="!,∴a="!,c=1.17.(22-23九年级上·湖北黄石·期末)(1)x",x!是关于x的一元二次方程x!−2(k+1)x+k!+2=0的两实根,且(x"+1)⋅(x!+1)=8,求k的值.(2)已知:α,β(α>β)是一元二次方程x!−x−1=0的两个实数根,设s"=α+β,s!=α!+β!,…,s A=αA+βA.根据根的定义,有α!−α−1=0,β!−β−1=0,将两式相加,得(α!+β!)−(α+β)−2= 0,于是,得s!−s"−2=0.根据以上信息,解答下列问题:①直接写出s",s!的值.②经计算可得:s)=4,s%=7,s0=11,当n≥3时,请猜想s A,s A'",s A'!之间满足的数量关系,并给出证明.【思路点拨】(1)根据一元二次方程根与系数的关系可得出x"+x!=2(k+1),x"x!=k!+2.由(x"+1)(x!+1)=8,可得x"x!+(x"+x!)+1=8,即得出关于k的一元二次方程,解出k的值,再根据一元二次方程根的判别式验证,舍去不合题意的值即可;(2)①根据一元二次方程根与系数的关系可得出α+β=−*+=1,αβ=,+=−1,进而可求出s"=α+β=1,s!=α!+β!=(α+β)!−2αβ=3;②由一元二次方程的解的定义可得出α!−α−1=0,两边都乘以αA'!,得:αA−αA'"−αA'!=0①,同理可得:βA−βA'"−βA'!=0②,再由①+②,得:(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0.最后结合题意即可得出s A−s A'"−s A'!=(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,即s A=s A'"+s A'!.【解题过程】解:(1)∵x",x!是关于x的一元二次方程x!−2(k+1)x+k!+2=0的两实根,∴x"+x!=−*+=−'!(#/")"=2(k+1),x"x!=,+=#!/!"=k!+2,∴(x"+1)(x!+1)=x"x!+(x"+x!)+1=k!+2+2(k+1)+1=8,整理,得:k!+2k−3=0,解得:k"=−3,k!=1.当k=−3时,Δ=b!−4ac=[−2(k+1)]!−4(k!+2)=[−2(−3+1)]!−4[(−3!)+2]=−28<0,∴此时原方程没有实数根,∴k=−3不符合题意;当k=1时,Δ=b!−4ac=[−2(k+1)]!−4(k!+2)=[−2×(1+1)]!−4(1!+2)=4>0,∴此时原方程有两个不相等的实数根,∴k=1符合题意,∴k的值为1;(2)①∵x!−x−1=0,∴a=1,b=−1,c=−1.∵α,β(α>β)是一元二次方程x!−x−1=0的两个实数根,∴α+β=−*+=1,αβ=,+=−1,∴s"=α+β=1,s!=α!+β!=(α+β)!−2αβ=1!−2×(−1)=3;②猜想:s A=s A'"+s A'!.证明:根据一元二次方程根的定义可得出α!−α−1=0,两边都乘以αA'!,得:αA−αA'"−αA'!=0①,同理可得:βA−βA'"−βA'!=0②,由①+②,得:(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,∵s A=αA+βA,s A'"=αA'"+βA'",s A'!=αA'!+βA'!,∴s A−s A'"−s A'!=(αA+βA)−(αA'"+βA'")−(αA'!+βA'!)=0,即s A=s A'"+s A'!.18.(23-24九年级上·福建宁德·期中)已知关于x的方程x!−(m+2)x+4m=0有两个实数根x",x!,其中x"<x!.(1)若m=−1,求x"!+x!!的值;(2)一次函数y=3x+1的图像上有两点A(x",y"),B(x!,y!),若AB=√10,求m的值;(3)边长为整数的直角三角形,其中两直角边的长度恰好为x"和x!,求该直角三角形的面积.【思路点拨】该题主要考查了一元二次方程的根判别式“Δ=b!−4ac”,根与系数关系“x"+x!=−*+,x"⋅x!=,+”,一次函数的性质,直角三角形的性质,勾股定理“直角三角形两直角边的平方之和等于斜边的平方”等知识点,解题的关键是分类谈论思想的运用;(1)将m=−1代入方程得出方程,再根据根与系数关系得到x"+x!=−*+=1,x"⋅x!=,+=−4,将x"!+x!!转化即可求解;(2)根据点A(x",y"),B(x!,y!)在函数图像上,得出Alx",3x"+1m,Blx!,3x!+1m,再根据根与系数关系得到x"+x!=m+2,x"⋅x!=4m,根据AB=√10即可求解;(3)根据直角三角形两直角边x",x!为整数,得出Δ=b!−4ac=m!−12m+4,令m!−12m+4=k!(k为正整数),得出(m+k−6)(m−k−6)=32,又m+k−6>m−k−6,然后分三种情况取值即可解答;【解题过程】(1)当m=−1时,方程为x!−x−4=0,Δ=b!−4ac=(−1)!−4×1×(−4)=17>0,∴x"+x!=−*+=1,x"⋅x!=,+=−4,即x"!+x!!=(x"+x!)!−2x"x!=1!−2×(−4)=9;(2)将A(x",y"),B(x!,y!)代入y=3x+1可得Alx",3x"+1m,Blx!,3x!+1m,又Δ=(m+2)!−4×4m>0,故x"+x!=m+2,x"⋅x!=4m,AB!=(x"−x!)!+(y"−y!)!=10(x"−x!)!,即10(x"−x!)!=10,(x"−x!)!=1,(x"−x!)!=(x"+x!)!−4x"x!=1,(m+2)!−4×4m=1,(m−6)!=33,m"=6+√33,m!=6−√33;(3)∵直角三角形两直角边x ",x !为整数,∴Δ=b !−4ac =(m +2)!−4×4m =m !−12m +4为平方数, 不妨令m !−12m +4=k !(k 为正整数), (m −6)!−32=k !,(m +k −6)(m −k −6)=32, m +k −6>m −k −6,当①∴m +k −6=32,m −k −6=1, 解得m =%0!(不合题意舍去);当②m +k −6=16,m −k −6=2, 解得m =15,∴方程x !−17x +60=0, x "=12,x !=5,则斜边为13, 即S =-"⋅-!!=30;当③m +k −6=8,m −k −6=4, 解得m =12,∴方程x !−14x +48=0,x "=6,x !=8,则斜边为10, 即S =-"⋅-!!=24,综上所述:该直角三角形的面积为30或24.19.(22-23九年级上·全国·单元测试)如果方程x !+px +q =0有两个实数根x ",x !,那么x "+x !=−p ,x "x !=q ,请根据以上结论,解决下列问题:(1)已知a ,b 是方程x !+15x +5=0的二根,则+*+*+=?(2)已知a 、b 、c 满足a +b +c =0,abc =16,求正数c 的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知b x =x "y =y "和b x =x !y =y !是关于x ,y 的方程组t x !−y +k =0x −y =1 的两个不相等的实数解.问:是否存在实数k ,使得y "y !−-"-!−-!-"=2?若存在,求出的k 值,若不存在,请说明理由.【思路点拨】(1)根据a ,b 是方程x !+15x +5=0的二根,求出a +b ,ab 的值,即可求出+*+*+的值; (2)根据a +b +c =0,abc =16,得出a +b =−c ,ab ="E,,a 、b 是方程x !+cx +"E ,=0的解,再根据c !−4×"E ,≥0,即可求出c 的最小值;(3)运用根与系数的关系求出x "+x !=1,x "x !=k +1,再解y "y !−-"-!−-!-"=2,即可求出k 的值.【解题过程】(1)解:∵a ,b 是方程x !+15x +5=0的二根, ∴a +b =−15,ab =5, ∴+*+*+=(+/*)!'!+*+*=('"0)!'!×0=43,∴+*+*+=43;(2)∵a +b +c =0,abc =16, ∴a +b =−c ,ab ="E ,,∴a 、b 是方程x !+cx +"E ,=0的解,∴c !−4×"E ,≥0,∴c !−%%,≥0,∵c 是正数,∴c )−4)≥0, ∴c )≥4), ∴c ≥4,∴正数c 的最小值是4;(3)存在,当k =−2时,y "y !−-"-!−-!-"=2.理由如下: ∵u x !−y +k =0①x −y =1② ,由①得:y =x !+k , 由②得:y =x −1,∴x !+k =x −1,即x !−x +k +1=0,由题意思可知,x ",x !是方程x !−x +k +1=0的两个不相等的实数根, ∴d (−1)!−4(k +1)>0x "+x !=1x "x !=k +1 , 则k <−)%,∵b x =x "y =y " 和b x =x !y =y ! 是关于x ,y 的方程组t x !−y +k =0x −y =1 的两个不相等的实数解,∴y "y !=(x "−1)(x !−1), ∴y "y !−-"-!−-!-"=(x "−1)(x !−1)−(-"/-!)!'!-"-!-"-!=2,∴x "x !−(x "+x !)+1−(-"/-!)!'!-"-!-"-!=2,∴k +1−1+1−"'!(#/")#/"=2,整理得:k !+2k =0,解得:k "=−2,k !=0(舍去), ∴k 的值为−2.20.(22-23九年级上·四川资阳·期末)定义:已知x ",x !是关于x 的一元二次方程ax !+bx +c =0(a ≠0)的两个实数根,若x "<x !<0,且3<-"-!<4,则称这个方程为“限根方程”.如:一元二次方程x !+13x +30=0的两根为x "=−10,x !=−3,因−10<−3<0,3<'"1')<4,所以一元二次方程x !+13x +30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程x !+9x +14=0是否为“限根方程”,并说明理由;(2)若关于x 的一元二次方程2x !+(k +7)x +k !+3=0是“限根方程”,且两根x "、x !满足x "+x !+x "x !=−1,求k 的值;(3)若关于x 的一元二次方程x !+(1−m )x −m =0是“限根方程”,求m 的取值范围. 【思路点拨】(1)解该一元二次方程,得出x "=−7,x !=−2,再根据“限根方程”的定义判断即可; (2)由一元二次方程根与系数的关系可得出x "+x !=−#/&!,x "x !=#!/)!,代入x "+x !+x "x !=−1,即可求出k "=2,k !=−1.再结合“限根方程”的定义分类讨论舍去不合题意的值即可;(3)解该一元二次方程,得出x"=−1,x!=m或x"=m,x!=−1.再根据此方程为“限根方程”,即得出此方程有两个不相等的实数根,结合一元二次方程根的判别式即可得出Δ>0,m<0且m≠−1,可求出m 的取值范围.最后分类讨论即可求解.【解题过程】(1)解:x!+9x+14=0,(x+2)(x+7)=0,∴x+2=0或x+7=0,∴x"=−7,x!=−2.∵−7<−2,3<'&'!=&!<4,∴此方程为“限根方程”;(2)∵方程2x!+(k+7)x+k!+3=0的两个根分比为x"、x!,∴x"+x!=−#/&!,x"x!=#!/)!.∵x"+x!+x"x!=−1,∴−#/&!+#!/)!=−1,解得:k"=2,k!=−1.分类讨论:①当k=2时,原方程为2x!+9x+7=0,∴x"=−&!,x!=−1,∴x"<x!<0,3<-"-!=&!<4,∴此时方程2x!+(k+7)x+k!+3=0是“限根方程”,∴k=2符合题意;②当k=−1时,原方程为2x!+6x+4=0,∴x"=−2,x!=−1,∴x"<x!<0,-"-!=2<3,∴此时方程2x!+(k+7)x+k!+3=0不是“限根方程”,∴k=−1不符合题意.综上可知k的值为2;(3)x!+(1−m)x−m=0,(x+1)(x−m)=0,∴x+1=0或x−m=0,∴x"=−1,x!=m或x"=m,x!=−1.∵此方程为“限根方程”,∴此方程有两个不相等的实数根,∴Δ>0,m<0且m≠−1,∴(1−m)!+4m>0,即(1+m)!>0,∴m<0且m≠−1.分类讨论:①当−1<m<0时,∴x"=−1,x!=m,∵3<-"-!<4,∴3<'"$<4,解得:−")<m<−"%;②当m<−1时,∴x"=m,x!=−1,∵3<-"-!<4,∴3<$'"<4,解得:−4<m<−3.综上所述,m的取值范围为−")<m<−"%或−4<m<−3.。
17.4 一元二次方程的根与系数的关系教学目标:1.了解一元二次方程的根与系数的关系;2.会灵活运用根的判别式和根与系数的关系解决问题。
重难点:1.利用根与系数的关系求未知字母的值。
2.利用根与系数的关系求代数式的值。
知识点:一元二次方程根与系数的关系(重点;难点)常称为韦达定理。
知识拓展:一元二次方程根与系数的关系的应用:(1)检验解一元二次方程所得的根是否正确;(2)已知方程的一根,求另一根或方程中的字母系数;(3)已知两个根,求一元二次方程;(4)已知两个根之间的关系,确定方程中字母系数的值;(5)不解方程,判断一元二次方程根的符号。
相关代数式的值时,往往先把代数式变形成两根和与积的形式,再整体求值。
常例1.设x 1,x 2是方程x 2+5x-3=0的两个根,则x 12+x 22的值是 ( )A.19B.25C.31D.30 例2.一元二次方程x 2-3x-2=0的两根为x 1,x 2,则下列结论正确的是 ( )A. x 1=-1, x 2=2B.x 1=1 ,x 2=-2 B. x 1+x 2=3 D.x 1x 2=2 例3.若方程x 2+x-1=0的两实根为α,β,那么下列说法不正确的是 ( )A. 例4.已知x 1,x 2是一元二次方程3x 2=6-2x 的两个根,则x 1-x 1x 2+x 2的值是()A.拓展应用:1.已知x1,x2是关于x的一元二次方程x2-6x-11=0的两个实数根,求x12+x22+8的值。
2.3.已知关于x的方程x2+ax+a-2=0,。
(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根。
4.已知x1,x2的关于x的一元二次方程x2-2(m+1)x+m2+5=0的两个实数根。
(1)若(x1-1)(x2-1)=28,求m的值;(2)已知等腰三角形ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长。
*17.4 一元二次方程的根与系数的关系各位评委老师你们好!今天我说课的题目是八年级下册第17章第四节的《一元二次方程的根与系数的关系》。
[设计理念]:根据教材内容在教学中渗透高效课堂的思想,注重过程数学,注重创新教学,注重问题意识,关注学生的学习兴趣和经验,让学生主动参与学习活动,主动探索并获取知识,教师是组织者、引导者、参与者。
[教材简析]:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。
教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。
然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。
根与系数的关系也称为韦达定理(韦达是法国数学家)。
根与系数的关系是初中代数中的一个重要定理。
这是因为通过根与系数的关系的学习,把一元二次方程的研究推向了高级阶段,运用根与系数的关系可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;根与系数的关系对后面函数的学习研究也是作用非凡。
通过近些年的中考数学试卷的分析可以得出:根与系数的关系及其应用是各地市中考数学命题的热点之一。
出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。
通过根与系数的关系的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。
[教学目标]:1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过根与系数的关系的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
专题17.4一元二次方程根与系数的关系【十大题型】【沪科版】【题型1由根与系数的关系直接求代数式的值】 (1)【题型2由根与系数的关系和方程的解通过代换求代数式的值】 (4)【题型3由根与系数的关系和方程的解通过降次求代数式的值】 (6)【题型4由方程两根满足关系求字母的值】 (10)【题型5不解方程由根与系数的关系判断根的正负】 (13)【题型6由方程两根的不等关系确定字母系数的取值范围】 (15)【题型7构造一元二次方程求代数式的值】 (19)【题型8已知方程根的情况判断另一个方程】 (21)【题型9根与系数关系中的新定义问题】 (25)【题型10根与系数的关系和根的判别式的综合应用】......................................................错误!未定义书签。
【知识点一元二次方程的根与系数的关系】若一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两根为x1,x2,则x1+x2=−b a,x1⋅x2=c a.注意它的使用条件为,a≠0,Δ≥0.【题型1由根与系数的关系直接求代数式的值】【例1】(2023春·广东广州·八年级统考期末)若1,2是一元二次方程2−2−3=0的两个根,则12+22+12的值是()A.−7B.−1C.1D.7【答案】D【分析】利用两根之和为1+2=−,两根之积为12=,计算即可.【详解】解:∵1、2是一元二次方程2−2−3=0的两个根,∴1+2=2,12=−3,∴12+22+12=1+22−12=4−−3=7,故选:D.【点睛】本题主要考查了根与系数的关系,解题的关键是掌握根与系数的关系的公式.【变式1-1】(2023·湖北武汉·统考模拟预测)已知m,n是一元二次方程2+3−2=0的两根,则2K−r32−2的值是()A.−3B.−2C.−13D.−12【答案】C【分析】根据一元二次方程根与系数的关系得出+=−3,然后将分式化简,代入+=−3即可求解.【详解】解:∵,是一元二次方程2+3−2=0的两根,∴+=−3,∴2r322===+=1+=−13,故选:C.【点睛】本题考查了一元二次方程根与系数的关系,分式的化简求值,熟练掌握以上知识是解题的关键.【变式1-2】(2023·上海·八年级假期作业)已知a,b是方程2+6+4=0的两个根,则+的值.【答案】−14【分析】由根与系数关系知+=−6,B=4,即知a<0,b<0,化简原式+=−B((rp2−2B B),所以原式=−14故答案为:﹣14.【详解】解:∵a,b是方程2+6+4=0的两个根,∴+=−6,B=4,∴a<0,b<0,∴=−B =−B(+) =−B(2+2B) =−B((rp2−2B B)∴原式=−4×(−6)2−2×44=−2×7=−14故答案为:﹣14.【点睛】本题主要考查根与系数关系、完全平方公式变形及二次根式的运算及化简;能够根据a,b的关系式确定其取值范围,进而准确处理二次根式的运算及化简是解题的关键.【变式1-3】(2023春·八年级单元测试)已知1、2是方程2−7+8=0的两根,且1>2,则21+32的值为.【分析】由题意可得1+2=7,2=.【详解】解:∵1、2是方程2−7+8=0的两根,∴1+2=7,==∵1>,∴2=∴21+32=2===【点睛】本题考查了一元二次方程的求解、根与系数的关系以及二次根式的混合运算,熟练掌握一元二次方程的相关知识、正确计算是解题的关键.【题型2由根与系数的关系和方程的解通过代换求代数式的值】【例2】(2023春·浙江·八年级专题练习)设α、β是方程2++2012=0的两个实数根,则2+2+的值为()A.-2014B.2014C.2013D.-2013【答案】D【分析】先根据一元二次方程的解的定义得到x2+x+2012=0,即α2+α=-2012,则α2+2α+可化为α2+α+α+β=-2012+α+β,然后利用根与系数的关系得到α+β=-1,再利用整体代入的方法计算即可.【详解】∵α是方程x2+x+2012=0的根,∴α2+α+2012=0,即α2+α=-2012,∴α2+2α+β=α2+α+α+β=-2012+α+β,∵α,β是方程x2+x+2012=0的两个实数根,∴α+β=-1,∴α2+2α+β=-2012-1=-2013.故选D.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.【变式2-1】(2023春·湖北恩施·八年级统考期中)已知,是关于x的一元二次方程2+3−1=0的两个实数根,则+22+的值为()A.32B.5C.2D.−2【答案】C【分析】根据一元二次方程的根的定义可得2+3=1,根据一元二次方程根与系数的关系可得B=−1,代入代数式即可求解.【详解】解:∵,是关于x的一元二次方程2+3−1=0的两个实数根,∴2+3=1,+=−3∴+22+=2+4+4+=2+3+++4=1−3+4=2,故选:C.【点睛】本题考查了一元二次方程的根的定义,一元二次方程根与系数的关系,得出2+3=1,+=−3是解题的关键.【变式2-2】(2023·江西萍乡·校考模拟预测)若、是一元二次方程2−3−9=0的两个根,则2−4−的值是.【答案】6【分析】根据一元二次方程根与系数的关系可得+=3,由根的定义可得2−3=9,代入即可得答案.【详解】∵2−3=9,+=3,∴2−4−=2−3−−=2−3−+=6.故答案为:6【点睛】本题考查一元二次方程根与系数的关系,解题的关键是掌握根与系数的关系及方程根的概念.【变式2-3】(2023春·安徽池州·八年级统考期末)已知和是方程2+2023+1=0的两个根,则2+2024+22+2024+2的值为()A.−2021B.2021C.−2023D.2023【答案】A【分析】由和是方程2+2023+1=0的两个根,根据根于系数关系可得,⋅=1,+=−2023,由一元二次方程根的定义可得2+2023+1=0,2+2023+1=0,即可求解;【详解】∵和是方程2+2023+1=0的两个根,∴2+2023+1=0,2+2023+1=0,⋅=1,+=−2023,∴2+2024+22+2024+2=2+2023+1++12+2023+1++1=+1+1=⋅+++1=1−2023+1=−2021故选A.【点睛】该题考查了根与系数的关系以及一元二次方程的解,熟记一元二次方程根与系数关系公式是解答该题的关键.【题型3由根与系数的关系和方程的解通过降次求代数式的值】【例3】(2023春·广东广州·八年级广州市第二中学校考阶段练习)若p、q是方程2−3−1=0的两个不相等的实数根,则代数式3−42−2+5的值为.【答案】−2【分析】根据一元二次方程的解的定义得到2−3−1=0,再根据根与系数的关系得到+=3,然后利用整体思想计算即可.【详解】∵若p、q是方程2−3−1=0的两个不相等的实数根,∴2−3−1=0,+=3,∴2=3+1,∴3−42−2+5=2−3−1−2+−2+5=−2+−2+5=−3−1+−2+5=−2−2+4=−2++4=−2×3+4=−2,故答案为:−2.【点睛】本题考查了一元二次方程B2+B+=0的根与系数的关系,一元二次方程的解,利用整体思想降次消元是解题的关键.【变式3-1】(2023春·山东日照·八年级统考期末)已知,是方程2−−3=0的两个根,则代数2+22+ +B的值为.【答案】8【分析】根据一元二次方程根与系数的关系以及解的定义,得+=1,B=−3,2−−3=0,2−−3=0,再代入降次求值即可.【详解】解:由题意,得+=1,B=−3,2−−3=0,2−−3=0,2=+3,2=+3,原式=+3+2+6+−3,=2(+p+6,=2×1+6,=8.故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,整式的化简求值,本题的关键是熟练掌握一元二次方程根与系数的关系.(2023春·浙江温州·八年级校考阶段练习)已知、是方程2+−1=0的两根,则4−3+5【变式3-2】的值是()A.7B.8C.9D.10【答案】C【分析】根据一元二次方程解的定义和根与系数的关系得出+=−1,B=−1,2=1−,2=1−,再对所求式子变形整理,求出答案即可.【详解】解:∵、是方程2+−1=0的两根,∴+=−1,B=−1,2=1−,2=1−,∴4−3+5=3×−1−3+5=−1−−1−+5=−+2−+2+5=−+1−−+1−+5=−2++7=−2×−1+7=9,故选:C.【点睛】本题考查了一元二次方程解的定义和根与系数的关系,若一元二次方程B2+B+=0(a、b、c 为常数,≠0)的两根为1,2,则1+2=−,1⋅2=.【变式3-3】(2023春·八年级课时练习)已知,是方程2−−1=0的两根,则代数式23+5+33+ 3+1的值是()A.19B.20C.14D.15【答案】D【分析】由根与系数的关系可得:a+b=1,再由a与b是方程的两根可得a2=a+1,b2=b+1,把a3与b3采用降次的方法即可求得结果的值.【详解】∵a与b是方程2−−1=0的两根∴a+b=1,a2-a-1=0,b2-b-1=0∴a2=a+1,b2=b+1∵3=2·=(+1)=2+=+1+=2+1,同理:3=2+1∴23+5+33+3+1=2(2+1)+5+3(2+1)+3+1=9+9+6=9(+p+6=9×1+6=15故选:D.【点睛】本题考查了一元二次方程的解的概论、一元二次方程根与系数的关系,求代数式的值,灵活进行整式的运算是解题的关键.【题型4由方程两根满足关系求字母的值】(2023·四川乐山·统考中考真题)若关于x的一元二次方程2−8+=0两根为1、2,且1=32,【例4】则m的值为()A.4B.8C.12D.16【答案】C【分析】根据一元二次方程根与系数的关系得出1+2=8,然后即可确定两个根,再由根与系数的关系求解即可.【详解】解:∵关于x的一元二次方程2−8+=0两根为1、2,∴1+2=8,∵1=32,∴2=2,1=6,∴=12=12,故选:C.【点睛】题目主要考查一元二次方程根与系数的关系,熟练掌握此关系是解题关键.【变式4-1】(2023·上海·八年级校考期中)已知关于x的方程2+(2−1)+2−1=0的两根为1,2满足:12+22=16+12,求实数k的值【答案】=−2【分析】利用根的判别式求出k的取值范围,利用根与系数的关系求出1+2=1−2,12=2−1,代入12+22=16+12,即可求得k的值.【详解】解:∵关于x的方程2+2−1+2−1=0的两根为1,2∴=2−4B=(2−1)2−4×1×(2−1)≥0解得:≤541+2=1−2,12=2−1∵12+22=16+12∴12+22−12=16(1+2)2−312=16代入1+2=1−2,12=2−1得:(1−2p2−3(2−1)=16解得:1=6,2=−2∵≤54∴=−2【点睛】本题考查一元二次方程根的判别式、根与系数的关系以及一元二次方程求解,熟练掌握相关知识点是解题关键.【变式4-2】(2023春·广东佛山·八年级校考阶段练习)方程2−2−4++1=0的两个实数根互为相反数,则的值是.【答案】−2【分析】设方程的两根分别为1,2,根据根与系数的关系得到1+2=2−4=0,解得=±2,然后分别计算Δ,最后确定=−2.【详解】解:设方程的两根分别为1,2,∵方程2−2−4++1=0的两个实数根互为相反数,,∴1+2=2−4=0,解得=±2,当=2,方程变为:2+3=0,Δ=−12<0,方程没有实数根,所以=2舍去;当=−2,方程变为:2−1=0,Δ=4>0,方程有两个不相等的实数根;∴=−2.故答案为:−2.【点睛】本题考查了一元二次方程B2+B+=0(≠0,,,为常数)根与系数的关系:若方程的两根分别为1,2,则1+2=−;1⋅2=.也考查了一元二次方程的根的判别式Δ=2−4B:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.【变式4-3】(2023春·安徽马鞍山·八年级安徽省马鞍山市第七中学校考期末)若、是关于的方程2+ 2+3+2=0的两个不相等的实数根,且1+1=−1,则的值为.【答案】3【分析】根据根与系数的关系得到+=−2−3,B=2,再根据1+1=−1得到2−2−3=0,解方程求出k的值,最后用根的判别式验证是否符合题意即可.【详解】解:∵、是关于的方程2+2+3+2=0的两个不相等的实数根,∴+=−2−3,B=2,∵1+1=−1,∴r B=−1,即+=−B,∴−−2−3=2,∴2−2−3=0,解得=3或=−1,又∵方程有两个不相等的实数根,∴Δ=2+32−42>0,∴>−34,∴=3,故答案为:3.【点睛】本题主要考查了一元二次方程根与系数的关系,根的判别式,解一元二次方程,熟知一元二次方程的相关知识是解题的关键.【题型5不解方程由根与系数的关系判断根的正负】【例5】(2023春·江苏南京·八年级专题练习)关于的方程−2+1=2(为常数)根的情况,下列结论中正确的是()A.有两个相异正根B.有两个相异负根C.有一个正根和一个负根D.无实数根【答案】C【分析】先对方程进行化简,然后再根据一元二次方程根的判别式可进行求解.【详解】解:由题意得:方程可化为2−−2−2=0,∴Δ=−12−4−2−2=1+8+42=42+9>0,∴该方程有两个不相等的实数根,设该方程的两个根为1,2,则根据根与系数的关系可知:1⋅2=−2−2<0,∴该方程的两个根为一正一负,故选C.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.【变式5-1】(2023春·安徽合肥·八年级统考期末)方程22−3+1=0根的符号是()A.两根一正一负B.两根都是负数C.两根都是正数D.无法确定【答案】C【分析】利用一元二次方程根与系数的关系分析求解.【详解】解:22−3+1=0的两根分别为1,2,则1+2=32>0,1⋅2=12>0,∴方程的两根同号,且两根都是正数,故选:C.【点睛】本题考查一元二次方程根与系数的关系,理解一元二次方程B2+B+=0≠0的两根1,2满足1+2=−,1⋅2=是解题关键.【变式5-2】(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)已知a、b、c是△A的三条边的长,那么方程B2+++4=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的负实根D.只有一个实数根【答案】C【分析】首先根据根的判别式Δ=2−4B,结合三角形三边关系,得出方程有两个不相等的实数根,再根据根与系数的关系,判断出两根之和和两根之积的符号,即可作出判断.【详解】解:在方程B2+++4=0中,可得:Δ=+2−4⋅4=+2−2,∵a、b、c是△A的三条边的长,∴>0,>0,>0.+>,即+2>2,∴+2−2>0,∴Δ>0,∴方程有两个不相等的实数根,又∵两根的和是−r<0,两根的积是4=14>0,∴方程有两个不等的负实根.故选:C【点睛】本题考查了一元二次方程根与系数的关系、一元二次方程根的判别式、三角形的三边关系,解本题的关键在熟练掌握根据一元二次方程根与系数的关系,判断出方程有两个不等的负实根.【变式5-3】(2023·八年级统考课时练习)已知<0,>0,<0,则方程B2−B−=0的根的情况是().A.有两个负根B.两根异号且正根绝对值较大C.有两个正根D.两根异号且负根绝对值较大【答案】D【分析】先计算△=b2+4ac,由a<0,b>0,c<0,得到△>0,然后根据判别式的意义得到方程有两个实数根.设方程两根为x1,x2.由12=−<0得到方程有异号两实数根,再由1+2=<0得到负根的绝对值大.【详解】△=(﹣b)2﹣4•a•(﹣c)=b2+4ac.∵a<0,b>0,c<0,∴b2>0,ac>0,∴△>0,∴方程有两个不相等的实数根.设方程两根为x1,x2.∵12=−<0,∴方程有异号两实数根.∵1+2=<0,∴负根的绝对值大.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式和根与系数的关系.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.【题型6由方程两根的不等关系确定字母系数的取值范围】【例6】(2023·四川成都·三模)若方程x2+(m﹣4)x+134﹣m=0有两个不相等的实数根x1和x2,且x1+x2>﹣3,x1x2<214,则m的取值范围为多少?【答案】﹣2<m<1或3<m<7【分析】由方程有两个不相等实数根结合根的判别式即可得出关于m的不等式,解不等式即可得出m的取值范围,结合根与系数的关系可得出关于m的不等式,解不等式可得出答案.【详解】解:∵方程x2+(m﹣4)x+134﹣m=0有两个不相等的实数根,∴b2﹣4ac=(﹣4)2﹣−>0,整理得:2−4+3>0,即(−3)(−1)>0,根据乘法法则得:−3>0−1>0或−3<0−1<0,解前一不等式组得:m>3;解后一不等式组得:m>1,∴原不等式的解集为:m>3或m<1;由题意得x1+x8=−=(4﹣m)>﹣3,解得m<7;∵x1x2==134−<214,解得m>﹣2.综上所述,﹣2<m<1或3<m<7.【点睛】本题考查了根与系数的关系、根的判别式,根据题意得出关于m的不等式是解题的关键【变式6-1】(2023·山东日照·日照港中学统考二模)已知关于x的一元二次方程2−4+−1=0的实数根1,2,满足312−1−2>5,则m的取值范围是.【答案】4<≤5【分析】根据根的判别式Δ≥0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【详解】解:由题意得:1+2=4,12=−1,所以312−1−2=3×(−1)−4,依题意得:(−4)2−4(−1)≥03×(−1)−4>5,解得4<m≤5.故答案是:4<m≤5.【点睛】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2-4ac>0时,一元二次方程有两个不相等的实数根,②当b2-4ac=0时,一元二次方程有两个相等的实数根,③当b2-4ac<0时,一元二次方程没有实数根.(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)已知关于x的方程42−+5−−【变式6-2】9=0有两个不相等的实数根1,2,且1=−1,0<2<1,则k的取值范围是()A.−18<<−10B.0<<8C.−9<<−5D.−18<<−10且≠−13【答案】C【分析】根据一元二次方程的根的判别式,建立关于的不等式,求出的取值范围.根据12=−K94,1=−1,可得2=r94,结合0<2<1,从而最后确定的取值范围.【详解】解:∵方程42−+5−−9=0有两个不相等的实数根,∴Δ=−+52−4×4×−−9=+132>0,解得:≠−13,∵12=−K94,1=−1,∴2=r94又∵0<2<1,∴0<r94<1,解得:−9<<−5,综上,的取值范围为:−9<<−5.故选:C.【点睛】此题考查了一元二次方程根的判别式及根与系数的关系,关键是得到2=r94.【变式6-3】(2023春·八年级单元测试)设关于的方程B2+(+2)+9=0有两个不相等的实数根1,2,且1<−1<2,那么实数的取值范围是.【答案】0<<29【分析】由方程有两个不相等的实数根利用根的判别式Δ>0,可得出a的取值范围,利用根与系数的关系可得出1+2=−r2,12=9,由1<−1<2可得出(1+1)(2+1)<0,展开代入后可得出a的不等式,解之即可求出a取值范围.【详解】解:∵方程有两个不相等的实数根,∴△=(+2)2−4×9=−352+4+4>0,解得:−27<<25,∵1+2=−r2,12=9,1<−1<2,∴1+1<0,2+1>0,∴(1+1)(2+1)<0,∴12+(1+2)+1<0,即9−r2+1<0,当I0时,解得>29(舍去);当>0时,解得0<<29,又∵−27<<25,∴的取值范围为0<<29.故答案为:0<<29.【点睛】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合(1+1)(2+1)<0,找出关于a的不等式是解题的关键.【题型7构造一元二次方程求代数式的值】【例7】(2023·陕西西安·校考二模)已知mn≠1,且5m2+2010m+9=0,9n2+2010n+5=0,则的值为()A.﹣402B.59C.95D.6703【答案】C【详解】将9n2+2010n+5=0方程两边同除以n2,变形得:5×(1)2+2010×1+9=0,又5m2+2010m+9=0,∴m与1为方程5x2+2010x+9=0的两个解,则根据一元二次方程的根与系数的关系可得m•1==95.故选:C.【变式7-1】(2023春·广东梅州·八年级校考阶段练习)已知≥2,2−2B+2=0,2−2B+2=0,则(−1)2+(−1)2的最小值是().A.6B.3C.-3D.0【答案】A【分析】由已知得m,n是关于x的一元二次方程x2-2ax+2=0的两个根,根据根与系数的关系得到m+n =2a,mn=2,再根据完全平方公式展开化简,利用二次函数的性质解决问题.【详解】解:∵m2-2am+2=0,n2-2an+2=0,∴m,n是关于x的一元二次方程x2-2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m-1)2+(n-1)2=m2-2m+1+n2-2n+1=(m+n)2-2mn-2(m+n)+2=4a2-4-4a+2=4(a-12)2-3,∵a≥2,∴当a=2时,(m-1)2+(n-1)2有最小值,∴(m-1)2+(n-1)2的最小值=4(2-12)2-3=6,故选A.【点睛】本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【变式7-2】(2023·山东德州·统考一模)已知互不相等的三个实数a、b、c满足=−−3,=−−3,求2+2−9的值.【答案】﹣2【分析】将已知的两等式去分母得到关系式a2+3a+c=0和b2+3b+c=0,把a、b看成方程x2+3x+c=0的两根,由根与系数的关系得到a+b=﹣3,ab=c,所求式子变形后,把a+b=﹣3,ab=c代入,即可求出值.【详解】由=﹣a﹣3得:a2+3a+c=0①;由=﹣b﹣3得:b2+3b+c=0②;∵a≠b,∴a、b可以看成方程x2+3x+c=0的两根,∴a+b=﹣3,ab=c;∴2+2﹣9=2+2−9=(rp2−2B−9=9−2K9=−2=﹣2.故答案为﹣2.【点睛】本题考查了根与系数的关系以及分式的加减运算,灵活变换已知等式是解答本题的关键.【变式7-3】(2023春·江苏·八年级专题练习)设,,,为互不相等的实数,且(2−2)(2−2)=1,(2−2)(2−2)=1,则22−22的值为()A.-1B.1C.0D.0.5【答案】A【分析】把2,2看作以上方程的两个不同的根,可得4−2+22−22−1=0,根据一元二次方程根与系数的关系求解即可【详解】解:∵(2−2)(2−2)=1,(2−2)(2−2)=1,∴2,2看作以上方程的两个不同的根,即2,2是方程4−2+22−22−1=0的两根,故22=−22−1,即22−22=−1故选A【点睛】本题考查了一元二次方程的根的定义,一元二次方程根与系数的关系,整体代入是解题的关键.【题型8已知方程根的情况判断另一个方程】【例8】(2023春·浙江·八年级期中)若关于x的一元二次方程B2+2B+=0(≠0)的一个根为m,则方程(−1)2+2(−1)+=0的两根分别是().A.+1,−−1B.+1,−+1C.+1,+2D.−1,−+1【答案】A【分析】根据一元二次方程的根与系数的关系求出方程B2+2B+=0的另一个根,设−1=,根据方程B2+2B+=0的根代入求值即可得到答案;【详解】解:∵一元二次方程B2+2B+=0(≠0)的一个根为m,设方程另一根为n,∴+=−2=−2,解得:=−2−,设−1=,方程(−1)2+2(−1)+=0变形为B2+2B+=0,由一元二次方程B2+2B+=0(≠0)的根可得,1=,2=−2−,∴−1=−2−,−1=,∴1=−−1,2=1+,故答案为:A.【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.【变式8-1】(2023春·江西萍乡·八年级统考期中)有两个一元二次方程::B2+B+=0;:B2+B+ =0,其中−≠0,以下四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么15是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是=1【答案】D【分析】求出方程:B2+B+=0的判别式△=2−4B,方程:B2+B+=0的判别式△=2−4B,再根据判别式的意义、根与系数的关系以及方程的解的意义求解即可.【详解】解:A、∵M有两个不相等的实数根,∴△>0即2−4B>0,∴此时N的判别式△=2−4B>0,∴N也有两个不相等的实数根,故此选项正确,不符合题意;B、∵M的两根符号相同:即1⋅2=>0,∴N的两根之积也大于0,∴N的两个根也是同号的,故此选项正确,不符合题意;C、如果5是M的一个根,则:25+5+=0①,我们只需要考虑将15代入N方程看是否成立,代入得:125+15+=0②,比较①与②,可知②式是由①式两边同时除以25得到,故②式成立,故此选项正确,不符合题意;D、比较方程M与N可得:B2+B+−B2−B−=0,∴−2=−,∵−≠0,∴2=1,∴=±1,∴它们如果有根相同的根可能是1或−1,故此选项错误,符合题意.故选:D.【点睛】本题主要考查了根的判别式,根与系数的关系以及一元二次方程的解的意义,解题的关键是熟练掌握一元二次方程,根的判别式△=2−4B,根与系数的关系1+2=−,1⋅2=.【变式8-2】(2023春·安徽合肥·八年级校考期末)关于x的一元二次方程2+B+=0有两个同号非零整数根,关于y的一元二次方程2+B+=0也有两个同号非零整数根,则下列说法正确的是()A.p是正数,q是负数B.(−2)2+(−2)2<8C.q是正数,p是负数D.(−2)2+(−2)2>8【答案】D【分析】设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.根据方程解的情况,结合根与系数的关系可得出x1•x2=q>0,y1•y2=p>0,即可判断A与C;②由方程有两个实数根结合根的判别式得出p2﹣4q≥0,q2﹣4p≥0,利用不等式的性质以及完全平方公式得出(p﹣2)2+(q﹣2)2>8,即可判断B 与D.【详解】解:设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴x1•x2=q>0,y1•y2=p>0,故选项A与C说法均错误,不符合题意;∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴p2﹣4q≥0,q2﹣4p≥0,∴(p﹣2)2+(q﹣2)2=p2﹣4q+4+q2﹣4p+4>8(p、q不能同时为2,否则两个方程均无实数根),故选项B说法错误,不符合题意;选项D说法正确,符合题意;故选:D.【点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项说法的正误是解题的关键.【变式8-3】(2023春·八年级单元测试)一元二次方程G B2+B+=0;G B2+B+=0,其中B≠0,≠,给出以下四个结论:①若方程M有两个不相等的实数根,则方程N也有两个不相等的实数根;②若方程M的两根符号相同,则方程N的两根符号也相同;③若m是方程M的一个根,则1是方程N的一个根;④若方程M和方程N有一个相同的根,则这个根必是=1,其中正确的结论是()A.①③B.①②③C.①②④D.①③④【答案】B【分析】根据根的判别式,根的定义,计算判断即可.【详解】∵G B2+B+=0有两个不相等的实数根,∴Δ=2−4B>0,∵G B2+B+=0的判别式为Δ=2−4B=2−4B>0,∴方程N也有两个不相等的实数根,故①正确;∵G B2+B+=0两根符号相同,∴Δ=2−4B≥0,>0,∴Δ=2−4B≥0,>0,∴方程N的两根符号也相同,故②正确;∵m是方程G B2+B+=0的一个根,∴B2+B+=0,∵2+×1+=rB+B22=0∴1是方程N的一个根;故③正确;设方程M和方程N相同的根为0,根据题意,得B02+B0+=0,B02+B0+=0,∴−02=−,∵B≠0,≠,∴02=1,解得0=±1,故这个根是=±1,故④错误;故选B.【点睛】本题考查了一元二次方程的根的判别式,公共根,方程根的定义即使方程左右两边相等的未知数的值,熟练掌握根的判别式是解题的关键.【题型9根与系数关系中的新定义问题】【例9】(2023春·山东日照·八年级日照市田家炳实验中学校考阶段练习)定义:如果实数a、b、c满足a²+b²=c²,那么我们称一元二次方程ax²+bx+c=0(a≠0)为“勾股”方程;二次函数y=ax²+bx+c(a≠0)为“勾股”函数.(1)理解:下列方程是“勾股”方程的有.①x²-1=0;②2-r2=0;③132+14r15=0;④4x²+3x=5(2)探究:若m、n是“勾股”方程ax²+bx+c=0的两个实数根,试探究m、n之间的数量关系.【答案】(1)①②④;(2)22-(rp2=1;【分析】(1)运用“勾股”方程的定义,即可得出答案;(2)利用根与系数关系可得:m+n=-,mn=,再结合2+2=2,即可得出答案;另解:根据题意可得:B2+B+J0①,B2+B+J0②,再结合2+2=2,即可得出答案;【详解】(1)根据“勾股”方程的定义,在方程2-1=0中,J1,J0,J-1,∵2+2=1,2=1,∴2+2=2,∴一元二次方程2-1=0为“勾股”方程;在方程2-r2=0中,J1,J-1,J2,∵2+2=12+(-1)2=2,2=(2)2=2,∴2+2=2,∴一元二次方程2-r2=0为“勾股”方程;在方程132+14r15=0中,J13,J14,J15,∵2+2=(13)2+(14)2=25144,2=(15)2=125,∴2+2≠2,∴一元二次方程132+14r15=0不是“勾股”方程;在方程42+3J5中,J4,J3,J-5,∵2+2=42+32=25,2=(-5)2=25,∴2+2=2,∴一元二次方程42+3J5为“勾股”方程;故答案为:①②④;(2)22-(rp2=1;理由如下:∵、是“勾股”方程B2+B+J0的两个实数根,。
19.4一元二次方程的根与系数的关系(1)教学目标: 1.探索一元二次方程的根与系数的关系,与关系的应用。
2.实践,观察,讨论,经历 发现关系的过程。
3.初步体验发现问题,总结规律的态度,养成独立思考的习惯。
教学重,难点: 1.重点:猜想一般性质,用求根公式加以确证。
2.难点:根与系数的关系的应用。
教学过程: 一、回顾感知 1.写出一元二次方程的一般形式和求根公式2. 一元二次方程的一般形式有两不相等的根且它们互为相反数的条件是什么?二.探索发现1. 解下列方程,将得到的解填入下面的表格中,表格中两个解的和与积和程而言,两个根的和等于一次项系数的相反数,两个根的积等于它的常数项。
即x 2+px+q=0 , x 1+x 2 = -P x 1·x 2= g 3.思考(1):利用 上述结论填空:一元二次方程两个根,02=++acx a b x 是x 1 ,x 2 ,那么 x 1+x 2=x 1·x 2=思考(2):方程,02=++acx a b x 能变形得到)0(02≠=++a c bx ax 的形式吗?它们的解相同吗? 思考(3):仿照上述结论,如果方程 )0(02≠=++a c bx ax 的两个根是x 1 ,x 2 ,那么 两根的和与两根的积 和原方程的系数有什么关系? 4.韦达定理: 如果 )0(02≠=++a c bx ax 的两个根是x 1 ,x 2 ,那么acx x a b x x =+-=+2121,5.思考(4):上述 结论能利用求根公式验证吗?三 知识应用:1. 不解方程,求出方程的两根的和与两根的积。
(1)0132=-+x x (2)01422=+-x x练习:P36 练习1 (1)---(6)2.已知关于X 的方程0422=-+kx x 的一个根是 -4, 求它的另一根及K 的值。
四,巩固练习:已知方程0652=-+kx x 的一个根是2,求它的 另一个根及K 的值。