汽车电动助力转向控制系统研究
- 格式:pdf
- 大小:2.07 MB
- 文档页数:3
汽车电动助力转向系统设计毕业论文本章主要介绍汽车电动助力转向系统设计的背景和意义,以及论文的目的和结构安排。
汽车转向系统是车辆控制的重要组成部分,它直接影响着驾驶员的操控感受和行车安全性。
随着科技的发展,传统的液压助力转向系统逐渐被电动助力转向系统所取代。
电动助力转向系统通过电力传动装置提供操控力,相较于液压助力转向系统具有更高的效率、更好的节能性和可靠性。
本文的目的是设计一种可靠、高效的汽车电动助力转向系统。
在研究的基础上,将重点关注系统的结构设计、控制算法优化、故障诊断等方面。
通过对系统的设计和优化,可以提高汽车的操控性和安全性。
本文结构安排如下:第二章将介绍汽车电动助力转向系统的背景与发展;第三章将详细阐述系统的设计原理与结构;第四章将重点探讨控制算法的优化与实现;第五章将研究系统的故障诊断方法与技术;最后,第六章将总结全文,并提出进一步研究的展望。
通过本文的研究和实践,相信可以为汽车电动助力转向系统的设计与优化提供一定的参考和借鉴,推动汽车技术的发展与进步。
在这一部分,我们将对汽车电动助力转向系统设计相关的文献进行综述。
我们将总结已有的研究成果,以及当前存在的问题。
具体内容}本文详细介绍了汽车电动助力转向系统设计的方法和步骤,涵盖了传感器选择、电机控制、系统优化等方面。
传感器选择在汽车电动助力转向系统设计中,选择合适的传感器是至关重要的。
传感器可以检测车轮的转向角度、转向速度以及转向力等参数,为后续的电机控制提供必要的数据支持。
常见的传感器包括转向角度传感器、转向速度传感器和转向力传感器。
在选择传感器时,需考虑其精度、响应速度和可靠性等因素,并确保其能与电机控制系统良好地配合。
电机控制在汽车电动助力转向系统中,电机控制是实现转向功能的核心部分。
电机控制系统通过接收传感器提供的数据,计算并控制电机的输出力矩,从而实现汽车的转向功能。
电机控制的关键是控制算法的设计和实现。
常见的电机控制方法有PID控制、模糊控制和神经网络控制等。
新能源汽车电动助力转向系统的工作原理大家好,今天我要给大家讲解一下新能源汽车电动助力转向系统的工作原理。
我们要明白什么是电动助力转向系统。
电动助力转向系统,简称EPS,是一种利用电机提供动力辅助的转向系统。
它可以减轻驾驶员的驾驶负担,提高行驶舒适性和安全性。
那么,电动助力转向系统是如何工作的呢?接下来,我将从三个方面来给大家详细介绍。
一、电动助力转向系统的结构电动助力转向系统主要由以下几个部分组成:电机、减速器、传感器、控制器和执行器。
下面,我将逐一给大家讲解这些部分的作用。
1. 电机电机是电动助力转向系统的核心部件,它负责将电能转化为机械能,为转向提供动力。
电机的输出功率大小直接影响到转向的响应速度和力度。
2. 减速器减速器是连接电机和执行器的部件,它的作用是将高速运转的电机转速降低,以便更好地控制转向力度。
减速器的种类有很多,常见的有齿轮减速器、蜗轮蜗杆减速器等。
3. 传感器传感器是用来检测车辆行驶状态的装置,它可以将转向角度、车速等信息传递给控制器。
常见的传感器有霍尔传感器、磁电感应传感器等。
4. 控制器控制器是电动助力转向系统的大脑,它根据传感器采集到的信息,对电机进行控制,以实现最佳的转向效果。
控制器的性能直接影响到转向系统的稳定性和可靠性。
5. 执行器执行器是将控制器发出的指令转化为实际动作的部分,它负责驱动车轮转动,从而改变车辆的行驶方向。
执行器的种类有很多,常见的有电子液压助力转向器、电子机械助力转向器等。
二、电动助力转向系统的工作过程电动助力转向系统的工作过程可以分为以下几个阶段:1. 感知阶段当驾驶员转动方向盘时,传感器会感知到这一动作,并将相关信息传递给控制器。
这个阶段的目的是确保传感器能够准确地捕捉到驾驶员的操作意图。
2. 计算阶段控制器根据传感器采集到的信息,结合车辆的实际状态(如车速、发动机转速等),计算出最佳的电机输出功率和转矩。
这个阶段的目的是确保电动助力转向系统能够根据驾驶员的需求和车辆的实际情况,提供合适的转向助力。
轻型载货汽车电动助力转向系统的结构设计与优化随着环保意识的提高和能源危机的日益严重,电动车辆逐渐成为人们关注的焦点。
在轻型载货汽车领域,电动助力转向系统的设计与优化也引起了人们的广泛关注。
本文将就轻型载货汽车电动助力转向系统的结构设计与优化进行探讨。
一、电动助力转向系统的基本原理电动助力转向系统是利用电力设备,对轻型载货汽车的转向操纵提供力矩,降低驾驶员的操纵压力,提高操纵的舒适性和安全性。
其基本原理是通过电机和齿轮箱的协同作用,将转向盘的转动转化为对转向轮的力矩输出,从而实现车辆转向的目的。
二、轻型载货汽车电动助力转向系统的结构设计1. 电动助力转向系统的主要组成部分电动助力转向系统主要由电机、电源模块、传感器和控制模块等组成。
其中,电机通过传感器感知驾驶员的转向操作,并通过控制模块对电机进行控制,输出相应的力矩。
电源模块则提供所需的电能。
2. 电动助力转向系统的电机选择电动助力转向系统的电机选择应考虑功率、扭矩、响应速度和效率等因素。
通常情况下,选择直流无刷电动机作为电动助力转向系统的动力源是比较合适的选择。
3. 电动助力转向系统的传感器设计为了使电动助力转向系统能够准确感知驾驶员的转向操作,传感器的设计非常关键。
通过合理地选择传感器的种类和位置,可以提高系统的灵敏度和控制精度。
三、轻型载货汽车电动助力转向系统的优化策略为了提高电动助力转向系统的性能和可靠性,以下优化策略可供参考:1. 优化电机控制算法通过优化电机控制算法,可以提高系统的响应速度和控制精度。
可以考虑采用闭环控制算法,结合传感器的反馈信号,实时调整输出力矩,从而提高系统的稳定性和准确性。
2. 优化系统的机械结构系统的机械结构设计也是影响电动助力转向系统性能的关键因素之一。
通过合理设计转向装置和齿轮箱等部件,可以减小系统的传动误差和能量损耗,提高系统的传动效率。
3. 应用新材料和新工艺应用新材料和新工艺可以有效地减轻系统的重量,提高系统的刚度和耐疲劳性。
电动助力转向控制方法及系统一、简介随着科技的不断发展,汽车行业也在不断地进行创新和改进。
其中,电动助力转向(Electric Power Steering,简称EPS)系统由于其节能环保、舒适性高等优点,已经广泛应用于现代汽车中。
本文档将介绍电动助力转向的控制方法及其系统。
二、电动助力转向系统简介电动助力转向系统是一种以电动机为动力源,通过电子控制单元(ECU)进行控制的转向助力系统。
它主要由电动机、减速机构、扭力传感器、角度传感器、ECU等组成。
系统的主要功能是通过电动机提供适当的辅助力,使驾驶员在驾驶过程中能够更加轻松地操作转向。
三、电动助力转向控制方法1. 扭矩传感器信号处理:扭矩传感器安装在电机轴上,用于检测驾驶员施加在转向轮上的扭矩。
当扭矩发生变化时,扭矩传感器会产生相应的电压信号,这个信号会被送到ECU进行处理。
2. 角度传感器信号处理:角度传感器安装在转向轴上,用于检测转向轮的转角。
当转向轮转角发生变化时,角度传感器会产生相应的电压信号,这个信号会被送到ECU进行处理。
3. 车速传感器信号处理:通过车速传感器来测量车辆的速度,并根据车速的变化调整电动助力转向的输出力。
当车速发生变化时,车速传感器会产生相应的电压信号,这个信号会被送到ECU进行处理。
通常在低速时提供更大的助力,高速时减小助力以增加操控稳定性。
4. ECU处理:ECU接收到扭矩传感器、角度传感器和车速传感器的信号后,会根据预设的控制策略,计算出需要提供的辅助力矩,并控制电动机进行相应的动作。
5. PID控制:在电动助力转向系统中,通常会采用PID(比例-积分-微分)控制算法进行控制。
PID控制器可以根据系统的误差,自动调整控制参数,以达到快速、准确的目的。
四、电动助力转向系统的组成1.电动助力转向电机:负责提供辅助转向力,通常与转向柱相连并安装在转向齿轮或转向柱上。
2.控制单元(ECU):接收传感器的输入信号,并根据预设的算法和逻辑,控制电动助力转向电机的输出力。
汽车电动助力转向系统的发展随着科技的不断进步,汽车行业也在不断地进行改革和创新。
汽车电动助力转向系统的发展在近年来得到了广泛关注。
电动助力转向系统通过电动机或者液压泵等方式,为驾驶员提供操控方向盘的帮助,使得操控更为轻松和舒适。
这一系统的发展不仅带来了更好的驾驶体验,也在一定程度上提高了行车的安全性和稳定性。
本文将从电动助力转向系统的发展历程、技术特点和未来发展趋势等方面展开分析。
一、发展历程汽车电动助力转向系统的发展可以追溯到上个世纪70年代,当时一些高端车型开始使用电动助力转向系统,而在20世纪80年代,这种技术逐渐普及并应用于更多的车型中。
随着电子技术的快速发展,越来越多的汽车制造商开始将电动助力转向系统作为标配,甚至将其与先进的主动安全系统相结合,为驾驶员提供更全面的驾驶辅助。
在过去,汽车的转向系统主要采用液压助力转向方式,通过液压泵和液压缸的工作来帮助驾驶员转动方向盘。
而随着电子技术的应用,电动助力转向系统逐渐替代了传统的液压助力转向系统,使得转向系统更为智能化和高效化。
随着混合动力和纯电动汽车的出现,电动助力转向系统也得到了进一步的发展和完善,以适应不同类型汽车的需求。
二、技术特点电动助力转向系统相比传统的液压助力转向系统具有许多技术特点。
电动助力转向系统的配备更加智能化的控制单元,通过精准的电子控制来感知车辆的行驶状态和驾驶员的操控需求,从而实现更为精准和及时的转向助力。
电动助力转向系统采用了先进的电动机或者电动液压泵等设备,通过电能转换为机械能,提供源源不断的助力,使得操控更为轻松和灵活。
电动助力转向系统的节能环保性能也得到了显著提升,用电能取代液压油,降低了车辆能耗和排放。
一些电动助力转向系统还具有自适应和主动安全的功能,能够根据前方道路情况和车辆速度自动调整转向助力,提高行车安全性和稳定性。
而且,通过与车辆的其它系统和传感器相互联动,电动助力转向系统还可以实现车道保持辅助、碰撞预警等先进的辅助功能,为驾驶员提供更为全面的驾驶辅助。
汽车电动液压助力转向系统控制器的研究的开题报告一、选题背景随着汽车行业的发展和技术革新,电动液压助力转向系统越来越被广泛应用于汽车转向系统、悬挂系统和其他液压系统中。
作为一种先进的技术,电动液压助力转向系统已经被证明比传统的机械液压助力转向系统更为精细和高效。
由于其具有高效、稳定性好、控制自由度高等优点,在实际工程应用中具有广泛的前景,实现了对汽车操控性及行驶稳定性的进一步提高。
但是,电动液压助力转向系统也存在一些问题,比如目前常见的电动液压助力转向控制器存在着控制精度不高、响应速度不够快、系统能耗大等问题。
因此,如何优化电动液压助力转向控制系统,提高其性能和效率,已经成为了该领域研究的重要而又紧迫的问题。
二、研究目的和意义本文的研究目的是探究电动液压助力转向系统控制器的设计原理、优化控制策略、提升系统性能和效率等关键技术,以应对现有控制器存在的不足和问题。
具体而言,本研究的具体目标如下:1. 分析目前常见的电动液压助力转向控制器的结构和控制策略,提出针对其不足之处的改进方案;2. 探索控制器内部的控制算法,改进其控制逻辑,提升系统的控制精度、响应速度及效率;3. 通过仿真实验以及实际实验验证改进后的控制器的性能和效果,为业界提供较为全面的电动液压助力转向控制器改进方案。
本研究的意义在于提高电动液压助力转向控制器的性能和效率,进一步推动汽车行业的升级换代和技术进步,同时也为研究者和业界提供一定的参考和借鉴。
三、研究内容本文的主要研究内容如下:1.电动液压助力转向系统的原理和结构分析;2.分析目前常见的电动液压助力转向控制器的结构和控制策略,提出改进方案;3.探索控制器内部的控制算法,改进其控制逻辑,提升系统的控制精度、响应速度及效率;4.通过仿真实验以及实际实验验证改进后的控制器的性能和效果,并对实验结果进行分析和总结。
四、研究方法和技术路线本研究采用实验方法和理论分析相结合的方法,主要技术路线包括:1. 归纳、总结已有的研究成果,建立电动液压助力转向系统的理论基础;2. 设计电动液压助力转向控制系统,并改进其控制算法;3. 利用仿真软件对改进后的控制器进行仿真实验,验证其性能和效果;4. 根据上述仿真实验结果,调整改进方案,制定实际试验方案;5. 利用实际设备进行试验,在试验中获取有关数据并对其进行分析和总结。
电动助力转向系统电机驱动电路的研究电动助力转向系统(EPS)电机驱动电路的研究是现代汽车技术发展的重要方面,它能够减轻车辆操控者的负荷,提高汽车性能和安全性能。
目前,基于有源电动助力转向系统(EPAS)的汽车正在迅速普及,其基本原理和关键组件是EPAS电机驱动电路。
因此,对EPAS 电机驱动电路进行全面研究和理解,对现代汽车技术的发展具有重要意义。
EPAS电机驱动电路是一种用于控制EPAS电机的控制电路,它由电源、驱动电路和控制电路组成。
EPAS电机的电源来自电池,驱动电路由晶体管和集成电路组成,它能将电源变换成EPAS电机需要的低电压高频正弦电流,而控制电路则是由定时器、反馈电路和数字控制器组成,能实现EPAS电机的速度、力矩和转向角度等控制。
EPAS电机驱动电路的特点之一是控制性能的高稳定性,这是由电路中的反馈控制实现的。
反馈控制分为绝对反馈和相对反馈两种,前者是通过检测电路输出和输入的差值,根据反馈信号来控制EPAS 电机,而后者则是由检测反馈信号与设定值的差值来控制EPAS电机,前者可以得到较高的控制精度,后者具有较低的环境抗干扰能力和容错性。
另外,EPAS电机驱动电路当前也采用了集成电路设计,以减少电路上的组件,提高系统的可靠性与可维护性。
在电路的设计上,也应采用绿色设计理念,采用少量的元器件,以减少系统的功耗,降低系统的故障率,提高系统的控制性能。
此外,还要注意EPAS电机驱动电路的安全性。
系统在高速运行时,由于噪声和抖动的原因,可能会导致意外的变化,甚至发生危险的情况,这时EPAS电机驱动电路需要及时做出反应,以确保系统的稳定性。
因此,EPAS电机驱动电路设计中应采用可靠的故障诊断技术,实现对系统故障的及时检测和故障处理,确保系统的安全性和可靠性。
总之,EPAS电机驱动电路的研究是现代汽车的重要组成部分,它的设计要求不仅要考虑控制性能和可靠性,而且要考虑安全性,以确保系统的正常运行。
电控助⼒转向系统1.汽车动⼒转向系统的发展汽车助⼒转向依次经历了机械式转向系统、液压式转向系统、电控液压式转向系统等阶段,国际上已有⼀些⼤的汽车公司在探讨开发的下⼀代线控电动转向系统。
在国外,各⼤汽车公司对汽车电动助⼒转向系统(Electric Power Steering - EPS,或称Electric Assisted Steering - EAS)的研究有20多年的历史。
随着近年来电⼦控制技术的成熟和成本的降低,EPS越来越受到⼈们的重视,并以其具有传统动⼒转向系统不可⽐拟的优点,迅速迈向了应⽤领域,部分取代了传统液压动⼒转向系统(Hydraulic Power Steering,简称HPS)[1]。
⾃1953年美国通⽤汽车公司在别克轿车上使⽤液压动⼒转向系统以来,HPS给汽车带来了巨⼤的变化,⼏⼗年来的技术⾰新使液压动⼒转向技术发展异常迅速,出现了电控式液压助⼒转向系统(Electric Hydraulic Power Steering,简称EHPS)。
1988年2⽉⽇本铃⽊公司⾸先在其Cervo车上装备EPSTM,随后⼜应⽤在Alto汽车上;1993年本⽥汽车公司在爱克NSX跑车上装备EPS并取得了良好的市场效果[4];1999年奔驰和西门⼦公司开始投巨资开发EPS。
上世纪九⼗年代初期,⽇本铃本、本⽥,三菱、美国Delphi汽车公司、德国ZF等公司相继推出了⾃⼰的EPS,TRW公司继推出 EHPS后也迅速推出了技术上⽐较成熟的带传动 EPS和转向柱助⼒式EPSTM,并装配在Ford Fiesta 和Mazda 323F等车上,此后EPS技术得到了飞速的发展。
在国外,EPS已进⼊批量⽣产阶段,并成为汽车零部件⾼新技术产品,⽽我国动⼒转向系统⽬前绝⼤部分采⽤机械转向或液压助⼒转向,EPS的研究开发处于起步阶段。
2. 汽车动⼒转向系统的分类及特点汽车转向系统可按转向能源不同分为机械转向系统和动⼒转向系统两类。
汽车电动助力转向系统文献综述一、汽车转向系统概述汽车转向系统(Steering System)是汽车的一个重要构成部件,是保障汽车安全驾驶十分重要的安全装置,其功能就是要求能够按照驾驶员的意图来控制汽车的行驶方向,它直接影响到汽车的整体操纵性和行驶稳定性。
因此在设计汽车的转向系统时,一方面要求其工作要安全可靠、操作轻便、高效节能、机动性良好等,另一方面更要求它能够在各种工况(其中常见的包括直线行驶、正常转向、原地转向和快速转向等)下,根据不同的路面状况和行驶速度,为驾驶员提供较好的路感。
一直以来,各汽车生产厂家、高等院校和科研机构都将如何更好地设计汽车的转向特性,从而使汽车具有良好的操纵性能视为重要的研究课题。
尤其在今天,车辆越来越高速、车流越来越密集、驾驶人员越来越非职业化,如何针对众多不同层次和水平的驾驶人员进行汽车的操纵性优化设计显得尤为重要。
汽车转向系统经历了纯机械式转向系统、液压助力转向系统、电动液压助力转向系统和电动助力转向系统四个基本发展阶段。
纯机械式转向系统(Manual Steering)是以驾驶员的体力作为转向的动力来源,其所有力的传递部件都是机械的。
早期的汽车转向就是采用该系统,这种机械式的转向系统,优点在于结构简单、工作可靠和造价低廉;而不足之处在于:由于采用纯粹的机械构件,为了产生足够大的转向扭矩,就需要加大方向盘,整个机构显得较为笨拙,占用驾驶室的空间也较大;另一方面对于驾驶员而言转向操纵负担比较重,特别是重型汽车由于转向阻力较大,仅仅依靠驾驶员的转向力很难实现灵活的转向,这也就大大限制了它的使用范围,因此这种纯机械式转向系统目前仅应用于一部分转向操纵力不大、对车辆操控性能要求不高的微型轿车或农用车上。
1953年通用汽车公司首次在车辆上使用了液压助力转向系统,此后该技术得到了迅速发展。
液压助力转向(Hydraulic Power Steering,简称HPS)系统一般由液压泵、油管、压力流量控制阀体、传动皮带以及储油罐等部件构成。
汽车电动助力转向系统的设计概述汽车电动助力转向系统是一种电子辅助转向系统,为驾驶员提供操纵方向盘的力量辅助,以改善驾驶操控性和舒适性。
该系统通过电动助力装置来替代传统的液压助力转向系统,具有更高的效率和响应性。
本文将详细介绍汽车电动助力转向系统的设计原理和关键技术。
设计原理汽车电动助力转向系统的设计基于电动助力装置和转向控制单元的协同工作。
电动助力装置负责提供对转向系统的力量辅助,转向控制单元那么负责监测车辆的转向情况并根据驾驶员的输入进行控制。
电动助力装置电动助力装置由电机、减速器、传感器和控制单元组成。
电机负责提供动力,减速器那么用于降低电机的转速并增加转力。
传感器用于监测转向力和转向角度,并向控制单元提供反应信息。
控制单元根据传感器的反应信号来确定输出力的大小和方向。
转向控制单元转向控制单元由微处理器和控制算法组成。
微处理器负责处理传感器的数据和执行控制算法。
控制算法根据驾驶员的转向输入,计算出相应的助力输出指令,并通过电动助力装置将助力传递给转向系统。
关键技术功率电子技术汽车电动助力转向系统需要提供足够的力量辅助,因此需要采用功率电子技术来实现高效能的能量转换和控制。
功率电子技术包括电机驱动技术、功率开关技术和电源管理技术,它们的协同工作可以有效提高电动助力转向系统的效率和可靠性。
传感器技术传感器技术在汽车电动助力转向系统中起到了至关重要的作用。
传感器可以实时监测转向力和转向角度,从而提供准确的反应信息给控制单元。
常用的传感器包括转向力传感器和转向角度传感器,它们需要具有高精度和可靠性,以确保系统的准确性和稳定性。
控制算法控制算法是汽车电动助力转向系统的核心局部,它决定了系统的性能和操控性。
控制算法根据传感器的反应信息和驾驶员的转向输入,计算出相应的助力输出指令。
常用的控制算法包括比例-积分-微分〔PID〕控制算法和模糊控制算法,它们能够确保系统的稳定性和响应性。
设计考虑功率和效率汽车电动助力转向系统需要提供足够的助力,同时也要确保系统的功率和效率。
汽车电动助力转向系统优化随着汽车工业的不断发展,汽车的操控性和安全性越来越受到人们的关注。
电动助力转向系统作为汽车转向系统的重要组成部分,其性能的优劣直接影响着驾驶者的驾驶体验和行车安全。
因此,对汽车电动助力转向系统进行优化具有重要的现实意义。
一、汽车电动助力转向系统的工作原理汽车电动助力转向系统主要由转矩传感器、车速传感器、电子控制单元(ECU)、电动机和减速机构等组成。
当驾驶者转动方向盘时,转矩传感器会检测到转向转矩的大小和方向,并将其转化为电信号传递给 ECU。
车速传感器则会检测车辆的行驶速度,并将车速信号传递给 ECU。
ECU 根据接收到的转矩信号和车速信号,计算出所需的助力转矩,并控制电动机输出相应的转矩,通过减速机构施加到转向机构上,从而实现助力转向。
二、汽车电动助力转向系统优化的必要性1、提高驾驶舒适性优化后的电动助力转向系统可以根据车速和转向转矩的变化,提供更加平滑和舒适的助力,减少驾驶者在转向过程中的疲劳感。
2、增强操控稳定性通过精确的控制策略,优化后的系统能够在高速行驶时提供适当的阻尼,提高车辆的直线行驶稳定性;在低速行驶时提供较大的助力,使转向更加轻便灵活,增强车辆的操控性。
3、降低能耗高效的电动助力转向系统可以在满足助力需求的前提下,降低电动机的能耗,提高能源利用率,延长车辆的续航里程。
4、适应多样化的驾驶需求不同驾驶者对转向助力的需求可能存在差异,优化系统可以提供多种助力模式供选择,满足个性化的驾驶需求。
三、汽车电动助力转向系统优化的关键技术1、传感器技术高精度的转矩传感器和车速传感器是实现精确助力控制的基础。
优化传感器的测量精度、响应速度和可靠性,可以提高系统的性能。
2、控制算法控制算法是电动助力转向系统的核心。
先进的控制算法如模糊控制、神经网络控制等,可以更好地处理复杂的非线性系统,实现更加精准的助力控制。
3、电动机技术选择高效、低噪音、高扭矩的电动机,并优化其驱动电路和控制策略,能够提高系统的助力性能和可靠性。
摘要电动助力系统采用电动机提供助力,具有转向力可变、路感良好、环保、耗能低和维修方便等优点,充分体现出汽车向智能化发展、满足未来安全性要求和环保要求的发展趋势。
本文在深入学习电动助力系统工作原理的基础上,设计了电动助力系统控制单元的硬件电路,研究了控制策略和算法,开发了相应的软件程序,印制了电路板,在自行搭建的试验平台上进行了实验验证。
具体工作内容如下:1. 研究了电动助力转向系统的发展和系统的基本原理;2. 在充分考虑满足电动助力控制单元功能需求的基础上,开发了一套基于单片机80C552的电机控制方案:利用电子执行单元(ECU)实时采集信号,运用PWM技术实现对H桥和电动机进行电流闭环控制,并完成了硬件电路设计;3. 在保证汽车的稳定性和安全性条件下,通过深入研究助力控制、回正控制和阻尼控制策略,提出了基于PID的控制算法,开发了核心控制程序;上述研究工作实现了电动助力系统低速轻便、高速稳定的使用要求,为下一步的工程实用化奠定了先期技术基础。
关键词:电动机,PID,控制策略,PWMAbstractEPS is a kind of power steering system following the system of hydraulic, motor was adopted to offer power directly. EPS has many advantages such as adjusted power which is controlled by the automatically controlling unit,good way sense,environmental protection,low energy consumption, convenient maintenance. The development trend of intelligent vehicles, future security requirements and environmental requirements was fully represented by EPS.In this thesis the Electronic Control Unit (ECU) and the software program of the ECU was designed, control strategies and algorithm were also studied based on the study of the operation principles of EPS. Following is the detailed process:1. Basic components, working principle and mathematical model of Brushless DC Motor (BLDCM) were described in detail.2. While the functions of ECU were considered, a scheme of motor control based on the high-performance microcontroller 80C552 was put forward and the ECU was designed. PWM technique was used to control H and closed loop motor current.3. Three control strategies which are assisting mode return ability and damp mode to get a stable steering under various conditions was presented and discussed in this paper. And a control algorithm based on PID was proposed under the strategies.The research above make the A/D acquisition program, speed signal acquisition program of the Electric power steering system come true, and t it laid a practical basis for the next preliminary technology.Keywords: MOTOR; PID; Control Strategy; PWM目录摘要 (Ⅰ)Abstract (Ⅱ)目录 (Ⅲ)第一章绪论 (1)1.1电动助力转向系统 (1)1.1.1电动助力转向系统的原理及发展 (1)1.1.2 电动助力转向系统控制单元 (3)1.2国内外研究现状 (4)1.3课题研究的目的和意义 (6)1.4本文研究内容 (6)第二章助力特性和控制策略研究 (8)2.1助力特性分析 (8)2.1.1助力特性的概念 (8)2.1.2助力特性曲线分类 (9)2.2控制模式 (10)2.2.1助力控制 (11)2.2.2回正控制 (12)2.3控制策略研究 (13)2.3.1电机目标转矩的控制策略 (13)2.3.2助力电机的电流控制策略 (14)2.3.3控制算法 (14)2.4本章小结 (16)第三章硬件控制系统设计 (17)3.1 EPS控制系统的总体结构 (17)3.2 ECU的控制芯片 (18)3.3电源电路和信号处理电路 (19)3.3.1电源电路 (19)3.3.2扭矩信号 (20)3.4电机的控制电路和保护电路 (21)3.4.1电动机的PWM调压调速原理 (22)3.4.2功率开关部件的选择及其驱动电路 (24)3.4.3电动机的保护电路 (25)3.5故障诊断电路 (26)3.6系统硬件的抗干扰性设计 (27)3.7本章小结 (27)第四章EPS控制软件设计 (28)4.1系统控制软件概述 (28)4.2 转向盘转矩信号采集子程序 (29)4.3 车速信号的采集子程序 (29)4.4 目标电流的确定 (30)4.4.1 助力曲线与目标电流 (30)4.4.2 助力特性曲线的确定 (30)4.5 PWM 脉宽调制及电机控制 (31)4.6 判断转向子程序 (31)4.7 软件滤波设计 (31)4.8 本章小结 (32)结论及展望 (33)致谢 (35)参考文献 (36)附录 (38)第一章绪论汽车转向系统作为汽车的重要组成部分,决定着汽车主动安全性的关键,汽车是否具有安全的操作性能,始终是消费者最关心的,也是汽车厂商在日趋激烈的市场竞争中站稳,始终是消费者最关心的,也是汽车厂商在日趋激烈的市场竞争中站稳脚跟的根本。
电动助力转向系统的研究与设计摘要电动助力转向系统(Electric Power Steering System,简称EPS),是汽车工程领域的热门课题之一。
本文在研究了电动助力转向系统工作原理的基础上,设计开发了EPS的电子控制单元ECU (Electronic Control Unit)的硬件电路和相应的控制软件框图。
本文详细分析了电动助力转向系统电子控制单元的功能,研究开发了以89c52单片机为微处理器的电子控制单元。
控制单元具有实时数据信号采集和系统控制功能,根据采集的数据信号,确定电动机输出的目标电流,利用PWM脉宽调制技术,通过H桥式电路控制电动机的输出电流和转动方向,实现助力转向功能。
在研制了实验用ECU装置后,开发了相应的控制软件。
控制软件分为控制策略的实现和数据信号采集与分析两部分。
整个软件系统采用了模块化的设计思想。
在数据信号采集与控制部分,设计了系统主程序、A/D采集程序、车速信号采集程序和PWM控制程序。
本文所设计的EPS电子控制单元性能稳定,结构合理,与整车匹配性能好,可保证EPS实现良好的转向助力效果。
关键词:电动助力转向电子控制单元单片机控制策略Electronic power steering system Research and DesignABSTRACTElectric Power Steering System (EPS) is one of the focuses research in automotive engineering. This paper is based on the principles of EPS to study the operation, designed and developed the Electronic Control Unit (ECU) and the soft ware diagram of the ECU.The thesis Considers the functions of the electronic control unit of EPS, studied and developed the hardware that adopted 89c51as its microprocessor. The control unit was able to realize real-time data/signal acquisition and system control. The target current of motor output could be determined by the obtained data; and utilizing the Pulse-Width Modulation (PWM) technology, power could be provided to the steering system by controlling the output current and rotation direction through H-bridge circuit.The software program, which was divided into the realization of control strategy and the acquisition & control of data/signal, was developed in modular after the design of experimental ECU was completed. And the main program, A/D acquisition program, speed signal acquisition program and PWM control program are developed in the second part.The result showed that the electronic control unit designed was with stable performance, appropriate structure and excellent matching condition, and the excellent power steering effect could be ensured by EPS.Key words: Electric Power Steering System (EPS) Electronic Control Unit Single-Chip Microprocessor Control Strategy目录前言 (1)第1章绪论 (2)1.1汽车电动助力转向系统的特点 (2)1.2电动助力转向系统国内外的研究现状 (4)1.3 EPS的发展趋势和急待解决的核心技术 (5)1.4本课题研究的目的与意义 (6)第2章电动助力转向系统方案确定及工作原理 (7)2.1电动助力转向系统的工作原理 (9)2.1.1电动助力转向系统的组成和工作原理 (9)2.1.2电动助力转向系统的分类 (11)2.1.3电动助力转向系统的技术要求 (12)2.2电动助力转向系统的数学模型 (13)2.2.1转向盘和转向柱输入轴子模型 (14)2.2.2电动机模型 (14)2.2.3输出轴子模型 (16)2.2.4齿轮齿条子模型 (16)2.3电动助力转向系统的主要部分 (17)2.3.1转矩传感器 (18)2.3.2车速传感器 (19)2.3.3直流电动机 (20)2.3.4电磁离合器 (21)2.3.5减速机构 (22)2.3.6电子控制单元ECU (23)第3章电动助力转向系统的硬件设计 (24)3.1电子动力转向系统控制器的总体结构 (24)3.2控制器微处理芯片的选择 (26)3.2.1控制器微处理器常用芯片及选型 (26)3.2.2 89C52芯片及A/D转换芯片介绍 (26)3.2.3 89C52外部总线扩展及片外ROM的连接 (28)3.3控制器输入通道的设计 (30)3.3.1转矩信号的采集 (30)3.3.2电动机电流信号的采集 (31)3.3.3车速信号的采集 (33)3.4控制器输出通道的设计 (34)3.4.1电动机的PWM控制 (34)3.4.2电磁离合器和显示控制电路的设计 (39)3.4.3 电动机保护电路及继电器驱动电路设计 (40)3.5系统供电电源电路设计 (41)3.6系统硬件抗干扰措施 (42)第4章电动助力转向系统的软件设计 (45)4.1 EPS的控制策略 (45)4.1.1 EPS的PID控制 (45)4.2电子动力转向系统各功能模块的软件设计 (48)4.2.1 A/D采集程序 (48)4.2.2 PWM控制程序 (49)4.2.3车速信号采集程序 (51)4.2.4系统主程序 (53)结论 (55)谢辞 (56)参考文献 (57)附录 (59)外文资料翻译 (66)前言转向系统作为汽车的一个重要组成部分,其性能的好坏将直接影响到汽车的转向特性、稳定性和行驶安全性。
简述电动助力转向系统的控制原理及控制策略。
电动助力转向系统是一种基于电机和电子控制器的转向装置,它可以增强驾驶员的操纵感觉,提高车辆的操控性和安全性。
其主要作用是在车辆转向时,通过电机控制系统向转向系统提供额外的扭矩,从而减轻驾驶员的操纵负担,使车辆更容易转向。
电动助力转向系统的控制原理主要包括以下几个方面:
1. 传感器测量:系统中的传感器可以感知车辆的转向角度、方向盘转动力矩、车速等参数,并将这些数据传递给电子控制器。
2. 控制算法:电子控制器根据传感器测量到的数据进行计算,判断车辆的行驶状态和驾驶员的意图,从而确定电动助力转向系统需要提供的扭矩大小和方向。
3. 电机控制:根据控制算法的输出,电子控制器控制电机输出相应的扭矩,使其作用于车辆转向系统,从而实现转向的辅助作用。
电动助力转向系统的控制策略主要有以下几种:
1. 扭矩反馈控制:根据方向盘转动的力矩大小和方向,电子控制器控制电机提供相应的扭矩,使其与驾驶员施加的力矩相平衡,从而减轻驾驶员的操纵负担。
2. 车速反馈控制:根据车速的变化,调整电动助力转向系统提供的扭矩大小和响应速度,使车辆在不同的行驶状态下都能保持稳定的操控性。
3. 转向角度反馈控制:根据车辆的转向角度,控制电动助力转向系统提供的扭矩大小和方向,使转向更加平滑和自然。
总之,电动助力转向系统的控制原理和控制策略是相互关联的,在实际应用过程中要根据车辆的实际情况和驾驶员的习惯,采用灵活的控制策略,使其发挥最大的作用。